
Extended Abstract Track
Under Review - Extended Abstract Track 1–15, 2024 Symmetry and Geometry in Neural Representations

Enhancing the Expressivity of Temporal Graph Networks
through Source-Target Identification

Editors: List of editors’ names

Abstract

Despite the successful application of Temporal Graph Networks (TGNs) for tasks such as
dynamic node classification and link prediction, they still perform poorly on the task of
dynamic node affinity prediction – where the goal is to predict ‘how much’ two nodes will
interact in the future. In fact, simple heuristic approaches such as persistent forecasts and
moving averages over ground-truth labels significantly and consistently outperform TGNs.
Building on this observation, we find that computing heuristics over messages is an equally
competitive approach, outperforming TGN and all current temporal graph (TG) models on
dynamic node affinity prediction. In this paper, we prove that no formulation of TGN can
represent persistent forecasting or moving averages over messages, and propose to enhance
the expressivity of TGNs by adding source-target identification to each interaction event
message. We show that this modification is required to represent persistent forecasting,
moving averages, and the broader class of autoregressive models over messages. Our pro-
posed method, TGNv2, significantly outperforms TGN and all current TG models on all
Temporal Graph Benchmark (TGB) dynamic node affinity prediction datasets.

Keywords: Graph Neural Networks, Temporal Graphs, Dynamic Node Affinity Prediction

1. Introduction

Temporal Graph (TG) models have become increasingly popular in recent years (Xue et al.,
2021; Skarding et al., 2021; Feng et al., 2024) due to their suitability for modeling a range of
real-world systems as dynamic graphs that evolve through time, e.g. social networks, traffic
networks, and physical systems (Deng et al., 2019; Song et al., 2019; Zhao et al., 2020;
Guo et al., 2019; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Unlike static graphs,
dynamic graphs allow the addition of nodes and edges, and graph features to change over
time. Despite the successes of current TG models for dynamic node classification and link
prediction, they have been shown to struggle in dynamic node affinity prediction, being
significantly outperformed by simple heuristics such as persistent forecasting and moving
average over ground-truth labels (Huang et al., 2023; Yu, 2023).

In dynamic node affinity prediction, the task is to predict a node’s future ‘affinity’ for
other nodes given the temporal evolution of the graph. Informally, the affinity of a node x
towards a node y over some time interval [t, t+ δ] refers to how much x has interacted with
y over that interval. For example, if node A sends 10 identical messages to node B and
100 of the same messages to node C over some time interval [t, t+ δ], then A has a higher
affinity for C over that interval. This formulation is useful in settings such as recommender
systems, e.g. predicting a user’s future song preferences given their past listening history
(Huang et al., 2023). A concrete example from the Temporal Graph Benchmark (TGB)
(Huang et al., 2023) is tgbn-trade, where nodes represent nations and edges represent the
amount of goods exchanged in a single trade. In this case, the goal of dynamic node affinity
prediction is to predict the amount of trade one nation would have with another nation in
the next year, given the past evolution of global trading patterns.

© 2024 .



Extended Abstract Track
Contributions. This work is based on the assumption that considering past messages
between two nodes is important to predict their affinity at a future time. We start by
empirically validating this assumption by demonstrating that a moving average computed
over a node’s past messages to another node is a powerful heuristic, beating all existing
TG models. Armed with this result, we ask whether Temporal Graph Networks (TGNs)
(Rossi et al., 2020), a popular TG model, can represent moving averages over messages.
Surprisingly, we find that no formulation of TGN can represent moving averages of any order
k. This result implies that TGNs are unable to represent persistent forecasting (i.e. the
simple heuristic of outputting the most recent message between a pair of nodes), indicating
a substantial weakness in its design. To remedy this, we propose to modify TGN by adding
source-target identification to each interaction event message. We prove that our method,
TGNv2, is strictly more expressive than TGN as it is able to represent persistent forecasting,
moving averages, and autoregressive models. Further, we show that TGNv2 significantly
outperforms all current TG models on all TGB datasets on dynamic node affinity prediction.

2. The Hidden Limitation of Temporal Graph Networks

This work is motivated by our observation that computing moving averages over past mes-
sages, despite still lagging behind moving average over ground-truth labels, is a competitive
heuristic that outperforms all current TG models on every node affinity prediction dataset
(Table 1). Given an order k ∈ N+, the moving average heuristic over past messages for
node affinity prediction is defined as:

ŷt[u, v] =
1

k

∑
t′∈M(u,v,t,k)

euv(t
′)

where M(u, v, t, k) returns k ordered timestamps that constitute the k most-recent messages
sent from node u to node v up to time t and euv(t

′) is the scalar event message passed from
node u to node v during their interaction at time t′. Given this observation, we focus on
TGNs and study if there exists a formulation of TGN that can exactly represent a moving
average of order k. Our first important result is proving that this cannot be the case:

Theorem 1 No formulation of TGN can represent a moving average of order k ∈ N+ for
any temporal graph with a bounded number of vertices.

We prove Theorem 1 in Appendix B.1. In short, the proof constructs a minimal example of
two nodes in two graphs sending different messages. We show that TGNs cannot distinguish
the two nodes, leading them to compute the same moving average for both nodes. This is
a direct consequence of the permutation-invariance of TGNs, which renders them unable to
discriminate between senders and receivers of messages, and in turn incapable of capturing
important functions.

Since the above theorem holds for any k and persistent forecasting is equivalent to a
moving average when k = 1, it follows that TGNs cannot represent persistent forecasting.
Proceeding similarly to our proof for Theorem 1, we can show that, more generally, TGNs
cannot represent the class of autoregressive functions (proof in Appendix B.2):

Corollary 2 No formulation of TGN can represent an autoregressive model of order k ∈
N+ for any temporal graph with a bounded number of vertices.

2



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

2.1. TGNv2: Increasing the expressive power of TGNs

The main problem with TGN lies in the construction of the messages when an event occurs.
In TGN, for every interaction between nodes i and j, two messages are constructed:

mi(t) = msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)); mj(t) = msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t))

If we look closely, however, we can see that each message does not contain the source or
the destination of the message. Not only does this make it impossible for the memory
vectors to have an imprint of past interactions, but this also renders TGNs to be invariant
to the identities of the senders and receivers of messages–a property that is undesirable for
dynamic node affinity prediction. To address this issue, we introduce TGNv2, where we
modify the message construction of TGNs to include source-target identification:

mi(t) = msgs(si(t
−), sj(t

−), ϕt(∆t), eij(t), ϕn(i), ϕn(j))

mj(t) = msgd(sj(t
−), si(t

−), ϕt(∆t), eij(t), ϕn(j), ϕn(i))

Here, we map all nodes to an arbitrary, but fixed node index, and ϕn ∈ R → Rd is an encoder
function for node indices, similar to ϕt. Incoming nodes that have not been encountered
before are assigned to fresh, unused node indices as the graph evolves. This modification is
a way to break the permutation-invariance of TGN, which is necessary to compute moving
averages and autoregressive models. We are now able to prove:

Theorem 3 There exists a formulation of TGNv2 that can represent persistent forecasting,
moving average of order k ∈ N+, or any autoregressive model of order k ∈ N+ for any
temporal graph with a bounded number of vertices.

Our proof of Theorem 3 (Appendix B.3) leverages the existence of the node identification
to ‘index’ into the memory vector to store information. From this, it follows that TGNv2
is strictly more expressive than TGN, as TGN is a special case of TGNv2.

3. Experiments

Table 1 shows our experimental results on the TGB benchmark. The top 3 rows are simple
heuristics over ground-truth labels / ground-truth messages. ‘Persistent Frcst (L)’ and
‘Moving Average (L)’ refer to persistent forecasting and moving average over ground-truth
labels respectively; while ‘Moving Avg (M)’ is a moving average over messages. The rest of
the rows correspond to TG models. We describe the experimental details in Appendix C.

Evidently from Table 1, Moving Average (M) is a competitive method that outperforms
all TG models. TGN (tuned) denotes the TGN that we trained using the same set of
hyperparameters for TGNv2. Though TGN enjoys a performance boost with this set of
hyperparameters, TGNv2 significantly outperforms TGN and all TG models on all datasets.
Further, we can see that TGNv2 performs comparably to Moving Avg (M) on tgbn-trade,

tgbn-genre, tgbn-reddit while TGN is beaten by Moving Avg (M) on all datasets.

3



Extended Abstract Track

Table 1: Main results. † are results obtained from Huang et al. (2023), while ‡ are obtained
from Yu (2023). TGNv2 outperforms all current TG models by a large margin.

.

Method
tgbn-trade tgbn-genre tgbn-reddit tgbn-token

NDCG @ 10 ↑ NDCG @ 10 ↑ NDCG @ 10 ↑ NDCG @ 10 ↑
Validation Test Validation Test Validation Test Validation Test

Persistent Frcst (L)† 0.860 0.855 0.350 0.357 0.380 0.369 0.403 0.430

Moving Avg (L)† 0.841 0.823 0.499 0.509 0.574 0.559 0.491 0.508
Moving Avg (M) 0.793 0.777 0.478 0.472 0.499 0.481 0.402 0.415

JODIE‡ 0.394±0.05 0.374±0.09 0.358±0.03 0.350±0.04 0.345±0.02 0.314±0.01

TGAT‡ 0.395±0.14 0.375±0.07 0.360±0.04 0.352±0.03 0.345±0.01 0.314±0.01

CAWN‡ 0.393±0.07 0.374±0.09

TCL‡ 0.394±0.11 0.375±0.09 0.362±0.04 0.354±0.02 0.347±0.01 0.314±0.01

GraphMixer‡ 0.394±0.17 0.375±0.11 0.361±0.04 0.352±0.03 0.347±0.01 0.314±0.01

DyGFormer‡ 0.408±0.58 0.388±0.64 0.371±0.06 0.365±0.20 0.348±0.02 0.316±0.01

DyRep† 0.394±0.001 0.374±0.001 0.357±0.001 0.351±0.001 0.344±0.001 0.312±0.001 0.151±0.006 0.141±0.006

TGN† 0.395±0.002 0.374±0.001 0.403±0.010 0.367±0.058 0.379± 0.004 0.315± 0.020 0.189±0.005 0.169±0.006

TGN (tuned) 0.445±0.009 0.409±0.005 0.443±0.002 0.423±0.007 0.482±0.007 0.408±0.006 0.251±0.000 0.200±0.005

TGNv2 (ours) 0.807± 0.006 0.735± 0.006 0.481± 0.001 0.469± 0.002 0.544± 0.000 0.507±0.002 0.321± 0.001 0.294± 0.001

4. Related Work

We believe this work is the first to address the limitations of TG models in dynamic node
affinity prediction. Huang et al. (2023) were the first to point out this problem, highlighting
that TGN and DyRep (Trivedi et al., 2018) are outperformed by heuristics over ground-truth
labels. Yu (2023) extended this work and found that a suite of other TG models (JODIE
(Kumar et al., 2019), TGAT (Xu et al., 2020), CAWN (Wang et al., 2022), TCL (Wang et al.,
2021), GraphMixer (Cong et al., 2023), and DyGFormer (Yu et al., 2023)) all underperform
in dynamic node affinity prediction. Despite still lagging behind heuristics over ground-
truth labels, TGNv2 significantly outperforms all of the methods above, constituting what
we believe to be the first positive result in improving TG models for dynamic node
affinity prediction. Our method of augmenting TGNs with source-target identification to
increase expressivity is most similar to the work of Sato et al. (2019), where they increased
the expressivity of static GNNs via port numbering. Relatedly, other works demonstrated
that breaking the permutation-invariance of static GNNs (e.g. by using RNNs to aggregate
messages) led to empirical benefits (Xu and Veličković, 2024; Hamilton et al., 2018).

5. Conclusion

In this paper, we proposed to augment TGN with source-target identification. We proved
that TGNv2 is strictly more expressive than TGN and consequently showed that TGNv2
achieves significantly higher performance than current TG models across all dynamic node
affinity prediction datasets from TGB. In the future, we would like to close the remaining
empirical gap between TGNv2 and the heuristics approaches. We believe this is because
we formulated our message aggregator to output the last message, which was necessary to
compare our results fairly with prior TGN experiments (Appendix C). To address this, we
hope to explore more expressive aggregation functions. Moreover, we would like to further
develop our work by studying TGNv2 on other TG tasks, such as dynamic link prediction.

4



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

References

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong,
and Mehrdad Mahdavi. Do we really need complicated model architectures for temporal
networks?, 2023. URL https://arxiv.org/abs/2302.11636.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs
for predicting social events. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, page 1007–1016, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:
10.1145/3292500.3330919. URL https://doi.org/10.1145/3292500.3330919.

ZhengZhao Feng, Rui Wang, TianXing Wang, Mingli Song, Sai Wu, and Shuibing He. A
comprehensive survey of dynamic graph neural networks: Models, frameworks, bench-
marks, experiments and challenges, 2024. URL https://arxiv.org/abs/2405.00476.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based
spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):922–929, Jul. 2019. doi:
10.1609/aaai.v33i01.3301922. URL https://ojs.aaai.org/index.php/AAAI/article/

view/3881.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs, 2018. URL https://arxiv.org/abs/1706.02216.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu,
Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh
Rabbany. Temporal graph benchmark for machine learning on temporal graphs, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
URL https://arxiv.org/abs/1412.6980.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19. ACM, July 2019. doi:
10.1145/3292500.3330895. URL http://dx.doi.org/10.1145/3292500.3330895.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks, 2021. URL https://arxiv.org/abs/2010.

03409.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs, 2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W. Battaglia. Learning to simulate complex physics with graph networks, 2020.
URL https://arxiv.org/abs/2002.09405.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
networks for combinatorial problems, 2019. URL https://arxiv.org/abs/1905.10261.

5

https://arxiv.org/abs/2302.11636
https://doi.org/10.1145/3292500.3330919
https://arxiv.org/abs/2405.00476
https://ojs.aaai.org/index.php/AAAI/article/view/3881
https://ojs.aaai.org/index.php/AAAI/article/view/3881
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1145/3292500.3330895
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/1905.10261


Extended Abstract Track
Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun.

Masked label prediction: Unified message passing model for semi-supervised classifica-
tion, 2021. URL https://arxiv.org/abs/2009.03509.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of
dynamic networks using dynamic graph neural networks: A survey. IEEE Access, 9:
79143–79168, 2021. ISSN 2169-3536. doi: 10.1109/access.2021.3082932. URL http:

//dx.doi.org/10.1109/ACCESS.2021.3082932.

Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang.
Session-based social recommendation via dynamic graph attention networks. In Pro-
ceedings of the Twelfth ACM International Conference on Web Search and Data Min-
ing, WSDM ’19. ACM, January 2019. doi: 10.1145/3289600.3290989. URL http:

//dx.doi.org/10.1145/3289600.3290989.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representa-
tion learning over dynamic graphs, 2018.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning, 2021. URL https://arxiv.org/abs/2105.07944.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive rep-
resentation learning in temporal networks via causal anonymous walks, 2022. URL
https://arxiv.org/abs/2101.05974.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs, 2020.

Kaijia Xu and Petar Veličković. Recurrent aggregators in neural algorithmic reasoning,
2024. URL https://arxiv.org/abs/2409.07154.

Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen Kong.
Dynamic network embedding survey, 2021. URL https://arxiv.org/abs/2103.15447.

Le Yu. An empirical evaluation of temporal graph benchmark, 2023. URL https://arxiv.

org/abs/2307.12510.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning:
New architecture and unified library, 2023. URL https://arxiv.org/abs/2303.13047.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions
on Intelligent Transportation Systems, 21(9):3848–3858, September 2020. ISSN 1558-
0016. doi: 10.1109/tits.2019.2935152. URL http://dx.doi.org/10.1109/TITS.2019.

2935152.

6

https://arxiv.org/abs/2009.03509
http://dx.doi.org/10.1109/ACCESS.2021.3082932
http://dx.doi.org/10.1109/ACCESS.2021.3082932
http://dx.doi.org/10.1145/3289600.3290989
http://dx.doi.org/10.1145/3289600.3290989
https://arxiv.org/abs/2105.07944
https://arxiv.org/abs/2101.05974
https://arxiv.org/abs/2409.07154
https://arxiv.org/abs/2103.15447
https://arxiv.org/abs/2307.12510
https://arxiv.org/abs/2307.12510
https://arxiv.org/abs/2303.13047
http://dx.doi.org/10.1109/TITS.2019.2935152
http://dx.doi.org/10.1109/TITS.2019.2935152


Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

Appendix A. TGN Recap

For the reader’s convenience, we restate the core modules of TGN. For a more thorough
explanation of each module, we refer the reader to the original paper (Rossi et al., 2020).

Message Function. For each interaction between i and j, we construct two messages
msgs and msgd:

mi(t) = msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)); mj(t) = msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t))

We can also opt to construct node messages if node events exist:

mi(t) = msgn(si(t
−), t,vi(t))

Message Aggregator.

m̄i(t) = agg(mi(t1), ...,mi(tb))

Memory Updater.

si(t) = mem(m̄i(t), si(t
−)))

Embedding

zi(t) = g
({{

h(si(t), sj(t), eij ,vi(t),vj(t)) : j ∈ NL
i ([0, t])

}})
Here, h is a learnable function, g is a permutation-invariant function such as a sum or mean,
and L corresponds to the number of layers used for temporal message passing. We note
that our formulation of the embedding layer is a more general version than in the TGN
paper, and we can recover the original formulation by setting g to be a sum.

Appendix B. Proofs

B.1. Proof for Theorem 1

Theorem 1 No formulation of TGN can represent a moving average of order k ∈ N+ for
any temporal graph with a bounded number of vertices.

Proof The main idea of the proof is that TGNs are unable to distinguish nodes whose
messages are identical in every form but have different senders and/or recipients. To show
this, we construct a temporal graph G with 3 nodes (Node 1, 2, and 3) and ‘flip’ it in such
a way to yield a G′ such that Node 1 in G′ is sending different messages when compared
to Node 1 in G but is indistinguishable from Node 1 in G from the point of view of TGNs
(Figure 1).

We proceed by way of contradiction. Assume that there exists a particular formulation
of TGN that can implement a moving average of order k for any temporal graph with a
bounded number of vertices. We initialise all memory vectors to be the zero vector, as per
TGN’s original formulation. Now, consider the following sequence of events that implicitly
define the temporal graph G:

7



Extended Abstract Track

Figure 1: Graphs G and G′. Clearly Node 1 in G and G′ are sending different sequences of
messages, but TGNs are unable to distinguish them.

1. Node 1 sends Node 2 a series of n events with features α1, . . . , αn at timestamps
t1, . . . , tn.

2. Node 1 sends Node 3 a series of m events with features β1, . . . , βm at timestamps
tn+1, . . . , tn+m.

where t1 < · · · < tn < tn+1 < · · · < tn+m, n ≥ k, and m ≥ k. Let ᾱ =
αn−k+1+···+αn

k ,
the moving average of order k of α1, ..., αn. Similarly, define β̄ to be the moving average of
order k of β1, ..., βm. Suppose we compute Node 1’s embedding at time tT where tT > tn+m.
We assume that no node updates are done, and all v1(t) = v2(t) = v3(t) for all t. Node 1
receives n messages from its interactions with Node 2:

m1(ti) = msgs(0,0, ti, αi) ∀i ∈ [1, . . . , n]

Similarly, Node 1 receives m messages from its interactions with Node 3:

m1(tn+i) = msgs(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

Node 1 then aggregates the messages it receives and updates its memory:

m̃1(tT ) = agg(m1(t1), . . . ,m1(tn+m))

s1(tT ) = mem(m̃1(tT ),0)

We can do the same set of calculations for Node 2 and Node 3:

m2(ti) = msgd(0,0, ti, αi) ∀i ∈ [1, . . . , n]

m3(tn+i) = msgd(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

m̃2(tT ) = agg(m2(t1), . . . ,m2(tn))

m̃3(tT ) = agg(m3(tn+1), . . . ,m3(tn+m))

s2(tT ) = mem(m̃2(tT ),0)

s3(tT ) = mem(m̃3(tT ),0)

8



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

Then, as we have assumed no node events have occurred, and all vi(tT ) are the same, then
we can ignore them during the embedding computation:

z1(tT ) = g
({{

h(s1(tT ), s2(tT ), αi) : i ∈ [1, . . . n]
}}

∪
{{

h(s1(tT ), s3(tT ), βi) : i ∈ [1, . . .m]
}})

= [0, ᾱ, β̄]T

as per our assumption. Consider now the flipped temporal graph G′ with events:

1. Node 1 sends Node 3 a series of n events with features α1, . . . , αn at timestamps
t1, . . . , tn.

2. Node 1 sends Node 2 a series of m events with features β1, . . . , βm at timestamps
tn+1, . . . , tn+m.

where t1 < · · · < tn < tn+1 < · · · < tn+m, n ≥ k, m ≥ k as before. Suppose we are again
to compute the node embeddings at time tT > tn+m. Node 1 receives n messages from its
interactions with Node 3:

m′
1(ti) = msgs(0,0, ti, αi) ∀i ∈ [1, . . . , n]

Node 1 receives m messages from its interactions with Node 2:

m′
1(ti) = msgs(0,0, tn+i, βi) ∀i ∈ [1, . . . ,m]

But observe that Node 1 receives the same set of messages as it did in G. Therefore, s′1(tT )
must be equal to s1(tT ):

m̃′
1(tT ) = agg(m′

1(t1), . . . ,m
′
1(tn+m))

= agg(m1(t1), . . . ,m1(tn+m))

= m̃1(tT )

s′1(tT ) = mem(m̃′
1(tT ),0)

= mem(m̃1(tT ),0)

= s1(tT )

Further, we can see that Node 3 in G′ receives the same set of messages as Node 2 in G,
and Node 2 in G′ receives the same set of messages as Node 3 in G. Following the same

9



Extended Abstract Track
reasoning, we can conclude that:

m̃′
2(tT ) = agg(m′

2(tn+1), . . . ,m
′
2(tn+m))

= agg(m3(tn+1), . . . ,m3(tn+m))

= m̃3(tT )

s′2(tT ) = mem(m̃′
2(tT ),0)

= mem(m̃3(tT ),0)

= s3(tT )

m̃′
3(tT ) = agg(m′

3(t1), . . . ,m
′
3(tn))

= agg(m2(t1), . . . ,m2(tn))

= m̃2(tT )

s′3(tT ) = mem(m̃′
3(tT ),0)

= mem(m̃2(tT ),0)

= s2(tT )

Therefore:

z′1(tT ) = g
({{

h(s′1(tT ), s
′
3(tT ), αi) : i ∈ [1, . . . n]

}}
∪
{{

h(s′1(tT ), s
′
2(tT ), βi) : i ∈ [1, . . .m]

}})
= g

({{
h(s1(tT ), s2(tT ), αi) : i ∈ [1, . . . n]

}}
∪
{{

h(s1(tT ), s3(tT ), βi) : i ∈ [1, . . .m]
}})

= z1(tT )

= [0, ᾱ, β̄]T

which is a contradiction, as a moving average of order k would’ve computed [0, β̄, ᾱ]T for
G′.

B.2. Proof for Corollary 2

Corollary 2 No formulation of TGN can represent an autoregressive model of order k ∈
N+ for any temporal graph with a bounded number of vertices.

Proof Our proof for Theorem 2 proceeds very similarly to Theorem 1. Notice that in our
proof of Theorem 1, we did not make use of the fact that ᾱ and β̄ are moving averages.
Therefore, if our auto-regressive model has weights w1, . . . , wk, then we can define ᾱ and β̄
to be:

ᾱ =
k∑

i=1

wiαn−i

β̄ =

k∑
i=1

wiβn−i

and consequently proceeding in the same manner as we did in Theorem 1.

10



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

B.3. Proof for Theorem 3

Theorem 3 There exists a formulation of TGNv2 that can represent persistent forecasting,
moving average of order k ∈ N+, or any autoregressive model of order k ∈ N+ for any
temporal graph with a bounded number of vertices.

Proof We first prove the theorem for the case of moving averages of order k, and extend
that to apply to persistent forecasting and autoregressive models. Let the maximum number
of nodes encountered in the temporal graph be n, and assign each node an identifier such
that each node is uniquely identified by an i ∈ [0, . . . , n − 1]. We initialise all memory
vectors si to be 0 ∈ Rnk.

Next, denote e
(l)
ij be the feature of the l-th message that i sends to j, and let M(i, j, t)

return the index of the most recent message that i sent to j at time t. We assume that
the batch size is 1, which means that as soon as a message is sent, we update the memory
vectors. Further, for the time being, we ignore the formulation of msgd, and assume that
all the messages received by the aggregator are messages constructed by msgs.

Our goal is to find a formulation of TGNv2 such that, for each timestamp t, it computes

zi(t)[j] =
1
k

∑k−1
x=0 e

(M(i,j,t)−x)
ij . We assume that the moving average is defined for all values

of t by letting e
(l)
ij = 0 for all negative l. We now concretely define the formulation of

TGNv2, and subsequently show that it computes the moving average. Now, suppose some
node i sends j a message at time t. Let msgs be formulated as:

msgs(si(t
−), sj(t

−), ϕt(∆t), eij(t), ϕn(i), ϕn(j)) = [eij(t), j]

i.e. msgs simply outputs a 2-element vector with the feature of the event message and the
index of the destination node. Since our batch size is 1, the aggregator only receives at
most one message. We let the aggregator be the identity function. The main idea of the
proof is in the formulation of the memory module, which takes advantage of the node index
of the destination to ‘store’ the newest feature message between i and j.

We introduce some machinery to aid our formulation. Consider a block matrix B ∈
Rnk×nk with n matrices B1, . . . ,Bn ∈ Rk×k in its diagonal:

B =

B1 . . . 0
...

. . .
...

0 . . . Bn


Define the block-permutation matrix P ∈ Rnk×nk:

P =


0 0 . . . I
I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 . . . I 0


11



Extended Abstract Track
where I is the Rk×k identity matrix. Observe that PBPT cyclically shifts the order of
B1, . . . ,Bn in B by one:

PBPT =


Bn 0 . . . 0
0 B1 . . . 0
...

...
. . .

...
0 . . . 0 Bn−1


Similarly, define the permutation matrix Q that analogously shifts the elements of a vector
cyclically by 1:

Q =


0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 1 0


In order to compute the moving average, then each time we receive a message, we need

to ‘make room’ in our memory vector to store the message. We introduce the shift matrix
S, which is a k × k matrix that is obtained by taking the (k − 1)× (k − 1) identity matrix
and sufficiently padding the top row and rightmost column with zeroes which, when applied
to a vector v ∈ Rk, keeps the top k − 1 elements and discards the last element:

S =


0 0 . . . 0 0
1 0 . . . 0 0
...

. . .
. . .

...
...

0 0 . . . 1 0


Define the generator block matrix X ∈ Rnk×nk that has the same form as B and consists
of n matrices B1, . . . ,Bn, but with B1 = S and all other Bi = I :

X =


S 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 . . . 0 I


Similarly, define the generator vector y ∈ Rnk = [1, 0, . . . , 0]T . Next, define f(j) =
(P)jX(PT )j , which cyclically shifts the block matrices in X a total number of j times,
and p(j) = Qjy, which cyclically shifts the elements of y a total number of j times. Now,
let the memory module be:

si(t) = mem(m̄i(t), si(t
−))

= mem([eij(t), j], si(t
−))

= f(j) · si(t−)) + p(j) · eij(t)

12



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

It is quite easy to see, via a straightforward induction, that at every timestamp t, si(t) stores
the k most recent messages sent to j in the ‘subarray’ si(t)[jk : jk + k − 1]. Consequently,
making zi(t) compute the moving average is straightforward. Define the aggregator matrix
A ∈ Rn×nk to be:

A[m,n] =

{
1
k if mk ≤ n ≤ mk + k − 1

0 otherwise

and let our embedding layer be defined as:

zi(t) = g({{h(si(t), sj(t), eij ,vi(t),vj(t)) : j ∈ NL
i ([0, t]}})

=
1

|NL
i ([0, t]|

|NL
i ([0,t]|∑
j=0

A · si(t)

= A · si(t)

which is the moving average of order k, as multiplyingA with si(t) has the effect of summing
the k most recent messages for each node and multiplying the sum by 1

k . From this, we
can see that the theorem holds for persistent forecasting as persistent forecasting is moving
average with k = 1. Subsequently, we can adapt our proof above to hold for autoregressive
models of any order k by formulating the aggregator matrix A to have the autoregressive
weights wk, . . . , w1 in entries where 1 is present.

In our constructions above, we assumed that our batch size is 1 and we ignored the
fact that nodes are receiving messages from msgd. To adapt the proof for an arbitrary
batch size, we can define the aggregator module to concatenate all incoming messages, and
then during the memory update, we ‘unpack’ this concatenation and apply our logic above
for each message. Finally, to handle messages from msgd, we can expand the size of the
message vector by 1 to include a ‘tag’ that is nonzero if and only if the message originates
from msgd. Then, the aggregator module can drop messages from msgd by inspecting this
tag, leaving us with messages from msgs – which we have shown how to handle.

Appendix C. Experiment Details

The code to reproduce our experiments can be found at https://anonymous.4open.science/
r/TGNv2-submission-neurreps-08D5.

For both TGN and TGNv2, we utilise the same choices of core modules where applicable
and use the same hyperparameters in order to make the results as comparable as possible.
We repeat each experiment run three times with three different random seeds, each time
picking the best-performing model on the validation set, and reporting the mean and stan-
dard deviation NDCG @ 10 on both the validation and test set. For our experiments, our
choice of core module largely follows the choices made in TGB’s experiments with TGN
(Huang et al., 2023) for dynamic node affinity prediction:

13

https://anonymous.4open.science/r/TGNv2-submission-neurreps-08D5
https://anonymous.4open.science/r/TGNv2-submission-neurreps-08D5


Extended Abstract Track
Message Function. Our message function concatenates its inputs. For example, in the
case of TGN:

msgs(si(t
−), sj(t

−), ϕ(∆t), eij(t)) = [si(t
−) ◦ sj(t−) ◦ ϕ(∆t) ◦ eij(t)]T

msgd(sj(t
−), si(t

−), ϕ(∆t), eij(t)) = [sj(t
−) ◦ si(t−) ◦ ϕ(∆t) ◦ eij(t)]T

where ◦ is a concatenation operator. Since there are no node events in the TGB dataset,
we chose to ignore formulating the message function for node events.

Message Aggregator. We set the message aggregator to take the last message in a
batch:

m̄i(t) = agg(mi(t1), ...,mi(tb))

= mi(tb)

Memory Updater. We set the memory updater to be a GRU:

si(t) = mem(m̄i(t), si(t
−)))

= GRU(m̄i(t), si(t
−)))

where si ∈ Rdmemory .

Embedding We set the embedding module to be one layer of TransformerConv (Shi
et al., 2021) with 2 heads and a dropout value of 0.1. For efficiency, we only use the last x
neighbours for temporal message passing. We describe the value of x for each experiment
in Table 2. We set zi(t) to have a dimension of dembedding.

Decoder The decoder takes in the embedding for each node and outputs the node affini-
ties for all other nodes. For our decoder, we chose an MLP with 2 layers + ReLU. Both
layers have dimensionality ddecoder.

Time / Node Encoder We set ϕt(t) = cos(wt·t) and ϕn(i) = cos(wn·i) where wt ∈ Rdtime

and wn ∈ Rdnode .

Hyperparameters For moving average over the ground-truth labels (Moving Average
(L)), we set k = 7. For moving average over messages (Moving Average (M)), we set
k = 2048 for tgbn-trade, tgbn-genre, tgbn-reddit, and k = 512 for tgbn-token due to
memory issues. We use a constant learning rate schedule for all experiments, except for
tgbn-trade, where we decay the learning rate by 0.5 every 250 epochs. We use the Adam
optimiser (Kingma and Ba, 2017) to train our models. We set a global hidden dimension
d, that is used in all places where we need to select a dimension, i.e. d = dmemory =
dembedding = ddecoder = dtime = dnode. The hyperparameters that we chose can be found in
Table 2.

14



Extended Abstract Track
Enhancing the Expressivity of TGNs through Source-Target Identification

Table 2: Hyperparameters for TGB experiments, for both TGN and TGNv2.

tgbn-trade tgbn-genre tgbn-reddit tgbn-token

Learning Rate 1e-3 1e-4 1e-4 1e-4
Batch Size 200 200 200 200
Epochs 750 50 50 50

d 784 784 784 1024
No. of temporal neighbours x 25 30 30 10

15


	Introduction
	The Hidden Limitation of Temporal Graph Networks
	TGNv2: Increasing the expressive power of TGNs

	Experiments
	Related Work
	Conclusion
	TGN Recap
	Proofs
	Proof for Theorem 1
	Proof for Corollary 2
	Proof for Theorem 3

	Experiment Details

