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Abstract

Despite the successful application of Temporal Graph Networks (TGNs) for tasks such as
dynamic node classification and link prediction, they still perform poorly on the task of
dynamic node affinity prediction – where the goal is to predict ‘how much’ two nodes will
interact in the future. In fact, simple heuristic approaches such as persistent forecasts and
moving averages over ground-truth labels significantly and consistently outperform TGNs.
Building on this observation, we find that computing heuristics over messages is an equally
competitive approach, outperforming TGN and all current temporal graph (TG) models on
dynamic node affinity prediction. In this paper, we prove that no formulation of TGN can
represent persistent forecasting or moving averages over messages, and propose to enhance
the expressivity of TGNs by adding source-target identification to each interaction event
message. We show that this modification is required to represent persistent forecasting,
moving averages, and the broader class of autoregressive models over messages. Our pro-
posed method, TGNv2, significantly outperforms TGN and all current TG models on all
Temporal Graph Benchmark (TGB) dynamic node affinity prediction datasets.

Keywords: Graph Neural Networks, Temporal Graphs, Dynamic Node Affinity Prediction

1. Introduction

Temporal Graph (TG) models have become increasingly popular in recent years (Xue et al.,
2021; Skarding et al., 2021; Feng et al., 2024) due to their suitability for modeling a range of
real-world systems as dynamic graphs that evolve through time, e.g. social networks, traffic
networks, and physical systems (Deng et al., 2019; Song et al., 2019; Zhao et al., 2020;
Guo et al., 2019; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Unlike static graphs,
dynamic graphs allow the addition of nodes and edges, and graph features to change over
time. Despite the successes of current TG models for dynamic node classification and link
prediction, they have been shown to struggle in dynamic node affinity prediction, being
significantly outperformed by simple heuristics such as persistent forecasting and moving
average over ground-truth labels (Huang et al., 2023; Yu, 2023).

In dynamic node affinity prediction, the task is to predict a node’s future ‘affinity’ for
other nodes given the temporal evolution of the graph. Informally, the affinity of a node x
towards a node y over some time interval [t, t+ δ] refers to how much x has interacted with
y over that interval. For example, if node A sends 10 identical messages to node B and
100 of the same messages to node C over some time interval [t, t+ δ], then A has a higher
affinity for C over that interval. This formulation is useful in settings such as recommender
systems, e.g. predicting a user’s future song preferences given their past listening history
(Huang et al., 2023). A concrete example from the Temporal Graph Benchmark (TGB)
(Huang et al., 2023) is tgbn-trade, where nodes represent nations and edges represent the
amount of goods exchanged in a single trade. In this case, the goal of dynamic node affinity
prediction is to predict the amount of trade one nation would have with another nation in
the next year, given the past evolution of global trading patterns.
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Contributions. This work is based on the assumption that considering past messages
between two nodes is important to predict their affinity at a future time. We start by
empirically validating this assumption by demonstrating that a moving average computed
over a node’s past messages to another node is a powerful heuristic, beating all existing
TG models. Armed with this result, we ask whether Temporal Graph Networks (TGNs)
(Rossi et al., 2020), a popular TG model, can represent moving averages over messages.
Surprisingly, we find that no formulation of TGN can represent moving averages of any order
k. This result implies that TGNs are unable to represent persistent forecasting (i.e. the
simple heuristic of outputting the most recent message between a pair of nodes), indicating
a substantial weakness in its design. To remedy this, we propose to modify TGN by adding
source-target identification to each interaction event message. We prove that our method,
TGNv2, is strictly more expressive than TGN as it is able to represent persistent forecasting,
moving averages, and autoregressive models. Further, we show that TGNv2 significantly
outperforms all current TG models on all TGB datasets on dynamic node affinity prediction.

2. The Hidden Limitation of Temporal Graph Networks

This work is motivated by our observation that computing moving averages over past mes-
sages, despite still lagging behind moving average over ground-truth labels, is a competitive
heuristic that outperforms all current TG models on every node affinity prediction dataset
(Table 1). Given an order k ∈ N+, the moving average heuristic over past messages for
node affinity prediction is defined as:

ŷt[u, v] =
1

k

∑
t′∈M(u,v,t,k)

euv(t
′)

where M(u, v, t, k) returns k ordered timestamps that constitute the k most-recent messages
sent from node u to node v up to time t and euv(t

′) is the scalar event message passed from
node u to node v during their interaction at time t′. Given this observation, we focus on
TGNs and study if there exists a formulation of TGN that can exactly represent a moving
average of order k. Our first important result is proving that this cannot be the case:

Theorem 1 No formulation of TGN can represent a moving average of order k ∈ N+ for
any temporal graph with a bounded number of vertices.

We prove Theorem 1 in Appendix B.1. In short, the proof constructs a minimal example of
two nodes in two graphs sending different messages. We show that TGNs cannot distinguish
the two nodes, leading them to compute the same moving average for both nodes. This is
a direct consequence of the permutation-invariance of TGNs, which renders them unable to
discriminate between senders and receivers of messages, and in turn incapable of capturing
important functions.

Since the above theorem holds for any k and persistent forecasting is equivalent to a
moving average when k = 1, it follows that TGNs cannot represent persistent forecasting.
Proceeding similarly to our proof for Theorem 1, we can show that, more generally, TGNs
cannot represent the class of autoregressive functions (proof in Appendix B.2):

Corollary 2 No formulation of TGN can represent an autoregressive model of order k ∈
N+ for any temporal graph with a bounded number of vertices.

2



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

2.1. TGNv2: Increasing the expressive power of TGNs

The main problem with TGN lies in the construction of the messages when an event occurs.
In TGN, for every interaction between nodes i and j, two messages are constructed:

mi(t) = msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)); mj(t) = msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t))

If we look closely, however, we can see that each message does not contain the source or
the destination of the message. Not only does this make it impossible for the memory
vectors to have an imprint of past interactions, but this also renders TGNs to be invariant
to the identities of the senders and receivers of messages–a property that is undesirable for
dynamic node affinity prediction. To address this issue, we introduce TGNv2, where we
modify the message construction of TGNs to include source-target identification:

mi(t) = msgs(si(t
−), sj(t

−), ϕt(∆t), eij(t), ϕn(i), ϕn(j))

mj(t) = msgd(sj(t
−), si(t

−), ϕt(∆t), eij(t), ϕn(j), ϕn(i))

Here, we map all nodes to an arbitrary, but fixed node index, and ϕn ∈ R → Rd is an encoder
function for node indices, similar to ϕt. Incoming nodes that have not been encountered
before are assigned to fresh, unused node indices as the graph evolves. This modification is
a way to break the permutation-invariance of TGN, which is necessary to compute moving
averages and autoregressive models. We are now able to prove:

Theorem 3 There exists a formulation of TGNv2 that can represent persistent forecasting,
moving average of order k ∈ N+, or any autoregressive model of order k ∈ N+ for any
temporal graph with a bounded number of vertices.

Our proof of Theorem 3 (Appendix B.3) leverages the existence of the node identification
to ‘index’ into the memory vector to store information. From this, it follows that TGNv2
is strictly more expressive than TGN, as TGN is a special case of TGNv2.

3. Experiments

Table 1 shows our experimental results on the TGB benchmark. The top 3 rows are simple
heuristics over ground-truth labels / ground-truth messages. ‘Persistent Frcst (L)’ and
‘Moving Average (L)’ refer to persistent forecasting and moving average over ground-truth
labels respectively; while ‘Moving Avg (M)’ is a moving average over messages. The rest of
the rows correspond to TG models. We describe the experimental details in Appendix C.

Evidently from Table 1, Moving Average (M) is a competitive method that outperforms
all TG models. TGN (tuned) denotes the TGN that we trained using the same set of
hyperparameters for TGNv2. Though TGN enjoys a performance boost with this set of
hyperparameters, TGNv2 significantly outperforms TGN and all TG models on all datasets.
Further, we can see that TGNv2 performs comparably to Moving Avg (M) on tgbn-trade,

tgbn-genre, tgbn-reddit while TGN is beaten by Moving Avg (M) on all datasets.
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Table 1: Main results. † are results obtained from Huang et al. (2023), while ‡ are obtained
from Yu (2023). TGNv2 outperforms all current TG models by a large margin.

.

Method
tgbn-trade tgbn-genre tgbn-reddit tgbn-token

NDCG @ 10 ↑ NDCG @ 10 ↑ NDCG @ 10 ↑ NDCG @ 10 ↑
Validation Test Validation Test Validation Test Validation Test

Persistent Frcst (L)† 0.860 0.855 0.350 0.357 0.380 0.369 0.403 0.430

Moving Avg (L)† 0.841 0.823 0.499 0.509 0.574 0.559 0.491 0.508
Moving Avg (M) 0.793 0.777 0.478 0.472 0.499 0.481 0.402 0.415

JODIE‡ 0.394±0.05 0.374±0.09 0.358±0.03 0.350±0.04 0.345±0.02 0.314±0.01

TGAT‡ 0.395±0.14 0.375±0.07 0.360±0.04 0.352±0.03 0.345±0.01 0.314±0.01

CAWN‡ 0.393±0.07 0.374±0.09

TCL‡ 0.394±0.11 0.375±0.09 0.362±0.04 0.354±0.02 0.347±0.01 0.314±0.01

GraphMixer‡ 0.394±0.17 0.375±0.11 0.361±0.04 0.352±0.03 0.347±0.01 0.314±0.01

DyGFormer‡ 0.408±0.58 0.388±0.64 0.371±0.06 0.365±0.20 0.348±0.02 0.316±0.01

DyRep† 0.394±0.001 0.374±0.001 0.357±0.001 0.351±0.001 0.344±0.001 0.312±0.001 0.151±0.006 0.141±0.006

TGN† 0.395±0.002 0.374±0.001 0.403±0.010 0.367±0.058 0.379± 0.004 0.315± 0.020 0.189±0.005 0.169±0.006

TGN (tuned) 0.445±0.009 0.409±0.005 0.443±0.002 0.423±0.007 0.482±0.007 0.408±0.006 0.251±0.000 0.200±0.005

TGNv2 (ours) 0.807± 0.006 0.735± 0.006 0.481± 0.001 0.469± 0.002 0.544± 0.000 0.507±0.002 0.321± 0.001 0.294± 0.001

4. Related Work

We believe this work is the first to address the limitations of TG models in dynamic node
affinity prediction. Huang et al. (2023) were the first to point out this problem, highlighting
that TGN and DyRep (Trivedi et al., 2018) are outperformed by heuristics over ground-truth
labels. Yu (2023) extended this work and found that a suite of other TG models (JODIE
(Kumar et al., 2019), TGAT (Xu et al., 2020), CAWN (Wang et al., 2022), TCL (Wang et al.,
2021), GraphMixer (Cong et al., 2023), and DyGFormer (Yu et al., 2023)) all underperform
in dynamic node affinity prediction. Despite still lagging behind heuristics over ground-
truth labels, TGNv2 significantly outperforms all of the methods above, constituting what
we believe to be the first positive result in improving TG models for dynamic node
affinity prediction. Our method of augmenting TGNs with source-target identification to
increase expressivity is most similar to the work of Sato et al. (2019), where they increased
the expressivity of static GNNs via port numbering. Relatedly, other works demonstrated
that breaking the permutation-invariance of static GNNs (e.g. by using RNNs to aggregate
messages) led to empirical benefits (Xu and Veličković, 2024; Hamilton et al., 2018).

5. Conclusion

In this paper, we proposed to augment TGN with source-target identification. We proved
that TGNv2 is strictly more expressive than TGN and consequently showed that TGNv2
achieves significantly higher performance than current TG models across all dynamic node
affinity prediction datasets from TGB. In the future, we would like to close the remaining
empirical gap between TGNv2 and the heuristics approaches. We believe this is because
we formulated our message aggregator to output the last message, which was necessary to
compare our results fairly with prior TGN experiments (Appendix C). To address this, we
hope to explore more expressive aggregation functions. Moreover, we would like to further
develop our work by studying TGNv2 on other TG tasks, such as dynamic link prediction.
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Appendix A. TGN Recap

For the reader’s convenience, we restate the core modules of TGN. For a more thorough
explanation of each module, we refer the reader to the original paper (Rossi et al., 2020).

Message Function. For each interaction between i and j, we construct two messages
msgs and msgd:

mi(t) = msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)); mj(t) = msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t))

We can also opt to construct node messages if node events exist:

mi(t) = msgn(si(t
−), t,vi(t))

Message Aggregator.

m̄i(t) = agg(mi(t1), ...,mi(tb))

Memory Updater.

si(t) = mem(m̄i(t), si(t
−)))

Embedding

zi(t) = g
({{

h(si(t), sj(t), eij ,vi(t),vj(t)) : j ∈ NL
i ([0, t])

}})
Here, h is a learnable function, g is a permutation-invariant function such as a sum or mean,
and L corresponds to the number of layers used for temporal message passing. We note
that our formulation of the embedding layer is a more general version than in the TGN
paper, and we can recover the original formulation by setting g to be a sum.

Appendix B. Proofs

B.1. Proof for Theorem 1

Theorem 1 No formulation of TGN can represent a moving average of order k ∈ N+ for
any temporal graph with a bounded number of vertices.

Proof The main idea of the proof is that TGNs are unable to distinguish nodes whose
messages are identical in every form but have different senders and/or recipients. To show
this, we construct a temporal graph G with 3 nodes (Node 1, 2, and 3) and ‘flip’ it in such
a way to yield a G′ such that Node 1 in G′ is sending different messages when compared
to Node 1 in G but is indistinguishable from Node 1 in G from the point of view of TGNs
(Figure 1).

We proceed by way of contradiction. Assume that there exists a particular formulation
of TGN that can implement a moving average of order k for any temporal graph with a
bounded number of vertices. We initialise all memory vectors to be the zero vector, as per
TGN’s original formulation. Now, consider the following sequence of events that implicitly
define the temporal graph G:
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Figure 1: Graphs G and G′. Clearly Node 1 in G and G′ are sending different sequences of
messages, but TGNs are unable to distinguish them.

1. Node 1 sends Node 2 a series of n events with features α1, . . . , αn at timestamps
t1, . . . , tn.

2. Node 1 sends Node 3 a series of m events with features β1, . . . , βm at timestamps
tn+1, . . . , tn+m.

where t1 < · · · < tn < tn+1 < · · · < tn+m, n ≥ k, and m ≥ k. Let ᾱ =
αn−k+1+···+αn

k ,
the moving average of order k of α1, ..., αn. Similarly, define β̄ to be the moving average of
order k of β1, ..., βm. Suppose we compute Node 1’s embedding at time tT where tT > tn+m.
We assume that no node updates are done, and all v1(t) = v2(t) = v3(t) for all t. Node 1
receives n messages from its interactions with Node 2:

m1(ti) = msgs(0,0, ti, αi) ∀i ∈ [1, . . . , n]

Similarly, Node 1 receives m messages from its interactions with Node 3:

m1(tn+i) = msgs(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

Node 1 then aggregates the messages it receives and updates its memory:

m̃1(tT ) = agg(m1(t1), . . . ,m1(tn+m))

s1(tT ) = mem(m̃1(tT ),0)

We can do the same set of calculations for Node 2 and Node 3:

m2(ti) = msgd(0,0, ti, αi) ∀i ∈ [1, . . . , n]

m3(tn+i) = msgd(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

m̃2(tT ) = agg(m2(t1), . . . ,m2(tn))

m̃3(tT ) = agg(m3(tn+1), . . . ,m3(tn+m))

s2(tT ) = mem(m̃2(tT ),0)

s3(tT ) = mem(m̃3(tT ),0)
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Then, as we have assumed no node events have occurred, and all vi(tT ) are the same, then
we can ignore them during the embedding computation:

z1(tT ) = g
({{

h(s1(tT ), s2(tT ), αi) : i ∈ [1, . . . n]
}}

∪
{{

h(s1(tT ), s3(tT ), βi) : i ∈ [1, . . .m]
}})

= [0, ᾱ, β̄]T

as per our assumption. Consider now the flipped temporal graph G′ with events:

1. Node 1 sends Node 3 a series of n events with features α1, . . . , αn at timestamps
t1, . . . , tn.

2. Node 1 sends Node 2 a series of m events with features β1, . . . , βm at timestamps
tn+1, . . . , tn+m.

where t1 < · · · < tn < tn+1 < · · · < tn+m, n ≥ k, m ≥ k as before. Suppose we are again
to compute the node embeddings at time tT > tn+m. Node 1 receives n messages from its
interactions with Node 3:

m′
1(ti) = msgs(0,0, ti, αi) ∀i ∈ [1, . . . , n]

Node 1 receives m messages from its interactions with Node 2:

m′
1(ti) = msgs(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

But observe that Node 1 receives the same set of messages as it did in G. Therefore, s′1(tT )
must be equal to s1(tT ):

m̃′
1(tT ) = agg(m′

1(t1), . . . ,m
′
1(tn+m))

= agg(m1(t1), . . . ,m1(tn+m))

= m̃1(tT )

s′1(tT ) = mem(m̃′
1(tT ),0)

= mem(m̃1(tT ),0)

= s1(tT )

Further, we can see that Node 3 in G′ receives the same set of messages as Node 2 in G,
and Node 2 in G′ receives the same set of messages as Node 3 in G. Following the same
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reasoning, we can conclude that:

m̃′
2(tT ) = agg(m′

2(tn+1), . . . ,m
′
2(tn+m))

= agg(m3(tn+1), . . . ,m3(tn+m))

= m̃3(tT )

s′2(tT ) = mem(m̃′
2(tT ),0)

= mem(m̃3(tT ),0)

= s3(tT )

m̃′
3(tT ) = agg(m′

3(t1), . . . ,m
′
3(tn))

= agg(m2(t1), . . . ,m2(tn))

= m̃2(tT )

s′3(tT ) = mem(m̃′
3(tT ),0)

= mem(m̃2(tT ),0)

= s2(tT )

Therefore:

z′1(tT ) = g
({{

h(s′1(tT ), s
′
3(tT ), αi) : i ∈ [1, . . . n]

}}
∪
{{

h(s′1(tT ), s
′
2(tT ), βi) : i ∈ [1, . . .m]

}})
= g

({{
h(s1(tT ), s2(tT ), αi) : i ∈ [1, . . . n]

}}
∪
{{

h(s1(tT ), s3(tT ), βi) : i ∈ [1, . . .m]
}})

= z1(tT )

= [0, ᾱ, β̄]T

which is a contradiction, as a moving average of order k would’ve computed [0, β̄, ᾱ]T for
G′.

B.2. Proof for Corollary 2

Corollary 2 No formulation of TGN can represent an autoregressive model of order k ∈
N+ for any temporal graph with a bounded number of vertices.

Proof Our proof for Theorem 2 proceeds very similarly to Theorem 1. Notice that in our
proof of Theorem 1, we did not make use of the fact that ᾱ and β̄ are moving averages.
Therefore, if our auto-regressive model has weights w1, . . . , wk, then we can define ᾱ and β̄
to be:

ᾱ =
k∑

i=1

wiαn−i

β̄ =

k∑
i=1

wiβn−i

and consequently proceeding in the same manner as we did in Theorem 1.
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B.3. Proof for Theorem 3

Theorem 3 There exists a formulation of TGNv2 that can represent persistent forecasting,
moving average of order k ∈ N+, or any autoregressive model of order k ∈ N+ for any
temporal graph with a bounded number of vertices.

Proof We first prove the theorem for the case of moving averages of order k, and extend
that to apply to persistent forecasting and autoregressive models. Let the maximum number
of nodes encountered in the temporal graph be n, and assign each node an identifier such
that each node is uniquely identified by an i ∈ [0, . . . , n − 1]. We initialise all memory
vectors si to be 0 ∈ Rnk.

Next, denote e
(l)
ij be the feature of the l-th message that i sends to j, and let M(i, j, t)

return the index of the most recent message that i sent to j at time t. We assume that
the batch size is 1, which means that as soon as a message is sent, we update the memory
vectors. Further, for the time being, we ignore the formulation of msgd, and assume that
all the messages received by the aggregator are messages constructed by msgs.

Our goal is to find a formulation of TGNv2 such that, for each timestamp t, it computes

zi(t)[j] =
1
k

∑k−1
x=0 e

(M(i,j,t)−x)
ij . We assume that the moving average is defined for all values

of t by letting e
(l)
ij = 0 for all negative l. We now concretely define the formulation of

TGNv2, and subsequently show that it computes the moving average. Now, suppose some
node i sends j a message at time t. Let msgs be formulated as:

msgs(si(t
−), sj(t

−), ϕt(∆t), eij(t), ϕn(i), ϕn(j)) = [eij(t), j]

i.e. msgs simply outputs a 2-element vector with the feature of the event message and the
index of the destination node. Since our batch size is 1, the aggregator only receives at
most one message. We let the aggregator be the identity function. The main idea of the
proof is in the formulation of the memory module, which takes advantage of the node index
of the destination to ‘store’ the newest feature message between i and j.

We introduce some machinery to aid our formulation. Consider a block matrix B ∈
Rnk×nk with n matrices B1, . . . ,Bn ∈ Rk×k in its diagonal:

B =

B1 . . . 0
...

. . .
...

0 . . . Bn


Define the block-permutation matrix P ∈ Rnk×nk:

P =


0 0 . . . I
I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 . . . I 0


11
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where I is the Rk×k identity matrix. Observe that PBPT cyclically shifts the order of
B1, . . . ,Bn in B by one:

PBPT =


Bn 0 . . . 0
0 B1 . . . 0
...

...
. . .

...
0 . . . 0 Bn−1


Similarly, define the permutation matrix Q that analogously shifts the elements of a vector
cyclically by 1:

Q =


0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 1 0


In order to compute the moving average, then each time we receive a message, we need

to ‘make room’ in our memory vector to store the message. We introduce the shift matrix
S, which is a k × k matrix that is obtained by taking the (k − 1)× (k − 1) identity matrix
and sufficiently padding the top row and rightmost column with zeroes which, when applied
to a vector v ∈ Rk, keeps the top k − 1 elements and discards the last element:

S =


0 0 . . . 0 0
1 0 . . . 0 0
...

. . .
. . .

...
...

0 0 . . . 1 0


Define the generator block matrix X ∈ Rnk×nk that has the same form as B and consists
of n matrices B1, . . . ,Bn, but with B1 = S and all other Bi = I :

X =


S 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 . . . 0 I


Similarly, define the generator vector y ∈ Rnk = [1, 0, . . . , 0]T . Next, define f(j) =
(P)jX(PT )j , which cyclically shifts the block matrices in X a total number of j times,
and p(j) = Qjy, which cyclically shifts the elements of y a total number of j times. Now,
let the memory module be:

si(t) = mem(m̄i(t), si(t
−))

= mem([eij(t), j], si(t
−))

= f(j) · si(t−)) + p(j) · eij(t)

12
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It is quite easy to see, via a straightforward induction, that at every timestamp t, si(t) stores
the k most recent messages sent to j in the ‘subarray’ si(t)[jk : jk + k − 1]. Consequently,
making zi(t) compute the moving average is straightforward. Define the aggregator matrix
A ∈ Rn×nk to be:

A[m,n] =

{
1
k if mk ≤ n ≤ mk + k − 1

0 otherwise

and let our embedding layer be defined as:

zi(t) = g({{h(si(t), sj(t), eij ,vi(t),vj(t)) : j ∈ NL
i ([0, t]}})

=
1

|NL
i ([0, t]|

|NL
i ([0,t]|∑
j=0

A · si(t)

= A · si(t)

which is the moving average of order k, as multiplyingA with si(t) has the effect of summing
the k most recent messages for each node and multiplying the sum by 1

k . From this, we
can see that the theorem holds for persistent forecasting as persistent forecasting is moving
average with k = 1. Subsequently, we can adapt our proof above to hold for autoregressive
models of any order k by formulating the aggregator matrix A to have the autoregressive
weights wk, . . . , w1 in entries where 1 is present.

In our constructions above, we assumed that our batch size is 1 and we ignored the
fact that nodes are receiving messages from msgd. To adapt the proof for an arbitrary
batch size, we can define the aggregator module to concatenate all incoming messages, and
then during the memory update, we ‘unpack’ this concatenation and apply our logic above
for each message. Finally, to handle messages from msgd, we can expand the size of the
message vector by 1 to include a ‘tag’ that is nonzero if and only if the message originates
from msgd. Then, the aggregator module can drop messages from msgd by inspecting this
tag, leaving us with messages from msgs – which we have shown how to handle.

Appendix C. Experiment Details

The code to reproduce our experiments can be found at https://anonymous.4open.science/
r/TGNv2-submission-neurreps-08D5.

For both TGN and TGNv2, we utilise the same choices of core modules where applicable
and use the same hyperparameters in order to make the results as comparable as possible.
We repeat each experiment run three times with three different random seeds, each time
picking the best-performing model on the validation set, and reporting the mean and stan-
dard deviation NDCG @ 10 on both the validation and test set. For our experiments, our
choice of core module largely follows the choices made in TGB’s experiments with TGN
(Huang et al., 2023) for dynamic node affinity prediction:

13

https://anonymous.4open.science/r/TGNv2-submission-neurreps-08D5
https://anonymous.4open.science/r/TGNv2-submission-neurreps-08D5


Extended Abstract Track
Message Function. Our message function concatenates its inputs. For example, in the
case of TGN:

msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)) = [si(t
−) ◦ sj(t−) ◦ ϕ(∆t) ◦ eij(t)]T

msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t)) = [sj(t
−) ◦ si(t−) ◦ ϕ(∆t) ◦ eij(t)]T

where ◦ is a concatenation operator. Since there are no node events in the TGB dataset,
we chose to ignore formulating the message function for node events.

Message Aggregator. We set the message aggregator to take the last message in a
batch:

m̄i(t) = agg(mi(t1), ...,mi(tb))

= mi(tb)

Memory Updater. We set the memory updater to be a GRU:

si(t) = mem(m̄i(t), si(t
−)))

= GRU(m̄i(t), si(t
−)))

where si ∈ Rdmemory .

Embedding We set the embedding module to be one layer of TransformerConv (Shi
et al., 2021) with 2 heads and a dropout value of 0.1. For efficiency, we only use the last x
neighbours for temporal message passing. We describe the value of x for each experiment
in Table 2. We set zi(t) to have a dimension of dembedding.

Decoder The decoder takes in the embedding for each node and outputs the node affini-
ties for all other nodes. For our decoder, we chose an MLP with 2 layers + ReLU. Both
layers have dimensionality ddecoder.

Time / Node Encoder We set ϕt(t) = cos(wt·t) and ϕn(i) = cos(wn·i) where wt ∈ Rdtime

and wn ∈ Rdnode .

Hyperparameters For moving average over the ground-truth labels (Moving Average
(L)), we set k = 7. For moving average over messages (Moving Average (M)), we set
k = 2048 for tgbn-trade, tgbn-genre, tgbn-reddit, and k = 512 for tgbn-token due to
memory issues. We use a constant learning rate schedule for all experiments, except for
tgbn-trade, where we decay the learning rate by 0.5 every 250 epochs. We use the Adam
optimiser (Kingma and Ba, 2017) to train our models. We set a global hidden dimension
d, that is used in all places where we need to select a dimension, i.e. d = dmemory =
dembedding = ddecoder = dtime = dnode. The hyperparameters that we chose can be found in
Table 2.
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Table 2: Hyperparameters for TGB experiments, for both TGN and TGNv2.

tgbn-trade tgbn-genre tgbn-reddit tgbn-token

Learning Rate 1e-3 1e-4 1e-4 1e-4
Batch Size 200 200 200 200
Epochs 750 50 50 50

d 784 784 784 1024
No. of temporal neighbours x 25 30 30 10
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