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ABSTRACT

Multimodal yield prediction aims to integrate heterogeneous molecular descrip-
tors across distinct data modalities to predict the conversion efficiency of chemical
reactions. However, existing approaches often face limitations in effectively utiliz-
ing multimodal information, primarily due to inadequate consideration of both hi-
erarchical relationships and imbalanced contributions across modalities during the
fusion process. To address these challenges, we propose a Hierarchical and bal-
anced multi-modal fusion framework for reaction yield prediction, termed Har-
mony. Specifically, to enhance multimodal information utilization, we design a
hierarchical fusion architecture comprising three modality encoders and two fea-
ture fusion modules for different levels of granularity. Furthermore, we introduce
a novel contribution assessment mechanism that quantitatively evaluates modality-
specific impacts, coupled with a prefer-balancing optimization objective. Exten-
sive experimental evaluations demonstrate that Harmony not only consistently
outperforms existing methods but also exhibits robust out-of-sample (OOS) gener-
alization. Specifically, it achieves a 22% improvement in the R2 metric over the
strongest baseline on the most challenging Amide Coupling Reaction dataset. Our
code can be found at https://anonymous.4open.science/r/F6BB.

1 INTRODUCTION

Predicting chemical reaction yields is a central challenge in AI-driven synthesis planning (Johans-
son et al., 2019). Early models relied on a single molecular modality, such as SMILES strings
(Chuang & Keiser, 2018; Schwaller et al., 2020) or 2D molecular graphs (Kwon et al., 2022), but
such unimodal representations are intrinsically limited, as no single view can capture the full spec-
trum of structural, topological, and electronic factors governing reaction outcomes. To overcome
this limitation, recent research has advanced toward multimodal fusion, integrating complementary
representations including sequential SMILES and fingerprint-based descriptors (Weininger, 1988;
Rogers & Hahn, 2010). This paradigm better reflects the heterogeneity of chemical information and
has yielded marked improvements in prediction accuracy (Chen et al., 2024; Shi et al., 2024).

A common yet often overlooked challenge in multimodal reaction modeling is the standard “flat
fusion” approach. Current architectures typically treat all input modalities as equals, mixing fea-
tures that represent fundamentally different levels of chemical abstraction. This approach creates a
conflict by processing low-level, molecule-specific details like the atomic structure from SMILES
strings and 2D graphs, alongside high-level, reaction-wide patterns found in reaction fingerprints.
Such a strategy ignores the inherent hierarchical nature of chemical information, leading to feature
interference where the crucial, abstract signals are obscured by low-level noise, severely constrain-
ing the model’s ability to learn robust representations.

This architectural flaw causes a critical issue we term representational overshadowing, a domain-
specific manifestation of the “modality preference” problem (Huang et al., 2022). In this context,
the model’s predictions become dominated by abstract representations (e.g., reaction fingerprints),
effectively silencing signals from foundational structural data and reducing the system to a unimodal
model (Yang et al., 2024; Wei et al., 2024). As shown in prior work UAM (Chen et al., 2024),
removing the high-level fingerprint features leads to a sharp 19.1% drop in performance, whereas
removing other modalities causes only a minor decline of 0.4%–0.8% (Figure 1a). However, such
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Figure 1: (a): The decrease in R2 occurs upon the removal of a single modality from the UAM
framework. (b): The contribution of each modality estimated using our method before and after
balancing modality contributions. (c): Ligand-Based Out-of-Sample Results for the Buchwald-
Hartwig (BH) and Suzuki-Miyaura (SM) Datasets.

analyses merely reveal the symptom, as conventional ablation studies fail to quantify the dynamic
contributions within the fusion process. This highlights a foundational flaw in multi-scale chemical
modeling, demanding a shift from simple to intelligent, hierarchy-aware combinations.

To pioneer this shift, we propose a hierarchical and balanced multi-modal fusion framework for
reaction yield prediction, termed Harmony. Our framework tackles this issue through a staged pro-
cess that mirrors the natural hierarchy of chemical information. It first combines molecular-level data
(SMILES and 2D graphs) into a complete molecular representation. Then it moves to the reaction
level, merging this unified view with reaction fingerprints. This granularity-aware design enforces a
structured information flow, fundamentally preventing the representational overshadowing endemic
to flat architectures.

Beyond architectural innovation, we establish an integrated diagnostic and optimization framework
to validate and enforce balanced fusion. Using causal inference, we first quantify the contributions
of different representations in conventional models and reveal a pronounced imbalance: abstract
fingerprints dominate with 53.1% of the influence (Figure 1b, left). Building on this causal insight,
we design a preference-balancing optimization objective that directly counteracts such dominance.
In combination with our hierarchy-aware architecture, this leads to a near-uniform contribution dis-
tribution (≈ 33.3% each), ensuring that every level of chemical information is not only preserved
but fully engaged. Together, these advances represent a significant step toward truly multi-scale
chemical intelligence (Figure 1b, right).

To our knowledge, Harmony represents one of the first systematic attempts in AI for Chemistry to
integrate hierarchical fusion and quantitative modality assessment in reaction yield prediction. This
principled approach directly addresses the critical issue of representational overshadowing, leading
to superior generalization capabilities. This is particularly evident in its out-of-sample performance,
where Harmony significantly outperforms existing models when confronted with molecules entirely
absent from the training data (Figure 1c). This robust generalization translates directly into state-of-
the-art (SOTA) performance across three of the most widely-used benchmark datasets, establishing
a new performance ceiling for reaction yield prediction.

Our main contributions are summarized as follows:

• (Hierarchy) We introduce Harmony, a hierarchical and balanced multimodal fusion framework
for reaction yield prediction that mirrors the natural hierarchy of chemical information, integrating
molecular-level representations with reaction fingerprints to ensure structured information flow
and prevent representational dominance.

• (Balance) We develop a causal-inference–guided diagnostic and preference-balancing optimiza-
tion framework that, together with our hierarchy-aware architecture, equalizes modality contri-
butions and ensures real engagement of all chemical information levels, advancing toward truly
multi-scale chemical intelligence.

• (Validation) Extensive experiments demonstrate that Harmony consistently achieves state-of-the-
art performance on three benchmark datasets and exhibits strong generalization to out-of-sample
data, highlighted by a remarkable 22% improvement in the R2 metric on the most challenging
dataset compared to the second-best method.
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Figure 2: Harmony integrates modality-specific feature encoders and multi-tiered fusion modules
across both molecular and reaction levels, complemented by a modality contribution evaluation
mechanism and alignment at the molecular-reaction level.

2 RELATED WORK

Multimodal Learning in Chemistry and its Pitfalls Multimodal learning is increasingly vital
for advancing chemistry-related tasks. In reaction yield prediction, the field has progressed from
unimodal models (Schwaller et al., 2021) to sophisticated methods integrating SMILES, 2D graphs,
and 3D conformers (Shi et al., 2024; Chen et al., 2024). This trend extends to other areas, such as
molecular characterization (Luo et al., 2023) and text-guided generation (Guo et al., 2024). Despite
their success, a common architectural flaw pervades these models: they employ a “flat” fusion strat-
egy that treats all modalities as equals. This approach ignores the vast differences in real chemical
granularity between inputs (e.g., molecular-level graphs vs. reaction-level fingerprints), often caus-
ing models to rely on a single dominant modality and degenerate into de-facto unimodal systems.

Modality Imbalance This phenomenon, often termed modality preference or imbalance, is a rec-
ognized challenge in the broader multimodal learning community, observed in tasks like visual
question answering (Huang et al., 2022). Recent efforts have focused on quantifying modality con-
tributions (Wei et al., 2024) or redesigning fusion mechanisms to enhance robustness against this
bias (Yang et al., 2024). However, these general-purpose solutions are not tailored to the unique,
inherent informational hierarchy of chemical data. To our knowledge, the problem of modality
imbalance arising from the fusion of hierarchically distinct chemical representations has not been
systematically addressed, representing a critical gap we aim to fill.

3 METHOD

In this study, we introduce Harmony, a novel hierarchical multimodal fusion model designed for
reaction yield prediction, with its architecture illustrated in Figure 2. We begin by introducing
the design of the hierarchical fusion framework, encompassing modality encoders, molecular-level
and reaction-level fusion modules. Subsequently, we discuss the modality contribution assessment
method using causal graphs and counterfactual reasoning. Finally, we outline the optimization ob-
jectives for Harmony, including a prefer-balancing objective to mitigate modality preference.

3.1 ENCODING AND FUSING DIVERSE MOLECULAR MODALITIES

In this subsection, we present the three-level hierarchical multimodal fusion framework. It starts
with unique encoders for SMILES, 2D graphs, and fingerprints to extract modality-specific informa-
tion. The intermediate layer merges the SMILES of chemical reaction and 2D graphs of molecular
for a blend of global and detailed molecular information, while the top layer further integrates the
fingerprints modality, which carries compressed reaction information.

SMILES Encoder SMILES are string sequences that encode molecular structures and reactions.
With the rapid progress of NLP and Transformer architectures (Vaswani, 2017; Qin et al., 2024),
large-scale pre-trained SMILES encoders have become increasingly powerful. Training such mod-
els from scratch on limited yield data risks overfitting to sequence grammar rather than capturing the
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underlying chemical reactivity. To address this, we adopt the pre-trained ChemBERTa-2 (Ahmad
et al., 2022) as our SMILES encoder, Encs(·), enabling extraction of features hsi from reaction
SMILES xsi while leveraging its rich chemical prior knowledge (details in Appendix P). This inte-
gration grounds our framework in both modern AI advances and domain-specific chemical insights.
Let the notation xi denote a sample among the total N samples, the encoding process follows as:

hs
i = Encs(xs

i), i ∈ {1, . . . , N} . (1)

2D Graph Encoder In a molecular 2D graph, nodes and edges symbolize atoms and binds re-
spectively. The graph encoder, denoted as Encg(·), extracts features from a 2D graph by aggregat-
ing local node and edge information, and employs graph-level average pooling for global insights.
For each reaction sample xi, let Ti denote the number of distinct molecular species involved. The
notation xg

i,j denotes the 2D graph of the j-th molecule, and its encoded features, denoted by hg
i,j ,

can be derived as follows:

hg
i,j = Encg(xg

i,j) , i ∈ {1, . . . , N} , j ∈ {1, . . . , Ti} . (2)

Molecular-level Fusion Module Encoding each 2D graph directly fails to consider the context of
a reaction, due to the same molecule has the same encoding results even in different reactions. To ad-
dress this limitation, we develop a molecular fusion module where reaction-contextualized SMILES
features hs

i are integrated with structural information through a multi-layer perceptron (MLP) de-
noted as MLPBlock(·) comprising linear transformation, batch normalization, ReLU activation, and
dropout. The result of the fusion between molecular structural information and global information,
denoted as h̃g

i,j , can be obtained as follows:

h̃g
i,j = MLPBlock(hg

i,j ⊕ hs
i) , i ∈ {1, . . . , N} , j ∈ {1, . . . , Ti} , (3)

where a ⊕ b denotes the concatenation of vector a and b. We aggregate molecular-level features
through summation, transforming variable-length molecular graph feature sequences into a fixed-
length vector hg

i and ensuring representation invariance to reactant order:

hg
i =

T∑
j=1

h̃g
i,j , i ∈ {1, . . . , N} . (4)

Fingerprints Encoder The extended-connectivity fingerprints are represented by a fixed-length
sequence of bits, with each bit referring to structures or properties that a molecule possesses (Yang
et al., 2022). To encode this modality, we apply embedding function E(·) to turn each bit into a
vector and use a Mamba-based (Gu & Dao, 2023) backbone Encf(·) to extract features. Mamba is
a cutting-edge selective structured state space model that can significantly improve the processing
speed for long sequences by ensuring linear scalability with the length of the sequence (Qu et al.,
2024). Specifically, we compute reactant fingerprints xf,r

i and product fingerprints xf,p
i through

element-wise summation of individual molecular fingerprints. The concatenated vector [xf,r
i ,xf,p

i ]
is then processed by a Mamba-based encoder to capture both global reaction characteristics and
dynamic transformation patterns. A detailed analysis is provided in Appendix F.6. The encoding
results hf

i can be defined as:

hf
i = Encf( E([xf,r

i ,xf,p
i ] ) , i ∈ {1, . . . , N} . (5)

Reaction-level Fusion and Prediction After extracting features from each modality and inte-
grating molecular-level features, we concatenate these multimodal features and employ a late fusion
module (Snoek et al., 2005) for yield prediction. We replace the traditional MLP with a Kolmogorov-
Arnold network (KAN) layer(Liu et al., 2024) in the final layer of the late fusion module. Unlike
MLPs that apply activation functions on neuron nodes, KAN implements learnable activation func-
tions between weight connections. Specifically, it parameterizes these weights using B-spline basis
functions, enabling more flexible feature transformations. By leveraging its powerful non-linear
mapping capabilities, it can make better use of the mixed multimodal features than a linear layer.
The late fusion module can be defined as the composite function F(·) = KAN(MLPBlock(·)) .

It is widely acknowledged that the yield of a chemical reaction varies according to the molecule’s
configuration and conformation, as well as the reaction conditions. Follow the previous works
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(Kwon et al., 2022; Chen et al., 2024), we adopt a strategy to predict a range for yield instead
of a single, definitive value. For any given reaction sample xi, our model will provide the mean and
variance of the yield corresponding to the sample, denoted as µ(xi) and σ(xi), respectively. The
final multimodal late fusion and prediction process and be formalized as:

(µ(xi), σ(xi)) = F(hs
i ⊕ hg

i ⊕ hf
i) , i ∈ {1, . . . , N} . (6)

For a more general representation, we define M as the set of all modalities, and m as one of these
modalities. The relationship between them and the SMILES, 2D graph, and fingerprints discussed
in this subsection can be expressed as M = {m|m ∈ {s, g, f}}. The features from modality m are
denoted as hm

i and Equation equation 6 can be redefined as:

(µ(xi), σ(xi)) = F
(
⊕

m∈M
hm
i

)
, i ∈ {1, . . . , N} . (7)

The predicted yield ŷi is then derived using a reparameterization trick (Kingma, 2013): ŷi = µ(xi)+
ϵ ∗ σ(xi) , where ϵ is sampled from a standard normal distribution.

3.2 MODALITY CONTRIBUTION EVALUATION

Each modality reflects distinct aspects of molecular information, and multimodal learning can fully
utilize this complementary information (Jiao et al., 2024). However, during the actual fusion pro-
cess, we find that the model tends to rely on specific modalities, neglecting or even suppressing
heterogeneous information in other modalities. This results in the loss of advantages gained from
integrating information from multiple sources, causing the model to degenerate into a unimodal
one. To figure out the effects of different modalities, in this subsection, we propose an algorithm to
evaluate the contributions of each modality.

Contribution of the Modality Subset C Supposing we have n modalities, the unordered set of all
modalities is denoted as M = {m1,m2, . . . ,mn}. Let C as a subset of all modalities that we wish to
evaluate, thus we have C ⊂ M. To simplify the problem, let x denote any given sample, ignoring its
subscript. Furthermore, the late fusion module F(·) directly produces the yield prediction outcome
ŷ. Based on Equation equation 7, we can derive the formula for predicting outcomes using the
modality subset C as follows:

ŷC = F
(
⊕

m∈M
T (xm; C)

)
, (8)

where ŷC is the yield prediction results using modality subset C, and xm is the value of modality m
for sample x. T (xm; C) is a mapping function, whose parameters represent the data of modality m
of sample x and the modality subset C. It is defined as follows:

T (xm; C) =
{
Φm(xm) m ∈ C ,

0 m /∈ C ,
(9)

where the function Φm(·) represents the feature extraction network for modality m. Equation equa-
tion 9 indicates that for any modality m ∈ M, if m also belongs to C, then xm will be processed by
the corresponding feature extractor. Otherwise, it will be mapped to a zero vector that has the same
shape as xm.

Given the predicted yield ŷC and the real yield y, we define the contribution of the modality subset
C as follows:

B(C) =
{
| C | · ξ if |ŷC − y| ≤ ε ,

0 otherwise .
(10)

Our formulation introduces a tolerance threshold ε and a smoothing factor ξ. Intuitively, ε specifies
the acceptable error margin under which a modality subset is considered to have “explained” the
outcome, while ξ ensures continuous attribution instead of binary inclusion/exclusion. Notably,
the parameter ε is used for observational purposes only and does not participate in model training.
Although heuristic, this design is motivated by the need for stable estimation in regression tasks,
where exact Shapley-style computation is intractable. The symbol ξ signifies the smoothing factor
to make the contribution smoother and continuous, which is defined as follows:

5
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Figure 3: Different reasoning methods and causal diagrams are explored. Let {m1, ...,mn}
denote n modalities and Y the prediction outcome. Solid/dashed arrows represent presence/absence
of causal effects, and ∧ indicates joint causation. (a) Full-modality prediction using all mi; (b)
Forward reasoning considering only m1’s effect; (c) Counterfactual analysis excluding m1.

ξ = min

(
1, 2 · log ε

|ŷC − y|+ δ

)
, (11)

where δ is a small constant introduced to prevent numeric overflow. A full derivation of ξ and a
sensitivity analysis of ε can be found in Appendix D and Appendix F.9.

It is worth noting that, although we use the late fusion module F(·) as the prediction head, we
consider it a plug-and-play module, allowing ŷC to be calculated in any manner. This enables the
application of our method to evaluate the contributions of modalities across various multimodal
regression tasks like multimodal formation energy prediction.

Contribution of a Single Modality m After the above analysis, we can evaluate the contributions
of the modality subset C. To assess the contribution of a single modality m, a straightforward
approach is forward reasoning (Lynch & Vaandrager, 1995). This involves considering the modality
subset C to contain only the modality m under evaluation. Let β̃(m) represent the benefit of m,
which is calculated with forward reasoning as follows:

β̃(m) = B(C) = B( {m} ) . (12)

However, this approach encounters two significant issues:

1. The β̃(m), calculated by equation 12, is always greater than 0. This implies that it cannot reflect
the negative contribution of the modality to the output.

2. It calculates the contribution of each modality independently, ignoring the complementary infor-
mation that exists between modalities, leading to an underestimation of the real contribution of
modality m.

To accurately reflect the contribution of each modality, we introduce causal diagram (Knoblock,
1994) and counterfactual reasoning (Roese, 1997) to model the contribution of a single modality
m. In the causal diagram, nodes represent causes and effects, while edges denote the influence
from cause to effect. This diagram aids in understanding both the combinatorial and constraint
relationships among each input condition, as well as the dependent relationships between causes
and effects. Counterfactual reasoning, a common method in causal inference, explores cause-effect
relationships by considering the outcomes of altering a cause, instead of directly examining the
cause leading to an effect.

Figure 3 shows the causal diagram for a general multimodal task. To model the contribution of
a single modality using counterfactual reasoning, we calculate the contributions of all modalities
B(M). Subsequently, we exclude the modality m, which is under evaluation, from set M, obtaining
the remaining contribution B(M\{m}). The contribution of modality m is then defined as follows:

β(m) = B(M)− B(M\ {m} ) . (13)

Leveraging the approach proposed in this subsection, we can quantitatively observe the modality
preference issue existing in multimodal yield prediction. This aids in enhancing the explainability
of observed phenomena by quantitatively representing the contributions of various modalities. A
detailed pseudo-code implementation of the algorithm can be found in Appendix S.

6
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3.3 MODEL TRAINING AND INFERENCE

Given N reaction samples, each sample can be represented as xi = {xs
i ,x

g
i ,x

f
i}. Our model aims

to predict the mean µ(xi) and variance σ(xi) of the yield distribution for sample xi. The actual
yield of reaction sample xi is denoted by yi; whereas the predicted yield is expressed as ŷi; and we
set ŷi = µ(xi) during training. To bridge the gap between yi and ŷi, we employ Mean Square Error
(MSE) loss:

Lmse =
1

N

N∑
i=1

∥ ŷi − yi ∥2 . (14)

To mitigate the uncertainty in the predicted yield distribution arising from variables like molecular
configuration and conformation, we introduce the uncertainty loss proposed in (Kendall & Gal,
2017), expressed as follows:

Luct =
1

N

N∑
i=1

(
1

2σ(xi)2
∥ ŷi − yi ∥2 +

1

2
log σ(xi)

2

)
. (15)

To promote cooperation among modalities, we employ the InfoNCE loss (He et al., 2020) during
training to align the features captured from 2D graph (hg

i ) and fingerprints (hf
i) with temperature

parameter τ :

Linfo = − 1

2N

N∑
i=1

log
exp(hg

i · hf
i+/τ)∑N

j=1 exp(h
g
i · hf

j−/τ)
− 1

2N

N∑
i=1

log
exp(hf

i · h
g
i+/τ)∑N

j=1 exp(h
f
i · h

g
j−/τ)

.

To mitigate the issue of modal preference and enhance the predictive capacity of each modality
individually, we introduce the following loss function:

Lprefer =
1

|M| ·N
∑

m∈M

N∑
i=1

∥ ŷmi − yi ∥2 , (16)

where M denotes the set of all modalities employed and ŷmi signifies the yield predicted by single
modality m. The goal of Lprefer is to improve the ability of each modality m to predict results
independently. We provide more analysis on Lprefer in Appendix N.

The overall loss is a sum of its components, balanced by hyperparameters λuct, λinfo and λprefer:
L = Lmse + λuctLuct + λinfoLinfo + λpreferLprefer . (17)

For inference, for a sample xi, by utilizing the reparameterization trick, we predict the yield as
ŷi = µ(xi) + ϵ ∗ σ(xi) , where ϵ is sampled from a standard normal distribution.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets We utilized two classic yield prediction datasets: the Buchwald-Hartwig dataset (Ah-
neman et al., 2018) (3, 955 reactions) and Suzuki-Miyaura dataset (Perera et al., 2018) (5, 760 re-
actions). Both datasets include high-throughout experiments focused on cross-coupling reactions.
Additionally, we incorporated the Amide Coupling Reaction (ACR) dataset (Lab, 2024) , which con-
tains 41, 239 amide coupling reactions derived from Reaxys (Saebi et al., 2023). The ACR dataset
is more challenging than the other two high-throughput experimental (HTE) datasets, characterized
by its larger scale and greater diversity of reaction types.

Baselines We compared our method with both unimodal and multimodal yield prediction models.
One-hot (Chuang & Keiser, 2018), Yield-BERT (Schwaller et al., 2020), MPNN (Kwon et al.,
2022) and DRFP (Probst et al., 2022) predict the yield of a reaction using features extracted from a
single modality. YieldGNN (Saebi et al., 2023), ReaMVP (Shi et al., 2024) and UAM (Chen et al.,
2024) are recent yield prediction models that extract and fuse information from multiple modalities.

4.2 QUANTITATIVE EVALUATION OF PERFORMANCE

We evaluate our model against two categories of baselines: unimodal (One-hot, Yield-BERT,
MPNN, DRFP) and multimodal (YieldGNN, ReaMVP, UAM). Table 1 summarizes the performance

7
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Table 1: Results on Buchwald-Hartwig, Suzuki-Miyaura and Amide coupling reaction datasets.

MAE (↓) RMSE (↓) R2 (↑)
BH SM ACR BH SM ACR BH SM ACR

One-hot 6.08(0.08) 8.55(0.08) - 9.02(0.16) 12.27(0.15) - 0.890(0.005) 0.809(0.023) -
Yield-BERT 3.09(0.12) 6.60(0.27) 16.52(0.20) 4.80(0.26) 10.52(0.48) 21.12(0.13) 0.969(0.004) 0.859(0.012) 0.172(0.016)
MPNN 2.92(0.06) 6.12(0.22) 16.31(0.22) 4.43(0.09) 9.47(0.46) 20.86(0.27) 0.974(0.001) 0.886(0.010) 0.188(0.021)
DRFP (MLP) 3.69(0.05) 7.20(0.08) 16.15(0.17) 5.51(0.20) 10.78(0.18) 20.38(0.14) 0.960(0.003) 0.851(0.005) 0.207(0.010)
YieldGNN 3.89(0.14) 6.96(0.25) 15.27(0.18) 6.01(0.21) 11.00(0.37) 19.82(0.08) 0.953(0.003) 0.845(0.011) 0.216(0.013)
ReaMVP 3.31(0.8) 6.94(0.23) 16.02(0.16) 5.09(0.20) 10.53(0.33) 20.51(0.10) 0.966(0.004) 0.856(0.011) 0.201(0.019)
UAM 2.89(0.06) 6.04(0.18) 14.76(0.15) 4.36(0.10) 9.23(0.40) 19.33(0.10) 0.976(0.001) 0.888(0.009) 0.262(0.009)
Harmony 2.73(0.09) 5.83(0.10) 14.72(0.17) 4.09(0.13) 9.22(0.31) 18.88(0.10) 0.978(0.001) 0.893(0.007) 0.320(0.008)

Figure 4: Evolution of normalized contributions from the three modalities over training epochs on
the Buchwald-Hartwig, Suzuki-Miyaura and Amide coupling reaction datasets. The plots compare
models trained with and without the Lprefer loss.

across three datasets. Our model consistently outperforms all baselines across all metrics, demon-
strating the effectiveness of our modality fusion strategy.

The analysis of our results highlights the advantages of multimodal fusion. While multimodal mod-
els generally outperform unimodal ones, as observed on the homogeneous HTE datasets, the true
challenge lies in effectively integrating modalities for complex and diverse reactions. The perfor-
mance on the ACR dataset exposes a key weakness in existing multimodal approaches: their fusion
process is often imbalanced, preventing them from fully leveraging the available information. Our
model overcomes this by enforcing balanced contributions from each modality, a design crucial for
its superior performance. This leads to a new state-of-the-art, with statistical tests (Appendix L)
confirming the significant improvements over strong baselines like UAM.

To comprehensively evaluate its generalization capability, we validated Harmony across a range of
demanding benchmarks, where it not only achieved SOTA performance on large-scale datasets like
USPTO but also surpassed all deep learning models on the noisy BH(ELN) dataset and demonstrated
consistent superiority in highly challenging out-of-sample (OOS) tests, as detailed in Appendix O.

4.3 QUALITATIVE ANALYSIS OF MODALITY IMBALANCE

A critical challenge in multimodal learning for reaction prediction is modality preference, where
models over-rely on a single information source, especially for complex tasks. Our work is the first
to identify and address this phenomenon in the context of yield prediction. As illustrated in Fig-
ure 4, this issue is particularly pronounced on the diverse ACR dataset, where the model exhibits a
strong bias towards the fingerprint modality, neglecting other complementary sources. In contrast,
contributions on simpler HTE datasets (BH and SM) are inherently balanced. Our proposed prefer-
ence loss, Lprefer directly rectifies this imbalance. It steers the highly skewed contributions towards
a uniform distribution, validating Harmony’s ability to enforce a balanced and effective fusion of all
modalities, even for the most challenging reactions.

4.4 THE EFFECTIVENESS OF THE HIERARCHICAL ARCHITECTURE AND LPREFER

Harmony attains state-of-the-art (SOTA) performance by virtue of its hierarchical fusion framework,
which adeptly captures cross-modal interactions at various levels, and the modal contribution bal-
ancing objective Lprefer, which mitigates over-dependence on any single modality.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation Results on Buchwald-Hartwig, Suzuki-Miyaura and ACR datasets.

MAE (↓) RMSE (↓) R2 (↑)
BH SM ACR BH SM ACR BH SM ACR

w/o Lprefer - - 14.77 - - 19.45 - - 0.278(−13.1%)
w/o Linfo 2.97 6.24 15.22 4.65 9.89 19.47 0.971(−0.7%) 0.875(−20.2%) 0.276(−15.9%)
w/o molecular-level fusion 2.93 5.99 15.09 4.47 9.53 19.06 0.974(−0.4%) 0.884(−10.1%) 0.306(−4.4%)
w/o KAN 3.13 6.34 14.76 5.08 10.03 18.91 0.966(−1.2%) 0.871(−26.6%) 0.317(−0.9%)
w/o Mamba 3.14 6.13 14.98 4.99 9.59 19.06 0.967(−1.1%) 0.882(−12.3%) 0.306(−4.4%)
w/o Seq 2.89 6.06 14.79 4.61, 9.53 19.02 0.972(−0.6%) 0.884(−10.1%) 0.310(−3.1%)
w/o Graph 2.91 6.20 15.38 4.55 9.81 19.47 0.973(−0.5%) 0.877(−17.9%) 0.276(−15.9%)
w/o ECFPs 5.13 7.12 16.75 7.48 10.59 20.82 0.926(−5.3%) 0.856(−41.4%) 0.173(−45.9%)
Harmony 2.73 5.83 14.72 4.09 9.22 18.88 0.978 0.893 0.320

Table 2: Experiments on improving UAM with Lprefer
and hierarchical mechanism.

Datasets Amide Coupling Reaction(ACR)
Metrics MAE(↓) RMSE(↓) R2(↑) trainable parameters(↓)
UAM 14.76 19.33 0.262 37,700,166
A hierarchical UAM 14.66 19.31 0.288 38,297,511
UAM with Lprefer 14.69 19.47 0.277 37,700,166
Harmony 14.72 18.88 0.320 12,591,530

We conduct ablation studies to vali-
date Harmony’s core components. First,
retrofitting the UAM baseline with our hi-
erarchical framework boosted performance
by a substantial 10% at a negligible cost of
1.6% additional parameters (Table 2). Sec-
ond, applying our parameter-free balancing
loss to UAM independently yielded a rela-
tive improvement of approximately 6% in R2 , demonstrating its effectiveness as a model-agnostic
component. Finally, the complete Harmony model maintains a smaller parameter footprint than the
baseline by freezing its SMILES encoder, which enhances both training speed and stability.

4.5 RATIONALE FOR THE HIERARCHICAL FUSION STRATEGY

Table 3: Ablation study on the early-stage fusion
strategy on the ACR dataset.

Fused Modality MAE(↓) RMSE(↓) R2(↑)
SMILES+Fingerprints 15.35(0.20) 19.62(0.15) 0.265(0.009)
2D graph+Fingerprints 14.97(0.20) 19.08(0.11) 0.293(0.010)
Harmony(SMILES+2D graph) 14.72(0.17) 18.88(0.10) 0.320(0.008)

Our analysis, illustrated in Figure 3, reveals that
the specific hierarchy of our fusion strategy is
critical. For instance, fusing fingerprints with
either 2D graphs or SMILES prematurely intro-
duces high-level abstractions that can obscure
essential, fine-grained structural details or lack
complementary information. The optimal ap-
proach, therefore, is to first fuse SMILES and 2D graphs. This initial step integrates sequential and
topological information to build a comprehensive molecular representation, which then provides a
solid foundation for the final fusion with abstract reaction features from the fingerprints.

4.6 ABLATION STUDIES

We conducted ablation studies on the BH, SM, and ACR datasets (Table 4). Our proposed losses are
indispensable: removing either Lprefer or Linfo consistently degrades performance, confirming their
necessity for mitigating modality bias and enabling effective fusion. The architectural advantages
are equally clear: eliminating the hierarchical design and directly fusing all modalities causes a
significant performance drop, while replacing the KAN head with an MLP or the Mamba encoder
with a Transformer also results in notable declines. These findings validate the effectiveness of KAN
for non-linear mapping and highlight Mamba’s intrinsic benefits in processing fingerprint data.
In modality ablation, omitting any single modality causes a substantial performance decline, indicat-
ing that Harmony integrates the information of each modality comprehensively for yield prediction.
Moreover, the magnitude of decline aligns with the learned modality contributions (Figure 4), fin-
gerprints being the most impactful, which validates our modality evaluation approach.

5 CONCLUSION

In this work, we present Harmony, an efficient hierarchical multimodal fusion framework for re-
action yield prediction. Harmony not only achieves state-of-the-art performance on benchmark
datasets but also demonstrates strong generalization across diverse reaction types. Its effective-
ness stems from the synergy of hierarchical fusion, which prevents destructive interference between
fine-grained molecular features and high-level reaction representations. Equipped with a plug-and-
play contribution evaluation module and a preference-balancing optimization objective, Harmony
effectively mitigates modality collapse and enhances the robustness of yield predictions. Beyond
chemistry, the core design principles of Harmony, hierarchical fusion and preference balancing, are
broadly applicable to multimodal regression tasks in materials science and biology, making it valu-
able to both the chemistry and machine learning communities.
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REPRODUCIBILITY STATEMENT

To ensure result reproducibility, key resources and details are referenced as follows:

Code The Harmony framework (hierarchical fusion, modality assessment, prefer-balancing objec-
tive) is available at: https://anonymous.4open.science/r/F6BB, covering all modules
in Section 3. We provide complete code, training and evaluation scripts, partial datasets (the ACR
dataset is not included, as access to it requires a Reaxys database subscription), as well as model
weights and hyperparameter configuration files, ensuring the reproducibility of the experimental
results.

Datasets Benchmark datasets (Buchwald-Hartwig, Suzuki-Miyaura, Amide Coupling Reaction)
are described in Section 4.1 and Appendix F.3; the Amide dataset is linked at https://github.
com/isayevlab/amide_reaction_data. Data partitioning (Appendix F.2) and modality
construction (Appendix F.5) are detailed.

Experimental Settings Implementation details (optimizer, epochs, batch size, learning rate) in
Appendix F.1; hyperparameters (e.g., λuct, λprefer) and tuning in Appendix F.8; metrics (MAE,
RMSE, R2) in Appendix E; statistical tests in Appendix L.

Methodological Transparency Smoothing factor ξ derivation (Appendix D), modality assess-
ment pseudocode (Appendix S), fingerprint design (Appendix F.6); ablation studies (Section 4.6)
and sensitivity analysis (Appendix F.9) validate robustness, with results averaged over 10 shuffles
(Appendix F.1).
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the research process, we mainly used large language models (LLMs) in two aspects. First,
during the manuscript writing phase, we utilized LLMs to polish the language of the article, and we
conducted strict verification on the content they generated. Second, in Appendix H, for the experi-
ment that introduces the additional modality of large language model embedding into Harmony, we
used the open-source Qwen3-Embedding-0.6B model.

B EXTENDED DISCUSSION OF CONTRIBUTIONS

This section provides a more detailed exposition of Harmony’s primary contributions, elucidating
the methodological innovations and their synergistic interplay. Our work introduces a principled and
empirically validated framework that advances reaction yield prediction by addressing foundational
challenges in multi-scale chemical modeling.

B.1 A CHEMISTRY-AWARE HIERARCHICAL FUSION ARCHITECTURE

A core contribution of Harmony is its departure from the prevailing “flat fusion” paradigm. We in-
troduce a tiered fusion architecture designed to mirror the natural hierarchy of chemical information.
This principled design is guided by the physicochemical concept that molecular-level structural and
topological information must first be consolidated into a coherent representation of the chemical
entities involved (i.e., reactants and products) before being integrated with abstract, reaction-level
mechanistic patterns.

Specifically, our architecture performs an early fusion of SMILES (sequential) and 2D graph (topo-
logical) representations to form robust, unified molecular embeddings. Only after this consolida-
tion does the model proceed to a late fusion stage, integrating these molecular embeddings with
high-level reaction fingerprints. This staged, granularity-aware information flow is not merely an
engineering choice; it is a crucial mechanism to prevent the information dilution and feature inter-
ference endemic to flat architectures. As demonstrated in our ablation studies (Table 4), this specific,
chemistry-aware implementation provides a significant performance advantage over simply adapt-
ing a baseline model to a hierarchical structure, highlighting the non-triviality and importance of our
design.

B.2 A PRINCIPLED FRAMEWORK FOR DIAGNOSING AND BALANCING MODALITY
CONTRIBUTIONS

To address the critical issue of representational overshadowing, we developed a novel methodolog-
ical framework that moves from quantitative diagnosis to targeted optimization. To our knowledge,
this represents the first application of such a systematic, data-driven approach to fusion control in
the context of multimodal AI for chemistry.

1. Quantitative Diagnosis via Counterfactual Assessment: We introduce a quantitative frame-
work based on counterfactual reasoning to measure the net contribution of each modality within
the end-to-end model. This moves beyond the limitations of conventional, post-hoc ablation stud-
ies by providing a precise, in-situ assessment of how each representation dynamically influences
the final prediction.

2. Targeted Optimization via a Preference-Balancing Objective: The insights gained from our
contribution assessment directly inform the design of a differentiable, plug-and-play preference-
balancing objective. This objective actively counteracts modality dominance by encouraging
each representation to maintain its independent predictive utility. The synergy between our diag-
nostic tool and this targeted optimization creates a principled, verifiable mechanism for enforcing
a balanced and robust fusion process.

B.3 REACTION FINGERPRINTS AS DYNAMIC CHANGE ENCODERS

We advance reaction-level feature engineering with a novel fingerprint design that more directly
captures the dynamics of a chemical transformation. Unlike classic methods such as the Differential
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Reaction Fingerprint (DRFP), which rely on a symmetric difference (a binary presence/absence
metric), our approach computes bit-wise differences of summed reactant and product fingerprints.
This method preserves not only the location of structural changes but also their magnitude and
direction (e.g., the formation of multiple instances of a substructure).

This representation provides a richer, more mechanistically relevant signal that reflects the under-
lying events of bond-breaking and forming. Our gradient analyses confirm that the model learns to
attend specifically to these high-signal change-bits (Figure 8), and comparative experiments demon-
strate the superior effectiveness of this approach over DRFP (Table 8).

B.4 SYNTHESIS: AN INTEGRATED FRAMEWORK FOR ROBUST GENERALIZATION

The ultimate strength of Harmony lies in the synergistic integration of these three innovations. The
hierarchy-aware architecture provides the necessary structural foundation for multi-scale modeling.
The causal assessment and balancing framework then ensures that information flows through this
structure in a robust and equitable manner. Finally, the dynamic change-aware fingerprints supply
the model with a high-fidelity signal of the reaction’s core transformation.

By combining these elements, Harmony systematically addresses the challenge of representational
overshadowing. This integrated design is directly responsible for its robust generalization capa-
bilities, particularly on molecules absent from the training set, and its state-of-the-art performance
across three widely-used benchmarks. This work thus represents a significant step towards develop-
ing more reliable and practical AI tools for chemical synthesis planning.

C NOTATION TABLES

To improve the readability of this paper, we provide notations tables for the notations defined in this
paper.

C.1 NOTATION TABLE FOR SECTION 3.1

Table 5 shows all the symbols we have used in Section 3.1. In this section, the relationship among
the unordered set of all modalities M, an individual modality m, and molecular modalities s, g, f is
as follows: M = {m|m ∈ {s, g, f}}.

C.2 NOTATION TABLE FOR SECTION 3.2

Table 6 shows the symbols that we have newly defined in Section 3.2. Some of these symbols are
also presented in Table 5 and will not be repeated here. To simplify the representation in Section
3.2, we removed the subscript i; for example, xi was simplified to x.

D DERIVATION OF THE SMOOTHING FACTOR ξ

We define ŷC as the yield predicted using the subset of modalities C, and y as the actual yield.
According to Equation equation 10, the subset of modalities C contributes positively to the outcome
if and only if |ŷC−y| ≤ ε, where ε is a threshold defined by consideration, generally satisfies ε > 0.
Therefore, we obtain:

0 ≤∥ ŷC − y ∥2≤ ε2, ε > 0.

Subsequently, we derive the following:

0 ≤ ∥ ŷC − y ∥2

ε2
≤ 1, ε > 0. (18)

We need to find a continuous function such that the modal contribution increases as the term ∥ŷC−y∥2

ε2

in Equation equation 18 approaches 0, and decreases as this term approaches 1. We discovered that
the − log(·) function satisfies this property within the domain of 0 to 1, hence we define:
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Table 5: The table of notations used in Section 3.1.

Notation Description

N The number of all reaction samples.

xi The i-th sample among all reaction samples where i ∈ {1, . . . , N}.

yi The ground-truth reaction yield of i-th sample.

M The unordered set of all modalities.

m A modality in M.

s, g, f Molecular modalities, representing SMILES, 2D graphs and fingerprints, respectively.

Ti The types of molecules involved in the i-th reaction sample.

xs
i ,x

f
i Data of SMILES and fingerprints modalities for the i-th sample.

xg
i,j Data of the 2D graph modality for the i-th sample’s j-th molecule, where j ∈ {1, . . . , Ti}.

hg
i,j Encoded features of the 2D graph modality for the i-th sample’s j-th molecule.

h̃g
i,j Encoded features of the 2D graph modality integrated with global reaction information.

hs
i ,h

g
i ,h

f
i Features extracted from each molecular modality.

hm
i Features extracted from modality m.

ŷi The model prediction yield obtained through reparameterization trick.

ϵ A random value sampled from a standard normal distribution.

µ(xi) The mean of the yield distribution for the i-th reaction.

σ(xi) Standard deviation of the yield distribution for the i-th reaction.

Encs(·),Encg(·),Encf(·) Encoders for each molecular modality data.

LBRD(·) Corresponding LBRD module.

E(·) Embedding layer for processing fingerprints data.

KAN(·) Corresponding KAN layer.

F(·) Corresponding late fusion module.

ξ = − log
∥ ŷC − y ∥2

ε2

= 2 · log ε

|ŷC − y|
, ε > 0.

(19)

The definition above encounters two problems: the first is that the range of ξ is from 0 to +∞.
To avoid excessive contributions from certain samples, which could disrupt the entire evaluation
process, we aim to limit the value range between 0 and 1. The second problem is that the numerator
|ŷC − y| may equal 0, to prevent numerical underflow, we define a very small number δ, which in
our implementation is valued at 10−5. Therefore, our final definition of the smoothing factor ξ is:

ξ = min

(
1, 2 · log ε

|ŷC − y|+ δ

)
, ε > 0. (20)
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Equation 20 can be represented as a piecewise function:

ξ =


1 0 ≤ |ŷC − y| ≤ ε√

e
,

2 · log ε

|ŷC − y|+ δ

ε√
e
< |ŷC − y| ≤ ε .

Table 6: The table of notations used in Section 3.2.

Notation Description

n Number of modalities in M
C Modality subset which contains modalities that will be evaluated. We have C ⊂ M.

x A sample among all reaction samples.

xm Data of modality m of a sample x.

y The groud-truth yield of reaction sample x.

ŷ The predicted yield of the model using all modalities in M.

ŷC The predicted yield of the model using a modality subset C.

ε Threshold for positive contributions from the evaluated modalities.

ξ Smoothing factor for modality contributions.

δ A small constant to prevent numerical overflow.

T (· ; · ) Mapping function that returns different results based on whether the modality m is included in C.

Φm(·) Feature extractor for the data of modality m.

B(·) The contribution of the modality set to the model’s prediction results.

β(·) The contribution of a single modality to the model’s prediction results.

This indicates that our smoothing factor ξ also has a threshold ε√
e
. It acts like a “passing line”;

contributions exceeding this line are directly considered to have a coefficient of 1. The existence of
the passing line is similar to the idea of reparameterization, where we reserve a certain margin of
error for the prediction results.

E EVALUATION METRICS

We evaluate Harmony using the most commonly used evaluation metrics in regression tasks, in-
cluding mean absolute error (MAE), root mean squared error (RMSE), and R-Square (R2). First,
MAE directly calculates the mean of the absolute differences between the predicted results and the
true labels for all samples. Its numerical range is from 0 to +∞, and the closer the value is to 0,
the smaller the gap between the model’s predictions and the actual values, indicating better model
performance. We adopt the same notation as in the main context to formally define our evaluation
metrics. If we have N samples, with the true label of each sample being yi and the predicted result
denoted as ŷi, then MAE can be defined as:

MAE =
1

N

N∑
i=1

|ŷi − yi|.

RMSE calculates the square root of the average of the squared differences between the predicted
results and the true labels for all samples. Its numerical range is also from 0 to +∞, and the closer
the value is to 0, the smaller the gap between the model’s predictions and the actual values, indicating
better model performance. RMSE can be defined as:

RMSE =

√√√√ 1

N

N∑
i=1

∥ ŷi − yi ∥2
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R2 is a coefficient of determination, with its value ranging from a maximum of 1 to a minimum of
0. The closer the value is to 1, the better the independent variables explain the dependent variable
in regression analysis, thereby indicating a better model. The closer the value is to 0, the worse the
model. We define the average of the true values of the samples as y, thus R2 can be calculated as
follows:

R2 = 1−
∑N

i=1 ∥ ŷi − yi ∥2∑N
i=1 ∥ yi − yi ∥2

F EXPERIMENTAL DETAILS

F.1 IMPLEMENTATION DETAILS

The network is optimized using a AdamW optimizer (Loshchilov, 2017) and is trained for 300
epochs with a batch size of 128. We adopt an initial learning rate of 5 × 10−3 and use a cosine
learning rate delay scheduler (Loshchilov & Hutter, 2016). The threshold for modality contribution
is set to ε = 0.1. We adjust hyper-parameters of the loss function to λuct = λinfo = 0.1, λprefer = 0.2
for the ACR dataset and to λuct = λinfo = 0.1, λprefer = 0 for the other two datasets. We conduct a
detailed analysis of the selection values of these hyper-parameters and their robustness in Appendix
F.8. The model was built using the PyTorch framework and trained on an NVIDIA RTX A6000
GPU. It utilized mean absolute error (MAE), root mean squared error (RMSE), and R-Square (R2)
as metrics. To ensure fairness, the results were averaged over 10 random shuffles, along with their
standard deviations.

F.2 DATASET DETAILS

Table 7 presents basic information on the three benchmark reaction yield prediction datasets we
have used, including the name, type, and number of samples in each dataset. Among these, the
“High-throughput experiments dataset” refers to datasets where yield data are obtained through
high-throughput experiments. This type of dataset contains fewer chemical reactions, and the re-
actions are similar in type and conditions, providing a good premise for neural network models to
predict yields.

On the other hand, the “Large literature dataset” refers to samples from large databases, such as
Reaxys. This type of dataset contains a large variety of chemical reactions with diverse reaction
types and conditions, making it challenging for yield prediction models to achieve good results.
Our next step is to try incorporating reaction conditions as additional components into the yield
prediction model. This approach will help the model to integrate more information for more accurate
yield predictions

Table 7: Basic descriptions of three reaction datasets.

Dataset Type Reaction Number
Buchwald-Hartwig reaction High-throughput experiments dataset. 3, 955

Suzuki-Miyaura reaction High-throughput experiments dataset. 5, 760
Amide coupling reaction Large literature dataset. 41, 239

Furthermore, we also analyzed the distribution of the yields in various datasets, as shown in Figure 5.
Each dataset has its unique yield distribution characteristics, but overall, the yield data are relatively
uniform. For the BH dataset, over 40% of the yield values fall between 0% and 20%. For the SM
dataset, approximately 35% of the yield values are in the range of 10% to 30%. For the ACR dataset,
more than half of the samples have yield values between 60% and 90%.
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Figure 5: Yield distribution of three reaction datasets.

F.3 DATASET PARTITIONING

To maintain a fair comparison with the baseline methods, we followed their partitioning approach to
divide the data. For the BH and SM datasets, we split the datasets into training and testing sets with
a ratio of 7 : 3. For the ACR dataset, we divided it into training, validation, and testing sets with a
ratio of 6 : 2 : 2. Our ten-fold cross-validation experiments independently partitioned the data with
each run. The ablation studies were conducted on pre-partitioned datasets for training and testing.

F.4 RESOURCE CONSUMPTION FOR MODEL TRAINING

We used a single NVIDIA RTX A6000 48G GPU for model training. Our model was trained for
300 epochs on the train set of each dataset. It took approximately 4 hours to train on the BH dataset,
about 8 hours on the SM dataset, and around 26 hours on the ACR dataset.

F.5 CONSTRUCTION EACH MODALITY DATA

For data in the SMILES modality, both reactants and products involved in the reaction are
represented as sequences of atomic strings. For example, the SMILES representation of
the 2-methyl-N-(4-methylcyclohexyl)-1H-indole-3-carboxamide molecule can be expressed as
“CC1CCC(CC1)NC(=O)C1=C(C)NC2=C1C=CC=C2”. For chemical reactions in SMILES, we
concatenate the SMILES of the reactants and products using the “.” symbol. Finally, they are con-
nected by the “>>” symbol.

For data in the 2D graph modality, we represent each reactant and product involved in the reaction as
a molecular graph. For example, in the reaction to synthesize the 2-methyl-N-(4-methylcyclohexyl)-
1H-indole-3-carboxamide molecule, the three molecules involved in the reaction are represented
as shown in Figure 6. For each molecule, the features of the nodes in the molecule form a two-
dimensional matrix, where the size of the first dimension is the number of atoms other than hydrogen
atoms in the molecule, and the size of the second dimension is the feature dimension of each atom.
The features of the bonds (edges) in the molecule are also represented as a two-dimensional matrix,
where the size of the first dimension is the number of bonds other than those involving hydrogen
atoms, and the second dimension is the feature dimension of the bonds. In addition, there is a sparse
adjacency matrix used to represent which atoms are connected by these bonds.

Figure 6: 2D graphs of the chemical reaction to synthesize the 2-methyl-N-(4-methylcyclohexyl)-
1H-indole-3-carboxamide molecule.
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Figure 7: The calculation process of the chemical reaction and its fingerprint differences. The
fingerprints of the reactants and products are represented by Rf and P f respectively. Some positions
for calculating the sum of the fingerprints of the reactants are marked with a red frame. Some
positions of the fingerprint differences between the reactants and products are marked with a blue
frame.

For data in the fingerprints modality, in Harmony, it is a sequence of 1024 bits where each bit
indicates whether the molecule has a certain structure or property. Since the number of reactants
and products in each reaction is different, we cannot simply concatenate them. Therefore, we add
up the fingerprints of the reactants and products separately, and then concatenate them along the
feature dimension. This results in a sequence of 1024 pairs, where each pair is a numerical token
representing the properties of the reactants and products, respectively. This design facilitates the use
of embedding and natural language processing techniques for sequence feature extraction in later
stages.

F.6 EXTRACTING REACTION-LEVEL FEATURES IN MOLECULAR FINGERPRINTS

We would like to begin by introducing the differential reaction fingerprint (DRFP)(Probst et al.,
2022), a well-established method that encodes the global information of chemical reactions. Fol-
lowing this, we will present our fingerprint design methodology. Finally, comparative experiments
demonstrate that our fingerprint design outperforms DRFP in capturing the global information of
chemical reactions.

In the DRFP algorithm, circular substructures are extracted from the molecules formed by com-
bining reactants and reagents in the reaction SMILES, resulting in a set of molecular n-grams R.
At the same time, a set of molecular n-grams P is extracted from the product molecules. Through
calculating the symmetric difference of these two sets S = R∆P, the structural difference informa-
tion between the reactants and the products can be obtained. This difference information is the key
data used by DRFP for reaction classification and yield prediction. Subsequently, the symmetric
difference set will be hashed and folded to be transformed into a fixed-length binary vector.

In Harmony, we also generate corresponding fingerprint data based on the SMILES of reactants and
products. Suppose the reactant fingerprint set of chemical reaction is R = {xf

i,1, . . .x
f
i,m}, and the

product fingerprint set is P = {xf
i,m+1}, where each molecular fingerprint data has a fixed length

of 1024. We sum the fingerprints in the reactant fingerprint set R bit by bit to obtain a 1024-length
fingerprint Rf , which embodies the structural information of the reactants. The product fingerprint
set is processed in the same way to get another 1024-length fingerprint Pf . Instead of calculating
the symmetric difference like DRFP, we propose to directly let the model learn the change amount
at the corresponding position. For example, if the i-th bit of Rf is a and the i-th bit of Pf is b, then
the fingerprint change amount ∆ = b− a. In Figure 7, the positions of some fingerprint changes are
marked with blue frames.

Similar to DRFP, our design enables the model to capture the structural difference information be-
tween reactants and products based on this fingerprint difference, and thus obtain the global infor-
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Figure 8: Fingerprint changes and gradient significance maps. The fingerprint of length 1024 is split
into a 32x32 matrix. Black triangles indicate the positions of changes between the fingerprints of
reactants and products. The closer the background color is to red, the more significant the gradient,
meaning the model pays more attention to these positions. The Pearson correlation coefficient indi-
cates a significant correlation between the two.
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Table 8: The comparison between DRFP and our fingerprint difference method.

BH SM ACR
trainable parameters(↓) MAE (↓) RMSE (↓) R2 (↑) MAE (↓) RMSE (↓) R2 (↑) MAE (↓) RMSE (↓) R2 (↑)

DRFP(mlp) 561, 601 3.67 5.50 0.960 7.21 10.88 0.848 16.11 20.32 0.211
Ours 559, 745 3.50 5.33 0.962 7.10 10.68 0.854 14.76 19.53 0.272

mation of the chemical reaction. Figure 8 show that the model’s decision-making during the training
process significantly depends on this fingerprint change amount.

In contrast to DRFP, our design does not include hashing and folding operations. This allows our
fingerprints to retain more comprehensive information about chemical reactions. For example, it
avoids the information loss caused by hash collisions. We compared the performance of our fin-
gerprints with that of DRFP on three benchmark datasets(Table 8). Considering differences in data
dimensions, the number of model parameters we used is not exactly the same. As demonstrated by
the experimental results, our fingerprint design can more effectively represent the global information
of chemical reactions compared with DRFP and achieves better results.

Why do fingerprints impact model predictions more than other representations? The pro-
nounced influence of the reaction fingerprint modality is attributable to a fundamental dichotomy in
both its encoded information and its strategic placement within our hierarchical architecture. First,
a distinction exists in the nature of the encoded information. SMILES and 2D graphs function as
static, molecular-level descriptors, representing the discrete states of reactants and products. From
these, the model must implicitly infer the transformation process. Conversely, the differential finger-
print operates at a higher level of abstraction. It explicitly encodes the net structural transformation,
providing a holistic, dynamic descriptor of the reaction itself—a direct and powerful signal for the
predictive task.

Second, our architecture is deliberately designed to mirror this informational hierarchy. The model
first consolidates the complementary molecular-level representations (SMILES and 2D graph) to
construct a robust substrate descriptor. Only then is this integrated with the overarching, reaction-
level context provided by the fingerprint. This design choice is empirically validated, as alternative
strategies involving the premature fusion of the high-level fingerprint with either low-level modality
were found to be suboptimal. Such early fusions lead to either an irrecoverable deficit of topological
information (when fusing with SMILES) or inefficient feature blending and semantic overshadowing
(when fusing with the 2D graph), ultimately confirming the efficacy of our hierarchical approach
(Table 3).

F.7 HYPERPARAMETER SETTINGS

We give the description of the hyperparameters in Table 9 and their values for each benchmark
dataset in Table 10.

Table 9: Descriptions of the hyperparameters.

Hyperparameter Description
λprefer The weight of Lprefer.

ghidden size Size of hidden features for the 2D graph encoder (i.e., GNN).
gnum step mp The number of message passing iterations between GNN nodes.

gnum step set2set The number of rounds for GNN to aggregate node information.
fdropout ratio Dropout ratio for fingerprints encoder.
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Figure 9: Parameter tuning process of critical parameters λuct, λinfo, and λprefer conducted on the
ACR dataset.

Table 10: Hyperparameters for Harmony in three benchmark datasets.

Hyperparameter BH SM ACR
λprefer 0 0 0.2
ghidden size 64 64 32
gnum step mp 2 2 1
gnum step set2set 3 3 1
fdropout ratio 0.25 0.1 0.25

F.8 HYPERPARAMETER TUNING PROCESS

We provided candidate hyperparameters (e.g. {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50} for λprefer)
and determined the optimal via experiments, with all others similarly selected using the same
method. We present the tuning process for three key hyperparameters to select them and assess
result sensitivity to these in Figure 9.

F.9 SENSITIVITY ANALYSIS OF THE MODALITY CONTRIBUTION THRESHOLD ε

To analyze the robustness, we selected ε values from the set {0.05, 0.08, 0.1, 0.15, 0.2, 0.3, 0.5}, as
illustrated in Figure 10. These values are non-uniform because the modality evaluation method is
more sensitive to smaller ε, requiring denser sampling for changes, while larger ε stabilizes (Eq.
10). The results show that a too-small ε leads to insufficient samples, making it difficult to reflect
differences in modality contributions, while a too-large ε increases noise, affecting quantification
accuracy. Regardless of the chosen threshold, our modality evaluation objective effectively balances
contributions across modalities.

Does introducing hyperparameter ε require extra tuning? It is imperative to clarify the role
and nature of the parameter ε introduced within our modality contribution assessment framework.
This parameter serves a specific, post-hoc analytical purpose and is explicitly decoupled from the
model’s training, optimization, and inference phases. Consequently, ε does not constitute a tunable
hyperparameter that imposes an additional burden on model development or influences the final pre-
dictive performance. Algorithmically, as defined in Equation 10, ε establishes a tolerance threshold
that delineates whether a modality’s individual prediction is sufficiently accurate to be classified as
a “valid contribution.” The selection of a specific value for ε is supported by a comprehensive sensi-
tivity analysis, detailed in Appendix F.9 and visualized in Figure 10. This analysis demonstrates the
robustness of our qualitative conclusions to the precise value of ε. While variations in ε naturally
affect the absolute magnitude and smoothness of the contribution metrics, the core scientific insights
remain invariant across a reasonable range (e.g., 0.1 to 0.3). Specifically, two central findings are
consistently observed irrespective of the chosen ε:

1. The pronounced predictive dominance of the reaction fingerprint modality on chemically hetero-
geneous datasets such as ACR.
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Figure 10: Sensitivity testing of the modality contribution evaluation threshold ε. Contributions are
normalized to the range of 0 to 1 using the softmax function.
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2. The efficacy of our proposed loss function Lprefer in fostering a balanced utilization of all modal-
ities, as evidenced in Figure 10.

Therefore, ε functions solely as a robust probe for interpreting inter-modality dynamics, not as a
component of the predictive model itself.

G TRAINING EFFICIENCY ANALYSIS

We further analyze the training efficiency of Harmony relative to competitive baselines and within
ablation studies, using the challenging ACR dataset as a benchmark. For multimodal models with
comparable predictive accuracy, Harmony achieves a favorable balance between performance and
efficiency: it is 3.4× faster than YieldGNN and 1.7× faster than UAM, while substantially outper-
forming ReaMVP, whose speed advantage stems from excessive simplification that compromises
predictive power. Quantitatively, Harmony reaches state-of-the-art accuracy (R2 = 0.320) with a
per-epoch training cost of ≈ 280s, compared to 954s for YieldGNN and 487s for UAM (Table 11).

Table 11: Comparison of Harmony with baseline models on the ACR dataset.

Method MAE ↓ RMSE ↓ R2 ↑ Time/Epoch (s) ↓
ReaMVP 16.02 20.51 0.201 ≈21
YieldGNN 15.27 19.82 0.216 ≈954
UAM 14.76 19.33 0.262 ≈487
Harmony 14.72 18.88 0.320 ≈280

Ablation studies provide further insight into the computational profile of each module (Table 12).
Removing Lprefer or Linfo components slightly reduces training time but significantly degrades ac-
curacy, underscoring their necessity. Substituting Mamba with a Transformer of similar size sub-
stantially increases runtime, highlighting Mamba’s efficiency for fingerprint encoding. Eliminating
the 2D graph modality yields the largest time reduction, since our current GNN implementation
processes graphs sequentially within a batch; however, this comes at the expense of major accuracy
loss, confirming the importance of structural topology. Taken together, these results demonstrate
that Harmony is not only accurate but also computationally efficient, with each architectural
choice justified by a favorable trade-off between cost and predictive gain.

Table 12: Ablation study on Harmony components.

Model Variant MAE ↓ RMSE ↓ R2 ↑ Time/Epoch (s) ↓
w/o Lprefer 14.77 19.45 0.278 ≈272
w/o Linfo 15.22 19.47 0.276 ≈269
w/o molecular-level fusion 15.09 19.06 0.306 ≈265
w/o KAN 14.76 18.91 0.317 ≈275
w/o Mamba 14.98 19.06 0.306 ≈332
w/o Seq 14.79 19.02 0.310 ≈198
w/o Graph 15.38 19.47 0.276 ≈108
w/o ECFPs 16.75 20.82 0.173 ≈232
Harmony (full) 14.72 18.88 0.320 ≈280

H EXPLORATORY EXPERIMENT ON INCORPORATING TEXT EMBEDDING AS
AN ADDITIONAL MODALITY

Motivated by the emerging paradigm of integrating scientific AI with large language models
(LLMs), which is reshaping computational chemistry, we explored the incorporation of textual de-
scriptions as a fourth modality into the Harmony framework. While traditional molecular repre-
sentations (e.g., SMILES, 2D graphs, fingerprints) effectively encode static structural information,
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the dynamic process of a chemical reaction—encompassing reagents, conditions, and mechanistic
context—is more naturally described in natural language. LLMs, trained on vast scientific corpora,
can capture such rich semantic knowledge. This experiment investigates whether text embeddings
can provide complementary, semantically-rich dynamic information to enhance reaction yield pre-
diction, aligning with the next-generation vision of multimodal chemical foundation models. We
extended Harmony by introducing text embeddings at the late-fusion stage: reaction SMILES se-
quences were converted into descriptive text via the PubChem API, which were then encoded into
1024-dimensional vectors using a frozen, lightweight Qwen3-Embedding-0.6B model. These text
embeddings were concatenated with features from the original modalities (SMILES, 2D graphs,
fingerprints) and fed into the KAN-based fusion module for prediction. Results on the challenging
ACR dataset are compared below:

Table 13: Incorporating Text Embedding as an Additional Modality.
Model MAE(↓) RMSE(↓) R²(↑) Trainable Parameters(↓) Time per Epoch(↓)
Harmony (Original) 14.72 18.88 0.320 12,591,530 ≈ 280s
Harmony + Text Embedding 14.66 18.85 0.332 13,640,106 ≈ 1187s

Results on the challenging ACR dataset demonstrate a nuanced trade-off (Table 13): while the incor-
poration of text embeddings led to a superior predictive performance, as reflected in the improved
metrics, it also incurred a substantial increase in computational cost, with the time per epoch rising
approximately fourfold. Our proposed Harmony framework, by contrast, achieves a more favorable
balance between performance and training efficiency. It delivers highly competitive results while
maintaining significantly lower computational demands, making it a more practical and scalable
solution for yield prediction tasks. A noteworthy finding emerged from our modality contribution
analysis: the text modality contributed nearly on par with molecular fingerprints. This suggests that
text embeddings provide a predictive signal of significant value, capturing complementary high-level
semantic context about the reaction process, which aligns with the observed performance gain.

In conclusion, this exploratory experiment validates the substantial promise of integrating linguistic
understanding via LLMs, as evidenced by the performance improvement with text embeddings.
It also highlights the critical challenge of computational efficiency in such large-scale multimodal
fusion. The original Harmony framework effectively addresses this challenge by offering a balanced
and efficient architecture without relying on heavy-text encoders. Crucially, this design also provides
inherent modality extensibility, allowing for the flexible integration of various data types. Future
work will focus on developing more parameter-efficient techniques to harness the power of textual
semantics while mitigating the computational overhead, striving towards both high-performance and
scalable chemical AI models.

I ANALYSIS OF MODALITY CONTRIBUTION HETEROGENEITY ACROSS
DATASETS

The observed heterogeneity in the relative contributions of input modalities across different datasets
is a deterministic outcome directly reflecting the intrinsic chemical diversity of each dataset(Figure
4). This variability is principally governed by the diagnostic power of the reaction fingerprint modal-
ity in relation to the complexity of the reaction space. A clear dichotomy emerges when comparing
datasets of varying chemical diversity:

In datasets characterized by high mechanistic homogeneity and a constrained distribution of reaction
templates (e.g., BH, SM), the core bond-forming and -breaking events are highly conserved across
entries. Consequently, the reaction fingerprint, which captures these net transformations, provides
information that is largely redundant. In this context, the model’s predictive performance becomes
more reliant on discerning subtle, static differences between substrates, such as steric and electronic
effects, which are more effectively encoded by the SMILES and 2D graph modalities. This leads to
a more equitable distribution of predictive importance across all three input streams.

Conversely, in chemically heterogeneous datasets encompassing a broad spectrum of reaction
classes (e.g., ACR, BH(ELN)), the primary predictive challenge shifts from fine-grained differenti-
ation to the initial, high-level identification of the reaction chemotype. Here, the reaction fingerprint
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modality becomes paramount. Its unique ability to abstract the essential dynamic information of
the structural transformation—a feature not explicitly present in the static molecular representa-
tions—provides a powerful, coarse-grained classification of the reaction. This dynamic information
serves as a crucial contextual anchor, which is then refined by the specific, static structural details
provided by the SMILES and 2D graph modalities. Therefore, a direct correlation is observed:
the predictive indispensability of the reaction fingerprint modality increases proportionally with the
mechanistic diversity of the dataset, underscoring its unique role in capturing the salient, dynamic
features of chemical transformations in complex scenarios.

J ELUCIDATION OF THE HIERARCHICAL FRAMEWORK IN HARMONY

We provide a detailed explication of the “hierarchical” concept integral to the Harmony model’s
architecture, as discussed in the main manuscript. The central tenet of our hierarchical design is
the principle of fusing chemical information at commensurate levels of granularity. This strategy is
deliberately employed to maximize the synergistic potential of complementary data modalities.

The hierarchical nature of the Harmony framework is manifested through two complementary and
interconnected dimensions: a tiered fusion architecture and a hierarchy of chemical information
granularity.

J.1 TIERED FUSION ARCHITECTURE

Contrary to a monolithic or “flat” fusion approach, our model implements a multi-stage, tiered fusion
process designed for controlled and progressive information integration. This structured approach
prevents the premature dilution of fine-grained features by higher-level abstractions. The fusion
process is organized as follows:

1. Tier 1: Foundational Feature Extraction. Each input modality—namely the SMILES string,
the 2D molecular graph, and the reaction fingerprint—undergoes an initial, independent feature
extraction process using its respective encoder. This stage generates modality-specific latent
representations that capture the unique characteristics of each data source.

2. Tier 2: Molecular-Level Fusion. The latent representations derived from the SMILES strings
and 2D molecular graphs are subjected to an early fusion mechanism. This critical step integrates
two distinct but semantically related views of the molecular structure, creating a unified and more
robust molecular-level descriptor.

3. Tier 3: Reaction-Level Integration. The consolidated molecular-level representation resulting
from Tier 2 is subsequently combined with the reaction-level representation (derived from the
chemical fingerprint modality) via a late-fusion strategy. This final stage situates the detailed
molecular information within the broader context of the chemical transformation.

J.2 HIERARCHY OF CHEMICAL INFORMATION GRANULARITY

The tiered fusion architecture is deliberately designed to mirror the inherent hierarchy of
abstraction present in chemical data. Our model explicitly distinguishes between two primary
levels of information granularity:

1. Molecular-Level Information: SMILES strings and 2D graphs provide explicit representations
of molecular structure, atomic connectivity, and local chemical environments. They operate at
the molecular level of abstraction, describing the static state and intrinsic properties of individual
chemical entities involved in a reaction.

2. Reaction-Level Information: In contrast, specialized chemical fingerprints (e.g., difference fin-
gerprints) encode holistic information about the chemical transformation itself. They represent
a higher level of abstraction—the reaction level—by capturing the net changes, such as bond
formation and cleavage, between reactants and products. This modality describes the dynamic
process of the reaction rather than the static properties of a single molecule.

The Harmony model’s architecture respects this informational hierarchy. It first integrates the com-
plementary molecular-level data streams in Tier 2 to establish a comprehensive understanding of the
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molecular components. Subsequently, in Tier 3, this consolidated molecular representation is fused
with the overarching reaction-level information. This sequence ensures that a robust characterization
of the molecular substrates is achieved before it is contextualized within the scope of the chemical
transformation, leading to a more effective and mechanistically aware predictive model.

J.3 RATIONALE FOR THE ADOPTED HIERARCHICAL FUSION STRATEGY

The rationale for the specific hierarchical fusion order implemented in our model—first integrating
molecular-level features (SMILES and 2D graphs) before incorporating the reaction-level finger-
print—is predicated on the principle of fusing information at commensurate levels of abstraction to
achieve maximal synergy. This architectural choice was validated through an empirical evaluation
of alternative fusion sequences (Table 3), which revealed their inherent limitations:

The optimal configuration involves the initial fusion of SMILES and 2D graph representations.
Both modalities operate at the molecular level, yet they provide complementary perspectives: the
SMILES string offers a sequential, canonical representation, while the 2D graph explicitly encodes
atomic connectivity and topology. Their early integration facilitates the construction of a holistic and
contextually enriched molecular descriptor (“1 + 1 > 2” synergy), establishing a robust foundation
for subsequent processing.

Conversely, alternative fusion sequences were found to be suboptimal. For instance, the direct fusion
of a 2D graph (fine-grained, low-level structural data) with a reaction fingerprint (abstract, high-
level transformation data) risks a phenomenon of semantic overshadowing. In such a scenario, the
high-level features from the fingerprint could prematurely dominate or dilute the nuanced structural
details of the graph, leading to an inefficient utilization of information.

Similarly, an initial fusion of SMILES and fingerprints is fundamentally flawed as it omits the indis-
pensable topological information uniquely provided by the 2D graph. This early omission creates
an irretrievable information deficit that cannot be fully rectified by a later introduction of the graph
modality, thereby constraining the model’s capacity to comprehend complex structural relationships.

Therefore, our hierarchical strategy—first consolidating complementary molecular-level informa-
tion before integrating the overarching reaction-level context—represents the most logically sound
and empirically validated architectural choice for effectively modeling chemical reactions.

K RATIONALE FOR ARCHITECTURAL CHOICES: MAMBA AND KAN

We elucidates the scientific and domain-specific rationale behind the selection of Mamba for fin-
gerprint encoding and Kolmogorov-Arnold Networks (KAN) for the final fusion module. These
choices were not merely driven by their novelty but by a careful consideration of how their intrinsic
mechanisms align with the fundamental properties of the chemical data they process.

K.1 MAMBA FOR REACTION FINGERPRINT ENCODING: CAPTURING SPARSE AND
SELECTIVE CHEMICAL TRANSFORMATIONS

The task of the fingerprint encoder is to interpret the difference between reactant and product finger-
prints. This difference vector, representing the net change in a reaction, has unique characteristics
that make traditional sequence models like Transformers or simple MLPs suboptimal.

Sparsity of Chemical Events A chemical reaction, even a complex one, typically involves
changes at a very small subset of atomic environments. When represented as a high-dimensional
fingerprint (e.g., 1024 bits), this translates to a highly sparse signal. Most bits in the reactant and
product fingerprints remain unchanged. The crucial information lies in the few “active” bits that flip
or change in value, signifying specific bond formations or breakages. An effective model must be
adept at identifying and focusing on these sparse, information-rich events while ignoring the vast
background of static information.

Selective Information Compression The Mamba architecture, built upon Selective State Space
Models (SSMs), is exceptionally well-suited for this task. Its core mechanism involves input-
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dependent selective gates that control how information flows into and out of its compressed latent
state. In the context of reaction fingerprints, this allows Mamba to:

1. Dynamically filter irrelevant information: When processing a sequence of fingerprint bits, the
selective gates can learn to effectively “ignore” the static bits (where reactant and product values
are identical) by minimizing their impact on the evolving state.

2. Focus on critical transformations: Conversely, when an “active” bit representing a key struc-
tural change is encountered, the gates can “choose” to update the state significantly, effectively
capturing the event.

Superiority over Alternatives A Transformer’s self-attention mechanism computes a dense N ×
N attention matrix, where N is the sequence length (1024). This is computationally expensive and
conceptually inefficient for sparse signals, as it forces the model to calculate relationships between
all bit pairs, including the vast majority of irrelevant, static ones. This can introduce noise and
hinder the model’s ability to isolate the true signal. Mamba’s linear-time complexity and selective
compression offer a more efficient and targeted approach.

A standard Multi-Layer Perceptron (MLP) would treat the fingerprint as a flat, unordered vector,
completely disregarding the potential relational information between bit positions. It lacks an in-
trinsic mechanism to model the sequential or patterned nature of chemical transformations encoded
within the fingerprint.

In summary, the choice of Mamba is a principled one, rooted in its inherent ability to perform selec-
tive information processing, which directly mirrors the sparse and event-driven nature of chemical
transformations encoded in reaction fingerprints.

K.2 KAN FOR FINAL FUSION: MODELING COMPLEX, HETEROGENEOUS
PHYSICOCHEMICAL INTERACTIONS

The final fusion module is designed to predict reaction yield by jointly leveraging two complemen-
tary levels of information: molecular-level features, which provide rich, continuous representations
of static molecular structures—including topology, connectivity, and local environments—extracted
from the fused SMILES and 2D graph encoders; and reaction-level features, which capture abstract,
holistic representations of the dynamic chemical transformation itself, derived from the Mamba-
based fingerprint encoder.

The mapping between heterogeneous molecular and reaction-level features and reaction yield is
highly non-linear, as outcomes are governed by complex physicochemical principles (e.g., steric
hindrance, electronic effects, transition state stability). Accurate prediction thus requires models
capable of approximating intricate and often unknown functional forms.

To this end, we adopt Kolmogorov–Arnold Networks (KANs) in the fusion stage. Unlike MLPs with
fixed activations, KANs parameterize each input–output connection with a learnable spline function,
enabling adaptive modeling of heterogeneous feature interactions. For example, the effect of steric
features from molecular encoders can be captured with a distinct non-linearity from that used for
reaction-type features derived from fingerprints.

By composing such learned functions, KANs approximate complex, high-dimensional mappings
more efficiently than MLPs, reducing the need for excessive depth or width. This flexibility makes
them particularly suitable for modeling the intricate energy landscapes underlying reaction yields.
Moreover, the spline functions on edges can be visualized, offering a potential route toward inter-
pretable feature–yield relationships.

Therefore, selecting KAN for the final fusion stage is a scientifically grounded decision. Its inherent
flexibility in learning arbitrary non-linear functions makes it a superior tool for modeling the com-
plex, multi-scale, and heterogeneous physicochemical interactions that govern chemical reaction
yield, moving beyond simple model engineering towards a more principled architectural design.
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Figure 11: We carried out ten experiments on every benchmark dataset and carried out t-tests on the
R2 metric with the help of the Scipy library, and all the p-values were less than 0.05.

Figure 12: Scatter plots of actual yields versus predicted yields on the test sets of BH and SM
datasets for Harmony.

L STATISTICAL SIGNIFICANCE TESTING ON BENCHMARK DATASETS

To ensure robust and statistically reliable comparisons, we performed 10 independent data splits
on each dataset, training both Harmony and UAM under identical conditions (Table 11). The per-
formance differences between the two models were assessed using paired t-tests. The resulting
p-values were 0.012 for BH, 0.017 for SM, and nearly 0 for ACR, all of which are well below the
conventional significance threshold of p < 0.05. These results provide strong evidence that Har-
mony achieves statistically significant improvements over UAM across all evaluated datasets. The
near-zero p-value for ACR further underscores Harmony’s superior performance in this domain.

M VISUALIZATION OF PREDICTION RESULTS

We partition datasets according to the dataset partitioning method discussed earlier, and proceed
with model training and testing. Figure 12 intuitively demonstrates the predictive performance of
our method on the test sets of BH and SM datasets. For the BH dataset, our method achieved an R2

score of 0.979 on the test set, with the scatter plot distribution being very close to the line y = x,
indicating the best predictive effect. For the SM dataset, our method achieved an R2 score of 0.890
on the test set, with the scatter plot distribution generally close to the line y = x. Overall, due to the
limited number of reactions and the homogeneity of reaction types in these two datasets, the model
is capable of making relatively accurate predictions.

For the ACR dataset, as shown in Figure 13, we compared the predictive results of our method with
those of the UAM method, with both being trained on the same training set and tested on the same
test set. During the testing phase, our method achieved an R2 of 0.320, while the R2 for UAM was
0.259. From the figure, it can be intuitively seen that the predictions from the Harmony are more
concentrated relative to UAM, with fewer deviations from the actual yields, resulting in a better
performance.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 13: Scatter plots of actual yields versus predicted yields on the test sets of ACR dataset for
both UAM and Harmony.

N ANALYSIS OF THE PREFER-BALANCING OPTIMIZATION OBJECTIVE
LPREFER

N.1 A SIMPLE ANALYSIS OF LPREFER AND ITS EFFECTIVENESS

To mitigate the imbalance phenomenon in the multimodal reaction yield prediction model during the
fusion process, we introduce Lprefer. This is a plug-and-play, simple and effective prefer-balancing
optimization objective. It maintains linear scalability with the number of modalities, bringing min-
imal additional overhead. As we mentioned earlier, the goal of Lprefer is to enhance the ability of
each modality m to independently predict results.

To understand it in another way, we can view it as a technique similar to dropout, which randomly
drops some modalities and uses the remaining modalities for prediction. Specifically, for Lprefer, it
retains only one modality m and discards the data of other modalities. The reason for doing this
is that we hope the model can achieve good results regardless of which modalities are discarded,
thereby avoiding the model’s dependence on certain specific modalities.

To further validate the effectiveness of , we conducted a modality contribution assessment on UAM
using our method. Figure 14 shows the comparison of modality contributions before and after
using Lprefer for UAM. By alleviating the modality imbalance with Lprefer, UAM can also achieve
performance improvement, as shown in Table 2.

Figure 14: Impact of Lprefer on the contributions of different modalities within UAM.

N.2 IS FORCING EACH MODALITY TO PREDICT WELL ALONE LIMITING LEARNING OF MORE
SOPHISTICATED COMBINED FEATURES?

A potential concern is whether the Lprefer loss function—which forces each modality to become
a strong standalone predictor by penalizing its individual prediction errors—theoretically con-
flicts with the core principle of multimodal learning. This principle relies on leveraging inter-
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modality complementarity, where a modality that is individually weak as a predictor can still
contribute unique information to compensate for the shortcomings of others.

We concur that the ultimate strength of multimodal fusion resides in synergizing complementary
information—where even a modality lacking strong standalone predictive power can deliver crucial,
unique signals. The design of Lprefer is by no means intended to contradict this principle by forcing
each modality into a ”jack-of-all-trades.” Instead, its primary role is to act as a principled regularizer,
addressing the well-documented issue of representational overshadowing. Our core argument is
that effective synergy can only be constructed on a foundation of high-fidelity, information-rich
representations from each individual modality.

We can elaborate on this from two perspectives:

A Computational and Optimization Perspective In a standard multimodal architecture without
Lprefer, the optimization process is solely driven by the final task loss (e.g., Lmse). If one modal-
ity (e.g., reaction fingerprints) offers a much stronger initial gradient signal, the model can quickly
converge to a local minimum by predominantly relying on this ”easy” source of information. Con-
sequently, the gradients flowing back to the encoders of other, more subtle modalities (e.g., SMILES
and 2D graphs) can diminish or vanish. This leads to their encoders remaining under-trained, and
their latent representations (hs,hg) failing to capture the unique physicochemical details they are
supposed to encode. The fusion module, therefore, is presented with one high-quality feature vec-
tor and several noisy, uninformative ones. At this point, it is impossible to learn any meaningful
complementarity because the necessary information from the weaker modalities has already been
lost.

Lprefer directly counteracts this by creating an auxiliary optimization objective that guarantees a per-
sistent and meaningful gradient signal flows back to every modality-specific encoder throughout
the training. It compels each encoder to learn a mapping that is, at a minimum, predictive of the
target. This does not mean each modality must become a perfect, SOTA predictor on its own. It
simply means each must develop an informative latent space. By ensuring a baseline of “individual
competence,” we provide the final fusion module with a set of rich, diverse, and well-formed fea-
ture vectors, creating a fertile ground for it to discover and exploit their complex, synergistic, and
potentially asymmetric relationships.

Chemical Information Perspective Without Lprefer, the model might discover that reaction fin-
gerprints are excellent for the coarse classification part and achieve a decent Lmse). It might then
neglect to train the 2D graph GNN properly, because extracting subtle steric/electronic effects for
fine-grained regression is a harder task with a smaller initial payoff. The GNN’s output would be
noise. The model would never learn the fine-grained regression part.

With Lprefer, we enforce that the 2D graph GNN must also learn to predict the yield. It might
not be as good as the fingerprint modality across the board, but it is forced to learn a meaningful
representation of molecular structure related to yield. Now, when both the high-level fingerprint
embedding and the detailed structural embedding are passed to the final fusion layer, the main Lmse)
objective can learn the optimal combination. It is entirely free to learn that the fingerprint feature
is most indicative of a reaction being > 80% yield, but that a specific feature from the 2D graph
embedding is what differentiates an 82% yield from a 95% yield.

In summary, Lprefer does not enforce “homogeneity of function” but rather “universality of infor-
mation quality.” It acts as a foundational regularizer that prevents information loss at the encoding
stage, thereby enabling, rather than suppressing, the learning of sophisticated complementary re-
lationships in the subsequent fusion stage. The path from “individual strength” to “collaborative
synergy” is predicated on the idea that synergy cannot be constructed from noise. Lprefer ensures all
modalities bring meaningful information to the table, allowing the primary task objective to orches-
trate their collaboration most effectively.

N.3 THE RATIONALE FOR PROMOTING BALANCED MODALITY CONTRIBUTIONS

It is crucial to clarify that our objective is not the rigid enforcement of numerically equal contribu-
tions, but rather the implementation of “balance” as a principled regularization strategy to prevent
modality dominance. From a chemoinformatic standpoint, each modality provides an orthogonal
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yet complementary information stream: SMILES strings capture sequential atomic connectivity, 2D
graphs encode explicit molecular topology and bonding, while differential fingerprints encapsulate
the high-level dynamics of the chemical transformation. A truly synergistic model must leverage the
unique strengths of all three perspectives.

In the absence of explicit regularization, a multimodal model is susceptible to a form of represen-
tational “Matthew effect,” wherein the optimization process disproportionately relies on the most
salient modality (e.g., the reaction fingerprint), particularly in diverse datasets. This heuristic dom-
inance leads to the suppression of subtler, yet critical, static molecular descriptors such as steric
and electronic effects, which are primarily encoded in the SMILES and graph representations. Such
a scenario fundamentally undermines the rationale for a multimodal architecture, reducing it to a
single-modality model with minor perturbations.

Our proposed balancing loss directly counteracts this tendency by enforcing a baseline of predictive
autonomy for each modality. This ensures the development of high-fidelity, modality-specific latent
spaces prior to their final fusion. By compelling the model to extract meaningful signals from all
inputs, we foster enhanced robustness and generalizability, ultimately enabling the emergence of true
synergistic effects during the integration stage—a conclusion empirically validated by the model’s
superior predictive performance.

O THE GENERALIZATION CAPABILITY OF HARMONY

O.1 PERFORMANCE ON THE USPTO (GRAM SCALE) DATASET

In the experimental section, to ensure a fair comparison, we evaluated our method exclusively on the
Buchwald-Hartwig (BH), Suzuki-Miyaura (SM), and Amide coupling (ACR) datasets. To further
demonstrate scalability, we included additional comparative experiments on the USPTO gram-scale
dataset (200k reactions), as presented in Table 14, where our model achieves state-of-the-art (SOTA)
performance.

Table 14: Comparative experiments on the USPTO (gram scale) chemical reaction yield prediction
dataset.

Datasets USPTO (gram scale)
Metrics MAE(↓) RMSE(↓) R2(↑)
Yield-BERT - - 0.117
DRFP (gradient boost) - - 0.130
UAM 15.636 19.619 0.119
Harmony 15.582 19.410 0.137

O.2 PERFORMANCE ON THE BH(ELN) DATASET

The BH(ELN) dataset is recognized for its significant challenges, including data sparsity, inherent
noise, and a broader, less-controlled distribution of reaction conditions compared to high-throughput
experimental (HTE) datasets (e.g., Buchwald-Hartwig dataset and Suzuki-Miyaura dataset). This
makes it an ideal benchmark for probing a model’s ability to learn robust representations and avoid
overfitting to specific data modalities.

To ensure a direct and equitable comparison, our experimental protocol strictly adhered to the setup
established by the ReaMVP study. We utilized their officially provided pre-processed data and data
splits. The performance of Harmony was benchmarked against the full suite of deep learning and
traditional machine learning models reported in the original ReaMVP publication.

The comparative results are summarized in Table 15. Our analysis yields two primary insights:

State-of-the-Art Performance Among Deep Learning Models The results demonstrate that Har-
mony achieves state-of-the-art performance among all evaluated deep learning models. With an R2

score of 0.263, Harmony surpasses the previous leading model, ReaMVP (R2 = 0.212), by a sub-
stantial margin. This performance underscores the efficacy of Harmony’s hierarchical fusion archi-
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Table 15: Comparative performance of Harmony and baseline models on the BH(ELN) test set.
Results for baseline models are cited from the original ReaMVP paper. a With RDKit features. b

Without RDKit features.

Method MAE (↓) RMSE (↓) R2 (↑)

RFa 20.320 (0.769) 25.270 (0.937) 0.275 (0.040)
RFb 20.560 (0.728) 25.480 (0.882) 0.264 (0.032)
SVMa 20.900 (0.800) - 0.222 (0.057)
ContextPred 22.0 (0.2) - 0.177 (0.014)
EdgePred 23.1 (0.2) - 0.129 (0.011)
AttrMasking 22.2 (0.2) - 0.143 (0.008)
W/O pre-training 22.0 (1.1) - 0.132 (0.045)
YieldBERT 22.589 (2.304) 27.468 (2.005) 0.143 (0.102)
YieldBERT-DA 21.581 (2.192) 26.973 (1.981) 0.171 (0.112)
UA-GNN 20.635 (1.127) 26.499 (1.027) 0.203 (0.054)
ReaMVP 20.692 (1.330) 26.364 (1.289) 0.212 (0.057)
Harmony (Ours) 20.551 (1.112) 25.624 (1.164) 0.263 (0.059)

tecture and, critically, the role of the preference-balancing loss (Lprefer). By preventing the model
from over-relying on a single, potentially unreliable modality, a significant risk in noisy datasets like
BH(ELN), Lprefer promotes the learning of more generalizable and robust representations, leading
to superior predictive accuracy.

Narrowing the Performance Gap to Traditional Machine Learning It is noteworthy that a
Random Forest (RF) model leveraging RDKit features (RFa) attains a slightly higher R2 of 0.275.
This observation aligns with established findings where tree-based models can exhibit strong perfor-
mance on smaller, structured chemical datasets. However, the crucial insight lies in the performance
relative to this strong baseline. While most deep learning approaches exhibit a considerable per-
formance deficit compared to RFa, Harmony significantly closes this gap. This result provides
compelling evidence that the Lprefer objective functions as an effective regularizer in data-limited
and heterogeneous scenarios. It enhances the stability and baseline performance of the deep learning
architecture, mitigating the risk of performance collapse due to modality preference or data noise,
and thereby enabling it to compete more effectively with traditional, feature-engineered methods.

O.3 OUT-OF-SAMPLE PERFORMANCE ON BH AND SM DATASETS

We have rigorously evaluated Harmony on the out-of-sample (OOS) splits of the Buchwald-Hartwig
(BH) and Suzuki-Miyaura (SM) datasets used in the ReaMVP paper. To ensure a fair comparison,
we used the pre-split data from the official ReaMVP repository and reported the performance of all
models on the R2 metric. We thank the authors of ReaMVP for making their data and code public,
which greatly facilitates fair comparisons and rapid progress in the field.

The experimental results provide strong evidence for Harmony’s excellent generalization ability (Ta-
ble 16). Harmony consistently outperformed the previous SOTA model on these highly challenging
OOS tasks. In Test 1 of BH, the R2 value of Harmony (0.884 ± 0.007) represents a 4.7% relative
improvement over the previously optimal ReaMVP (0.844 ± 0.004). In Test 2 of SM, Harmony
(0.593 ± 0.016) increases by approximately 0.059 compared to ReaMVP (0.534 ± 0.018), with a
relative improvement of over 11%, showing a particularly significant advantage.

We believe this superior generalization performance stems from our model’s core design:

• The key role of the Lprefer loss: The Lprefer mechanism forces the model not to over-rely on the
”memory” of any single modality (like the specific fingerprint of a common ligand). Instead, it
must learn to extract more general chemical principles from SMILES, 2D graphs, and fingerprints
together. As a result, even when faced with entirely new ligands or reactants, the model can make
accurate predictions based on its fundamental understanding of chemical reactions.
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• The unique advantage of the hierarchical framework: Our framework distinguishes and in-
tegrates molecular-level and reaction-level information, which allows the model to build more
comprehensive and robust representations.

In summary, Harmony’s excellent performance on the OOS splits is not a coincidence but a direct
result of its core mechanisms (especially modality balancing) successfully improving its generaliza-
tion.

Table 16: Out-of-Sample Performance on BH and SM Datasets
Dataset Split type YieldBERT YieldBERT-DA UA-GNN ReaMVP Harmony

BH

Test 1 0.824 ± 0.010 0.811 ± 0.047 0.744 ± 0.042 0.844 ± 0.004 0.884 ± 0.007
Test 2 0.829 ± 0.037 0.866 ± 0.020 0.876 ± 0.026 0.896 ± 0.004 0.913 ± 0.004
Test 3 0.741 ± 0.030 0.585 ± 0.067 0.717 ± 0.024 0.792 ± 0.025 0.801 ± 0.029
Test 4 0.444 ± 0.077 0.157 ± 0.034 0.496 ± 0.031 0.693 ± 0.038 0.717 ± 0.035
Plate 1 0.752 ± 0.012 0.789 ± 0.013 0.730 ± 0.037 0.785 ± 0.011 0.795 ± 0.010
Plate 2 0.181 ± 0.011 0.334 ± 0.023 0.202 ± 0.121 0.349 ± 0.129 0.421 ± 0.033
Plate 3 0.718 ± 0.014 0.669 ± 0.056 0.787 ± 0.023 0.779 ± 0.017 0.794 ± 0.015
Plate 2 new 0.508 ± 0.010 0.566 ± 0.014 0.451 ± 0.083 0.689 ± 0.026 0.697 ± 0.026

SM

Test1 0.306 ± 0.005 0.307 ± 0.012 0.462 ± 0.400 0.574 ± 0.033 0.596 ± 0.023
Test2 0.469 ± 0.021 0.467 ± 0.014 0.420 ± 0.022 0.534 ± 0.018 0.593 ± 0.016
Test3 0.357 ± 0.024 0.395 ± 0.025 0.417 ± 0.021 0.468 ± 0.017 0.474 ± 0.027
Test4 0.239 ± 0.008 0.229 ± 0.010 0.299 ± 0.017 0.323 ± 0.043 0.342 ± 0.036

P MORE DETAILS ABOUT ENCODERS

P.1 SMILES ENCODER

The Transformer-based architecture is a common way to encode character sequences(Li & Fourches,
2021; Soares et al., 2024; Zheng & Tomiura, 2024). Due to limited data in yield prediction datasets,
the SMILES encoder may prioritize learning the format over underlying chemical principles of
SMILES. Fig7 in SciInstruct(Zhang et al., 2024) shows the model understands scientific principles
well only when data volume exceeds a threshold (e.g. 120k). Meanwhile, the graph encoder effec-
tively extracts atomic and bond features from 2D graphs without capturing irrelevant information.

Although special tokens such as ‘.’ and ‘>’ were not present in the pre-training dataset, the
ChemBERTa-2 model is equipped to handle them. It consists of a tokenizer and a Transformer-
based encoder. Notably, the tokenizer’s vocabulary already encompasses symbols like ‘.’ and ‘>’.
These symbols are converted into tokens in the same way as other characters. During the train-
ing process, to further enhance the model’s ability to process these special symbols, we unfroze
the parameters of the encoder’s last head layer. This adjustment allows the model to learn how to
effectively process these special symbols.

It is crucial to clarify that this approach does not introduce data leakage, as ChemBERTa-2 is pre-
trained exclusively on unsupervised tasks, such as masked language modeling, without any exposure
to the reaction yield labels used in our downstream task. Its role is strictly limited to feature extrac-
tion, not yield prediction.

To validate our design choice and quantify the impact of the pre-trained encoder, we conducted an
ablation study comparing three distinct configurations. The results are summarized in Table [Your
Table Number]. The configurations are:

1. Training ChemBERTa-2 from scratch: The entire ChemBERTa-2 architecture is trained end-to-
end with our model, without leveraging its pre-trained weights.

2. Custom lightweight encoder: We replaced ChemBERTa-2 with a custom, smaller Transformer-
based encoder that is trained from scratch.

3. Our proposed method (Harmony): We use the pre-trained ChemBERTa-2 as a frozen feature
extractor, fine-tuning only the final projection layer.
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Table 17: Performance and parameter efficiency comparison of different SMILES encoder strate-
gies. Our proposed method (Harmony), which leverages a frozen pre-trained ChemBERTa-2,
achieves the best results with the fewest trainable parameters.

Method MAE (↓) RMSE (↓) R² (↑) Trainable Parameters (↓)
(1) Training ChemBERTa-2 from scratch 14.84 19.31 0.293 56,104,874
(2) Custom lightweight SMILES encoder 14.77 18.94 0.316 18,958,765
(3) Our Method (Harmony) 14.72 18.88 0.320 12,591,530

As shown in Table 17, our approach (3) achieves the best performance across all metrics while
requiring the fewest trainable parameters (12.6M). The custom lightweight encoder (2) provides
comparable results but with a 50% increase in parameters. Notably, training the full ChemBERTa-2
model from scratch (1) significantly degrades performance and results in a parameter count over
four times larger than our method, substantially increasing the risk of overfitting.

These findings strongly suggest that the performance improvement stems from the powerful and
generalizable feature extraction capabilities of the pre-trained ChemBERTa-2 model, rather than
any form of data leakage. Our proposed design effectively harnesses this pre-trained knowledge,
leading to better predictive accuracy, enhanced parameter efficiency, and faster convergence. This
validates the effectiveness of our Harmony architecture.

Why is the SMILES modality, despite extensive pre-training on structural data, the least im-
portant? An analysis of the ablation studies revealed that the SMILES modality, despite extensive
pre-training on large-scale chemical structure corpora, exhibited a comparatively subordinate contri-
bution to the model’s overall predictive accuracy. This observation can be rationalized by consider-
ing the fundamental physicochemical determinants that govern chemical reaction yields. The quanti-
tative prediction of reaction outcomes is intrinsically sensitive to subtle steric and electronic effects,
as well as the net structural transformations occurring between reactants and products. Within our
multimodal framework, the 2D molecular graph explicitly encodes atomic connectivity and topol-
ogy, while the reaction fingerprint directly quantifies the aggregate bond changes inherent to the
transformation. In contrast, the SMILES modality, as a one-dimensional linearized notation, pos-
sesses intrinsic limitations in explicitly representing the three-dimensional spatial arrangements and
electron density distributions that underpin these critical physicochemical phenomena. Although
pre-training endows the SMILES representation with a rich, latent understanding of chemical prin-
ciples, its inherent topological nature constrains its ability to convey the geometric and electronic
information as effectively as the other modalities. This representational gap logically explains its
diminished relative importance and strongly motivates the future integration of 3D conformational
data as a promising avenue to enhance predictive power by more directly capturing these essential
drivers of chemical reactivity.

P.2 2D GRAPH ENCODER

Following the established practice from (Kwon et al., 2022) and (Chen et al., 2024), we employ a
commonly adopted graph neural network (GNN) encoder for 2D molecular graph feature extraction.
This encoder has been widely validated for its effectiveness in capturing both local atomic environ-
ments and global molecular structures. This choice ensures a fair comparison with existing methods
while maintaining a strong representational capacity for downstream tasks.

P.3 FINGERPRINTS ENCODER

For fingerprints, a dynamic time-varying parameterized feature selection mechanism based on the
Mamba state space model dynamically focuses via gating units on features with significant abso-
lute fingerprint changes and features with relative proportion changes. This dynamic mechanism
outperforms MLP/attention-based static processing.
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Q LIMITATIONS AND FUTURE WORK

Although Harmony effectively improved the performance of reaction yield prediction through a
hierarchical fusion framework and balanced modality fusion, there are still further optimization
points, which will be our next direction for improvement.

Firstly, most reaction yield prediction models, including Harmony, are currently unable to handle
reaction conditions. For the same chemical reaction, different reaction temperatures, reaction times,
solvents, reagents, and other conditions can all affect the actual yield of the reaction. Integrating
reaction conditions into the yield prediction can further narrow down the search space and provide
more comprehensive information for yield prediction. Our next step will involve considering how
to incorporate reaction condition information into the model to achieve more practical and accurate
yield predictions.

Additionally, we have designed a prefer-balancing optimization objective to balance the contribu-
tions of different modalities during the fusion process. Although this design is effective, there is
still room for improvement, such as starting directly from gradients, which will be one of our next
research directions.

R IMPACT STATEMENT

This paper presents work aimed at advancing the field of yield prediction for chemical reactions.
Enhancing the accuracy and efficiency of yield prediction can bring substantial social benefits to
various fields.

For chemical companies, accurate yield predictions optimize production by enabling precise raw
material procurement based on forecasted yields. In large-scale pharmaceutical manufacturing, this
not only ensures enough product to meet market demand but also cuts down on raw material waste,
reduces production costs, and boosts economic efficiency.

Furthermore, our method enhances AI-assisted synthesis prediction, boosting research and devel-
opment (R&D) efficiency. By facilitating faster screening of potential reaction pathways through
yield prediction, it shortens the research and development cycle and reduces costs in developing
new chemical substances.

On a macro scale, accurately predicting chemical reaction yields aids in the efficient distribution of
chemical resources society-wide. For instance, precise yield forecasts for rare metals or hazardous
chemicals can prevent overuse, ensuring their sustainable utilization and minimizing environmental
risks.

Generally speaking, this work broadly offers potential social benefits, including advancements in
chemical production, scientific progress, and sustainable resource management.

S PSEUDOCODE FOR MODALITY CONTRIBUTION EVALUATION ALGORITHM

We provide Algorithm 1, which presents the pseudocode for the process of evaluating contributions
of each modality.

Taking the computation of the contribution of modality mj as an example, the overall algorithm can
be divided into three steps:

1. The first step is model forward propagation, where predictions are made using all modalities M
and the modality subset C, corresponding to Equation equation 8. Here, the modality subset C
consists of the remaining modalities in M after removing mj , that is, C = M\ {mj}.

2. The second step involves calculating the contributions of both the full set of modalities M and
the modality subset C to the prediction outcome, using Equation equation 10 to compute B(M)
and B(M\ {mj}).

3. The third step uses Equation equation 13 to calculate the contribution of the single modality mj ,
β(mj).
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Algorithm 1 Calculating Contributions of Each Modality
Input: M = {m|m ∈ {s, g, f}}: The set of all modalities, where s, g, f correspond to SMILES,

2D graphs, and fingerprints, respectively
{(xi, yi)}Ni=1: All samples in the dataset
F(·): Late fusion module
Φm(·): Feature extractor for modality m
ε: Threshold for contribution calculation
δ: A small constant introduced to prevent numeric overflow

▷ stage 1. Predict yield using both the full modality set M and modality subset C.
1: for i from 1 to N do
2: ŷMi = F(Φm1(xm1

i ) ⊕ Φm2(xm2
i ) ⊕ · · · ⊕ Φmn(xmn

i )) ▷ Predict yield using the
complete modality set M, where ⊕ denotes the concatenate operator.

3: for j from 1 to n do
4: ŷ

M\{mj}
i = F(Φm1(xm1

i )⊕Φm2(xm2
i )⊕ · · · ⊕Φmj−1(x

mj−1

i )⊕ 0⊕Φmj+1(x
mj+1

i )⊕
· · · ⊕ Φmn(xmn

i ))) ▷ Predict yield using the complete modality set M, excluding
modality mj .

5: end for
6: end for

▷ stage 2. Calculate contributions of both the full modality set M and modality subset C.
7: for i from 1 to N do
8: if |ŷMi − yi| < ε then
9: B(M) = |M|

N ·
∑N

i=1 min
(
1, 2 · log ε

|ŷM
i −yi|+δ

)
▷ Calculate contribution of the

complete modality set M.
10: else
11: B(M) = 0
12: end if
13: for j from 1 to n do
14: if |ŷM\{mj}

i − yi| < ε then

15: B(M\ {mj}) = |M|
N ·

∑N
i=1 min

(
1, 2 · log ε

|ŷ
M\{mj}
i −yi|+δ

)
▷ Calculate

contribution of the complete modality set M, excluding modality mj .
16: else
17: B(M\ {mj}) = 0
18: end if
19: end for
20: end for

▷ stage 3. Calculate single modality contributions using the contributions of full modality set
M and modality subset C.

21: for j from 1 to n do
22: β(mj) = B(M)− B(M\ {mj}) ▷ Calculate the contribution of each single modality mj

within the complete modality set M.
23: end for
Output: Contributions of each modality in M.
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