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ABSTRACT

Diffusion Transformers have significantly improved video fidelity and temporal
coherence; however, practical controllability remains limited. Concise, ambigu-
ous, and compositionally complex user inputs contrast with the detailed prompts
used in training, yielding an intent—output mismatch. We propose ReaDe, a
universal, model-agnostic interpreter that converts raw instructions into precise,
actionable specifications for downstream video generators. ReaDe follows a
reason-then-describe paradigm: it first analyzes the user request to identify core
requirements and resolve ambiguities, then produces detailed guidance that en-
ables faithful, controllable generation. We train ReaDe via a two-stage optimiza-
tion: (i) reasoning-augmented supervision imparts analytic parsing with stepwise
traces and dense captions; (ii) a multi-dimensional reward assigner enables stable,
feedback-driven refinement for natural-style captions. Experiments across single-
and multi-condition scenarios show consistent gains in instruction fidelity, caption
accuracy, and downstream video quality, with strong generalization to reasoning-
intensive and unseen inputs. ReaDe offers a practical route to aligning controllable
video generation with accurately interpreted user intent.

1 INTRODUCTION

Video is a fundamental medium that captures the dynamics of the real world, and the ability to
generate diverse, long-horizon, and semantically coherent videos is a critical stepping stone toward
more general intelligence. In recent years, Diffusion Transformers (DiT) (Peebles & Xiel 2023} |Ju
et al.l 2025) have dramatically advanced both the fidelity and temporal consistency of generated
videos, making video generation increasingly viable for production-level applications such as cin-
ematic content creation (kual, 2024 run, 2025} |sor, [2024) and world simulation (He et al., 2025}
Qin et al, 2024). As the quality advancement of generated content, users have begun to expect
more fine-grained control, leveraging conditions such as reference images (Wei et al.| [2024), seg-
mentations (Lin et al.l 2024), sketches (Wang et al.l 2023), depth maps (Lin et al.l 2024), human
poses (Zhong et al., [2024)), and camera trajectories (He et al.| 2024} Bai et al., 2025a), as well as
their flexible composition, to achieve greater controllability and creative freedom. However, em-
pirical evidence shows that standard user inputs often fail to elicit the faithfully compelling videos
users actually want. This exposes a core bottleneck for the video generation community: aligning
controllable generation with an accurately interpreted user intent.

Prior studies (Yang et al.|[2024) have highlighted that detailed prompts, which explicitly specify the
target video’s objects, actions, spatial layouts, camera behavior, style, and other scene attributes, can
substantially improve controllability and quality during training. Motivated by this finding, several
efforts (Chen et al., [2024; |Ju et al.| [2024; |[Fan et al.; 2025) have explored video re-captioning to con-
struct high-quality, detailed captions. These intricate captions are then used as training prompts for
contemporary high-fidelity generators (Zheng et al.| [2024b; |Yang et al., 2024)). At inference time,
however, human-written inputs are often short and ambiguous, resulting in a pronounced mismatch
between training prompts and real-world inputs. Such a discrepancy results in a generated video
that neither follows user intent nor achieves high quality. To mitigate this gap, subsequent studies
therefore investigate prompt interpretation, i.e., translating raw user inputs into the detailed forms
expected by downstream generators, thereby improving controllability and quality. For example,
Prompt-A-Video (Ji et al., [2024)) introduces an LL.M-based textual prompt adaptation framework to
tailor prompts to a specific video generator, while Any2Caption (Wu et al.,[2025) extends interpreta-
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Figure 1: Text-only prompt optimizers and data-hungry multimodal methods (e.g., Any2Caption)
remain brittle, performing poorly on reasoning-intensive and unseen instructions.

--SFT Learning
N

tion to multi-condition prompts. Unfortunately, existing approaches either address only textual con-
ditions or depend on large amounts of condition-specific data, whose collection is often impractical.
Moreover, supervised fine-tuning tends to encourage memorization, making it difficult to generalize
to unseen or reasoning-intensive instructions that involve multiple cross-modal constraints.

To overcome the aforementioned limitations, we introduce ReaDe, a novel “reason-then-describe”
instruction interpreter that is universal, generalizable, and model-agnostic, thereby enabling seam-
less integration with diverse downstream video generators to enhance controllability. Inspired by
Chain-of-Thought (CoT) (Wei et al.l [2022), ReaDe emulates a human-like reasoning process that
systematically interprets the initial prompt into its core requirements, resolving cross-modal mis-
alignments and ambiguities, and enriches it with explicit details to enable faithful and high-quality
video generation. Technically, ReaDe instantiates a multimodal large language model backbone
capable of ingesting textual and visual conditions, with extensions to camera and audio inputs.
To effectively optimize ReaDe, we propose a multi-dimensional feedback reinforcement learning
framework comprising two stages. In Stage 1, the interpreter is equipped with initial analytic pars-
ing capabilities for instruction refinement, utilizing curated, reasoning-augmented data that pairs
user inputs with stepwise reasoning traces and gold dense, detailed captions. In Stage 2, we design a
multi-dimensional feedback reward assigner to overcome the intrinsic difficulty of evaluating natu-
rally styled captions, enabling stable feedback-driven optimization that steers the model to infer user
intent more accurately and generate detailed captions suitable for controllable video generation.

We conduct extensive experiments across diverse user instructions, including both single-condition
and multi-condition settings. Results demonstrate that even when trained on a relatively small
dataset, our proposed model produces more accurate and coherent captions, ultimately leading to
higher-quality video generation. Further in-depth analysis reveals that the model exhibits strong
comprehension of reasoning-driven instructions, consistently generating videos that align more
closely with user intent. Comprehensive evaluations further confirm the robustness and generaliza-
tion ability of our approach, showing competitive performance even in domains not directly covered
during training. In summary, our contributions are threefold:

* We propose ReaDe, the first universal video instruction interpreter for controllable video
generation, which employs a reason-then-describe paradigm inspired by CoT to refine var-
ious user inputs into detailed, faithful prompts across modalities.

* We design a multi-dimensional reward assigner that enables accurate assessment of gener-
ated caption quality while stabilizing and improving feedback-based refinement.

* We show that ReaDe consistently improves caption quality, video faithfulness, and cross-
domain generalization across single-condition, multi-condition, and reasoning-driven in-
structions, highlighting the robustness and versatility of our framework.

2 RELATED WORK

Controllable video generation (Fang et al.|[2024; He et al., 2024} Wei et al.,[2024) has long become a
hot topic in generative Al. Recent advances in DiT-based techniques (Peebles & Xiel, 2023} Ju et al.,
2025) have yielded models that can follow user-provided text prompts to produce high-quality, tem-
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porally consistent, and photorealistic videos over extended durations. Early efforts primarily focused
on text-controlled generation (Singer et al.|[2022; |Wu et al., 2023)); as user expectations evolved, the
community shifted toward providing frame-level control. To this end, fine-grained conditions—such
as static images (Wang et al., 2024bj; |Guo et al [2024; [Zhang et al.|, 2023a)), sketches (Zhao et al.,
2023;|Liu et al.,|[2025)), human poses (Zhong et al., 2024;|Ma et al.,[2024} [Karras et al.,|2023)), camera
views (Zheng et al., 2024a; |He et al.,2024), and even extra videos (Kara et al.,2024; |Henschel et al.,
2025)), have been explored to enable precise, controllable video synthesis. Beyond single-condition
control, multi-condition composition (Lin et al.,[2024; ' Wang et al.,[2023)) has also been investigated.
However, most existing methods are implemented as model-specific improvements, limiting their
benefits to particular generators. This work instead aims to develop a universal, model-agnostic
approach that can consistently enhance a variety of downstream video generators.

Despite impressive progress, the quality and accuracy of generative outputs remain highly dependent
on a user’s ability to craft precise, detailed prompts. A persistent challenge is the reliable interpreta-
tion of user inputs. In text-to-image generation, numerous studies (Mo et al., [2024; |L1 et al., 2024;
Zhang et al.| 2024} Wang et al., 2025)) have explored prompt rewriting techniques that automatically
enrich an initial prompt to provide more explicit guidance to the model. This issue is even more
pronounced in text-to-video generation, where training commonly relies on detailed prompts while
real-world user inputs tend to be concise and ambiguous, creating a distribution shift that degrades
video quality (Chen et al.| (2024); Ju et al.| (2024). Early work on video instruction enhancement,
therefore, sought to optimize prompts for higher-fidelity video generation (e.g., Ji et al.| (2024));
Cheng et al.|(2025));|Gao et al.| (2025)), focusing solely on textual prompts). More recent efforts (Wu
et al.l 2025)) have extended this to multiple conditions. Nonetheless, these approaches either re-
main text-only or rely on direct supervised fine-tuning, lacking explicit reasoning capabilities; as
a result, they struggle with unseen conditions and reasoning-driven instructions. In contrast, our
method emulates human-like interpretation via a reason-then-describe procedure and leverages fine-
grained, feedback-driven optimization, enabling the model to autonomously learn how to interpret
user instructions and thereby achieve stronger prompt enhancement and generalization.

3 METHODOLOGY

In this section, we present the proposed instruction interpreter (ReaDe) in detail. As illustrated in
Fig. [2| ReaDe is built upon an existing multimodal large language model (Xu et al.l [2025) of in-
gesting textual, visual, and audio conditions, further augmented with a camera encoder following
Wu et al| (2025) to enable versatile condition interpretation. ReaDe is trained to follow a rea-
son—then—describe paradigm through a two-stage pipeline. In Stage 1, we optimize the interpreter
with supervised fine-tuning to impart stepwise reasoning capabilities. In Stage 2, we refine the
model using multi-dimensional reward feedback. A dedicated reward assigner supplies fine-grained,
content-aware signals along multiple aspects, guiding ReaDe to produce well-structured, detailed
video captions that are maximally useful for downstream controllable video generation. After this
two-stage training, ReaDe emerges as a universal, video-generator-agnostic instruction interpreter.
Moreover, ReaDe can be further optimized by incorporating quality feedback from downstream
video generators. Leveraging such feedback allows the interpreter to adapt in a generator-aware
manner, thereby further improving overall video quality. We empirically validate this extended op-
timization strategy in our in-depth experiments (Sec. §4.4).

3.1 STAGE-1: COT-GUIDED REASONING INITIALIZATION

Drawing inspiration from CoT technique (Zhang et al 2023b; Xu et al., |2024; |Yao et al. 2024;
Thawakar et al.l |2025)), which decomposes complex tasks into a sequence of manageable sub-
problems, we design a four-step reasoning strategy tailored for generating dense, structured captions
to facilitate controllable video generation (Fig.[2)). Specifically, we first construct a CoT-style dataset
and then perform preliminary fine-tuning to initialize the model’s reasoning capability.

CoT Data Construction. We formalize the reasoning process into four steps, as outlined below:

* Step-1: Interpretation of Textual Intent. We first prompt GPT-40 (Hurst et al.,2024) to
extract the user’s core objective, determining whether the instruction involves creation, ad-
dition, or modification of elements, and identifying the specific content to be incorporated,
particularly for complex generative requirements.
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Figure 2: Overview of the training framework for the Instruction Interpreter (ReaDe). (1) CoT-
guided reasoning initialization via supervised fine-tuning on instruction—thinking—answer triples,
and (2) reinforcement learning with a multi-dimensional reward assigner and optional video-quality
feedback from a frozen video generator.

* Step-2: Non-Textual Understanding. To capture details beyond text, we parse auxiliary
modalities such as identities, human poses, or camera motions. These inputs are converted
into descriptive cues using dedicated X-fo-Caption models (Hurst et al.l 2024} [Bai et al.|
2025b} [Chai et al.} 2025)).

* Step-3: Multimodal Alignment. GPT-40 (Hurst et al., 2024) is then employed to align
textual and non-textual instructions, ensuring consistency across modalities and producing
an integrated interpretation of user intent.

e Step-4: Supplementary Detail Completion. Beyond users’ inputs, certain contextual
details must be inferred to achieve coherent video generation via GPT-40 (Hurst et al.|
2024), including camera motions, missing environmental attributes, or stylistic elements.

Finally, the reasoning chain culminates in a dense, structured caption, adapted from
Any2Caption (Wu et al.| 2025)), that consolidates all modalities into a unified and fine-grained de-
scription of the target video. To emulate the “thinking” style introduced in DeepSeek-R1 (Guo et al.,
2025)), we explicitly wrap intermediate reasoning steps with a <think></think> tag and encap-
sulate the final structured caption within an <answer></answer> tag. Complete examples of the
prompts and reasoning traces for each step are provided in the Appendix §D.1I] After deduplication
and removal of overlaps, while ensuring diversity across instruction types, we curate a final dataset
of 8.4K training examples. The concrete statistics are shown in Appendix §D.3] This high-quality,
format-consistent corpus serves as the foundation for cold-start training, equipping the interpreter
with an initial capacity for structured multimodal reasoning.

SFT-based Optimization. At this stage, we supervise the fine-tuning of the model based on the

cot |

constructed dataset Deoy = {2, y; } LZI . The optimization objective is:

lyl
Len = ~Be i | 3 10gmo (il 3o 1) M

t=1

3.2 STAGE-2: INCENTIVE REINFORCEMENT LEARNING

Following the initial reasoning-tuning stage, the model acquires a preliminary ability to perform
step-by-step reasoning. However, our ultimate goal is to endow the model with reasoning skills that
are not merely memorized from training data but can generalize robustly across diverse, real-world
scenarios. To this end, we adopt a feedback-guided reinforcement learning framework to further
refine the interpreter. Unlike mathematical problem solving, where rule-based and verifiable criteria
can be directly applied, generating free-form video captions poses inherent challenges due to their
open-ended nature. To address this, we incorporate two complementary reward signals. In addition
to a basic answer-format reward, we design a multi-dimensional content reward that provides fine-
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grained evaluations of generated captions across multiple aspects, implicitly capturing the quality of
the underlying reasoning process. These rewards are aggregated in a group-wise manner (Guo et al.}
2025; |Meng et al., 2025) to ensure stable policy optimization.

3.2.1 REWARD ASSIGNMENT.

Answer Structure Reward. We encourage the model to follow the desired thinking-then-answer
paradigm. In addition, the <answer> section is required to produce a six-part structured caption,
for which adherence is likewise incorporated into the format reward.

1, if both think and answer formats are satisfied
Riormat = { 0.2, if only one format is satisfied 2)
0, if neither format is satisfied.

Multi-dimensional Content Reward. To assess content quality beyond structural compliance, we
design a multi-dimensional reward that reflects both user intent and the implicit reasoning process.
Specifically, the gold caption is decomposed into three key aspects: (1) essential details explicitly
required by the user textual instruction (U), (2) supplementary information derived from non-textual
conditions (.5), and (3) reasonable imaginative details that enhance coherence and realism (Z). For
efficiency, we first conduct an offline extraction of gold dense structured captions to obtain the
core elements associated with each aspect, including objects, attributes, actions, style, and camera
movements. During training, we employ Qwen3-30B-A3B-Instruct-2507 (Yang et al., 2025) as a
judging model to evaluate the predicted caption’s y coverage of these elementS'

1 .
Ryser = |U| Z u, 9)]; Raetail = E Z 1M(s,9)); R suep = |Z| Z @

uelU ses z2€Z
where M(-) is the matching function to determine if the predicted caption contained the original.

Furthermore, we observe that longer outputs often introduce contradictions or internal inconsisten-
cies. To mitigate this, we incorporate an additional consistency factor Reonea = 1[contradict(g)].
The final content reward is computed as a weighted aggregation of the above components, ensuring
a balanced signal that promotes faithful, detailed, and coherent reasoning:

R = aRyser + pRaetail + 'YRsupp — ARcontra, “4)
where «, p, 7, and ) are the hyper-parameters.

3.2.2 DATA CONSTRUCTION FOR RL LEARNING

To effectively reward the model’s reasoning process, we curate a dedicated dataset that incorporates
both explicit reasoning traces and offline—extracted core elements, as described above. Instead of
randomly sampling from existing instances, we design a data selection pipeline to ensure that the
final training set satisfies two key criteria: (i) balanced complexity of user instructions, achieved
by controlling for textual types and the number of non-textual conditions, and (ii) the availability
of detailed structured captions paired with the corresponding core elements required for reward
computation. The complete curation pipeline is provided in Appendix Through this process,
we obtain a total of 8.3K training examples spanning diverse settings, including multiple identities,
depth maps, camera motions, and human poses.

3.2.3 OPTIMIZATION VIA GRPO

Reinforcement learning has recently emerged as a dominant paradigm for eliciting reasoning capa-
bilities in large models. In particular, Group Relative Policy Optimization (GRPO) (Guo et al.|
2025)), a variant of PPO (Schulman et al., 2017)), eliminates the dependency on a critic model,
thereby reducing training costs by directly comparing groups of sampled responses. This makes
GRPO especially suitable for reasoning-intensive tasks. In our framework, we also leverage GRPO
to optimize ReaDe. Given an input instruction g, the policy generates G distinct candidate responses
O ={o1,...,0¢} through sampling. Each response o; is assigned a reward R; as described in the
previous section. To stabilize optimization, GRPO computes a group-relative advantage by normal-
izing rewards with respect to the group mean and standard deviation:
Ri — mean({R,}9.,)

A= S5 5
(R}, ©)
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Table 1: Comparison of Multiple Identities con- Table 2: Comparison of Depth controlled video

trolled video generation performance. generation performance.
Model CLIP-T1 DINO-I1 Smoo.1 Aest.T Model CLIP-T1T MAE| Smoo.T Aest.
ConceptMaster  16.04 36.37 9471 521 Ctrl-Adapter  20.37  25.63 9453 4.63
Any2Caption 17.15 3942 95.05 5.48 Any2Caption  23.30 21.87 9554 531
ReaDe 18.64 4528 9536 5.59 ReaDe 24.16 1879 9556 5.75

Table 3: Comparison of Camera controlled

. . Table 4: Comparison of Human Pose con-
video generation performance.

trolled video generation performance.

Model CLIP-T1 RotErr| TransErr] Smoo.T Model CLIP-T PAcc.! Smoo.T Aest.|
Z’["t‘z"(‘;c‘tr.l ;g'?g }'2‘5‘ 1'22 gg'}é FollowYourPose 21.11 3047 91.71 495
nysLaption Y. : - : ReaDe 2245 3276 9314 5.86

ReaDe 21.57 1.30 346 96.37

This group-relative advantage A; encourages the model to prioritize responses with higher relative
quality. To prevent the optimized policy my from diverging excessively from the reference model
Tref, @ KL-divergence regularization term is introduced. The overall optimization objective is:

H}rae)X E[Q"’Drlv{oi ?:1"’7"9(0"1)

! ZG: min(2) 4. ctip( %) 1144, - AD (6 | rer) ©
= — i — 16 €)A;) — o || Tret ) | 5

G i—1 TOo1a (Ol) TOo1a (01) b

where [ is a regularization coefficient that balances optimization efficiency with stability by con-
straining deviations from the reference policy.

4 EXPERIMENTS

4.1 SETTINGS

Our instruction interpreter is initialized from Qwen2.5-Omni (Xu et al., [2025)) and augmented with
an external camera encoder (Wu et al., [2025) to compensate for its lack of understanding of camera
motion. We first conduct a lightweight camera-to-text pretraining that translates camera signals
into textual cues, which are then consumed by the interpreter. At stage 1, we curate four condition
types, including multi-identity references, camera motion, depth maps, and human pose, yielding
8.4K training instances with both straightforward and edit-style prompts. Training uses an initial
learning rate of 1e-5 with a cosine scheduler. At stage 2, we construct the training data, comprising
a total of 8.3K instances. We implement reinforcement learning using a constant learning rate of
2.5e-6, 8 rollouts per prompt, and a KL coefficient of 0.001. We evaluate on the dataset proposed in
FullDiT Ju et al.| (2025)), reporting performance under both single- and combined-condition controls
without specification. For a more detailed implementation, refer to Appendix §4.4

4.2 MAIN RESULTS

We compare three prompt regimes for multiple downstream controlled video generators: the orig-
inal short prompt, the structured caption produced by Any2Caption, and our interpreter. Across
single-condition controls, our captions consistently yield higher alignment and quality, as shown in
Tables[I] We attribute the gains to more accurate parsing of user intent and fewer cross-modal
inconsistencies in the generated descriptions. As demonstrated in Table[5] the improvements become
more pronounced under multi-condition composition (e.g., Camera+Depth+IDs), where naive SFT
struggles to reconcile conflicting constraints and alignment.

4.3 ABLATION STUDY

In this section, we analyze the necessity of our two-stage learning strategy and the contributions of
different reward designs.

The Impact of Reward Aspects. Applying rewards alone (e.g., only Rysr) yields weaker perfor-
mance, underscoring the importance of explicit reasoning for learning structured intention under-
standing. Among the reward components, Rysr and Rgei contribute the most: their combination
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Table 5: Quantitative comparison of generation performance under compositional conditions. C, D,
and I denote camera, depthandmultiple identities conditions, respectively.

Cond. Method Text Camera Identities Depth Overall Quality
CLIP-TT RotErr] TransErr] DINO-IT CLIP-IT MAE] SmoothnessT Dynamict Aesthetict

— FullDiT 14.81 1.37 4.04 25.63 64.14 - 94.43 28.87 4.99
(j Any2Caption  19.03 1.30 4.36 26.75 68.45 - 94.38 34.99 5.25
__ ReaDe 1935 134 _ 401 _ 2845 6973 - 9514 3802 526
A FullDiT 20.80 1.57 3.88 - - 32.15 95.36 30.12 4.82
6 Any2Caption  21.19 1.49 441 - - 25.37 95.40 30.10 4.96

ReaDe 21.35 1.40 3.54 - - 25.34 95.79 3247 5.01
. RulDiT ~ " 2001 ~ " -~ - " 73524 "57.827 2300 9315 = 3220 496
‘Q" Any2Caption  20.76 - - 36.25 63.48 24.78 92.50 36.43 5.18
_ ReaDe 2304 - - 3789 6421 2308 934l _ 3548 501
) FullDiT 18.49 2.05 7.74 35.86 64.25 18.37 92.02 30.09 391
A Any2Caption  19.52 1.57 7.74 38.74 6437 1741 93.03 32.81 4.99
T
®) ReaDe 21.24 1.34 5.28 39.46 66.17 17.03 95.04 3347 5.21

Table 6: Ablation study on multiple identity reference images-conditioned video generation.

CoT Reward Intension Reasoning Identities Video Quality
Ruser Rdetait Rsupp  Reontra  AcctT Qual. CLIP-IT DINO-IT SmoothnessT Dynamict
v - - - - 62.41 3.12 16.28 39.74 92.15 4.86
- v - - - 58.32 2.87 14.92 37.63 90.84 4.71
- v v - - 66.75 3.44 17.53 42.11 93.26 5.02
- v v v - 68.93 3.57 18.02 43.27 94.12 5.21
- v v v v 70.26 3.62 18.25 44.01 94.57 5.33
v v v v v 73.45 3.79 18.64 45.28 95.36 5.59
text 78.5 . . 65.5 62.3 . I
iDs- 71.9

depth

camera 66.0 63.6 67.
human-pose- 67.8 69.1

I'65
text image iDs debth
Evaluation Condition
Figure 3: Generalization capability of ReaDe. The heatmap shows the dense caption intention
accuracy under different training—evaluation condition pairs. The y-axis corresponds to training
conditions, while the x-axis denotes evaluation conditions.
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significantly boosts reasoning accuracy and video quality. Additional rewards, including Ry, for
supplementary details and Rcona for consistency, provide further complementary gains, especially
in mitigating contradictions and enhancing smoothness.

The Impact of Learning Strategy. We further compare three training strategies: (i) CoT-only, (ii)
GRPO-only, and (iii) the proposed combination. As shown in Table[6} CoT initialization alone estab-
lishes a strong baseline, improving reasoning accuracy and identity preservation over short-prompt
baselines even without explicit reward supervision. In contrast, GRPO without CoT suffers from
unstable optimization; however, with carefully designed rewards, it can partially compensate for
the lack of reasoning priors. By combining the two, our method inherits the stability of CoT-based
reasoning and the adaptability of GRPO-based optimization, achieving the best overall performance
across reasoning accuracy, identity fidelity, and video quality metrics.

4.4 IN-DEPTH ANALYSES

Generalization Capability of Different Conditions Types. We further investigate the general-
ization ability of the proposed model under different condition types. Specifically, the model is
trained on one condition and evaluated on the others, with the intention accuracy score computed
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Table 7: Performance of different prompting optimization strategies on VBench (Huang et al.,[2024)).
The video backbone is CogVideoX-2B 2024). SC: Subject Consistency, BC: Back-
ground Consistency, MS: Motion Smoothness, DD: Dynamic Degree, MO: Multiple Objects, AS:
Appearance Style, S: Scene. The best results are in bold, and the second-best results are underlined.

Model Ne BC MS DD MO AS S

Original prompts 94.60 95.90 97.60 60.00 40.17 22.60 28.34
Promptist 9580  96.60 9840  56.00 2744 2312 1837
GLM-4 (GLM , 95.10 9630 9820  60.00 6840 2347 5551
Prompt-A-Video (Jietal [2024) 9530 9590 9830 5400 6826 2233 4385
VPO (Cheng et al}] - - - - 7117 2420 5583

_ Any2Caption (Wu et aly|

ReaDe (SFT) 96.34 .
ReaDe (SFT+GRPO) 96.17  96.71 9845 6134 7054  24.10  55.78
ReaDe (w/ Video Generator) 96.41 98.44 98.01 65.92 71.89 26.34 56.78

Original: Avideo depicting decorations placed at a home entrance during Halloween Original: generate a video showing what the plant in the imageﬁ

develops and is harvested for its fruit
S — oy

Any2Caption: A person is seen decorating a home entrance for Halloween. Initially, the
front door is bare, but as the video progresses, the person starts to place various
decorations around the entrance. The decorations include a large, colorful pumpkin, a
witch\'s broom, a skeleton, and a jack-o\-lantern. The person moves around the
entrance, adjusting the decorations ... The scene is set during the day, and the weather
appears clear and calm, with the front of the house visible in the background. The main
subject is a person decorating a home entrance ... The weather is clear, and the scene is
set during the day. The background remains static throughout the video, with the front of
the house and some greenery visible... The video has a casual, home-video style with
natural lighting. The cameraiis fixed ...

I =

- E i = R
ReaDe: Cozy suburban front porch at dusk, softly spooky Halloween setup with warm
lights, thin fog, and playful charm (not gory). Three carved pumpkins on the top step
(grin, toothy, wink), real candle-like flicker; a small skull with a nodding witch hat beside
them. Wooden front door with black handle and black wreath with orange LEDs; faux
cobwebs on frame, orange/purple string lights on railing, “Trick or Treat” doormat, two
orange mumes, a plastic raven and faux tombstone near planters. Fog machine exhales
gentle puffs; LEDs slow-chase; skull hat nods briefly; pumpkin light flickers irregularly.
No people; light breeze sways gauze and paper bats; a few dry leaves tumble down the
steps; fog curls and thins. Start medium-wide from walkway; slow dolly-in up the steps;
subtle right-to-left pan to reveal wreath/cobwebs; end on close shot of the pumpkin trio

Any2Caption: The video shows the life cycle of a lotus plant, from its early stages to the
final fruit development. The main object is a lotus plant with its flower bud, blossoms,
and fruit. The plant is positioned centrally, with the background filled with green leaves
and water. The plant's structure is detailed, showing its stems, leaves, and flowers. The
background consists of green leaves and water, indicating a natural wetland
environment... The plant remains stationary, with the flowers opening and closing, and
the fruit developing. The video has a natural, serene, and detailed style, focusing on the
plant's beauty and life cycle. The camera is fixed, with a close-up shot of the plant. The
camera captures the plant's entire body, with the background blurred ...

ReaDe: Late-summer lotus pond at morning light. Time-lapse from pink bloom to green
“showerhead” seed pod, maturing yellow-brown with swollen black seeds; calm,
natural, documentary tone. One lotus on a tall stem: pink petals fade and fall; circular
receptacle emerges with neat holes; seeds enlarge, then darken. Final hero pod ready
for picking. Broad round leaves on still water, soft ripples, reeds on the far bank;... Time-
lapse petal drop to pod growth to seed ripening. A gloved hand in a skiff clips the pod
with pruning shears and places it into the basket filled with pods. Gentle breeze tilts
leaves; slight boat drift; water rings from falling petals ... Start macro on the bloom;
cross-fade/time-lapse to green pod, then ripe pod. Pull back to reveal the skiff; smooth
push-in as the hand snips the stem; track to the basket; end on a tight close-up of ripe

with flicker and fog foreground. seeds inthe pod."

Figure 4: Tllustration of prompt optimization for raw prompts. The left panel shows text-to-image
generation results produced by CogVideoX-2B, while the right panel presents image-to-text gener-
ation results obtained with CogVideoX-5B-12V. Some prompts are omitted due to space constraints.

under the overall description setting. The results are presented in Fig.[3] We observe that the de-
gree of generalization varies across condition types. For example, training on depth demonstrates
relatively strong transferability to other conditions, which can be attributed to the fact that depth pro-
vides dense signals that implicitly encode information relevant to other modalities, such as images
or camera parameters. Moreover, our method consistently exhibits generalization ability across all
conditions and achieves comparable performance regardless of the training condition.

Comparison of Prompting Optimization Strategies. We compare different prompting optimiza-
tion strategies for enhancing prompt quality, with results reported on the VBench benchmark (Ta-
ble[7). Compared with directly using raw prompts, all optimization strategies lead to consistent im-
provements in generation quality. In particular, our proposed ReaDe, trained with a two-stage learn-
ing scheme, achieves superior performance across multiple dimensions compared to Any2Caption,
demonstrating its ability to learn more informative and effective dense captions. Furthermore, when
compared with Prompt-A-Video and VPO, our method attains comparable or better generation qual-
ity through its universal instruction interpreter, indicating that the captions produced by our prompt
generator are both semantically coherent and aligned with user intent. Moreover, by incorporat-
ing feedback signals from downstream video generators, our model further refines its outputs and
achieves the best overall results.
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[Text — Video] A video showing what ~ReaDe
happens after a cup of hot tea is set on /

[Image+Text+Camera— Video] a stylish woman
in a sleek brown blazer, rectangle-shaped gold-

[Sketch+Text — Video a
phenomenon accompanied by

Original Any2Caption

Figure 5: Qualitative comparison of the generation quality across original prompts, interpreted
prompts by Any2Caption and ReaDe. The first two rows are generated via Klingl.6, the third is
generated via FullDiT, and the last one is generated with SketchVideo.

Case Study on Reason-intensive Prompts. We further conduct a qualitative case study on reason-
intensive prompts, with representative results illustrated in Fig.[5] It can be observed that ReaDe
generates outputs that more faithfully align with user intent while maintaining higher temporal co-
herence. For example, in text-to-video generation, our model not only captures the rising steam
but also depicts the snow outside the window, thereby rendering a vivid scene of a cold day. In
image-to-video generation, ReaDe demonstrates reasoning ability by recognizing that the animal in
the input image matures into a frog and accordingly generates a faithful video, better satisfying user
expectations. Moreover, in scenarios involving multi-condition combinations, our method produces
more coherent and faithful results. In addition, we compare the intermediate prompts produced
by Any2Caption and by our interpreter (Fig. ). We find that Any2Caption often lacks sufficient
reasoning ability, resulting in exaggerated or superficial descriptions, whereas our approach yields
more precise and faithful prompts that effectively guide video generation.

5 CONCLUSION

In this work, we introduced ReaDe, a universal instruction interpreter that plugs into downstream
video generators and translates heterogeneous conditions into faithful, generator-ready prompts.
Built upon an MLLM, ReaDe ingests diverse multimodal conditions for interpretation. To train
ReaDe, we adopt a two-stage learning paradigm: (i) supervised fine-tuning to instill stepwise rea-
soning, followed by (ii) multi-dimensional reward feedback to optimize prompt quality and align-
ment. Extensive experiments on text-only and single-/multi-condition controlled video generation
demonstrate consistent gains in faithfulness, temporal coherence, and controllability, indicating that
ReaDe produces prompts that better match user intent and the requirements of modern video gener-
ators. Looking ahead, we plan to extend ReaDe to broader modalities and longer-horizon reasoning,
and to explore human-in-the-loop and safety-aware optimization for real-world deployment.
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APPENDIX INDEX

This supplementary material includes the following sections:

* Clarification on the Use of Large Language Models (cf. §A).
* Ethics Statement (cf. §B).

* Reproducibility Statement (cf. §C).

* Extended Experimental Settings (cf. §D).

* Extended Experimental Results (cf. §E).

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we employ the large language models (LLMs) for dataset construction and clarity
and readability improvement of paper writing. Specifically, we adopt the GPT-40 to construct the
training dataset. Moreover, we employ Qwen3-30B as the reward model to evaluate the prediction
quality for model optimization. Furthermore, LL.Ms are employed to polish sentence structure, cor-
rect grammatical errors, and enhance the overall presentation of our draft. The technical content, re-
search ideas, experimental design, analysis, and conclusions were entirely conceived, implemented,
and validated by the authors without reliance on LLMs.

B ETHICS STATEMENT

All training data used in this work are non-public but authorized for research under existing licenses
and confidentiality agreements. The data contain no personally identifiable information (PII) or
sensitive personal attributes, and no third-party intellectual property is used without permission. To
construct auxiliary training material, we employed both open- and closed-source generation models;
all generated samples were manually screened to reduce risks of harmful content, discrimination, or
bias.

Our approach is implemented on an open-source foundation model. While this choice helps mitigate
safety and fairness concerns, no generative system can fully eliminate the possibility of unintended
or harmful outputs. We therefore caution that downstream deployments—especially in sensitive
domains—should incorporate appropriate safeguards, including content moderation, safety filtering,
and bias assessments.

For evaluation, we report results exclusively on publicly available benchmarks to ensure trans-
parency and comparability with prior work. This study involves no human-subject experiments
and does not process PII. The work adheres to community standards on lawful data use, privacy
protection, and research integrity. Our contributions are intended solely for academic and scientific
exploration, and we explicitly discourage any misuse of the methods described.

C REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made a concerted effort to provide all necessary
details and materials. We provide comprehensive details of the proposed ReaDe framework, includ-
ing its definition, input—output formulation, and implementation (Section §3). The model backbone
and training methodology are described in detail in Section Appendix provides in-depth
analyses of the rationality of the design of the proposed method. We further report all hyperparam-
eter settings and training configurations in Section §4.1] and Appendix §D.3] using fixed random
seeds to ensure the replicability of the experiments. We provide detailed prompts, along with the
amount of data used at each training stage, which are thoroughly documented in Appendices
and §D.2] Finally, we will release the full codebase and data processing scripts to the community
upon acceptance.
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D EXTENDED EXPERIMENTAL SETTINGS

D.1 DATA CONSTRUCTION FOR COT

Here, we provide a detailed description of the data construction pipeline for the CoT dataset used in
Stage 1 of our training framework. Our dataset source is derived from|[Wu et al.|(2025). The goal of
this dataset is to encourage models to explicitly reason through user instructions before producing
the final interpreted intent.

Step-1: Interpretation of Textual Intent. In the first step, we employ GPT-4o0 to interpret the
intention expressed in the users’ textual instructions. Specifically, the model is required to identify
whether the user requests a new video to be generated or an operation (e.g., modification, addition,
or deletion of content) to be performed on an existing video. A prompt template example is shown
below, using the case of multiple-identity-controlled video generation.

You are a reasoning agent. Your task is to infer the user’s intention based on the instructions
provided for generating or editing a video. Your specific task is to **interpret the user’s
intent** by following these steps:

- Determine whether the user is asking to generate a new video or perform operations such
as modifying, adding, or removing certain content.

- Identify the core objective or thematic focus of the instruction.

- If the instruction is explicit, provide a direct interpretation. - If the instruction requires
reasoning, analyze it step by step before giving your final interpretation.

**Qutput Requirements: **

- Always provide your response in clear, complete sentences describing the user’s actual
intent.

- Do not include irrelevant explanations or extra commentary. - Strictly follow the output
format shown below.

PLEASE STRICTLY FOLLOW THE OUTPUT FORMAT.

Input instruction: %
Output:

Step-2: Non-Textual Understanding. In this step, we derive detailed semantic descriptions from
the user-provided non-textual conditions. For each condition type, we convert signals into compact,
sentence-level captions that capture key objects, attributes, and relations (and, when applicable,
motion and geometry). We adopt condition-specific “condition-to-caption” tools as follows:

» Image / Identity reference images. For single-frame visual references (including identity
reference images), we employ GPT-4o0 (Hurst et al.| [2024) to produce dense descriptions
that emphasize identity-defining attributes (e.g., hairstyle, clothing, accessories), salient
objects, and their relationships. The output is a concise yet attribute-rich caption suitable
for conditioning downstream generation.

* Depth and human-pose sequences. For geometric or kinematic conditions (depth maps
and human-pose sequences), we adopt an off-the-shelf video captioner (e.g., Tarsier (Yuan
et al., [2025)) to generate temporally grounded descriptions of the scene content. The cap-
tions focus on spatial layout (occlusions, support relations), motion movements, and object
interaction, aligning them with the provided depth/pose cues.

» Camera trajectory. As dedicated camera-captioning tools are not yet available, we apply
an automatic video captioner (e.g., AuroCap (Chai et al., |2025)) to the original video
aligned with the estimated camera trajectory, then filter and retain only camera-related
clauses (e.g., pan left/right, tilt up/down, dolly in/out, zoom in/out). This yields a concise
description of camera motion divorced from scene semantics.
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Step-3: Multimodal Alignment. In this step, we infer the aligning information across multiple
modalities when the user provides both textual instructions and non-textual conditions. The goal
is to analyze the coherence, complementarity, and potential conflicts among these heterogeneous
inputs. In particular:

* When conflicts arise, we prioritize the explicit requirements specified in the textual instruc-
tion, as these most directly reflect the user’s primary intent.

* When the non-textual conditions provide additional details that do not conflict with the text,
we incorporate them to enrich the final representation.

* When multiple instructions or references are provided, we assess their interrelations, high-
lighting consistency or resolving contradictions to produce a unified multimodal intent.

To operationalize this step, we prompt GPT-40 with a structured template. An illustrative example
is shown below, using the case of video generation with multiple identities.

You are a reasoning agent. Your task is to analyze the alignment and potential conflicts
between the textual instruction and the non-textual description(s) provided by the user.
Specifically:

- Identify points of alignment across modalities.

- Detect any conflicts (e.g., attribute mismatches, incompatible actions, scene discrepan-
cies).

- Resolve conflicts by prioritizing the textual instruction, while retaining compatible
non-textual details.

- Produce a concise, unified interpretation of the final multimodal intent.

**Qutput Requirements: **

- Provide your response in clear, complete sentences describing the final alignment.

- Explicitly state both consistencies and conflicts (if any), followed by the resolved
interpretation.

- Do not include irrelevant explanations or extra commentary.

- Strictly follow the output format shown below.

PLEASE STRICTLY FOLLOW THE OUTPUT FORMAT.

Input textual instruction: %
Input non-textual description:%
Output:

Step-4: Supplementary Detail Completion. The final step aims to enrich the multimodal intent
with specific details that may not be explicitly provided by the user. For example, when the input
consists of depth maps and textual instructions, the intended video style may remain unspecified.
In such cases, the model is expected to infer and supplement plausible details (e.g., scene style,
atmosphere) to produce a complete and coherent description. Importantly, this supplementation is
not arbitrary. During construction, we leverage gold dense video captions, which offer detailed
annotations for each component. The model is guided to ground its imaginative completion on
these references, integrating them with the available inputs while clearly distinguishing inferred
content. To achieve this, we employ GPT-4o to perform the reasoning and generate the final enriched
descriptions.
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You are a reasoning agent specialized in supplementing missing details for multimodal
video generation. Your task is to enrich the current description with plausible details that
are not explicitly mentioned, grounded in the reference gold video description.

You will be provided with two pieces of information:

1. A **gold video description**, which contains dense and detailed annotations.

2. The **current available description**, which may be incomplete.

Your specific job is to:

- Compare the gold description against the current description. - Identify the key details that
are missing or not mentioned (e.g., scene style, background elements, temporal context,
atmosphere).

- Provide only the missing details, written in clear, concise, and natural English sentences.

- The supplementation must remain consistent with the gold description and should not
introduce arbitrary or contradictory information.

**Qutput Requirements: **

- Provide your response in clear, complete sentences describing only the missing supple-
mentary information.

- Do not restate the existing description.

- Do not include irrelevant explanations or extra commentary.

- Strictly follow the output format shown below.

PLEASE STRICTLY FOLLOW THE OUTPUT FORMAT.

Input gold video description: %
Input current available description: %
Output:

D.2 DATA CONSTRUCTION FOR RL

The primary goal of this stage is to ensure both efficiency and feasibility in calculating the score in
the reward model. To this end, we distill the information into several key aspects that align with the
reasoning process. As illustrated in Table[8] we present a concrete example: the table shows the gold
dense caption alongside the user’s input prompt. Table [9shows the corresponding extracted results,
including the user’s textual input, the key information supplemented from non-textual conditions,
and the additional imaginary details.

D.3 DETAILED IMPLEMENTATIONS

Training Settings. As shown in Fig.[6] our model is a multimodal LLM initialized from Qwen2.5-
Omni (Xu et al.} [2025). Except for the camera encoder, all other components are directly inherited
from Qwen2.5-Omni. Following [Wu et al| (2025), the camera encoder adopts a vision-encoder
architecture with an input channel of 96, a patch size of 16, a depth of 8, and 8 attention heads.
To enable the model to effectively interpret camera information, we conduct camera-understanding
pre-training in which only the camera encoder is updated while all other components remain frozen.

Table|10|summarizes the common hyperparameter configurations set in Stage 1/2. In Stage 2, we set
the maximum completion length to 768 and the rollout number to 8 for each input. The weights for
different reward components are set as « = 1.0, p = 1.0, v = 0.8, and A = 0.7. The KL coefficient
is 8 = 0.001, and the clipped policy-gradient loss is computed with € = 0.2.

Training Dataset. As shown in Table [TT] we report the number of instances for each condition
used in Stage 1 and Stage 2 training. In constructing the training dataset, we also ensure diversity,
for example, the number of identities ranges from 1 to 5, and the human-pose condition involves
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Table 8: Example of gold dense caption and user’s input textual instruction.

Gold Dense Caption

1. Overall description: A woman is seated at a desk in a minimalistic
room, working on a laptop. She is wearing a grey camouflage-patterned
shirt and has long blonde hair. Initially, she is focused on her laptop,
occasionally glancing at a smartphone beside her. As time progresses,
she shifts her attention to the smartphone, eventually picking it up and
moving it out of the frame. The video concludes with the desk and wall
in the background, now empty.2. Main object description: A young
woman with long, straight blonde hair, light-colored eyes, and a fair
complexion, in her 20s or 30s and of Caucasian ethnicity, is seated at a
white desk. She is wearing a short-sleeved, gray camouflage-patterned
t-shirt and a delicate gold necklace. Her build is slim, and she has a
friendly and engaging demeanor, often smiling and making eye con-
tact with the camera. She appears to be happy and enthusiastic as she
speaks, occasionally glancing down at a laptop in front of her and a
smartphone to her right.3. Background description: The background is
a plain, light-colored wall, creating a minimalist and clean setting. The
desk is white, and the overall lighting is bright and even, suggesting
an indoor environment during the daytime.4. Movement description:
A woman in a gray coat sat in front of the computer, talking, and then
the woman left the camera.5. Style description: Clean, minimalist, and
professional.6. Camera description: The camera is fixed. The camera is
roughly at the same height as the person, maintaining a medium close-
up shot of the upper body. As the person moves, the shot transitions
from a frontal view to a profile view, with the person moving from the
center of the frame to exiting the frame.

Textual Instruction

A woman in a minimalistic room sits at a white desk, working on her
laptop. She wears a grey camouflage-patterned shirt with long blonde
hair. Gradually, she shifts her focus from her laptop to the smartphone
beside her, eventually picking it up and moving it out of view. The scene
is well-lit with a plain wall in the background, conveying a clean and
professional style. The camera remains fixed at her height, transitioning
from a front to a profile view as she exits the frame.

i

Text Encoder

1

A stylish wo-man walks
through a bustling ..

Dense Prompt

1
Qwen-LLM

1 1 1 )

Visual Encoder Video Encoder Camera Encoder Audio Encoder

widy . |

Figure 6: Illustration of the multimodal encoding framework. Various user-provided conditions
are processed by their corresponding encoders (text, visual, video, audio, and camera), and the
extracted features are integrated by the Qwen-LLM to perform reasoning. The model outputs a
deeply interpreted dense prompt for the downstream video generator.

varying numbers of people. Our focus is not on collecting large quantities of data, but on ensuring
high-quality training. Overall, we use only 16K instances, which is substantially smaller than the
dataset in|Wu et al.| (2025) (337K).
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Table 9: Example of an extracted JSON file containing the user input, supplementary information
from non-textual conditions, and inferred imaginary details.

User Input Key Info.

{’objects’: [{’'name’: *woman’, "attributes’: [’sits’, "long blonde hair’,
’grey camouflage-patterned shirt’]}, {’name’: ’room’, ’attributes’:
[’minimalistic’]}, {"name’: ’desk’, ’attributes’: ['white’]}, { name’:
"laptop’, ’attributes’: []}, {"name’: ’smartphone’, ’attributes’: []},
{’name’: *wall’, ’attributes’: [’plain’]}], ’actions’: [’shifts focus from
laptop to smartphone’, ’picks up smartphone’, *'moves smartphone out
of view’], ’camera’: [’fixed at her height’, ’transitioning from front to
profile view’], ’style’: [’clean’, ’professional’]}

Supplementary key Info.

{"objects’: [{"name’: ’woman’, ’attributes’: ['slim build’, ’friendly
demeanor’, ’smiling’, *making eye contact’]}, {’'name’: ’laptop’, ’at-
tributes’: []}, {'name’: ’smartphone’, ’attributes’: []}, {’name’:
"desk’, ’attributes’: ['white’]}, {’name’: ’wall’, ’attributes’: [’light-
colored’, 'minimalist’, ’clean’]}], ’actions’: [’working on laptop’,
’glancing at smartphone’, ’talking’], 'camera’: ['medium close-up
shot’], ’style’: [’clean’, 'minimalist’, ’professional’]}”,”{’objects’:
[{’name’: ’woman’, ’attributes’: [’sits’, ’long blonde hair’, ’grey
camouflage-patterned shirt’]}, {"name’: ’room’, ’attributes’: [ mini-
malistic’]}, {"name’: ’desk’, ’attributes’: [’white’]}, {’name’: ’lap-
top’, “attributes’: []}, {’name’: *smartphone’, "attributes’: []}, {’'name’:
*wall’, “attributes’: [’plain’]}], "actions’: [’shifts focus from laptop to
smartphone’, ’picks up smartphone’, *'moves smartphone out of view’],
camera’: [’fixed at her height’, ’transitioning from front to profile
view’], 'style’: [’clean’, "professional’]}

Imaging Key Info.

{’objects’: [{’name’: ’woman’, ’attributes’: [’seated’, ’long blonde
hair’, *wearing gray camouflage-patterned shirt’, ’slim build’, ’friendly
demeanor’, ’smiling’, *making eye contact’, "happy’, enthusiastic’]},
{’name’: ’laptop’, "attributes’: []}, {"'name’: smartphone’, "attributes’:
(1}, {'name’: ’desk’, ’attributes’: ['white’]}, {’name’: ’wall’, ’at-
tributes’: [’light-colored’, *minimalist’, *clean’]}], "actions’: [’working
on laptop’, "glancing at smartphone’, *picking up smartphone’, mov-
ing smartphone out of frame’, ’talking’, ’leaving camera’], ’camera’:
[’fixed’, 'medium close-up shot’, ’same height as person’, ’transitions
from frontal view to profile view’], ’style’: [’clean’, 'minimalist’, *pro-
fessional’]}

Table 10: Hyperparameters and data sampling ratios for Stage-1 and Stage-2.

Stage-2

Stage-1 IDs Depth Camera Human Pose
Learning rate Ixe™® 25xe® 15xe b 15xe " 1.0xe "
Batch size per GPU 6 2 1 2 1
Gradient Accumulation Steps 2 2 4 4 4
LR scheduler Cosine Constant Constant Constant Constant
Weight decay 0.01 0.01 0.01 0.01 0.01
Optimizer AdamW AdamW AdamW AdamW AdamW
Warm-up steps 200 50 50 50 50
Precision bfloat16 bfloat16 bfloat16 bfloat16 bfloat16
Input instruction dropout 0.4 0.4 0.4 0.4 0.4
Max prompt length 1024 1024 2048 1024 2048

Test Dataset. As shown in Table [I2] we primarily evaluate the single- and multiple-condition
models on the benchmark introduced in Ju et al.| (2025). Additionally, we evaluate our method on
VBench (Huang et al.,|2024)), a widely used text-to-video generation benchmark.
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Table 11: Statistics of the training datasets used in Stage 1 and Stage 2.

Stage IDs Depth  Camera  Human-pose Total

1 2,124 2,066 2,185 2,077 8,452
2 2,057 2,041 2,177 2,034 8,309

Table 12: Statistics of the constructed test datasets. #Inst. denotes the number of instances, and
#Condi. indicates the number of unique conditions. Short Cap. #Avg. Len represents the average
caption length of short captions, and Structured Cap. #Avg. Len. represents the average caption
length of structured captions.

Type #Inst. #Condi. Short Cap. (#Avg. Len.) #Structured Cap. (#Avg. Len.)
Identities 200 350 65.28 284.97
Camera 200 200 50.25 208.01
Depth 200 200 54.22 225.09
Human Pose 200 200 58.38 259.03
Camera+Identities 200 622 53.41 209.17
Camera+Depth 200 400 51.43 208.81
Identities+Depth 200 555 53.14 286.83
Camera+Identities+Depth 200 756 58.35 289.21

D.4 REWARD MODEL ANALYSES.

Detailed Reward Assignment. During training, we employ Qwen3-30B-A3B-Instruct-
2507 (Yang et al.l [2025) as a judging model to evaluate the predicted caption’s coverage of these
elements. The prompts used for evaluation as follows:

Given two inputs:

- A JSON object that specifies expected entities (objects with attributes), actions, camera
descriptions, and style descriptions,

- A reference text,

Your task is to check whether each value in the JSON object is semantically sup-
ported by the content in the reference text.

- “Supported” means the caption explicitly or implicitly describes the same fact, even if
expressed with different wording (semantic similarity is sufficient).

- “Not supported” means the caption does not mention or imply that fact.

- All attributes of an object must be validated.

- For actions, camera, and style, the same semantic checking applies.

After evaluating all items, compute the overall coverage score = (number of sup-
ported values) (total number of values).

Output Requirement:

Return only one number between O and 1 representing the overall_coverage score. Do not
output explanations, JSON, or any other text.

Format:

Final Score: [overall_coverage score]

Input JSON object: json_data
Input reference text: prediction

The Quality of Reward Model. To evaluate the stability and reliability of reward estimation,
we configured the generation with max_new_tokens=50, temperature=0.3, and top_p=1,
and repeated predictions five times for each input. As shown in Fig. [/} the prediction variance
has a mean of 3.32 x 10~* and a median of 9 x 10°, both very close to zero, indicating that
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repeated evaluations on the same sample exhibit almost no fluctuation. The vast majority of samples
show negligible differences across repetitions. Furthermore, the average coefficient of variation is
0.0159, corresponding to a relative variability of less than 2%, which reflects a highly stable scoring
behavior. We also observe that the trend line in the Mean Reward vs. Variance plot reveals a negative
correlation: higher-reward samples tend to have lower variance, suggesting that the model yields
more consistent judgments for high-quality answers. In addition, we compare the predictions of
Qwen3-30B |Yang et al.|(2025) with those of GPT-40. As illustrated in Fig. @ Qwen3-30B achieves
a mean absolute error of 0.0673 relative to GPT-4o0, indicating a generally close alignment between
the two models. Taken together, these results demonstrate that Qwen3-30B serves as a reliable
reward assigner, capable of consistently and accurately assessing whether the generated captions are
correct.
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Figure 7: The reward score of consistency analysis of the model Qwen3-30B.
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Figure 8: The Qwen3-30B vs. GPT-40 prediction comparison analyses.
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Table 13: Comparison between video caption baselines and Instruct-R1 on our proposed benchmark.
Baseline models are restricted to video and image inputs; hence, we evaluate them only on the Depth
and Multiple Identities subsets. For fairness, we adopt a one-shot setting, allowing baselines to
produce detailed, structured descriptions of target videos. We report the average scores of intention
reasoning accuracy (Acc) and quality (Qual.) across all tasks, together with F1 on Dream-1K [Wang
et al.|(2024a).

Model Main Object Background Action Style Camera  Other Dataset
Acc Qual. Acc Qual. Acc Qual. Acc Qual. Acc Qual. Dream-1K

LLaVA-NeXT-V 43.57 2.13 5541 2.16 40.87 1.72 52.64 243 3597 1.90 26.10
ShareGPTVideo 54.90 2.68 66.77 2.65 51.92 2.05 6248 2.94 5529 2.68 20.40
Qwen2-VL 51.31 241 63.51 245 50.77 193 59.18 275 5122 241 29.60
LLaVA-OV 53.13 243 6473 245 5328 217 60.34 277 54.79 254 31.70
Any2Caption 56.29 2.78 70.07 271 56.78 2.14 65.74 3.15 67.25 3.79 31.03
‘Instruct-R1~ — ~ 61.38 2.89 71.07 3.04 58.78 2.34 69.76 3.83 67.25 3.79 3245

E EXTENDED DISCUSSION

E.1 THE CAPTION CAPABILITY.

We evaluate the interpreter’s ability to produce dense, structured captions. Experiments are con-
ducted on our proposed Depth- and multi—-IDs—controlled captioning sets, as well as one publicly
available benchmark, including Dream-1K [Wang et al.| (2024a). Results in Table @] show that our
method achieves the best overall intention accuracy and quality score on our condition-controlled
datasets. On Dream-1K that emphasizes event-centric descriptions, our model, despite not requiring
task-specific fine-tuning, delivers comparable accuracy in capturing movement and event semantics,
indicating strong generalization to fine-grained, temporally grounded details.

E.2 CASE STUDY

First, in Fig.[9]and Fig. we compare videos generated from original prompts, ReaDe-generated
prompts, and jointly optimized prompts using feedback from CogVideoX-T2I-2B. ReaDe consis-
tently improves visual fidelity and instruction adherence over the original prompts, and joint opti-
mization with the downstream video generator yields further gains.

Next, Fig.[TT]reports side-by-side comparisons across diverse condition types (e.g., identities, pose,
depth, camera). In comparison to the original prompts, ReaDe-enhanced prompts yield more coher-
ent compositions, clearer subject-background relations, and improved alignment with the specified
controls.

Then, Fig.[I2]presents additional qualitative results under a broader set of conditions, demonstrating
that ReaDe’s prompt refinement generalizes across scenarios and systematically enhances down-
stream video quality.

Finally, we compare the use of raw prompts with the detailed prompts interpreted by ReaDe, which
jointly incorporates both audio and textual inputs. As shown in Fig.[T3] the inclusion of audio details
leads to higher-fidelity generations and noticeably improved visual quality.
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Original: Atimelapse captures the reaction as concentrated sulfuric acid is poured onto a plastic spoon

ReaDe: A documentary-style timelapse inside a laboratory fume hood. A clean white plastic spoon rests on
a glass tray, partially contained within secondary glass shielding, with soft warning labels blurred in the
background. The setting is neutral and sterile, with no people visible. A gloved hand briefly pours
concentrated sulfuric acid onto the spoon, wetting the bowl and handle. The reaction begins subtly: the
smooth surface turns matte, then pits and blisters appear. Over time, the spoon softens, darkens to brown
and gray at contact points, and its edges curl and sag. As the degradation accelerates, wispy vapors rise,
faint heat shimmer distorts the air, and condensate beads gather on nearby glass before sliding away. The
material collapses progressively, leaving a warped, weakened form. The camera remains in a locked
medium-to-close shot, beginning just before contact. The sequence transitions into timelapse, with one
brief push-in highlighting etched textures, and concludes on a tight close-up of the deformed spoon..

ReaDe with Video Generator: Documentary timelapse in a lab fume hood. The sulfuric acid poured onto a
clean white plastic spoon on a glass tray, showing progressive degradation. Spoon surface turns matte,
then pits, blisters, and softens, browning and curling as edges sag. Neutral lab hood background with glass
containment, faint warning labels, no people. Wispy vapors rise, slight heat shimmer, condensate beads
slide. Scientific style. The camera locked medium-to-close, starting pre-contact, cutting to timelapse with
one push-in on etched texture, ending tight on the warped collapsed spoon.

Figure 9: Comparison of videos generated from original prompts, ReaDe-generated prompts, and
jointly optimized prompts using feedback from CogVideoX-T2I-2B.
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Original: Garden, zoom in
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ReaDe: A calm morning, a serene garden is bathed in soft golden light and touched by a thin mist. The
atmosphere feels fresh and dewy, with lush greenery and mixed flowers forming a blurred backdrop of warm
bokeh. At the center, a single rose bloom glistens with clear dewdrops. A red ladybug crawls slowly along
the petal’s edge, pausing briefly before continuing its path. A dewdrop gathers and slides down the petal’s
curve, catching the light as it falls. In the distance, a butterfly drifts across the frame, softly out of focus. The
scene moves gently: stems and leaves sway with the breeze, enhancing the sense of quiet vitality. The
camera begins with a wide establishing view of the garden, then performs a smooth dolly-in combined with
optical zoom, shifting focus from the background to the rose. The sequence concludes in extreme macro,
revealing fine petal textures, the glint of the dewdrop, and the ladybug’s delicate motion.

- -in » [ ™

ReaDe with Video Generator: A calm misty morning garden with golden light and dewy freshness. A single
red rose bloom holds clear dewdrops, while a ladybug crawls slowly along its petal edge. Blurred greenery,
mixed flowers, a faint fence, and a stone path form the background. A dewdrop slides down the petal as the
ladybug pauses then moves again; a butterfly drifts softly out of focus. Gentle breeze sways stems and
leaves. The camera begins with a wide establishing shot, dolly-in with rack focus to the rose, and ends in
extreme macro on the petal and ladybug.

oy R T

Figure 10: Comparison of videos generated from original prompts, ReaDe-generated prompts, and
jointly optimized prompts using feedback from CogVideoX-T2I-2B.
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Original: Generate a time-lapse that infers morning to afternoon progression.

ReaDe: A time-lapse video showcases the natural progression from morning to afternoon, highlighting subtle environmental
changes over time. The focus remains on a scenic landscape, which may include natural elements such as trees, fields, or a
distant skyline. The time-lapse accelerates the movement of shadows, sun path, and any dynamic elements like clouds,
illustrating the transition from morning to afternoon. A consistent landscape or cityscape background gradually changes in
lighting and shadow as the day progresses from a soft morning glow to brighter afternoon sunlight. The video maintains a
smooth, continuous flow with seamless transitions, capturing the essence of a quiet, tranquil day unfolding in fast motion. A
fixed camera position steadily captures the wide shot, ensuring all elements in the frame experience a uniform transition in
lighting and movement.

Original: A dog is playing the guitar, and the man
is look at this scene.

y

A . v

ReaDe : The video presents a surreal stage performance under a warm spotlight. At center, a brown-and-white dog stand:
upright, strumming an electric guitar with rhythmic motions, its head bobbing in time. Beside it, a man watches with folded arms
smiling with quiet amusement. The setting is a simple stage with wooden flooring, a dark curtain backdrop, and faint colorec
lights. An amplifier and cable sit nearby, adding to the musical scene. Subtle stage beams sweep across as the dog shifts it:
weight and plays, while the man reacts with small gestures. The camera begins in a medium-wide audience view, slowly dolly-ir
toward the pair, cuts briefly to a close-up of the dog’s paws on the strings, and returns to a wide frame capturing both performe
and observer.

Original: A relaxed city stroll: long strides, a splash of red at
the head, and a green strap on a small, cloudlike
companion; the background is a Gothic front of twin towers
and lace-like stonework.

- -l - - -
Or‘iginal: A city scene unfolds with a person and a fluffy white dog walking leisurely in front of a grand Gothic cathedral, the
person’s head adorned with a splash of red, and the dog wearing an eye-catching green harness. The main focus is on a small,
cloudlike dog, which is a white Samoyed, with a joyful expression and a green strap harness. Next to it, a human figure is
visible, distinguished by a red accessory on their head. Both the person and the dog maintain a relaxed pace with long strides
as they stroll comfortably past the historical architecture. The backdrop showcases the imposing facade of a Gothic
cathedral, characterized by twin towers and intricate, lace-like stone carvings that add a historical charm to the walking
scene. The video maintains a tranquil and timeless ambiance, with a focus on the contrast between the modern walking
scene and the historical Gothic architecture, enhanced by natural daylight to emphasize details. The camera keeps a steady,
wide-angle shot to encompass both the main subjects and the elaborate architectural details in the background, with
occasional gentle pans following the movement while maintaining focus on the entire scene.

= 1 — T [

Figure 11: Comparison of videos generated from the original prompts versus ReaDe-generated
prompts. Top three rows: Kling1.6; bottom row: FullDiT.
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Prompt: a video showing the location in the image filled with people
who are laughing and chatting

Prompt : a smiling young girl with a
ponytail walks at a steady pace on a |
smooth, gently curving empty road.

_-‘.—

Pr‘omp‘r : Peaceful nighttime city street lit by dim streetlights with distant ‘

city lights in the background. A sidewalk building displays illuminated i
“ART CLINIC” signage with its windows and door clearly visible, not
obscured. Keep the street empty and quiet, not busy, with minimal -
traffic

Figure 12: Examples of condition-controlled video generation using ReaDe-extracted detailed
prompts. Top row: Klingl.6; second row: SketchVideo; bottom two rows: FullDiT.
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Original: A busy street at night.

,|||||I||II|||||I|||.u..|I||||||II||||.||.||||.|||I|II|.|.n||II|I|I|I|I|||.I|||||||II||||II||||I|||.|.|I||||I|||||I|I|| blaring car horns, the chatter of a noisy crowd

; # - e \

4 A | % [ ; - 3
ReaDe: The video depicts a bustling neon-lit city street at night, with rain-slick pavement amplifying the glow of storefronts and
billboards. At the center is a crowded intersection, lined with taxis and buses, while the foreground crosswalk is packed with
pedestrians carrying umbrellas. A steaming street-food cart anchors the curbside, adding texture to the scene. The background
is layered with LED billboards, shop signs, and high-rise windows, their reflections scattered across the wet asphalt. Traffic lights
shimmer, distant blue-red strobes flicker, and vapor rises from manholes as paper flyers flutter in the breeze. The soundscape is
dense and chaotic: overlapping horns, chatter and laughter, bargaining voices, and the swell of a police siren that grows before
fading away. The video emphasizes motion and atmosphere, portraying the restless rhythm of the night. The camera begins in a
wide shot from the sidewalk, tracks laterally along storefronts toward the intersection, tilts briefly upwardq_to reveal stacked signs.

sound of explosions,

Original: People are watching fireworks in the night sky e 1 T ||||||||||||||I||||||I|||.| . the crowd’s gasps

ReaDe: The video captures a lively riverside festival night under a clear sky. The central focus is the dazzling fireworks display,
with golden chrysanthemums, red and blue peonies, comet tails, and cascading willow trails bursting high above. Each aerial
shell blooms into expanding spheres, fades into drifting sparks, and fills the night with echoing thunder. In the background,
silhouettes of families gather on blankets, children jump and squeal, and many raise their phones to record the show. Small
sparklers flicker near the crowd, while paper lanterns and food stalls add warmth along the riverside. The dark water reflects the
brilliant bursts overhead, doubling the spectacle. The atmosphere is filled with layered sounds: booming explosions, crackling
trails, overlapping gasps and cheers, children’s laughter, and the rhythmic clapping of the audience. People point skyward,
shout “wow” and revel in the synchronized volleys of light. Smoke drifts slowly across the scene, caught by the breeze and
illuminated by falling sparks. The video adopts a natural, festive style, emphasizing both the grandeur of the fireworks and the
joyful responses of the spectators. The camera begins with a wide shot from behind the audience, slowly pushes in while tilting
upward toward the sky, pans briefly to follow multiple bursts.

Figure 13: Comparison with/without text-audio conditioned video generation. The results is ex-
tracted by Kling1.6.
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