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ABSTRACT

This paper focuses on continual meta-learning, where few-shot tasks from a non-
stationary distribution are sequentially available. Recent works maintain a mixture
distribution of meta-knowledge to cope with the heterogeneity and a dynamically
changing number of components in the mixture distribution to capture incremen-
tal information. However, the underlying assumption of mutual exclusiveness
among mixture components hinders sharing meta-knowledge across different tasks.
Another issue is that they only use a prior to determine whether to increase meta-
knowledge components, leading to parameter inefficiency. In this paper, we propose
a Scalable Multi-Modal Continual Meta-Learning (SMM-CML) algorithm, which
employs a multi-modal premise to encourage different clusters of tasks to share
meta-knowledge. Specifically, every task cluster is associated with a subset of
mixture components, which is achieved by an Indian Buffet Process prior. Besides,
to avoid parameter inefficiency caused by the unlimited increase, we propose a com-
ponent sparsity method based on evidential theory to learn the posterior number of
components, filtering out those meta-knowledge without receiving support directly
from tasks. Experiments show SMM-CML outperforms strong baselines, which
illustrates the effectiveness of our multi-modal meta-knowledge, and confirms that
our algorithm can learn parameter-efficient meta-knowledge.

1 INTRODUCTION

Meta-learning (Vanschoren, 2018; Hospedales et al., 2020) is widely used in the low-resource setting.
The key idea is to transfer meta-knowledge (i.e., the experience about how to learn) to improve data
efficiency and enhance model generalization. In contrast to the conventional assumption that data
are homogeneous and available at once (Finn et al., 2017; 2018), continual meta-learning faces a
more practical setting where data are heterogeneous and sequentially available (Finn et al., 2019;
Denevi et al., 2019). That is, tasks from non-stationary distributions arrive sequentially. There are
two challenges to consider in this setting: (1) to avoid forgetting the learned meta-knowledge when
training on tasks sampled from the heterogeneous distribution, also called as catastrophic forgetting
(Kirkpatrick et al., 2017); (2) to capture the incremental meta-knowledge when encountering the
newer tasks (Lee et al., 2017).

For the first challenge, existing works (Jerfel et al., 2019; Yao et al., 2019; Zhang et al., 2021) use a
mixture model, associating a cluster of similar tasks with a single component. One major concern
is that they implicitly assume different meta-knowledge components are mutually exclusive. This
assumption impedes the sharing of meta-knowledge among clusters of tasks, which could lead to
suboptimal performance and bias toward one type of meta-knowledge. For example, in the research
of user profiling, a user (i.e., a task) can belong to multiple preference groups (i.e., components), so if
modeling by a single meta-knowledge component, the algorithm might focus more on one preference
and result in biased profiling.

For the second challenge, these works (Jerfel et al., 2019; Yao et al., 2020; Zhang et al., 2021)
incrementally update meta-knowledge, where a new meta-knowledge component is added to the
mixture model for new tasks. However, all of them just leverage a prior (Jerfel et al., 2019; Zhang
et al., 2021) or make a simple judgment before the update of meta-knowledge (Yao et al., 2019; 2020)
on whether to add new meta-knowledge components but cannot make a posterior decision from task

1



Under review as a conference paper at ICLR 2023

Tasks

Meta-Knowledge

𝜃1

New Tasks

𝜃2 𝜃3

New Component

𝜃4

Tasks

Meta-Knowledge

𝜃1

New Tasks

𝜃2 𝜃3

New Component

𝜃4
Meta-Train

(a) Existing Works

Tasks

Meta-Knowledge
𝜃1

New Tasks

𝜃2 𝜃3 𝜃4

Remove

Tasks

Meta-Knowledge

𝜃1

New Tasks

𝜃2 𝜃3

New Component

𝜃4
Meta-Train

(b) Our Work

Figure 1: The difference in incremental meta-knowledge between the existing works and ours.
Previous methods only make a prior decision on whether to add new meta-knowledge (the red dashed
grid), which might reproduce the redundant components. Our algorithm considers making a posterior
decision from tasks after the meta-train to filter out the meta-knowledge without receiving support.

data. Also, they can only increase but is not able to decrease the number of mixture components as
needed, leading to parameter inefficiency when meeting a large number of tasks (seen Fig. 1).

To solve these problems, we propose a Scalable Multi-Modal Continual Meta-Learning algorithm,
abbreviated as SMM-CML. The proposed SMM-CML associates a task cluster with a subset of
components of the meta-knowledge mixture model, where the provided meta-knowledge is multi-
modal (i.e., a statistical distribution of values with multiple peaks) with each mode being a related
meta-knowledge component. The multi-modal meta-knowledge relaxes the constraint of a single
component, so that it allows different clusters of tasks to share the meta-knowledge via the overlapped
components. This is achieved by employing the Indian Buffet Process (IBP) prior on the number of
components when meeting new tasks. To correct the prior after the update of meta-knowledge on new
tasks, we propose an evidential sparsification method to decide the posterior number of components,
filtering out the meta-knowledge which does not receive support information directly from task data.
Our contributions are summarized as:

• We propose multi-modal meta-knowledge, where a task is associated with a subset of
components of meta-knowledge mixture model instead of a single one. Our multi-modal
premise allows sharing meta-knowledge via the overlapped components among different
clusters of tasks so as to avoid bias towards one type of meta-knowledge.

• We employ the IBP prior to allow the number of mixture components to increase with the
newer task arriving, and propose an evidential sparsification method to learn the posterior
number of components from tasks, filtering out the meta-knowledge which does not receive
support information directly from all occurring tasks. The combination of IBP and evidential
sparsification helps to maintain the scalable meta-knowledge to cope with the online non-
stationary setting.

• We conduct extensive experiments and the results show that our SMM-CML outperforms
the-state-of-art baselines under the online non-stationary setting. And it also confirms
the effectiveness of multi-modal meta-knowledge and that our algorithm can learn the
parameter-efficient meta-knowledge from tasks.

2 RELATED WORK

Meta-Learning. Meta-learning (Vanschoren, 2018; Hospedales et al., 2020) focuses on a few-
shot setting. It assumes that source tasks can be used to help with the learning in the target tasks.
Recent works include metric-based(Snell et al., 2017; Oreshkin et al., 2018), model-based(Ha et al.,
2016; Munkhdalai & Yu, 2017), optimization-based methods(Finn et al., 2017; 2018) and their
Bayesian variants (Ravi & Beatson, 2018; Gordon et al., 2019; Iakovleva et al., 2020), respectively.
However, most of them propose to construct a globally-shared meta-knowledge, which can not fit the
heterogeneous data distribution in the real world (Jerfel et al., 2019). To solve this problem, some
works (Jerfel et al., 2019; Zhang et al., 2021) maintain a mixture of meta-knowledge, where a cluster
of similar tasks is associated with a single component of the meta-knowledge. This impedes the
sharing of meta-knowledge between different clusters of tasks. Different from the existing works, we
take into account both sharing and diversity of meta-knowledge simultaneously.

Continual Learning. Conventional continual learning (Delange et al., 2021) concentrates on the
large-scale data setting. Existing models prevent the catastrophic forgetting issue via replay (Hu et al.,
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2019; Titsias et al., 2019), regularization (Benjamin et al., 2018; Pan et al., 2020) and incremental
model selection (Kumar et al., 2021; Kessler et al., 2021). Recently, many works based on meta-
learning (Finn et al., 2019; Zhuang et al., 2020) focus on the low-resource setting. Inspired by the
incremental model selection, some existing works extend meta-knowledge when encountering new
tasks, via increasing the number of mixture components (Yao et al., 2019) or adding a novel block
to construct the mate-path (Yao et al., 2020). Moreover, the Chinese Restaurant Process (CRP)
has been used to determine the prior number of meta-knowledge components (Jerfel et al., 2019;
Zhang et al., 2021). However, these methods only consider how to construct the prior number of
components and do not make a posterior decision from tasks. Such a prior determination only allows
the increase of meta-knowledge, which would lead to parameter inefficiency and large computational
consumption. In our work, we learn the posterior number of meta-knowledge components from tasks
via the combination of IBP prior and the evidential sparsification method.

Sparsification Method In recent years, a number of methods have been proposed to sparse the
multi-modal space. Most of them (Martins & Astudillo, 2016; Laha et al., 2018) aim to propose a
softmax alternative to sparse the large output space. Itkina et al. (2020) pointed out that the above
methods are aggressive, and propose a post hoc evidential sparsification for conditional variational
auto-encoder, based on the conclusion in (Denœux, 2019) that most existing classifiers can be seen as
converting features into mass function and merging them to the final result. Following Itkina et al.
(2020), Chen et al. (2021) presented evidential softmax method. However, these methods operate on
mutual exclusiveness, which is in conflict with ours. Moreover, our evidential sparsification method
provides a novel view of how to apply the evidential theory on continual learning.

3 BACKGROUND

3.1 BAYESIAN ONLINE META-LEARNING

Suppose there are sequentially arriving tasks τt with a dataset Dt from a non-stationary distribution
p(τ). Note that the dataset Dt is split into two sub-datasets, a support set DSt = {xi, yi}Nti=1 for
training and a query set DQt = {xi, yi}Mt

i=1 for validation.

Catastrophic forgetting (Lee et al., 2017) is a key issue in continual learning. To overcome such
an issue in the non-stationary task flow, some variational methods (Yap et al., 2021; Zhang et al.,
2021) have been developed. They update the meta-knowledge in an online way following Variational
Continual Learning (VCL)(Nguyen et al., 2018):

p(θt|D1:t) ∝ p(Dt|θt)p(θt|D1:t−1), (1)

where θt is the meta-knowledge and used as the initialization following MAML (Finn et al., 2017).
Note that it assumes that the datasets D1:t are independent given θt. Thus, the meta-knowledge
can be updated in a recursively way. Then, the meta-learning framework can be reformulated as a
variational way (Gordon et al., 2019; Iakovleva et al., 2020):

p(Dt|θt) =
∫
p(Dt|ϕt)p(ϕt|θt)dϕt, (2)

where ϕt is the task-specific parameter. To learn such intractable posteriors, some inference meth-
ods (e.g., variational inference (Kingma & Welling, 2013)) are applied to infer the approximate
distributions. More details of inference are in Appendix A.

3.2 EVIDENTIAL THEORY

Evidential theory (Denœux, 2019) works on a discrete set of hypotheses (or equivalently, components
of meta-knowledge in this paper). Let Z = {z1, z2, z3, ..., zK} be a finite set, the element of which
zk is a binary variable indicating whether the current task is associated with k-th component or not,
and the power set of Z, donated by 2Z . A mass function on Z is a mapping m: 2Z → [0, 1] and
satisfies the following constraints:

m(∅) = 0,
∑
A⊆Z

m(A) = 1. (3)
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Figure 2: The framework of SMM-CML. The top is the updating of meta-knowledge, where the IBP
prior determines whether to add new meta-knowledge components (the red box), and the evidential
sparsity method is used to filter out the component without receiving support directly from tasks
based on the posterior of beta distribution from the current time (the solid line) and the previous time
(the dashed line). The bottom is the task-specific adaption, where the multi-modal meta-knowledge
is decided and then adapted to the task-specific parameter based on the support set DSt (the dashed
line), and then the task-specific parameter is used to make the prediction on the data (the solid line).

The mass function m(·) represents the support to each potential subset of components provided by a
piece of evidence, and any subset A is called focal set if m(A) > 0. As a particular case, the vacuous
mass function (i.e., m(Z) = 1) indicates that the evidence can not provide any information. One
mass function is said simple when:

m(A) = s, m(Z) = 1− s, w = − ln(1− s), (4)

where A is a single strict subset A ⊂ Z, s ∈ [0, 1] represents the support degree of A, and w donates
the evidential weight of A.

Given a mass function, there are two corresponding functions, called belief and plausibility function,
respectively, which are defined as follows:

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A̸=∅

m(B) = 1−Bel(Ā). (5)

Bel(A) can be interpreted as the total support degree to A, while the 1− Pl(A) can be interpreted
as the total doubt degree to A. Besides, when the plausibility function is restricted to singletons, then
it is called contour function pl : zk → [0, 1].

Given two mass functions provided by different evidence, the fusion of them follows Dempster’s rule
(Dempster, 2008). More details about the computing rules are in Appendix B.

4 SCALABLE MULTI-MODAL CONTINUAL META-LEARNING

In this section, we present our Scalable Multi-Modal Continual Meta-Learning algorithm (SMM-
CML). The total framework of SMM-CML is seen in Fig. 2.

4.1 MULTI-MODAL CONTINUAL META-LEARNING

SMM-CML relaxes the constraint that a task is associated with only a single component of meta-
knowledge. The restriction of one-to-one mapping prevents the sharing of meta-knowledge among

4



Under review as a conference paper at ICLR 2023

different clusters of tasks. We employ the multi-modal meta-knowledge where multiple meta-
knowledge components are maintained. It assumes that a cluster of similar tasks is associated with a
subset of components of meta-knowledge:

p(Dt|θt) =
∫
p(Dt|θt, zt)p(zt)dzt =

∫ [ ∫
p(Dt|ϕt)p(ϕt|θt, zt)dϕt

]
p(zt)dzt, (6)

where zt is the indicating vector consisting of binary elements, each element of which indicates
whether the current task is relevant to the component of meta-knowledge or not. The multi-modal
premise enables the sharing of meta-knowledge among different clusters of tasks via the overlapped
related components, relaxing the restriction of mutual exclusiveness.

4.2 INDIAN BUFFET PROCESS PRIOR

In the non-stationary regime, one important requirement is to capture incremental information when
a newer task is encountered. Thus, the fixed meta-knowledge is not appropriate. To capture the
incremental meta-knowledge and fit the multi-modal premise, we employ the Indian Buffet Process
(IBP) (Griffiths & Ghahramani, 2011) to make a prior decision on the number of components
zt ∼ IBP (α), where the number of the added components at each time is:

Kt,new ∼ Possion(
α

t
), (7)

where α is the hyperparameter to control the rate of increase. The IBP prior for zt is formulated
based on the stick-breaking process:

vk ∼ Beta(α, 1), πk =

k∏
i=1

vi, zt,k ∼ Bern(πk), for k = 1, ...,∞. (8)

where Beta(·) and Bern(·) represents the Beta distribution and the Bernoulli distribution, respec-
tively. Based on the IBP prior, the generative process of SMM-CML is as follows:

θt,k ∼ N (µt,k, σt,k), ϕt|θt, zt ∼ p(ϕt|θt, zt), (9)

where θt,k is the meta-knowledge of the k-th component, and the task-specific parameters ϕt are
associated with a subset of meta-knowledge components determined by zt. The inference can be
seen in Sec. 4.4 and the probability graph model is shown in Fig. 7 in the Appendix D.

Hereby the IBP provides a prior on the number of components when encountering new tasks so that
it can capture the incremental knowledge in the online non-stationary setting. However, the IBP just
provides a prior and it cannot make a posterior decision after the updating of meta-knowledge. When
meeting a large number of task distributions, the unlimited increase in the number of components
would cause a large computational consumption and lead to parameter inefficiency.

4.3 EVIDENTIAL SPARSIFICATION FOR MULTI-MODAL META-KNOWLEDGE

To learn the posterior number of components from tasks, we propose an evidential sparsification
method for multi-modal meta-knowledge, which is a post hoc method after the update of meta-
knowledge. Since the components in our multi-modal meta-knowledge are mutually independent,
there might be redundancy across time. How to merge the information about different components
from both previous and current times remains an issue. The evidential theory provides a good way to
merge independent pieces of evidence and make the decision (Dempster, 2008).

After updating the meta-knowledge at one time, the relationship between the current clusters of tasks
and each meta-knowledge component is built up. The relationship between tasks and one certain
component is a piece of independent evidence, containing the support and doubt information. Such
information from the current and previous times can be merged to illustrate the unified relationship
between the occurring tasks and the meta-knowledge components. The components not receiving
support are cast as redundant and removed. Fig. 6 in Appendix C shows an intuitive explanation of
the combination between evidential theory and multi-modal meta-knowledge.

In our IBP-based meta-knowledge, the relationship between tasks and components at each time is
determined by k beta distributions of vt,k. Following the evidential theory (Denœux, 2019), we see

5



Under review as a conference paper at ICLR 2023

each beta distribution at either the current time or the previous time as a piece of evidence, so that
there are t · k pieces of evidence. Intuitively, as all beta distributions of vt,k (i.e, the evidences) are
independent, each of them only provides the support or doubt for the corresponding component. That
is, it supports the corresponding component {zk} or the complementary set of the corresponding
component {zk}. And this piece of evidence does not by itself provide 100% certainty, which in
evidential theory means that the remaining probability commits to the universal set Z.

In this way, each piece of evidence (i.e., each beta distribution of vt,k) can provide the evidential
weight wt,k, conducting two simple mass functions with the focal set {zk} and {zk}, respectively.
The evidential weight can be defined as:

wt,k = exp(αt,k)− γ exp(βt,k), (10)

where the evidential weight will increase with a larger αt,k and decrease with a larger βt,k. Note
that the hyperparameter γ can effectively adjust the sparsity of meta-knowledge. This weight wt,k
can deduce two other evidential weights w+

t,k and w−
t,k, supporting the singleton of corresponding

component {zk} and its complementary set {zk}, respectively. The similar derivation as (Itkina et al.,
2020) can be used as:

w+
t,k = max(0, wt,k) > 0, w−

t,k = max(0,−wt,k) > 0. (11)

For each piece of evidence vt,k, there exist two mass functions supporting {zk} and {zk}, respectively:

m+
t,k({zk}) = 1− exp(−w+

t,k), m
+
t,k(Z) = exp(−w+

t,k); (12)

m−
t,k({zk}) = 1− exp(−w−

t,k), m
−
t,k(Z) = exp(−w−

t,k). (13)

And these mass functions provided by different pieces of evidence can be fused using Dempster’s
rule and get the final result as follows:

m({zk}) = CC+C−

exp(−w−
k )

exp(w+
k )− 1 +

∏
l ̸=k

(1− exp(−w−
l ))

 , (14)

where C,C+ and C− are the normalization terms and can be omitted when computing, and w+
k and

w−
k are the merged evidential weight of each component. The computational details can be seen in

Appendix C. If a component k does not receive support (i.e., m(zk) = 0), then there must be no
evidence directly supporting this component (i.e., w+

k = 0) and there is at least one other component
receiving doubt directly from the evidence (i.e., w−

l = 0, l ̸= k).

For the sparsity of the multi-modal meta-knowledge, we can apply the mass function developed above
to filter out the component without receiving the support information directly. That is, components
with zero singleton mass value (i.e., m({zk}) = 0) are removed and the construction of meta-
knowledge for the specific task in Eq. 6 are modified as:

p(ϕt|θt, zt) =
K∑
k=1

1{m({zk}) ̸= 0}1{zt,k ̸= 0}p(ϕt,k|θt,k;λt,k). (15)

4.4 STRUCTURED VARIATIONAL INFERENCE

The exact inference is intractable because of non-conjugacy, thus, the approximation is required. In
our work, we employ the variational inference (Blei et al., 2017) to approximate the posterior. The
evidence lower bound (ELBO) of the observation at the current time t can be derived as following:

L(ψt,Dt) =− Eq(vt,zt,θt,ϕt) [log p(Dt|ϕt)] +
K∑
k=1

DKL(q(vt,k)∥p(vt,k))

+

K∑
k=1

DKL(q(zt,k|vt,k)∥p(zt,k|vt,k)) +
K∑
k=1

DKL(q(θt,k)||p(θt,k))

+DKL(q(ϕt|θt, zt)||p(ϕt|θt, zt)), (16)
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where DKL is the Kullback–Leibler divergence and q(·) is the variational distribution for each latent
variables, respecively. Note that the expectation of likelihood in Eq. 16 can be computed using
Monte Carlo sampling, while all the KL-terms can be computed directly as they have closed-form
expressions via implicit reparameterization gradients (Figurnov et al., 2018). Details of the definition
of variational distribution, the sampling gradient computation for the likelihood term and the closed
form expression for KL-terms can be seen in Appendix D.

4.5 DISCUSSION

In contrast to recent works (Jerfel et al., 2019; Zhang et al., 2021), our work has two major differences
that enhance the performance and confirm our contributions. (1) Different from the one-to-one
matching between the cluster of tasks and the meta-knowledge component, our algorithm constructs
a many-to-many matching, where multiple task clusters can share one meta-knowledge component
and one task cluster needs multiple meta-knowledge components. This is to avoid bias toward one
meta-knowledge component and improve performance on heterogeneous tasks. (2) Secondly, our
algorithm combines the IBP prior with the evidential sparsification to learn the posterior number
of meta-knowledge components. Compared to the existing works only using CPR as a prior, our
algorithm makes a posterior decision, which achieves parameter efficiency and reduces computational
consumption. The analysis of complexity is shown in Appendix E

5 EXPERIMENTS

To examine the effectiveness of our SMM-CML, we design experiments, make comparisons and
analyze the results. Specifically, the research problems that guide the remainder of the paper are:
(RQ1) Can our proposed SMM-CML achieve a better performance than the state-of-the-art baselines
under the online non-stationary setting? (RQ2) Can the increasing number of components capture
the incremental information? (RQ3) What is the impact of evidential sparsification on performance?

Our experiments are conducted under the online non-stationary settings. We compare our algorithm
to the following baselines: (1) Train-On-Everything (TOE): an intuitive method that re-initializes
the meta-knowledge at each time t and trains on all the arriving data D1:t; (2) Train-From-Scratch
(TFS): another intuitive method that also re-initializes the meta-knowledge at each time t but
trains only on the current data Dt; (3) Follow the Meta Leader (FTML)(Finn et al., 2019): a
method utilizing the Follow the Leader algorithm (Kalai & Vempala, 2005) to minimize the regret
of meta-learner. (4) Online Structured Meta-Learning (OSML): a method via conducting a
pathway to extract meta-knowledge from a meta-hierarchical graph; (5) Dirichlet Process Mixture
Model (DPMM): an algorithm that employs CRP to conduct a mixture meta-knowledge using
point estimation; (6) Bayesian Online Meta-Learning with Variational Inference (BOMVI): a
method that uses Bayesian meta-learning to address the catastrophic forgetting issue; (7) Variational
Continual Bayesian Meta-Learning (VC-BML): a state-of-the-art method that aims to conduct a
mixture meta-knowledge via a Bayesian method.

Following the exiting works (Yap et al., 2021; Zhang et al., 2021), we conduct the experiments on
four datasets: VGG-Flowers(Nilsback & Zisserman, 2008), miniImagenet(Ravi & Larochelle, 2017),
CIFAR-FS(Bertinetto et al., 2018), and Omniglot(Lake et al., 2011). Tasks sampled from different
datasets correspond to different task distribution, so that the online non-stationary environment can be
created via chronologically sampling tasks from different datasets. Specifically, the sampled task is a
5-way 5-shot task, and 5 classes are sampled randomly from a dataset for a task. In our experiment,
we sequentially meta-train the model on tasks sampled from the meta-training dataset of these four
datasets, which means that the model is trained on the tasks sampled from VGG-Flowers dataset, and
then proceeds to the next dataset. The showed performances are evaluated on the test set after tuning
hyper-parameters on the validation set. More details about experiment are in Appendix F.

5.1 RQ1: PERFORMANCE UNDER ONLINE NON-STATIONARY SETTING

To examine the effectiveness of our algorithm, we present the mean meta-test accuracy on all the
learned datasets at each meta-training stage in Tab. 1, and the details of performance on each
training stage are in Appendix F.4.1. Our SMM-CML achieves the best performance at each
meta-training stage (i.e., VGG-Flowers, miniImagenet, CIFAR-FS and Omniglot), which illustrates
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Table 1: Mean meta-test accuracy (%) of the learned dataset at each meta-training stage. The best
performance is marked with boldface.

Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot

FTML 76.84± 1.75 60.74± 1.85 66.71± 1.86 61.89± 1.49
OSML 79.61± 1.50 66.15± 1.73 68.24± 1.73 65.65± 1.40
DPMM 78.97± 1.52 66.55± 1.77 67.18± 1.86 68.26± 1.47
BOMVI 77.05± 1.80 60.44± 1.86 59.57± 1.77 69.04± 1.54

VC-BML 83.71± 1.58 68.09± 1.58 69.87± 1.74 69.48± 1.51

SMM-CML 85.11± 1.46 69.45± 1.54 70.72± 1.61 71.46± 1.39
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Index of Components in Multi-Modal Meta-knowledge
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Figure 3: Each column represents the posterior probability π of the Bernoulli distribution of different
component in the multi-modal meta-knowledge on different datasets.

Table 2: Mean meta-test accuracy (%) under the sequential task setting, where the performance
represents the average accuracy across the whole training tasks sequence. The best performance is
marked with boldface.

Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot

FTML 57.29± 2.28 31.92± 1.58 39.21± 1.75 82.03± 1.42
OSML 56.07± 2.10 32.41± 1, 36 40.75± 1.85 82.89± 1.42
DPMM 64.21± 2.06 36.68± 1.46 47.47± 1.88 88.39± 1.48
BOMVI 64.71± 1.78 38.44± 1.41 48.19± 1.88 90.49± 1.62

VC-BML 65.28± 2.19 38.65± 1.83 47.07± 1.75 89.97± 1.11

SMM-CML 66.27± 2.01 40.04± 1.48 48.97± 1.71 91.13± 0.20

that SMM-CML can not only maintain the meta-knowledge learned from previous times but also
capture the incremental meta-knowledge from the current tasks. Moreover, the comparison between
the performance of SMM-CML and the baselines (i.e., DPMM and VC-CML), which maintain the
mutually exclusive meta-knowledge components, confirms that sharing helps to improve performance.

To further illustrate the association between tasks and meta-knowledge, we show the posterior of the
Bernoulli distribution of each component on each dataset. As in Fig. 3, the probabilities of Bernoulli
distribution of each component are distinct. For example, the VGG-Flowers dataset has a strong
association with the later three components, while the Omniglot dataset is closely relevant to all the
components except the third one. It confirms that in our learned meta-knowledge, different clusters
of tasks share multiple components and maintain their diversity via the other different ones.

Besides, we take into account another more challenging setting, where tasks from different datasets are
mixed and randomly arrive one by one. Because of the more non-stationary task stream, catastrophic
forgetting is more serious. Tab. 2 shows the average accuracy results over all times. Our SMM-CML
achieves the best performance on all four datasets even in such a challenging setting. It further
confirms that our algorithm has the capability to cope with the online non-stationary task streams.

5.2 RQ2: THE IMPACT OF INCREASING NUMBER OF COMPONENTS

To capture the incremental meta-knowledge in continual meta-learning, we employ the Indian Buffet
Process to allow the increasing number of components. We conduct the experiment with different
numbers of meta-knowledge components to test its effectiveness. The evolution of meta-test accuracy
when training on different datasets is shown in Fig. 4. TOE has the best performance on most stages
because it can replay all the available data. With the number of components increasing, our proposed
algorithm has a better performance in both the learned and the new datasets. It further demonstrates
that more components can capture the incremental meta-knowledge and alleviate the forgetting issue.
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Figure 4: The evolution of meta-test accuracies (%) of SMM-CML with different numbers of
components when training on different datasets. TOE and TFS are two baselines for comparison.

Table 3: The meta-test accuracy (%) before sparsification and after sparsification on each dataset
Omniglot CIFAR-FS miniImagenet VGG-Flowers

original 99.31± 0.25 85.99± 1.07 76.07± 1.40 71.41± 1.48
sparse 99.43± 0.21 86.53± 1.05 75.91± 1.38 71.22± 1.36

k=2 k=3 k=4
83.75
84.00
84.25
84.50
84.75
85.00
85.25 OURS

VC-CML(k=3)
VC-CML(k=4)

(a) VGG-Flowers Stage

k=2 k=3 k=4
66.5
67.0
67.5
68.0
68.5
69.0
69.5 OURS

VC-CML(k=3)
VC-CML(k=4)

(b) miniImagenet Stage

k=2 k=3 k=4
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VC-CML(k=3)
VC-CML(k=4)

(c) CIFAR-FS Stage

k=2 k=3 k=4
67

68

69

70

71 OURS
VC-CML(k=3)
VC-CML(k=4)

(d) Omniglot Stage

Figure 5: The comparison between SMM-CML and VC-BML with different numbers of components
on each training stage.

5.3 RQ3: THE EFFECTIVENESS OF EVIDENTIAL SPECIFICATION

To reduce computational consumption, we propose an evidential sparsification method. To examine
the impact of our methods, we compare performance before and after sparsification. The mean
meta-test accuracy at each meta-training stage is shown in Tab. 3, and more results are shown in
Appendix F.4.2. Compared to the original meta-knowledge, the sparse meta-knowledge can achieve a
comparative performance. This confirms that our method can reduce redundancy and computational
consumption with acceptable accuracy. Moreover, we conduct experiments on different numbers
of components with the appropriate γ. The results in Fig. 5 show that our model can outperform
the SOTA even with less number of components. It confirms that our algorithm can filter out the
redundant meta-knowledge component and is more parameter-efficiency.

6 CONCLUSION

This paper focuses on a more challenging setting in meta-learning, where tasks from a non-stationary
distribution are available sequentially. We propose SMM-CML, a Scalable Multi-Modal Meta-
Learning algorithm where a cluster of similar tasks are associated with multiple components, allowing
tasks to share meta-knowledge while maintaining their diversity. Moreover, an IBP prior is employed
to determine whether to increase the number of components, and an evidential sparsity method is
proposed to filter out the components which have not received support information from tasks. This
confirms a posterior number of meta-knowledge components so that it avoids parameter inefficiency.
The conducted experiment shows the effectiveness of multi-modal meta-knowledge and confirms
that our algorithm can learn the needed meta-knowledge from tasks. One limitation comes from the
space complexity, since our model still needs to increase the number of mixture components to cover
more meta-knowledge. The proposed evidential sparsity method can help alleviate the required space
complexity.
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A VARIATIONAL INFERENCE FOR META-LEARNING

Following MAML (Finn et al., 2017), many Bayesian variant (Ravi & Beatson, 2018; Gordon et al.,
2019; Iakovleva et al., 2020) are proposed. To fit well with the bi-level optimization architecture,
most of them consider a hierarchical bayesian inference (Amit & Meir, 2018), where the Evidence
Lower Bound (ELBO) of likelihood can be derived as follows:

log

[
T∏
i=1

Di

]
= log

[∫
p(θ)

[
T∏
i=1

∫
p(Di|ϕi)p(ϕi|θ)dϕi

]
dθ

]

≥ Eq(θ;ψ)

[
log

(
T∏
i=1

∫
p(Di|ϕi)p(ϕi|θ)dϕi

)]
−DKL(q(θ;ψ)||p(θ))

≥ Eq(θ;ψ)

[
T∑
i=1

Eq(ϕi;λi) [log p(Di|ϕi)−DKL(q(ϕi;λ)||p(ϕi|θ))]

]
−DKL(q(θ;ψ)||p(θ)), (17)

where θ and ϕ are the global parameter and task-specific parameter, respectively. Note that the
low bound is derived based on the Jensen equation and the variational distributions of θ and ϕ are
introduced to approximate the intractable posterior. Then, the bi-level optimization is transformed as:

ϕ∗, λ∗ =argmax
ψ,λ

Eq(θ;ψ)

[
T∑
i=1

Eq(ϕi;λi) [log p(Di|ϕi)−DKL(q(ϕi;λ)||p(ϕi|θ))]

]
−DKL(q(θ;ψ)||p(θ)). (18)

So that the goal of the optimization is to seek the optimal variational distribution of θ and ϕ,
parameterized by ψ and λ, respectively.

B COMPUTING RULES IN EVIDENTIAL THEORY

There are some computing rules introduced by Dempster–Shafer theory (Denœux, 2019). Given two
mass functions m1 and m2, their combination is defined according to the Dempster’s rule:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B) ·m2(C), (19)

where κ is the degree of conflict between two evidences, which is defined as:

κ =
∑

B∩A=∅

m1(B) ·m2(C). (20)

Note that Dempster’s rule for the combination of mass functions is commutative and associative.
Based on Dempster’s rule for the combination between two mass functions, the combination of two
corresponding contour functions pl1 and pl2 can be computed as:

(pl1 ⊕ pl2(zk)) =
pl1(zk) · pl2(zk)

1− κ
. (21)

And if both mass functions are simple with the same strict subset, their fusion can be defined as:

Aw1 ⊕Aw1 = Aw1+w2 , (22)

where Aw1 represents the simple mass function with a single strict subset and its evidential weight is
w1.

C THE COMPUTATIONAL DETAILS OF FUSING MASS FUNCTION

We try to combine all the positive mass functions and all the negative mass functions, respectively.
And then the two can be fused to produce the final result.
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Figure 6: An intuitive explanation of our proposed evidential sparsity method. The relationship
between tasks and meta-knowledge components at each time provides k evidences, containing support
and doubt information with uncertainty. Such information can be merged by Dempster’s rule to
provide a unified relationship between the occurring tasks and the components. The components not
receiving support are removed (i.e., the component K − 1 in the figure).

C.1 THE FUSION ACROSS TIME

Before positive fusion and negative fusion, we need to merge evidence supporting the same focal
elements at different times. Since the simple mass functions have the same focal set, their fusion can
be calculated following Eq. 22 and the weight is:

w+
k =

t∑
i=0

w+
i,k, w−

k =

t∑
i=0

w−
i,k (23)

where w+
i,k and w−

i,k are the evidential weight of the positive and negative mass function at time i.
respectively. In this way, the evidence supporting the same focal element from different time can be
merged first:

m+
k ({zk}) = 1− exp(−w+

k ), m
+
k (Z) = exp(−w+

k ); (24)

m−
k ({zk}) = 1− exp(−w−

k ), m
−
k (Z) = exp(−w−

k ). (25)

C.2 THE FUSION OF m+

As we define above, all the positive mass functions have the only two focal elements, {zk} and Z.
Then the combination of them can be computed according to the Dempster’s rule:

m+({zk}) ∝ [1− exp(−w+
k )]
∏
l ̸=k

exp(−w+
k ) = [exp(w+

k )− 1]

K∏
l=1

exp(−w+
k ), (26)

m+(Z) ∝
K∏
k=1

exp(−w+
k ). (27)
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As the fused mass function constraint to the sum of one, the results can be computed by normalizing
the terms. So that the sum of all terms is:

m+(Z) +

K∏
l=1

m+({zk}) ∝

(
K∏
k=1

exp(−w+
k )

)
+

K∑
k=1

{
[exp(w+

k )− 1]

K∏
l=1

exp(−w+
k )

}
(28)

=

(
K∏
k=1

exp(−w+
k )

)
·

[(
K∑
k=1

exp(w+
k )

)
−K + 1

]
. (29)

And the terms can be normalized as:

m+({zk}) =
[exp(w+

k )− 1]
∏K
l=1 exp(−w

+
k )(∏K

k=1 exp(−w
+
k )
)
·
[(∑K

k=1 exp(w
+
k )
)
−K + 1

]
=

exp(w+
k )− 1(∑K

k=1 exp(w
+
k )
)
−K + 1

, (30)

m+(Z) =

∏K
k=1 exp(−w

+
k )(∏K

k=1 exp(−w
+
k )
)
·
[(∑K

k=1 exp(w
+
k )
)
−K + 1

]
=

1(∑K
k=1 exp(w

+
k )
)
−K + 1

. (31)

C.3 THE FUSION OF m−

Different from the positive mass functions, the negative mass functions have the only two focal
elements, {zk} and Z. To compute the combination of all negative mass functions, we need to
compute the conflict firstly:

κ− =

K∏
k=1

(
1− exp(−w−

k )
)
. (32)

Thus, for any strict subset A of Z, its belief can be computed as:

m−(A) =

[∏
zk /∈A

(
1− exp(−w−

k )
)]
·
[∏

zk∈A exp(−w
−
k )
]

1−
∏K
k=1

(
1− exp(−w−

k )
) . (33)

And the mass belief of the complete set Z is:

m−(Z) =

∏K
k=1 exp(−w

−
k )

1−
∏K
k=1

(
1− exp(−w−

k )
) . (34)

For further fusion of the positive and negative mass functions, we need to compute pl−(zk), which
can be defined as:

pl−({zk}) =
∏K
k=1 pl

−
k ({zk})

1−
∏K
k=1

(
1− exp(−w−

k )
) , (35)

where the plausibility of negative mass function is:

pl−l ({zk}) =
{
exp(−w−

l ) if k = l

1 otherwise
. (36)

Thus, the result of the fused plausibility is:

pl−({zk}) =
exp(−w−

k )

1−
∏K
k=1

(
1− exp(−w−

k )
) . (37)
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C.4 THE FINAL FUSION

To clarify the following derivation, we assume that:

C+ =
1(∑K

k=1 exp(w
+
k )
)
−K + 1

, (38)

C− =
1

1−
∏K
k=1

(
1− exp(−w−

k )
) . (39)

Similarly, to combine the positive and negative mass function, we need to compute the conflict
between them at first:

κ =

K∑
k=1

m+({zk})

∑
zk /∈A

m−(A)


=

K∑
k=1

{
m+({zk}) ·

[
1− pl−({zk})

]}
=

K∑
k=1

{
C+

[
exp(w+

k )− 1
]
·
[
1− C−(exp(−w−

k ))
]}
, (40)

where A ⊆ Z. To make the following derivation clarified, let:

C =
1

1− κ
=

1

1−
∑K
k=1

{
C+

[
exp(w+

k )− 1
]
·
[
1− C−(exp(−w−

k ))
]} . (41)

Then for any k ∈ {1, 2, ...,K}, the mass belief of each singleton can be computed as:

m({zk}) = C

{
m+({zk}) ·

[∑
zk∈A

m−(A)

]
+m+(Z) ·m−({zk})

}
= C

{
m+({zk}) · pl−({zk}) +m+(Z) ·m−({zk})

}
, (42)

where A ⊆ Z. Combining Eq. 30, Eq. 31 Eq. 33 and Eq. 37, , the final result of the mass singleton
belief is:

m({zk})

= C

C+
[
exp(w+

k )− 1
]
· C−[exp(−w−

k )] + C+ · C−

exp(−w−
k ) ·

∏
l ̸=k

(
1− exp(−w−

l )
)

= CC+C−

exp(−w−
k )

exp(w+
k )− 1 +

∏
l ̸=k

(1− exp(−w−
l ))

 . (43)

D DETAILS OF INFERENCE

In this section, we present the details of our structured variational inference for our proposed SMM-
CML. The pseudo-code and the probability model are shown in Alg.1 and Fig. 7, respectively.

D.1 VARIATIONAL DISTRIBUTION

Because of the intractability of posterior, we introduce the variational distribution to approximate the
true posterior. To capture the dependencies among the approximate posterior distribution, we consider
using the structured mean-field approximation (Hoffman & Blei, 2015) instead of the traditional
mean-field approximation. Specifically, the joint variational distribution can be decomposed as
follows:

q(vt, zt, θt, ϕt|Dt) = q(ϕt|θt, zt,Dt)
K∏
k=1

q(θt,k)q(zt,k|vt,k)q(vt,k), (44)

17



Under review as a conference paper at ICLR 2023

𝐾𝐾
𝑣𝑘 𝜃𝑡,𝑘

𝑥𝑖 𝑦𝑖

𝑧𝑡,𝑘
𝐾

𝑇

𝜙𝑡

𝑁𝑡 +𝑀𝑡

Figure 7: The probability model of SMM-CML. The solid line denotes the generative process, and
the white circle and the grey circle denote the latent variant and the observed variant, respectively.

The composed variational distributions are parameterized as:

q(vt,k) = Beta(αt,k, βt,k), (45)
q(zt,k|πt,k) = Bern(πt,k), where πt,k = vt,k, (46)

q(θt,k) = N (µt,k, σ
2
t,k1), (47)

q(ϕt|θt, zt,Dt) =
K∑
k=1

1{zt,k ̸= 0}q(ϕt,k|θt,k;λt,k), (48)

where λt = SGDJ(θ
∗
t ,DSt , ϵ), and SGDJ(·) represents the stochastic gradient descent with J steps.

That is, the required variational parameters are ψt = {αt,k, βt,k, µt,k, σt,k, λt,k} for all k = 1, ...,K.
Note that we replace

∏k
i=1 vt,i with vt,k in the posterior, to remove the implicit order constraint in

the prior. So that the optimization aims to search for the optimal variational parameter to maximize
the ELBO in Eq. 16.

D.2 REPARAMETERIZATION

The variational posterior is obtained by optimizing the ELBO using structured variational inference.
To make inference tractable, we utilize three reparameterizations, to infer the Gaussian distribution,
beta distribution and Bernoulli distribution, respectively.

D.2.1 THE VARIATIONAL GAUSSIAN DISTRIBUTION REPARAMETERIZATION

As we mentioned above, the variational distributions of meta-knowledge from each clusters are
diagonal Gaussian θt,k ∼ N (µt,k, σt,k). We employ the reparameterization, which can represent the
meta-knowledge using a deterministic function θt,k = g(ε;µt,k, σt,k), where ϵ ∼ N (0, I). To apply
the reparameterization, we define the standardization function and its inverse as:

Sψ(θ) =
θ − µ
σ

= ε ∼ q(ε), where q(ε) = N (0, I),

θ = S−1
ϕ (ε) = ε · σ + µ. (49)

Note that we omit the subscripts for clarity and the remainder of this section omits them as well.
Then we can represent the objective in ELBO w.r.t q(θ) as follows:

Eqψ(θ)[f(θ)] = Eq(ε)[f(S−1
ψ (ε))]. (50)

This allows us to compute the gradient of the expectation in another way:

∇ψEqψ(θ)[f(θ)] = Eq(ε)[∇ψf(S−1
ψ (ε))] = Eq(ε)[∇θf(S−1

ψ (ε))∇ψS−1
ψ (ε)], (51)

D.2.2 THE VARIATIONAL BETA DISTRIBUTION REPARAMETERIZATION

There is no simple inverse of the standardization function when using the reparameterization for Beta
distribution, which makes it impossible to apply the explicit reparameterization directly. Instead,
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Algorithm 1: The meta-training process of SMM-CML.
Input: Task distribution p(τ), data distribution p(D|τ),

the initial number of component K0, concentration parameter α,
the number of inner update step J , the inner learning rate ϵ,
and the outer learning rate ζ

1: for t=1,.. do
2: Determine the added number: Kt,new = Possion(αt )
3: Determine the number of component: Kt = Kt−1 +Kt,new

4: Initialize the variational beta distribution: αt,k, βt,k,∀k = 1, ...,Kt

5: Initialize the variational distribution of meta-knowledge: µk, σk,∀k = 1, ..,Kt

6: while not converge do
7: Sample vt,k ∼ q(vt,k;αt,k, βt,k),∀k = 1, ...,Kt

8: Compute the ELBO according to Eq. 16
9: Compute the gradient: ∇µt,k,∇σt,k,∀k = 1, ...,Kt via explicit reparameterization

according to Eq. 51
10: Compute the gradient: ∇αt,k,∇βt, k,∀k = 1, ...,Kt via implicit reparameterization

according to Eq. 55
11: Update the variational parameters: αt,k ← αt,k − ζ∇αt,k,∀k = 1, ...,Kt

12: Update the variational parameters: βt,k ← βt,k − ζ∇βt,k,∀k = 1, ...,Kt

13: Update the variational parameters: µt,k ← µt,k − ζ∇µt,k,∀k = 1, ...,Kt

14: Update the variational parameters: σt,k ← σt,k − ζ∇σt,k,∀k = 1, ...,Kt

15: end while
16: Update prior: p(vt,k)← q(vt,k),∀k = 1, ...,Kt

17: Compute the evidential weight w+
t,k, w

−
t,k,∀k = 1, ...,Kt according to Eq. 11

18: Compute the mass function according to Eq. 14
19: Remove the components without support information according to Eq. 15
20: end for

there are two ways to tackle the problem: the implicit reparameterization and the Kumaraswamy
reparameterization.

Implicit reparameterization. This way also utilizes the reparameterization to tackle the intractable
gradient in Beta distribution:

∇γEqγ(vk)[f(vk)] = Eq(ε)[∇γf(vk)] = Eq(ε)[∇vkf(vk)∇γvk], (52)

without the inverse of the standardization function, the term∇γvk is difficult to compute. Inspired by
(Figurnov et al., 2018), we employ the implicit reparameterization to compute the gradient, the idea
of which is to differentiate the standardization function Sγ(vk) = ε using the chain rule instead of
searching its inverse:

∇vkSγ(vk)∇γ(vk) +∇γSγ(vk) = 0, (53)

∇γvk = −(∇vkSγ(vk))−1∇γSγ(vk). (54)

Note that the standardization function can be the CDF of the Beta distribution and ε ∼ Unif [0, 1].
Then the implicit gradient is:

∇γvk =
∇γF (vk; γ)
−(∇vkF (vk; γ))

=
∇γF (vk; γ)
−p(vk; γ)

, (55)

where p(vk; γ) is the PDF of the Beta distribution.

Kumaraswamy distribution. The Beta distribution of vk also can be reparameterized using a
Kumaraswamy distribution (Nalisnick & Smyth, 2017). The Kumaraswamy distribution can be
defined as:

p(vk;α, β) = αβvα−1
k (1− vαk )β−1, (56)

and then the inverse of standardization function can be computed as:

Sγ(vk) = (1− ε1/β)1/α, where ε ∼ Unif [0, 1]. (57)
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The KL-Divergence between the Kumaraswamy distribution and the Beta distribution in ELBO can
be written as:

DKL (q(vk;αk, βk)||p(v;α, β)) =
αk − α
αk

(
−γ −Ψ(βk)−

1

βk

)
+ logαkβk

+ log [B(α, β)]− βk
1− βk

+ (β − 1)βk

∞∑
m=1

1

m+ αkβk
B

(
m

αk
, βk

)
, (58)

where γ is the Euler constant, Ψ(·) is the digamma function, andB(·, ·) is the beta function. Following
the existing work (Nalisnick & Smyth, 2017), the above the infinite term in the formula can be
approximated using a infinite sum of the first 11 terms.

D.2.3 THE VARIATIONAL BERNOULLI DISTRIBUTION REPARAMETERIZATION

As the Bernoulli distribution is one of the classic discrete distributions, the sampling requires
performing an argmax operation. But the argmax operation is not differentiable.

We employ the Concrete distribution (Maddison et al., 2017), also named Gumbel-softmax distribution
(Jang et al., 2017), to address the above issue. Then, we can sample a random variable as follows:

xj = σ

 log(πk) + log
(

uk
1−uk

)
λ

 , u ∼ U(0, 1), (59)

where λ ∈ (0,∞) is a temperature hyper-parameter, σ(·) is the sigmoid function, πk is the parameter
of the Bernoulli distribution and uk is sampled from a uniform distribution U . To guarantee a lower
bound on the ELBO, both posterior and prior Bernoulli distribution need to be replaced with concrete
distribution:

DKL [q(zt|πk,t)∥p(zt|πk,t)] ≥ DKL [q(zt|πk,t, λ)∥p(zt|πk,t, λ)] . (60)

E THE ANALYSIS OF COMPLEXITY

We discuss the computational cost of our proposed SMM-CML as follows, including the time
complexity and space complexity.

For time complexity, the de facto bi-level optimization mechanism in meta-learning requires O(n2)
when updating one meta-knowledge component, where an algorithm with time complexity O(n) is a
linear time algorithm. If without any sparsification or constraint on the number of components, it will
see an unlimited increase, and thus the time complexity will be up to O(n3). If with our evidential
sparsification, the number of components will be limited to a small constant C with an appropriate
hyperparameter γ in Eq. 10, so that the time complexity will be down to O(C ∗ n2) ≈ O(n2).

Similarly, as each component of meta-knowledge contains the parameter of the model, its space
complexity is O(n). And the total space complexity of models without sparsification will be up to
O(n2) for the unlimited number of meta-knowledge components when encountering many tasks. But
our algorithm can alleviate this issue using the evidential sparsification to reduce down to O(n) with
an appropriate hyperparameter γ.

F DETAILS OF EXPERIMENT

F.1 THE DETAILS OF BASELINES

For a fair comparison, we use the widely-applied network architecture following (Yap et al., 2021;
Zhang et al., 2021). In what follows, we describe the details of the baselines:

TOE: Training-On-Everything method (TOE) is an intuitive method, that re-initializes the meta-
knowledge and trains them on all the having arrived datasets at each time. We use the same Bayesian
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meta-learning architecture as our algorithm. The difference between TOE and SMM-CML is that
SMM-CML is only trained on the current dataset at each time instead of all the having arrived dataset
in TOE and SMM-CML does not re-initialize the meta-knowledge at each time as what TOE do.

TFS: Train-From-Scratch (TFS) is another intuitive method, which also re-initializes meta-knowledge
but only trains them on the current dataset. Similarly, it also uses the same Bayesian meta-learning
architecture as our algorithm. The difference between TFS and SMM-CML is that our algorithm
maintains the posterior meta-knowledge at last time as the prior at the current time instead of
re-initializing them as TFS.

FTML: Follow the Meta Leader (FTML) proposed by (Finn et al., 2019) uses the Follow the Leader
algorithm to fill the gap between meta-learning and online learning. However, it assumes that all the
having arrived datasets are available, which is memory-consuming and conflicts with the continual
meta-learning. For a fair comparison, we only train FTML on the current dataset as same as our
algorithm.

OSML: Online Structured Meta-Learning (OSML) (Yao et al., 2020) maintains a meta-hierarchical
graph with different knowledge blocks and conducts a meta-knowledge pathway for the encountered
new task. However, it employs a well pre-trained convolution network to initialize the model in the
original paper. As SMM-CML and other baselines are randomly initialized, it would be unfair to use
the original initializing way. Therefore, we also randomly initialize the OSML model.

DPMM: Dirichlet Process Mixture Model (DPMM) (Jerfel et al., 2019) employs a Chinese Restaurant
Process to conduct the mixture meta-knowledge with a dynamic number of components. Note that it
is not a Bayesian method and employs the point estimation to update the meta-knowledge.

BOMVI: Bayesian Online Meta-Learning with Variational Inference (BOMVI) (Yap et al., 2021) is a
state-of-the-art algorithm, which conducts a meta-knowledge distribution to address the catastrophic
forgetting issue in continual meta-learning. Similarly, it also employs variational inference to update
the meta-knowledge.

VC-BML: Variation Continual Bayesian Meta-Learning (VC-BML) (Zhang et al., 2021) is another
state-of-the-art algorithm, which also employs a truncated Chinese Restaurant Process to conduct
the mixture meta-knowledge. Different from DPMM, it uses the Bayesian inference to conduct the
mixture distribution of meta-knowledge and places an upper bound on the number of components to
reduce the computational consumption.

All the baselines and our proposed SMM-CML follow the experimental setting as described in Sec.
F.3.

F.2 THE DATASETS

VGG-Flowers VGG-Flowers(Nilsback & Zisserman, 2008) consists of 102 flower categories. Also,
we randomly choose 66 categories for meta-training, 16 categories for validation and the remained
20 categories for meta-test.

miniImagenet:miniImagenet(Ravi & Larochelle, 2017) is designed for few-shot learning, which
consists of 100 different classes. Similarly, we also split the dataset into three datasets (i.e., 64 classes
for meta-training, 16 classes for validation and 20 classes for meta-test) following the existing works.

CIFAR-FS:CIFAR-FS(Bertinetto et al., 2018) dataset used in our experiment is adapted from the
CIFAR-100 dataset (Krizhevsky et al., 2009) for few-shot learning, which consists of 100 classes.
Following the existing works (Yap et al., 2021; Zhang et al., 2021), we also randomly split the
datasets, where 64 classes are used for meta-training, 16 classes are used for validation and the
remained 20 classes are used for meta-test, respectively.

Omniglot:Omniglot(Lake et al., 2011) is a widely-used dataset, which contains 1,623 different
handwritten characters from 50 different alphabets. Following the previous works (Yap et al., 2021;
Zhang et al., 2021), we randomly split the dataset into three subsets, 1,100 characters for meta-training,
100 characters for validation and the remaining 423 characters for meta-test.

To create the online non-stationary setting, we assume the above datasets are arriving and available
sequentially. Moreover, we focus 5-way 5-shot task, which conducts the low-resource environment.
For each dataset, we form the streaming tasks via randomly sampling 5 classes with replacement as a
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Table 4: The convolution neural network architecture in SMM-CML and baselines.
Layers Output Size
Input image 28× 28× 3
The first convolution layers 14× 14× 64
The second convolution layers 7× 7× 64
The third convolution layers 3× 3× 64
The forth convolution layers 1× 1× 64

Table 5: Some important hyper-parameters used in our experiments.
Hyper-parameter VGG-Flowers miniImagenet CIFAR-FS Omniglot
The number of outer update step 2000 2000 2000 2000
The outer learning rate 0.001 0.001 0.001 0.001
The number of outer update step 3 3 3 1
The inner learning rate 0.05 0.1 0.1 0.1

task. And we randomly sample 5 examples for each class in a support set and 15 examples for each
class in a query set.

In our experiment, we also consider another more challenging setting, where tasks from different
datasets are mixed and arrive one by one. In this setting, we conduct different tasks stream with a
length of 100, and then train the model on each task one by one and evaluate the performance on
each dataset.

F.3 THE DETAILS OF EXPERIMENT SETTING

For each task, we employ the same convolution network as our base network following the previous
works (Yap et al., 2021; Zhang et al., 2021), which is showed in Tab. 4. For our model, we use the
Adam optimizer as the outer optimizer and the SGD optimizer as the inner optimizer. For the Monte
Carlo sampling used in our algorithm, we set the number of sampling as 5. For the initial number of
components in the multi-modal meta-knowledge, we set it as 4. All the important hyper-parameters
can be seen in Tab. 5. We ran our algorithm on NVIDIA Tesla V100 32GB GPU. It took about 54
hours to train.

F.4 ADDITIONAL EXPERIMENTAL RESULT

In what follows, we present the full result on the streaming datasets (i.e., VGG-Flowers, miniImagenet,
CIFAR-FS and Omniglot), and change the order of datasets to verify the generality of our algorithm.

F.4.1 META-TEST ACCURACIES ON EACH DATASET AT DIFFERENT META-TRAINING STAGE

We only show the average result at each meta-training stage and the performance on each dataset
at the last meta-training stage in the main text. We additionally show the full results in Tab. 6.
Although SMM-CML can not achieve the best performance on all having arriving datasets at some
meta-training stages (i.e., CIFAR-FS and miniImage), it outperforms all the baselines on the average
results, which confirms the effectiveness of SMM-CML. Additionally, SMM-CML can not only
maintain the performance on the old datasets, but also achieve better results on the new datasets,
which illustrates that it can alleviate better catastrophic forgetting than other baselines. Note that
SMM-CML achieves the best performance on the current datasets at each stage (especially compared
to VC-BML, where it assumes that each component is mutually exclusive), which shows that our
proposed model can resolve the conflict between the learned meta-knowledge and the incremental
meta-knowledge, and it is expected that the multi-modal can utilize the shared meta-knowledge to
improve the performances.

Tab. 6 also shows the detailed results of SMM-CML before and after evidential sparsification. The
results show that SMM-CML still achieves a comparative performance on most datasets at each
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Table 6: Performance of our SMM-CML and the baselines on each datasets at each meta-training
stage. The best performance on each dataset is marked with boldface and the second best is marked
with underline.

Meta-Training
Stage Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot Average

VGG-Flowers

FTML 76.84± 1.75 - - - 76.84± 1.75
OSML 79.61± 1.50 - - - 79.61± 1.50
DPMM 78.97± 1.52 - - - 78.97± 1.52
BOMVI 77.05± 1.80 - - - 77.05± 1.80

VC-BML 83.71± 1.58 - - - 83.71± 1.58
SMM-CML 85.11± 1.46 - - - 85.11± 1.46

miniImagenet

FTML 76.51± 1.92 44.97± 1.77 - - 60.74± 1.85
OSML 76.19± 1.68 56.11± 1.77 - - 66.15± 1.73
DPMM 76.65± 1.79 56.45± 1.74 - - 66.55± 1.77
BOMVI 75.75± 1.97 45.12± 1.74 - - 60.44± 1.86

VC-BML 76.47± 1.41 59.71± 1.75 - - 68.09± 1.58
SMM-CML 81.71± 1.42 57.19± 1.66 - - 69.45± 1.54

CIFAR-FS

FTML 75.11± 1.84 54.89± 1.66 70.13± 2.07 - 66.71± 1.86
OSML 78.29± 1.63 57.36± 1.54 69.07± 2.01 - 68.24± 1.73
DPMM 75.60± 1.76 55.79± 1.75 70.15± 2.07 - 67.18± 1.86
BOMVI 74.08± 1.60 47.55± 1.84 57.07± 1.86 - 59.57± 1.77

VC-BML 79.04± 1.54 59.17± 1.74 71.40± 1.93 - 69.87± 1.74
SMM-CML 79.29± 1.48 58.98± 1.65 73.89± 1.69 - 70.72± 1.61

Omniglot

FTML 63.04± 2.01 37.27± 1.69 47.95± 1.99 99.31± 0.28 61.89± 1.49
OSML 70.68± 1.83 40.67± 1.50 51.89± 2.04 99.35± 0.24 65.65± 1.40
DPMM 65.20± 1.67 48.53± 1.63 60.15± 2.30 99.16± 0.29 68.26± 1.47
BOMVI 73.19± 1.86 46.28± 1.62 58.99± 2.14 97.71± 0.53 69.04± 1.54

VC-BML 71.02± 1.76 48.53± 1.82 59.14± 2.01 99.21± 0.47 69.48± 1.52
SMM-CML 71.92± 1.86 50.07± 1.66 64.50± 1.83 99.36± 0.22 71.46± 1.39

meta-training stage, compared to before evidential sparsification. It further confirms the effectiveness
of our proposed evidential sparsification.

F.4.2 ADDITIONAL EXPERIMENTAL IN DIFFERENT ORDER

To further confirm the generality of our model, we change the order of datasets in the streaming tasks.
We conduct the experiments on a new order, where the model is trained chronologically on Omniglot,
CIFAR-FS , miniImagenet and VGG-Flowers. The results are shown in Tab. 7. The result on the
streaming tasks with a different order shows that SMM-CML still outperforms other baselines, which
further confirms the generality of SMM-CML.

23



Under review as a conference paper at ICLR 2023

Table 7: Performance of our SMM-CML and the baselines on each datasets at each meta-training
stage. The best performance (without ’original’) on each dataset is marked with boldface and the
second best (without ’original’) is marked with underline.

Meta-Training
Stage Algorithms Omniglot CIFAR-FS miniImagenet VGG-Flowers Average

Omniglot

FTML 99.25± 0.24 - - - 99.25± 0.24
OSML 98.20± 0.39 - - - 98.20± 0.39
DPMM 97.15± 0.48 - - - 97.15± 0.48
BOMVI 97.35± 0.73 - - - 97.35± 0.73

VC-BML 99.28± 0.48 - - - 99.28± 0.48
SMM-CML 99.43± 0.21 - - - 99.43± 0.21

original 99.31± 0.25 - - - 99.31± 0.25

CIFAR-FS

FTML 96.12± 0.76 67.08± 1.87 - - 81.60± 1.32
OSML 96.09± 0.53 66.20± 2.02 - - 81.15± 1.28
DPMM 93.31± 0.80 60.88± 2.03 - - 77.10± 1.42
BOMVI 97.68± 0.43 56.29± 2.00 - - 76.99± 1.22

VC-BML 97.72± 0.38 72.8± 1.74 - - 85.26± 1.06
SMM-CML 97.66± 0.39 75.39± 1.71 - - 86.53± 1.05

original 98.15± 0.39 73.82± 1.75 - - 85.99± 1.07

miniImagenet

FTML 96.63± 0.58 68.60± 1.79 54.68± 1.9 - 73.30± 1.42
OSML 95.04± 0.79 69.20± 1.72 55.13± 1.81 - 73.12± 1.44
DPMM 95.01± 0.67 64.93± 2.14 55.49± 1.74 - 71.81± 1.52
BOMVI 97.01± 0.70 59.25± 1.76 46.21± 1.66 - 67.49± 1.37

VC-BML 96.29± 0.58 69.05± 1.68 59.25± 1.86 - 74.86± 1.37
SMM-CML 97.10± 0.46 70.67± 1.97 59.97± 1.70 - 75.91± 1.38

original 96.74± 0.69 71.35± 1.72 60.13± 1.80 - 76.07± 1.40

VGG-Flowers

FTML 93.69± 0.83 58.27± 1.81 45.75± 1.52 80.32± 1.77 69.51± 1.48
OSML 91.79± 1.14 59.05± 1.80 46.51± 1.64 81.71± 1.69 69.77± 1.57
DPMM 93.21± 1.03 61.55± 1.82 45.01± 1.56 80.71± 1.72 70.12± 1.53
BOMVI 97.13± 0.54 58.77± 1.89 47.24± 1.81 75.59± 2.04 69.68± 1.57

VC-BML 92.80± 0.82 58.36± 1.87 47.09± 1.78 82.92± 1.46 70.29± 1.48
SMM-CML 94.07± 0.84 58.76± 1.64 48.74± 1.47 83.31± 1.50 71.22± 1.36

original 93.25± 0.81 58.94± 1.82 49.29± 1.74 84.16± 1.56 71.41± 1.48
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