
Stabilizing Policy Gradients for Stochastic Differential Equations
via Consistency with Perturbation Process

Xiangxin Zhou 1 2 Liang Wang 1 2 Yichi Zhou 3

Abstract
Considering generating samples with high re-
wards, we focus on optimizing deep neural net-
works parameterized stochastic differential equa-
tions (SDEs), the advanced generative models
with high expressiveness, with policy gradient,
the leading algorithm in reinforcement learning.
Nevertheless, when applying policy gradients to
SDEs, since the policy gradient is estimated on a
finite set of trajectories, it can be ill-defined, and
the policy behavior in data-scarce regions may
be uncontrolled. This challenge compromises the
stability of policy gradients and negatively im-
pacts sample complexity. To address these issues,
we propose constraining the SDE to be consistent
with its associated perturbation process. Since the
perturbation process covers the entire space and
is easy to sample, we can mitigate the aforemen-
tioned problems. Our framework offers a general
approach allowing for a versatile selection of pol-
icy gradient methods to effectively and efficiently
train SDEs. We evaluate our algorithm on the
task of structure-based drug design and optimize
the binding affinity of generated ligand molecules.
Our method achieves the best Vina score (−9.07)
on the CrossDocked2020 dataset.

1 Introduction
Deep neural networks parameterized stochastic differential
equations (SDEs) have garnered significant interest within
the machine learning community, owing to their robust the-
oretical underpinnings and exceptional expressiveness. Re-
cently, SDEs have taken center stage in generative modeling
(Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b),

1School of Artificial Intelligence, University of Chinese
Academy of Sciences 2New Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of Sciences
(CASIA) 3ByteDance Research. Correspondence to: Yichi Zhou
<zhouyichi.123@bytedance.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

𝑡 = 0 𝑡 = 1

Forward SDE (Perturbation)

Backward SDE (Policy)

𝑅(𝑥01)
𝑅(𝑥0𝟐)

𝑅(𝑥0𝟑)
𝑅(𝑥0𝟒)

𝑅(𝑥01)
𝑅(𝑥0𝟐)

𝑅(𝑥0𝟑)
𝑅(𝑥0𝟒)

ill-defined

well-defined

Figure 1. Illustration of our motivation and the advantages of our
method. Top: Trajectories sampled by SDE-based policy. The
terminal states (i.e., generated samples at t = 0) are denoted
as x1

0, x
2
0, x

3
0, x

4
0. The reward function is denoted as R(·). A

data-scarce region is marked with a red cross. Middle: Marginal
distributions of consistent forward and backward SDEs over time t.
Bottom: Trajectories perturbed from x1

0, x
2
0, x

3
0, x

4
0 via the for-

ward SDE. In vanilla SDE-based policy gradient methods (top),
due to substantial expense of computation and time required by
SDE simulation, the sampled trajectories and rewards are usually
sparse. Therefore, the policy gradients in data-scarce regions are
ill-defined, leading to instability. The consistency which can be
ensured via score matching allows us to correctly estimate the
policy gradients with sufficient data that can be efficiently sampled
from the forward SDE (i.e., perturbation).

with a myriad of applications ranging from image gener-
ation to molecule generation, and beyond (see Yang et al.
(2022) for a comprehensive survey). SDE generates samples
by simulating the following process from time 1 to 0:

dxt = πθ(xt, t)dt+ g(t)dω̄ (1)

1

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

where x0 is the generated sample, x1 is typically drawn
from N (0, I), πθ is the drift parameterized by a neural net-
work ϵθ, ω̄ is the reverse Wiener process, and g(t) is a scalar
function of time and known as diffusion coefficient. Genera-
tive modeling aims to approximate the data distribution and,
therefore, trains SDEs to maximize the likelihood. How-
ever, in many real-world applications, the objective is to
maximize a reward. For example, in structure-based drug
design (Anderson, 2003), our objective is usually to gener-
ate molecules with some desired properties, such as high
binding affinity (Du et al., 2016). In these cases, it is natural
to train SDEs with reinforcement learning (RL) (Sutton &
Barto, 2018; Black et al., 2023; Fan et al., 2023).
RL focuses on learning a policy that maximizes rewards
through interactions with a given environment. The fore-
most class of policy optimization algorithms in RL is the pol-
icy gradient method (Sutton & Barto, 2018), which refines
the policy network by following the gradient of expected
rewards with respect to the policy network parameters. Pol-
icy gradient algorithms have demonstrated efficiency and
effectiveness in a wide range of applications, such as control
systems, robotics, natural language processing, and game
playing, among others.
The SDE in Equation (1) can be interpreted as a Markov
Decision Process (MDP) (Black et al., 2023). Therefore, we
can directly apply policy gradient to training SDEs. How-
ever, in practice, policy gradients are typically estimated
using a limited set of sampled trajectories, which can lead
to two practical issues (please see Section 3 for detailed dis-
cussion): (a) Insufficient data in the vicinity of a trajectory
can result in an inaccurate estimation of the policy gradi-
ent. This ill-defined policy gradient may cause instability
during the training process; and (b) When the simulation
of the SDE in Equation (1) encounters data-scarce regions,
the policy in these regions may not be well-trained, lead-
ing to uncontrolled behavior and less efficient interactions
with the environment. These challenges have hindered the
application of policy gradients to SDEs.
Contribution: To address the aforementioned challenge,
we present a novel framework for training SDEs using pol-
icy gradient methods. The main idea behind our method is
to enforce the SDE in Equation (1) to be consistent with its
associated perturbation process (refer to Definition 4.1 for
details). Given that the perturbation process covers a wide
space and is easy to sample, we can resolve the aforemen-
tioned challenge, and further estimate the policy gradient in
a more stable and efficient way. This consistency can be eas-
ily maintained using techniques derived from diffusion mod-
els. Moreover, we introduce an innovative actor-critic policy
gradient algorithm tailored for consistent SDEs. We empiri-
cally validate our algorithm on structure-based drug design
(SBDD, Anderson, 2003), and optimizes the binding affin-
ity, one primary objective in SBDD, of generated molecules.

Our algorithm achieves state-of-the-art Vina scores (−9.07)
on the CrossDocked2020 dataset (Francoeur et al., 2020).
Additionally, we have demonstrated the effectiveness and
efficiency of our method on text-to-image generation task.
This reveals the generalizability of our method and shows
its great potential in various real-world applications.

2 Preliminary
We discuss preliminary information in this section includ-
ing reinforcement learning, SDE-based generative models,
and the approach to modeling SDEs as a Markov Decision
Process. Extended preliminaries about SDEs and diffusion
models can be found in Appendix A.

2.1 Reinforcement Learning and Policy Gradients
Reinforcement learning uses the Markov Decision Process
(MDP) to model the decision-making process. An MDP
is a tuple (S,A, T , R, P̃) where S is the state space, A
is the action space, T : S × A → ∆(S) is a transition
kernel where ∆(S) denote the set of distributions over S,
R : S × A → R is a reward function and P̃ is the initial
state distribution. Without loss of generality, we assume the
MDP terminates after N steps.
The RL agent takes actions sampled from a policy π, which
is a mapping from S × [N] to the distribution over A,
where [N] := 1, . . . , N . The reward of π is defined as
R(π) =

∑N
i=1

∑
s Pi(s|π)Ea∼π(s,i)R(s, a) where Pi(s|π)

is the probability of arriving in s at time step i with policy
π. RL aims to learn a policy πθ, parameterized by θ, to
maximize the reward.
Policy gradient is the leading class of algorithms to train
policy networks. Intuitively, policy gradient optimizes the
policy network by following the gradient of the expected
reward regarding the policy parameters. The policy gradient
is typically estimated on a finite collection of paths (i.e., tra-
jectories) which are the past history of interactions between
the policy and the environment. There are a lot of ways to es-
timate the policy gradient, including REINFORCE (Sutton
et al., 1999), PPO (Schulman et al., 2017), DDPG (Lillicrap
et al., 2015) and so on. The choice of policy gradients is
independent of our method.
Generally speaking, there are two steps to estimate the
policy gradient: (1) collecting a dataset of paths D =
{Pathj}nj=1, where Pathj = {(sji , a

j
i , r

j
i := R(sji , a

j
i)), i =

1, . . . , N} denotes the j-th path. (2) estimating policy gra-
dient on D. Usually, D should be sampled from the latest
policy or be the collection of all past histories. For conve-
nience, let Di denote the data at time step i in D. As we
will discuss in Section 3, this way of constructing D turned
out to be less sample efficient for high-dimensional SDE
policy.
As for estimating the policy gradient, we consider two pop-
ular algorithms: REINFORCE, which allows us to get unbi-
ased estimation from samples, and DDPG, which directly

2

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

calculates policy gradient through back-propagation from
the critic. Many popular algorithms are developed upon RE-
INFORCE and DDPG. REINFORCE and DDPG calculate
policy gradients as follows:

• REINFORCE: REINFORCE updates model parame-
ters as:

θ ← θ + ηEj∼U([n])
i∼U([N])

(
∇θ log πθ(a

j
i |s

j
i , i)

N∑
i′=i

rji′

)
, (2)

where U(·) denote the uniform distribution. In prac-
tice, a critic network Qϕ(s

j
i , a

j
i , i) can be used to ap-

proximate
∑N

i′=i r
j
i′ .

• Deep deterministic policy gradient (DDPG): DDPG
trains the actor πθ as

θ ← θ + ηEj∼U([n])
i∼U([N])

∇θQϕ(s
j
i , a, i), (3)

where a ∼ πθ(·|sji , i) and the gradient from a to θ
is typically calculated by the reparameterization trick
(Schulman et al., 2015).

Let yji =
∑N

i′=i r
j
i′ , we train Qϕ by minimizing the loss:

L(ϕ) =
n∑

j=1

N∑
i=1

(yji −Qϕ(s
j
i , a

j
i , i))

2 (4)

The critic may also be trained by Bellman difference loss
(Bellman, 1966).

2.2 Generative Modeling via Stochastic Differential
Equations

Generative modeling aims to approximate an unknown dis-
tribution p0 given samples. Neural networks parameterized
by SDEs turned out to be a super powerful tool for genera-
tive modeling. The leading generative SDEs are known as
diffusion models. The core idea behind diffusion models is
that we can construct a forward process by injecting noise
into samples from p0 and directly learn the corresponding
backward generative SDE by maximum likelihood methods
like score matching. More specifically, for any distribution
p0, we can construct the forward process:

dx = f(x, t)dt+ g(t)dω, (5)

which induces the marginal distribution pt(x) at time t.
p1(x) is the prior distribution that is easy to sample from,
e.g., Gaussian. According to Anderson (1982), there is a
corresponding backward process.

dx = (f(x, t)− g2(t)∇x log pt(x))dt+ g(t)dω̄. (6)

Equations (5) and (6) share the same marginal distribution
and ∇x log pt(xt) is known as the score function (Song
et al., 2021b). And we can learn ϵθ(xt, t) to approximate
∇x log pt(xt) by minimizing the score-matching loss:

Lscore(θ) =Et∼U(0,1)Ex0∼q0(x0)Ext∼qt0(xt|x0)

∥ϵθ(xt, t)−∇xt log pt0(xt|x0)∥2, (7)

where qt denotes the marginal distribution of estimated
backward SDE induced by the model ϵθ in Equation (1)
at time t ∈ [0, 1]. And ptt′(xt|xt′) (resp. qtt′(xt|xt′))
denotes the conditional distribution of xt given xt′ in
forward (resp. estimated backward) SDE. In this case,
πθ(xt, t) := f(xt, t)− g2(t)ϵθ(xt, t).
Once ϵθ is fixed, generating samples can be done by using
solvers (Song et al., 2021a; Lu et al., 2022). The idea of
learning backward process from a given forward process is
further to ODEs using flow matching (Lipman et al., 2023).
Notably, the forward process will play a central role in our
method.

2.3 SDE as Markov Decision Process
We can consider the SDE as an MDP with infinitely small
time steps which is extended from Black et al. (2023). More
specifically, in the limit N → ∞, the discrete-time MDP
from time 0 to N becomes a continuous MDP from time
1 to 0 1. We map the SDE in Equation (1) to a continuous
MDP as:

st
∆
= xt, πθ(st, t)

∆
= f(x, t)− g2(t)ϵθ(xt, t),

ρ0
∆
= N (0, I), st−dt

∆
= πθ(xt, t)dt+ g(t)dω̄

R(st, at, t)
∆
=

{
0, if t > 0,

R(s0), if t = 0,

where st is the state, πθ(st, t) is the policy network (i.e., the
actor), ρ0 is initial state distribution, st−dt is the transition
kernel, and R(st, at, t) is the reward. Therefore, we may
directly apply existing policy gradients to SDEs. However,
as we will analyze in the next section, the naive application
of policy gradients will result in an unstable training process
and unsatisfactory sample complexity.

3 Challenge of applying Policy Gradient to
train SDEs

In this section, we take a close look at the practical issues
of directly applying policy gradient to train SDEs. These
issues are caused by the fact that we estimate the policy
gradient on a finite set of trajectories D, which result in
ill-defined and instable policy gradients. These challenges
motivate us to regularize the SDE around a perturbation
forward process and exploit the perturbation nature of the
forward process to stabilize the training process. For the
sake of simplicity, we focus on DDPG in this section,and
the analysis for the REINFORCE algorithm is similar.

3.1 Ill-defined Policy Gradient
According to chain rule, the policy gradient in Equa-
tion (3) is ∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t)∇θπθ(xt, t). Re-

1We let the time flow from 1 to 0 to make the notation consistent
with that in diffusion models.

3

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

101 102 103 104

Number of sampled trajectories

100

101

Ap
pr

ox
im

at
io

n
Er

ro
r o

f p
ol

icy
 g

ra
di

en
t

DDPG, dim=2
DiffAC, dim=2
DDPG, dim=8
DiffAC, dim=8
DDPG, dim=32
DiffAC, dim=32

Figure 2. Comparison on the prediction error of policy gradients
with respect to the number of trajectories under different settings
of dimensionality. We evaluate Ext∥∇xtQϕ(xt, πθ(xt, t), t) −
∇xtQϕ∗(xt, πθ(xt, t), t)∥ where ϕ∗ is trained on a large number
of trajectories and ϕ is trained on a small number of trajectories.
We can see the prediction error on policy gradient of our method is
much lower than that of DDPG. Please refer to appendix for more
details of this experiment.

call that Qϕ is trained by minimizing loss in Equa-
tion (4). Since we do not have any direct train-
ing signal on ∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t), the gradient
should be inferred from data around πθ(xt, t). There-
fore, when there is insufficient data in the vicinity of
(xt, πθ(xt, t), t), it is difficult to reliably estimate the gradi-
ent∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t). Hence, to obtain an accu-
rate estimation for ∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t), it is essen-
tial to gather more samples around the data. As the dimen-
sionality increases, the demand for data becomes greater,
leading to unsatisfactory sample complexity.
To see this, we present a toy example to describe the re-
lationship between the estimation error on policy gradient
and the number of sampled trajectories. We compare the
conventional DDPG against our method described in the
next section. We can see that given the same number of
sampled trajectories, our method provides a better policy
gradient estimation.

3.2 Uncontrolled Behavior in Data-scarce Region

If (xt, t) is distant from the data distribution, the behavior
of πθ(xt, t) may be uncontrolled, as the loss in Equation (3)
does not define the behavior of πθ(xt, t) in regions with low
data density. Training πθ solely on the limited collected
paths inevitably encounter sparse data areas, and the SDE
encounters these data-scarce regions. In such cases, the
policy selects actions indiscriminately, consequently dimin-
ishing the effectiveness of obtaining feedback signals from
the environment.
To give a better illustration, let’s consider a one-step MDP
in R2, in which the agent observes one state s, outputs an

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Axis

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
Ax

is

reward

1.0

0.8

0.6

0.4

0.2

va
lu

e

Figure 3. The reward of πθ(x1, 1) in different region. The policy
receives high reward in bright colored region. We can see that the
policy only works well on region close to training set.

action a and the MDP terminates. We suppose the reward is
−∥s+ a∥2. It is easy to see that the optimal policy should
always output −s. Consider the case that we only train
πθ(s, 1) with s such that each dimension is randomly sam-
pled from interval (1, 2), and remains the policy for other
regions untrained. We present the result in Figure 3. We
can see that the policy only works well on the data-intensive
area and poorly behaves in data-scarce areas. While this
example seems to be contrived, when the policy is a high-
dimensional SDE, it is inevitable that the simulation runs
into data-scarce regions. Therefore, the policy might have
uncontrolled behavior and further hurt the sample complex-
ity.

4 Method
To resolve the above challenge, we introduce a novel actor-
critic policy gradient algorithm which is specifically de-
signed for SDEs. The key is to constrain the SDE to be
consistent with its associated forward perturbation process.
We illustrate our motivation and the key factor of our method
in Figure 1. Recall that the process of estimating the policy
gradient consists of two stages: (1) generating a dataset
D ∼ πθ, and (2) estimating the policy gradient based on D.
We will discuss these two parts respectively.

4.1 Generating samples
As presented in Section 3, the challenges stem from the
fact that the policy gradient is estimated using a finite set
D ∼ πθ of sampled paths. Accurate estimation of the policy
gradient occurs only when D is relatively large, leading to
unsatisfactory sample complexity. Our key observation is
that by ensuring the SDE aligns with its associated pertur-
bation process, the policy gradient estimation can be made
more robust.

Definition 4.1 (Consistent SDE). An SDE is the associated

4

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Algorithm 1 DiffAC-v1
Input: Initialized actor ϵθ and critic Vϕ, reward function

R(·), D0 = ∅
Output: θ, ϕ

1: for each iteration do
2: Sample D0 ← {xj

0}nj=1 from Equation (1)
3: Train ϵθ by minimizing the score matching loss
4: Train Vϕ according to Equation (9)
5: for each iteration do
6: Calculate policy gradient PG(θ) as Equation (10)

or Equation (11)
7: θ ← θ + ηPG(θ)
8: end for
9: end for

forward perturbation process for the backward SDE in Equa-
tion (1) if and only if q0 = p0. Furthermore, if qt = pt for
all t ∈ [0, 1], then the forward SDE and backward SDE are
called consistent.

It is noteworthy that a backward SDE is consistent with
its associated forward SDE if and only if the score loss in
Equation (7) is minimized at ϵθ. More importantly, when
the backward SDE is consistent, we have a more robust and
efficient way to sample from qt and further estimate the
policy gradient more accurately.

Lemma 4.2. If the SDE defined by ϵθ is consistent, let xt ∼
pt0(xt|x0) where x0 ∼ q0(x0). Then, we have xt ∼ qt(xt).

Proof. The proof is straightforward. If the SDE is consis-
tent, we have∫

x0

q0(x0)pt0(xt|x0)dx0

=

∫
x0

p0(x0)pt0(xt|x0)dx0

=

∫
x0

p(xt, x0)dx0 = pt(xt) = qt(xt).

Generating D̃t for policy gradient estimation by per-
turbing D0: Considering the initial dataset D0 = {xj

0 ∼
q0(x0)}j=1,...,n, it is feasible to directly produce an arbitrar-
ily large set D̃t = {xj

t}j=1,...,N , where xj
t ∼ pt0(xt|x0)

for a given x0 ∈ D0 . Lemma 4.2 demonstrates that
xj
t ∼ qt(xt), thereby implying that it is possible to esti-

mate the policy gradient on samples perturbed from D0.
Intuitively, the construction of D̃t mitigates the practical
issues in Section 3 as follows: Firstly, it is evident that the
perturbation process encompasses the entire space, resulting
in a well-defined policy gradient. Although the samples
from D̃t are not entirely independent, Figure 2 indicates
that policy gradients estimated on D̃t exhibit accuracy when
n is comparatively small. Secondly, for consistent SDEs,

the distribution of training data is guaranteed to have the
same distribution. Therefore, the probability for a consistent
SDE to run into data-scarce region is relatively small.

4.2 Estimation of policy gradient
Given the process of generating samples mentioned above,
it is easy to extend the policy gradient in Equation (2) and
Equation (3). We consider the actor-critic framework, where
a critic is trained to predict the cumulative reward and the
actor is trained based on the reward signal provided by
the critic. We observe that with SDE policy, it is more
convenient to train the critic Vϕ(xt, t) to predict the reward
given xt rather than Qϕ(xt, at, t). Hence, we will focus on
the training of Vϕ instead. The combination of the actor
and critic training procedures, as well as the score-matching
loss and the construction of D̃t in Section 4.1, results in
our first actor-critic algorithm presented in Algorithm 1.
Since the forward perturbation process draws inspiration
from diffusion models, we name our algorithm Diffusion
Actor-Critic (DiffAC).
Critic Training: For any consistent SDE ϵθ, Vϕ∗(xt, t) =
Ex0∼q0t(x0|xt)R(x0) if and only if

ϕ∗ = argmin
ϕ

E t∼U(0,1)
x0∼q0(x0)

xt∼pt0(xt|x0)

(Vϕ(xt, t)−R(x0))
2. (8)

The derivation of Equation (8) is straightforward. Therefore,
to train the critic, we just need to perturb D0 to get D̃t and
minimize the loss in Equation (8), leading to:

(Critic loss):
1

n

n∑
j=1

(Vϕ(x
j
t , t)−R(xj

0))
2, (9)

where xj
t ∼ pt0(·|xj

0), x
j
0 ∈ D0, and R(xj

0) is the reward
of xj

0.
Actor Training: We now proceed to extend the REIN-
FORCE and DDPG algorithms to SDEs. Consider the sam-
ple x̄j

t , which is generated by simulating Equation (1) for an
infinitesimal time step dt starting from xj

t , and can be rep-
resented as x̄j

t−dt ∼ πθ(x
j
t , t)dt+ σtdω̄. Furthermore, let

Pθ(x̄t−dt|xt) denote the density of this sample. We have:
Theorem 4.3. For SDE policy, we can estimate the policy
gradient as:

SDE-REINFORCE :

PG(θ)← 1

n

n∑
j=1

∇θlogPθ(x̄
j
t−dt|x

j
t)Vϕ(x̄

j
t−dt, t−dt), (10)

SDE-DDPG :

PG(θ)← 1

n

n∑
j=1

∇θVϕ(x̄
j
t , t− dt), (11)

where xj
0 is sampled from D0, xj

t ∼ pt0(x
j
t |x

j
0), and

x̄j
t−dt ∼ Pθ(x̄

j
t−dt|x

j
t).

5

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Algorithm 2 DiffAC-v2
Input: Initialized ϵθ, ϵθ′ and critic Vϕ, reward function

R(·), D0 = ∅
Output: θ

1: for each iteration do
2: Sample {xj

0}nj=1 by simulating dxt = πθ(xt, t)dt+
σtdω̄

3: Sample D0 ← {xj
0}nj=1 from Equation (1)

4: Train Vϕ according to Equation (9)
5: Train ϵθ′ by score-matching in Equation (7)
6: for each iteration do
7: Update θ according to Equation (10) or Equa-

tion (11) along with Equation (13)
8: end for
9: end for

In practice, the infinitesimal time step can be replaced
by discrete time steps in solvers. We suppose that an
SDE solver simulates Equation (1) from a iterative proce-
dure: xτ−1 = ατ (xτ − βτπθ(xτ , tτ)) + ζτzτ where zτ ∼
N (0, I), τ = 1, . . . , T , tτ−1 < tτ with t0 = 0, tT = 0,
x1 ∼ N (0, I), ατ , βτ , ζτ are specified by solvers. Many
popular solvers for diffusion models fall into this formula-
tion, e.g., DDIM (Song et al., 2021a) and DDPM (Ho et al.,
2020). Similarly, we can replace t, xj

t , t − dt, and x̄j
t−dt

in Equations (10) and (11) with tτ , xτ , tτ−1, and xtτ−1 ,
respectively.

4.3 A Practical Implementation
In Algorithm 1, we first run score-matching to make sure ϵθ
is consistent, and then apply policy gradient to optimize the
reward. However, during the training step, the model may
rapidly forget the knowledge learned during score-matching,
which leads to frustrating inconsistency. Therefore, we
introduce an additional policy which is trained to maximize
reward under the regularization of score-matching policy to
alleviate this inconsistency. The regularization is:

DKL(ϵθ, ϵθ′ , D)=
1

|D|
∑
xt∈D

DKL(πθ(xt, t), πθ′(xt, t)). (12)

And we update our policy ϵθ as

θ ← θ + η1PG(θ)− η1η2∇θDKL(ϵθ, ϵθ′ , D), (13)

where ϵθ′ is trained on D0 via score matching, η1 is the
learning rate, and η2 is the regularization coefficient. Equa-
tion (13) leads to Algorithm 2. Moreover, we show that the
objective in Algorithm 2 also leads to the optimal policy.

Lemma 4.4. Let x∗
0 denote the optimal point, that is, for

any x′
0, R(x∗

0) ≥ R(x′
0). Let ϵ∗θ denote the consistent SDE

with q0 = δ(x∗
0). Then, ϵ∗θ is the minimizer of loss in Equa-

tion (13).

Proof. The proof is straight-forward as ϵ∗θ is the minimizer
for both terms in Equation (13).

In practice, with the regularization, the consistency is usu-
ally approximately but not exactly ensured. Thus we provide
a upper bound of the approximation error of the policy gradi-
ent estimation as the theoretical justification of our practical
method.

Theorem 4.5. Let PG(θ) be the unbiased policy gradient
estimated with only SDE policy q parameterized by ϵθ, and
P̃G(θ) be the approximated policy gradient estimated with
the perturbation process p whose consistent backward SDE
q̃ is parameterized by ϵθ′ . And the SDEs are discretized into
T time steps, i.e., {tτ}Tτ=0 with τ0 = 0 and τT = 1. Let
Mtτ := ∥∇θ log q(xtτ−1

|xtτ)R(x0)∥∞, we have

∥P̃G(θ)− PG(θ)∥ ≤
T∑

τ=1

Mtτ

·

√√√√2 ln 2

T−1∑
ν=0,ν ̸=τ−1

DKL
(
q̃(xtν |xtν+1

)
∥∥q(xtν |xtν+1

)
)

5 Related Work
Diffusion Models and Forward / Backward SDEs Dif-
fusion models (Song & Ermon, 2019; Song et al., 2021b;
Ho et al., 2020; Yang et al., 2022) have emerged as power-
ful tools in the field of generative models. Their primary
objective is to maximize the likelihood of data distribution.
To achieve this, Song et al. (2021b); Ho et al. (2020) con-
struct forward stochastic differential equations (SDEs) by
injecting noise and utilize their corresponding backward
SDEs for generating samples. These backward SDEs can be
efficiently trained using denoising score-matching (Vincent,
2011). SDEs exhibit a remarkable capability for model-
ing complex distributions and generating intricate images
(Rombach et al., 2022) and molecules (Guan et al., 2023).
This potential of SDEs inspires us to explore their use as the
foundation for policy networks.

RL with Diffusion Models Recently progress in RL has
identified diffusion models as a powerful tool in policy mod-
eling, due to its generative capability and standardized train-
ing process. In offline RL where we need to learn a policy
from a given dataset, researchers exploit diffusion models to
deal with heterogeneous datasets, generating in-distribution
strategies or modeling complex strategy distribution (Janner
et al., 2022; Wang et al., 2023; Ajay et al., 2023; Hansen-
Estruch et al., 2023; Lu et al., 2023). In online RL, where
we need to interact with an environment, Chen et al. (2023)
uses diffusion models to model multi-modal distribution for
exploration. Black et al. (2023); Fan et al. (2023) proposed
to fine-tune pretrained diffusion models with REINFORCE,
but they didn’t address the stability issue.

Structure-based Drug Design Structure-based drug de-
sign (SBDD, Anderson, 2003). aims to generate ligand
molecules given a protein binding site (i.e., protein pocket),

6

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Table 1. Summary of Vina Score of ligand molecules generated by all baselines and our method. Note that a smaller score is better. All
online algorithms are tested using the best checkpoint (denoted as Best Run) and the last checkpoint (denoted as Last Run), respectively.
The improvements (resp. deteriorations) compared with TargetDiff are higlighed in green (resp. red). The standard deviation is highlighted
in blue.

Method
Best Run Last Run

Avg. Med. Avg. Meg.

Reference -6.36 -6.46 - -
AR -5.75 ±1.39 -5.64 - -
Pocket2Mol -5.14 ±1.60 -4.70 - -
TargetDiff -5.45 ±2.46 -6.30 - -
EEGSDE-0.001 -5.66 ±2.78 (-0.20) -6.51 (-0.21) - -
EEGSDE-0.01 -6.40 ±2.61 (-0.95) -7.05 (-0.75) - -
EEGSDE-0.1 -6.53 ±3.08 (-1.08) -7.35 (-1.05) - -
EEGSDE-1 -3.30 ±1.59 (+2.15) -4.67 (+1.63) - -
Online EEGSDE-0.001 -7.17 ±1.86 (-1.72) -7.16 (-0.86) -6.50 ±2.47(-1.05) -6.61 (-0.31)
Online EEGSDE-0.01 -8.22 ±1.89 (-2.77) -8.06 (-1.76) -7.56 ±2.46 (-2.11) -7.51 (-1.21)
Online EEGSDE-0.1 -8.58 ±1.70 (-3.13) -8.52 (-2.22) -7.78 ±2.33 (-2.33) -7.78 (-1.48)
Online EEGSDE-1 -7.13 ±1.08 (-1.68) -7.28 (-0.98) -2.13 ±2.10 (+3.32) -4.29 (+2.01)
DiffAC -9.07 ±1.99 (-3.62) -9.04 (-2.74) -8.50 ±2.11 (-3.05) -8.38 (-2.08)

which is a key tool in drug discovery. The ligand molecules
are usually expected to have desired properties, such as
high binding affinity to the target protein. Luo et al. (2021);
Liu et al. (2022); Peng et al. (2022) proposed to generate
atoms (and bonds) of 3D ligands based on 3D protein pock-
ets in an auto-regressive way. More recently, Guan et al.
(2023); Lin et al. (2022); Schneuing et al. (2022) employed
SE(3)-equivariant diffusion models for SBDD. To design
molecules with desired properties (i.e., inverse design), Bao
et al. (2023) proposed equivariant energy-guided stochastic
differential equations (EEGSDE). We test our method on
SBDD and achieve superior performance than EEGSDE
and its stronger variants.

6 Experiments
We demonstrate the effectiveness of our methods on
structure-based drug design (SBDD, Anderson, 2003). Here
we apply our methods to promote the binding affinity of
ligand molecules generated by diffusion models. We also
provide experiment results in text-to-image generation task,
which shows the generalizability of our method. Please see
Appendix G for details.

6.1 Experimental Setup

Dataset Following the previous work (Luo et al., 2021;
Peng et al., 2022; Guan et al., 2023), we use the Cross-
Docked2020 dataset (Francoeur et al., 2020) for both train-
ing and optimization. We follow the same dataset pre-
processing and splitting procedure as Luo et al. (2021).
100, 000 pocket-ligand pairs are used for training, and 100
pockets are used for testing. The goal is to generate ligands
with high binding affinity towards the pockets in the test set.

0 5 10 15 20 25 30
Iterations

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

Online EEGSDE-0.001
Online EEGSDE-0.01
Online EEGSDE-0.1

DiffAC
TargetDiff

Figure 4. Optimization curves which show how average Vina Score
of generated ligand molecules changes over optimization iterations.

Baselines We implement and evaluate some baselines and
DiffAC: (1) AR (Luo et al., 2021). (2) Pocket2Mol (Peng
et al., 2022). (3) TargetDiff (Guan et al., 2023). (4)
EEGSDE (Bao et al., 2023). We implement the equivari-
ant energy guidance on TargetDiff. The energy function is
the same as the pre-trained critic that we have mentioned
above. {0.001, 0.01, 0.1, 1} are used as coefficients of en-
ergy guidance during sampling. (5) Online EEGSDE. To
better leverage interactions with the environment, we online
train the energy function as we do for DiffAC. Here we also
follow the setting about the number of optimization itera-

7

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Figure 5. Examples of generated ligands. Carbon atoms in ligand molecules by TargetDiff (Guan et al., 2023) and DiffAC are visualized
in green and cyan, respectively. Here we select some cases where TargetDiff easily generates unrealistic ligand molecules that clash with
protein surfaces physically which usually leads to extremely bad Vina scores. DiffAC can sample realistic ligand molecules with high
quality in these hard cases.

tions and the number of generated samples and updates of
the critic in each iteration. Similarly, {0.001, 0.01, 0.1, 1}
are also used was guidance coefficients. (5) We implement
DiffAC based in the framework of TargetDiff. The hyperpa-
rameters in our method are the same for all target pockets.
Refer to Appendix D for more implementation details. We
have not reported the results of DDPO (Black et al., 2023)
and DPOK (Fan et al., 2023) as they do not have satisfactory
performances in our evaluation.

Evaluation Designing molecules with desired properties
(i.e., molecular inverse design) is a fundamental and valu-
able task. Here we choose binding affinity as our target
due to its importance in structure-based drug design. We
employ AutoDock Vina (Eberhardt et al., 2021) to estimate
the binding affinity of pairs of the protein pockets and the
generated ligands, following the same setup as Luo et al.
(2021); Guan et al. (2023). Optimizing Vina Score is a
challenging task because not only the molecules themselves
but also their chemical and spatial interaction with the 3D
protein pockets need to be considered. We generate 100
ligand molecules across 100 pockets in the test set using
TargetDiff and EEGSDE. For online EEGSDE and DiffAC,
we first finish the online fine-tuning process on each pocket
separately and use the best and the last checkpoint to gen-
erated 100 ligand molecules, respectively. For all methods,
we collect all generated molecules across 100 test proteins
and report the mean and median of Vina Score.

6.2 Main Results
We evaluate all baselines and our method under the setting
introduced in Section 6.1. As Table 1 shows, our method
performs better than all other baselines. EEGSDE with

proper energy guidance coefficient can indeed improve the
property of generated molecules. And the online variants
of EEGSDE can further improve the performance, which
shows the benefits of online training the critic. Our method
can even outperform online EEGSDE with the best energy
guidance coefient by a large margin and achieve the best
Avg. Vina Score over all methods for structure-based drug
design, which demonstrates the effectiveness of DiffAC. We
visualize examples of ligand molecules generated by Target-
Diff and DiffAC on some hard cases in Figure 5. As Figure 4
shows, DiffAC converges faster than all other online opti-
mization algorithms, which demonstrates the superiority
of our method in terms of sample complexity and training
efficiency. We also provide the optimization curves of each
protein pocket in Appendix E. The experiments has revealed
the great potential of our method in important real-world
applications, such as drug discovery.
Besides, we conduct ablation studies on the effects of dif-
ferent regularization coefficients on optimization. Please
refer to Appendix F for the details. The results show that
a proper regularization coefficient indicates both approxi-
mated consistency and ample room for optimization. The
experiment also demonstrates that even if the consistency is
not strictly ensured, the approximated policy gradient can
still effectively optimize the reward in practice, which aligns
with our theoretical result Theorem 4.5.

7 Conclusions
This paper proposes DiffAC, a stabilized policy gradi-
ent method for SDEs, and demonstrate its superiority on
structure-based drug design. This is a general framework
with great potential. In terms of future work, it would be

8

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

interesting to apply this method to many valuable applica-
tions where user preferences or design requirements can be
specified, such as protein design, chip design, etc.

Acknowledgements
We thank Huayu Chen, Min Zhao, Cheng Lu, and Chongx-
uan Li for useful discussions.

Impact Statement
This paper presents work which proposes improved tech-
niques for training SDEs with policy gradients and demon-
strates the effectiveness of the proposed method in the
structure-based drug design task. Our methodology can
be adapted in other design scenarios and should not be used
to design products that are harmful to society.

References
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J. B., Jaakkola,

T. S., and Agrawal, P. Is conditional generative modeling
all you need for decision making? In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

Anderson, A. C. The process of structure-based drug design.
Chemistry & biology, 10(9):787–797, 2003.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Bao, F., Zhao, M., Hao, Z., Li, P., Li, C., and Zhu, J. Equiv-
ariant energy-guided SDE for inverse molecular design.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=r0otLtOwYW.

Bellman, R. Dynamic programming. Science, 153(3731):
34–37, 1966.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning.
arXiv preprint arXiv:2305.13301, 2023.

Chen, H., Lu, C., Ying, C., Su, H., and Zhu, J. Offline
reinforcement learning via high-fidelity generative be-
havior modeling. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=42zs3qa2kpy.

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji,
X.-L., and Liu, S.-Q. Insights into protein–ligand interac-
tions: mechanisms, models, and methods. International
journal of molecular sciences, 17(2):144, 2016.

Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli, S.
Autodock vina 1.2. 0: New docking methods, expanded

force field, and python bindings. Journal of chemical
information and modeling, 61(8):3891–3898, 2021.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C.,
Abbeel, P., Ghavamzadeh, M., Lee, K., and Lee, K. Dpok:
Reinforcement learning for fine-tuning text-to-image dif-
fusion models. arXiv preprint arXiv:2305.16381, 2023.

Francoeur, P. G., Masuda, T., Sunseri, J., Jia, A., Iovanisci,
R. B., Snyder, I., and Koes, D. R. Three-dimensional
convolutional neural networks and a cross-docked data
set for structure-based drug design. Journal of chemical
information and modeling, 60(9):4200–4215, 2020.

Guan, J., Qian, W. W., Peng, X., Su, Y., Peng, J., and Ma, J.
3d equivariant diffusion for target-aware molecule gener-
ation and affinity prediction. In International Conference
on Learning Representations, 2023.

Hansen-Estruch, P., Kostrikov, I., Janner, M., Kuba, J. G.,
and Levine, S. Idql: Implicit q-learning as an actor-
critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
International Conference on Machine Learning, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In International Confer-
ence on Machine Learning, pp. 12888–12900. PMLR,
2022.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, H., Huang, Y., Liu, M., Li, X., Ji, S., and Li, S. Z.
Diffbp: Generative diffusion of 3d molecules for target
protein binding. arXiv preprint arXiv:2211.11214, 2022.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The

9

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=r0otLtOwYW
https://openreview.net/forum?id=r0otLtOwYW
https://openreview.net/forum?id=42zs3qa2kpy
https://openreview.net/forum?id=42zs3qa2kpy
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=PqvMRDCJT9t.

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S.
Generating 3d molecules for target protein binding. In
International Conference on Machine Learning, 2022.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Lu, C., Chen, H., Chen, J., Su, H., Li, C., and Zhu, J. Con-
trastive energy prediction for exact energy-guided diffu-
sion sampling in offline reinforcement learning. arXiv
preprint arXiv:2304.12824, 2023.

Luo, S., Guan, J., Ma, J., and Peng, J. A 3d generative model
for structure-based drug design. Advances in Neural
Information Processing Systems, 34:6229–6239, 2021.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Van-
dermeersch, T., and Hutchison, G. R. Open babel: An
open chemical toolbox. Journal of cheminformatics, 3(1):
1–14, 2011.

Peng, X., Luo, S., Guan, J., Xie, Q., Peng, J., and Ma, J.
Pocket2mol: Efficient molecular sampling based on 3d
protein pockets. In International Conference on Machine
Learning, pp. 17644–17655. PMLR, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov, I.,
Du, W., Blundell, T., Lió, P., Gomes, C., Welling, M., et al.
Structure-based drug design with equivariant diffusion
models. arXiv preprint arXiv:2210.13695, 2022.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk,
R., Mullis, C., Katta, A., Coombes, T., Jitsev, J., and

Komatsuzaki, A. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114, 2021.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

Schulman, J., Heess, N., Weber, T., and Abbeel, P. Gra-
dient estimation using stochastic computation graphs.
Advances in neural information processing systems, 28,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Song, J., Meng, C., and Ermon, S. Denoising diffu-
sion implicit models. In International Conference on
Learning Representations, 2021a. URL https://
openreview.net/forum?id=St1giarCHLP.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In In-
ternational Conference on Learning Representations,
2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=AHvFDPi-FA.

Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang,
J., and Dong, Y. Imagereward: Learning and evaluating
human preferences for text-to-image generation. arXiv
preprint arXiv:2304.05977, 2023.

10

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=AHvFDPi-FA

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Shao, Y., Zhang, W., Cui, B., and Yang, M.-H. Diffu-
sion models: A comprehensive survey of methods and
applications. arXiv preprint arXiv:2209.00796, 2022.

11

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

A Extended Preliminaries
We here provide a more comprehensive background of SDEs as follows:

• (See Equation (5)) dx = f(x, t)dt+ g(t)dω, which is the forward SDE that corresponds to the perturbation process
(i.e., the forward process of diffusion models). dω is a Wiener process. f(·, t) : Rd → Rd is a vector-valued function
called the drift coefficient of x(t). g(t) is a scalar function of time and known as diffusion coefficient of the underlying
dynamic.

• Following Song et al. (2021b), applying Kolmogorov’s forward equation (Fokker-Planck equation) to an SDE, we can
derive a probability ODE which describes how the marginal distribution pt(x) evolves through time t.

• (See Equation (6)) According to Anderson (1982), an SDE as Equation (5) has a backward SDE: dx = (f(x, t) −
g2(t)∇x log pt(x))dt+ g(t)dω̄, which shares the same marginal distribution pt(x) at time t. dω̄ is the reverse Wiener
process.

• (See Equation (1)) dxt = πθ(xt, θ)dt+g(t)dω̄, which is the approximated backward SDE parameterized by θ. Conven-
tionally, we use ϵθ(xt, t) to approximate the score∇x log pt(x). So we can let πθ(xt, θ) := f(xt, t)− g2(t)ϵθ(xt, θ).
The approximated backward SDE corresponds to the generative process of diffusion models. Specifically, xT is
sampled from the prior distribution, evolves following this SDE, and arrives at x0. x0 is the generated sample.

• p0 and q0 in Definition 4.1. Specifically, we denote the marginal distribution at time t of Equations (1) and (5) as pt
and qt, respectively. Thus, p0 (resp. q0) is pt (resp. qt) at time t = 0.

Then we provide the discrete-time version of SDE-based generative models, also known as diffusion models. The following
introduction follows DDPM (Ho et al., 2020). Let q0(x0) denote an arbitrary distribution, we have

• The forward process (i.e., the perturbation process): p(x1:T |x0) =
∏

t=1,...,T p(xt|xt−1) where p(xt|xt−1) =

N (xt|
√
1− βtxt−1, βtI) is a Gaussian distribution. βt are pre-defined parameters which is linearly scheduled

from β1 = 1 × 10−4 to βT = 0.02 in DDPM. It is noteworthy that there is no trainable parameters in the forward
process and for sufficiently large T , p(xT |x0) ≈ N (0, I) the standard Gaussian distribution. Moreover, it is obvious
that p(xt|x0) is also a closed-form Gaussian process. In DiffAC, we exploited the forward process to stabilize the
policy-gradient estimation.

• The parameterized backward process: qθ(x0:T) = qT (xT)
∏

t=T,...,1 qθ(xt−1|xt) where qT (xT) = N (0, I) is the
standard Gaussian distribution. And qθ(xt−1|xt) = N (xt−1|µθ(xt, t), σθ(xt, t)). Generally speaking, the score
matching loss is to minimize KL divergence between the marginal distributions of the forward and the backward
process.

• Consistency: once the backward process is fixed, we can define an associated forward process by letting p0(x0) :=
q0(x0) = ExT

qθ(x0|xT). A backward process is called consistency if the associated forward process has the same
marginal distribution with the backward process at every time step t = 0, . . . , T . And the backward process is
consistent if and only if the score matching loss is minimized.

B Toy Example in Section 3.1
We compare the error on ∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t). Let ϕ′ denote the critic trained by Equation (4) on n trajecto-
ries and ϕ′′ denote the trained by Equation (8) on D0 with |D0| = n. We evaluate |∇πθ(xt,t)Qϕ′(xt, πθ(xt, t), t) −
∇πθ(xt,t)Qϕ′∗(xt, πθ(xt, t), t)| and |∇πθ(xt,t)Qϕ′′(xt, πθ(xt, t), t) − ∇πθ(xt,t)Qϕ′′∗(xt, πθ(xt, t), t)| where ϕ′∗ and ϕ′′∗

are trained on 105 trajectories.
The architecture of the critic network is 3 layered-MLP with hidden dimemsion 256. We train each network for 105 iteration
with batchsize 256. And A For reward function, we use Rastrigin function which is a toy function, with many local minimas,
designed for testing zero order optimization algorithm.

C Proofs
Theorem C.1. Let PG(θ) be the unbiased policy gradient estimated with only SDE policy q parameterized by ϵθ, and
P̃G(θ) be the approximated policy gradient estimated with the perturbation process p whose consistent backward SDE
q̃ is parameterized by ϵθ′ . And the SDEs are discretized into T time steps, i.e., {tτ}Tτ=0 with τ0 = 0 and τT = 1. Let
Mtτ := ∥∇θ log q(xtτ−1

|xtτ)R(x0)∥∞, we have

∥P̃G(θ)− PG(θ)∥ ≤
T∑

τ=1

Mtτ

√√√√2 ln 2

T−1∑
ν=0,ν ̸=τ−1

DKL
(
q̃(xtν |xtν+1)

∥∥q(xtν |xtν+1)
)

12

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

Proof. The policy gradient estimated with the exact SDE policy q can be derived as follows:

PG(θ) =Eτ∼U([N])Ex1∼q(x1),xtτ ∼q(xtτ |x1)Ext−dt∼q(xtτ−1
|xt)∇θ log q(xtτ−1

|xtτ)Vϕ∗(xtτ−1
, tτ−1)

=Eτ∼U([N])Ex1∼q(x1),xtτ ∼q(xtτ |x1)Extτ−1
∼q(xtτ−1

|xtτ)
∇θ log q(xtτ−1

|xtτ)Ex0∼q(x0|xtτ−1
)R(x0)

=Eτ∼U([N])Ex1∼q(x1),xtτ ∼q(xtτ |x1),xtτ−1
∼q(xτ−1|xtτ),x0∼q(x0|xtτ−1

)∇θ log q(xtτ−1
|xtτ)R(x0)

=Eτ∼U([N])Extτ ∼q(xtτ),xtτ−1
∼q(xtτ−1

|xtτ),x0∼q(x0|xtτ−1
)∇θ log q(xtτ−1

|xtτ)R(x0)

Note that the SDE policy q may not be consistent, i.e., there may not exist a forward SDE with the the simple formula as in
Equation (5) that induces the same marginal distribution with the SDE policy.
As for the approximated policy gradient estimated with the perturbation process q, the only difference from the above
estimation is that we sample xtτ by first sampling x′

0 by the SDE policy followed by perturbation, i.e., x′
0 ∼ q(x′

0) and
xtτ ∼ p(xtτ−1

|x′
0). Given q(x′

0) and its corresponding perturbation process, we can always derive a backward SDE q̃ that
is consistent with the perturbation process via score matching, which is the backward SDE parameterized by the reference
model ϵθ′ . And we have

∫
x′
0
q(x′

0)p(xt|x′
0) dx0 =

∫
x1

q(x1)q̃(xt|x1) dx1,∀t. Note that q(x1) = N (0, I). Therefore, the
policy gradient estimated with the perturbation process p can be derived as follows:

P̃G(θ) =Eτ∼U([N])Ex′
0∼q(x′

0),xtτ ∼p(xtτ |x′
0)
Extτ−1

∼q(xtτ−1
|xtτ)
∇θ log q(xtτ−1

|xtτ)Ṽϕ∗(xtτ−1
, tτ−1)

=Eτ∼U([N])Ex1∼q(x1),xtτ ∼q̃(xtτ |x1)Extτ−1
∼q(xtτ−1

|xtτ)
∇θ log q(xtτ−1

|xtτ)Ṽϕ∗(xtτ−1
, tτ−1)

=Eτ∼U([N])Ex1∼q(x1),xtτ ∼q̃(xtτ |x1)Extτ−1
∼q(xtτ−1

|xtτ)
∇θ log q(xtτ−1

|xtτ)Ex0∼q̃(x0|xtτ−1
)R(x0)

=Eτ∼U([N])Ex1∼q(x1),xtτ ∼q̃(xtτ |x1),xtτ−1
∼q(xtτ−1

|xtτ),x0∼q̃(x0|xtτ−1
)∇θ log q(xtτ−1

|xtτ)R(x0)

=Eτ∼U([N])Extτ ∼q̃(xtτ),xtτ−1
∼q(xtτ−1

|xtτ),x0∼q̃(x0|xtτ−1
)∇θ log q(xtτ−1

|xtτ)R(x0)

Note that we have Let Mtτ = ∥∇θ log q(xtτ−1
|xtτ)R(x0)∥∞. Let Qtτ (xtτ , xtτ−1

, x0) := q(xtτ)q(xtτ−1
|xtτ)q(x0|xtτ−1

)

and Q̃tτ (xtτ , xtτ−1 , x0) := q̃(xtτ)q(xtτ−1 |xtτ)q̃(x0|xtτ−1). With Pinsker’s inequality, We have:

∥P̃G(θ)− PG(θ)∥ ≤
T∑

τ=1

Mtτ ∥Q̃tτ −Qtτ ∥1 ≤
T∑

τ=1

Mtτ

√
2 ln 2DKL(Q̃tτ ∥Qtτ)

With the chain rule of KL-Divergence, we have

DKL(Q̃tτ ∥Qtτ) =DKL
(
q̃(xtτ)q(xtτ−1

|xtτ)q̃(x0|xtτ−1
)
∥∥q(xtτ)q(xtτ−1

|xtτ)q(x0|xtτ−1
)
)

≤DKL
(
q̃(xtτ)

∥∥q(xtτ)
)
+ DKL

(
q(xtτ−1

∣∣xtτ)∥q(xtτ−1
|xtτ)

)
+ DKL

(
q̃(x0|xtτ−1

)
∥∥q(x0|xtτ−1

)
)

=DKL
(
q̃(xtτ)

∥∥q(xtτ)
)
+ DKL

(
q̃(x0|xtτ−1

)
∥∥q(x0|xtτ−1

)
)

By introducing the latent variables and with the Markov property of SDE q̃ and the chain rule of KL divergence, we have

DKL
(
q̃(xtτ)

∥∥q(xtτ)
)
≤ DKL

(
q̃(xtτ , xtτ+1

, . . . , xtT−1
, x1)

∥∥q(xtτ , xtτ+1
, . . . , xtT−1

, x1)
)

=

T−1∑
ν=τ

DKL
(
q̃(xtν |xtν+1

)
∥∥q(xtν |xtν+1

)
)

DKL
(
q̃(x0|xtτ−1

)
∥∥q(x0|xtτ−1

)
)
≤ DKL

(
q̃(x0, xt1 , . . . , xtτ−2

|xtτ−1
)
∥∥q(x0, xt1 , . . . , xtτ−2

|xtτ−1
)
)

=

τ−2∑
ν=0

DKL
(
q̃(xtν |xtν+1)

∥∥q(xtν |xtν+1)
)

Therefore, we have

∥P̃G(θ)− PG(θ)∥ ≤
T∑

τ=1

Mtτ

√√√√2 ln 2
[T−1∑
ν=τ

DKL
(
q̃(xtν |xtν+1

)
∥∥q(xtν |xtν+1

)
)
+

τ−2∑
ν=0

DKL
(
q̃(xtν |xtν+1

)
∥∥q(xtν |xtν+1

)
)]

13

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

=

T∑
τ=1

Mtτ

√√√√2 ln 2

T−1∑
ν=0,ν ̸=τ−1

DKL
(
q̃(xtν |xtν+1)

∥∥q(xtν |xtν+1)
)

D Implementation Details
In this section, we will describe the implementation of experiments in detail.
Guan et al. (2023) employed an SE(3)-equivariant diffusion model, named TargetDiff, for structure-based drug design.
Given a protein binding site, TargetDiff generates the atom coordinates in 3D Euclidean space and atom types by iteratively
denoising from a prior distribution. After the reverse (generative) process of the diffusion model, the chemical bonds of the
generated ligand molecules are defined as post-processing by OpenBabel (O’Boyle et al., 2011) according to the distances
and types of atom pairs. We use TargetDiff as the actor and strictly follows the setting in Guan et al. (2023), such as noise
schedules, model architecture, training objectives, etc.
We first pretrain TargetDiff on the training set. After that, we use the pretrained TargetDiff to first sample 100 ligand
molecules for each pocket in the test set and evaluate their binding affinity by oracle. We pretrain the critic, which predicts
the binding affinity based on the perturbed samples, on the 10, 000 generated pocket-ligand pair data. The model architecture
of the critic is almost the same with TargetDiff. The only difference is that the critic has an aggregation layer at last to output
a scalar based on global features. We finetune the pretrained TargetDiff (Guan et al., 2023) for 30 iterations for each pocket
in the test set, respectively. In each iteration, we sample 34 ligand molecules induced by the diffusion model (i.e., the actor),
evaluate the binding affinity by oracle, and then online update the diffusion model (i.e., the actor) and train the policy and
critic following Algorithm 2. We keep all sampled molecules in D0 which falls into the class of off-policy policy gradient.
We use Adam (Kingma & Ba, 2014) with init learning rate=0.001, betas=(0.95, 0.999),
batch size=8, and clip gradient norm=8.0 to pretrain TargetDiff (i.e., the actor) and the critic. We use Adam
with init learning rate=0.0003 for online updating the actor and critic. As for regularization in Equation (13), we
set η2 = 0.05 for atom types and η2 = 0.00025 for atom positions.

E Optimization Curves of 100 Protein Pockets
We plot the optimization curves of DiffAC for the pocket protein in the test separately in Figure 6, Figure 7, and Figure 8.
Given a pocket protein, at each iteration, the average Vina Score of the sampled ligand molecules in this iteration is plotted as
a point in the figure. The curves show how the binding affinity change with the number of optimization iterations. Generally,
in most cases, DiffAC performs better than the baselines.

14

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

0 5 10 15 20 25 30

10

9

8

7

6

5
Av

g.
 V

in
a

S
co

re
 (k

/m
ol

)

2Z3H

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

6.5
4AAW

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

4YHJ

0 5 10 15 20 25 30

7.5

7.0

6.5

6.0

5.5

5.0

14GS

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

2V3R

0 5 10 15 20 25 30

6

5

4

3

2

1

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4RN0

0 5 10 15 20 25 30
10.0

9.5

9.0

8.5

8.0

1FMC

0 5 10 15 20 25 30
10.5

10.0

9.5

9.0

8.5

8.0

3DAF

0 5 10 15 20 25 30

8.0

7.5

7.0

6.5

1A2G

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

6.5

6.0

5W2G

0 5 10 15 20 25 30
10.0

9.5

9.0

8.5

8.0

7.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3DZH

0 5 10 15 20 25 30

10

9

8

7

6

3G51

0 5 10 15 20 25 30
11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

1COY

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

2JJG

0 5 10 15 20 25 30
4.5

4.0

3.5

3.0

2.5

2.0

1.5

2RHY

0 5 10 15 20 25 30

7.5

7.0

6.5

6.0

5.5

5.0

4.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

2PQW

0 5 10 15 20 25 30

10

8

6

4

2

4G3D

0 5 10 15 20 25 30
8.25

8.00

7.75

7.50

7.25

7.00

6.75

6.50

5BUR

0 5 10 15 20 25 30

6.4

6.2

6.0

5.8

5.6

5.4

3GS6

0 5 10 15 20 25 30

11

10

9

8

1R1H

0 5 10 15 20 25 30

6.5

6.0

5.5

5.0

4.5

4.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1DXO

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

1GG5

0 5 10 15 20 25 30

12

11

10

9

8

7

6

5Q0K

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

5B08

0 5 10 15 20 25 30
10.5

10.0

9.5

9.0

8.5

2AZY

0 5 10 15 20 25 30
6.6

6.4

6.2

6.0

5.8

5.6

5.4

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

5I0B

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5
1PHK

0 5 10 15 20 25 30
11.5

11.0

10.5

10.0

9.5

9.0

8.5

8.0

4KEU

0 5 10 15 20 25 30

6

5

4

3

2

4Q8B

0 5 10 15 20 25 30
7.00

6.75

6.50

6.25

6.00

5.75

5.50

5.25

5.00
1DJY

0 5 10 15 20 25 30
6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

5L1V

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5
4ZFA

0 5 10 15 20 25 30
9.5

9.0

8.5

8.0

7.5

2RMA

0 5 10 15 20 25 30

6.2

6.0

5.8

5.6

5.4

5.2

3B6H

0 5 10 15 20 25 30

5.6

5.4

5.2

5.0

4.8

4.6

4.4
2ZEN

0 5 10 15 20 25 30
Iterations

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4P6P

0 5 10 15 20 25 30
Iterations

10.00

9.75

9.50

9.25

9.00

8.75

8.50

8.25
3U5Y

0 5 10 15 20 25 30
Iterations

10.0

9.5

9.0

8.5

8.0

4F1M

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

3.6

3.4

3.2

3.0

2.8

2.6

2.4

4TQR

0 5 10 15 20 25 30
Iterations

12.5

12.0

11.5

11.0

10.5

4LFU

Figure 6. Optimization curves of the 1st to 40th protein pockets in the test set.

15

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

0 5 10 15 20 25 30
8.5

8.0

7.5

7.0

6.5

6.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3JYH

0 5 10 15 20 25 30
11.50

11.25

11.00

10.75

10.50

10.25

10.00

9.75

4IWQ

0 5 10 15 20 25 30

15

14

13

12

11

10

9

8

1L3L

0 5 10 15 20 25 30
6.0

5.5

5.0

4.5

4.0

3.5

5NGZ

0 5 10 15 20 25 30
9.50

9.25

9.00

8.75

8.50

8.25

8.00

1E8H

0 5 10 15 20 25 30
7.75

7.50

7.25

7.00

6.75

6.50

6.25

6.00

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

2E24

0 5 10 15 20 25 30
8

7

6

5

4

3

2

1

2HCJ

0 5 10 15 20 25 30

8.00

7.75

7.50

7.25

7.00

6.75

6.50

6.25
3KC1

0 5 10 15 20 25 30

8

7

6

5

4

1D7J

0 5 10 15 20 25 30

13

12

11

10

9

4JA8

0 5 10 15 20 25 30

5.2

5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4U5S

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

4IIY

0 5 10 15 20 25 30

8.75

8.50

8.25

8.00

7.75

7.50

7.25

7.00

3V4T

0 5 10 15 20 25 30
8.5

8.0

7.5

7.0

6.5

6.0

3TYM

0 5 10 15 20 25 30

7.4

7.2

7.0

6.8

6.6

6.4

6.2

4D7O

0 5 10 15 20 25 30

4.8

4.6

4.4

4.2

4.0

3.8

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3EJ8

0 5 10 15 20 25 30
5.0

4.8

4.6

4.4

4.2

4.0

3.8

1RS9

0 5 10 15 20 25 30

6.8

6.6

6.4

6.2

6.0

5.8

5.6

4KCQ

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

3PDH

0 5 10 15 20 25 30

11

10

9

8

7

1UMD

0 5 10 15 20 25 30
12

11

10

9

8

7

6

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4PXZ

0 5 10 15 20 25 30

0

10

20

30

40

50

2GNS

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

6.5

6.0
1AI4

0 5 10 15 20 25 30

5

4

3

2

1
5MMA

0 5 10 15 20 25 30

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2
2CY0

0 5 10 15 20 25 30

6.0

5.5

5.0

4.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3W83

0 5 10 15 20 25 30
6.5

6.0

5.5

5.0

4.5

2E6D

0 5 10 15 20 25 30

7.2

7.0

6.8

6.6

6.4

6.2

6.0

5.8

4RV4

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0
5D7N

0 5 10 15 20 25 30

6.5

6.0

5.5

5.0

4.5

5MGL

0 5 10 15 20 25 30
12

10

8

6

4

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1H36

0 5 10 15 20 25 30
3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4
4GVD

0 5 10 15 20 25 30

15.0

14.5

14.0

13.5

13.0

12.5

4TOS

0 5 10 15 20 25 30

11.5

11.0

10.5

10.0

9.5

9.0
5AEH

0 5 10 15 20 25 30

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

4H3C

0 5 10 15 20 25 30
Iterations

13

12

11

10

9

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4RLU

0 5 10 15 20 25 30
Iterations

11.0

10.5

10.0

9.5

9.0

4XLI

0 5 10 15 20 25 30
Iterations

6.2

6.0

5.8

5.6

5.4

5.2

5.0

4.8

3L3N

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

5.00

4.75

4.50

4.25

4.00

3.75

3.50

5TJN

0 5 10 15 20 25 30
Iterations

11.0

10.5

10.0

9.5

9.0

5LIU

Figure 7. Optimization curves of the 41st to 80th protein pockets in the test set.

16

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

0 5 10 15 20 25 30

12.5

12.0

11.5

11.0

10.5

10.0

9.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3O96

0 5 10 15 20 25 30
11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0
4QLK

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0

3HY9

0 5 10 15 20 25 30

9.5

9.0

8.5

8.0

7.5

4BEL

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

3NFB

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0

7.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4M7T

0 5 10 15 20 25 30
9.25

9.00

8.75

8.50

8.25

8.00

7.75

7.50

7.25
3U9F

0 5 10 15 20 25 30

7.75

7.50

7.25

7.00

6.75

6.50

6.25

6.00

5.75
4AUA

0 5 10 15 20 25 30

8.75

8.50

8.25

8.00

7.75

7.50

7.25

2F2C

0 5 10 15 20 25 30

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

3CHC

0 5 10 15 20 25 30
4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1K9T

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

6.0

1H0I

0 5 10 15 20 25 30

10.0

9.5

9.0

8.5

8.0

4Z2G

0 5 10 15 20 25 30

6.2

6.0

5.8

5.6

5.4

5.2

3AF2

0 5 10 15 20 25 30

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2
1JN2

0 5 10 15 20 25 30
Iterations

9.5

9.0

8.5

8.0

7.5

7.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3LI4

0 5 10 15 20 25 30
Iterations

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

3PNM

0 5 10 15 20 25 30
Iterations

8.6

8.4

8.2

8.0

7.8

7.6

7.4

7.2

7.0

1AFS

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

10.50

10.25

10.00

9.75

9.50

9.25

9.00

4AZF

0 5 10 15 20 25 30
Iterations

8.5

8.0

7.5

7.0

6.5

6.0

5.5

2PC8

Figure 8. Optimization curves of the 81st to 100th protein pockets in the test set.

17

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

F Ablation Studies
To verify our hypothesis that the correct gradient estimation in our method requires the forward SDE and backward SDE to
be consistent, we apply our method to structure-based drug design for three protein targets (PDB ID: 2Z3H, 4AAW, and
4YHJ) with different coefficients of regularization η2 in Equation (13), respectively. The corresponding optimization curves
are shown in Figure 9.
Optimization with too small regularization coefficients is superior to or on par with other settings at the first several steps
and soon fails after a few optimization steps. This reflects two aspects: (1) The policy gradient estimation is approximately
accurate so it has the better performance at the beginning of the optimization process; (2) The policy gradient estimation
becomes incorrect just after a few steps due to significantly increased inconsistency between forward and backward SDEs.
Optimization with too large regularization coefficients decreases the Vina scores slowly. Large regularization coefficients
push the SDE policy to be close to the original backward SDE so that the performance is similar to the original. Only
optimization with proper regularization coefficients can effectively decrease the Vina scores. This also aligns with our
expectation. A proper regularization coefficient indicates both approximated consistency and ample room for optimization.

0 5 10 15 20
step

10

8

6

4

2

0

Vi
na

 sc
or

e

2Z3H

0 5 10 15 20
step

8

6

4

2

0

Vi
na

 sc
or

e

4AAW

0 5 10 15 20
step

8

6

4

2

0

Vi
na

 sc
or

e

4YHJ

5e-05
0.0005
0.005
0.01
0.5
1.0
5.0
50.0

Figure 9. Optimization curves for protein target 2Z3H, 4AAW, and 4YHJ, respectively. The regularization coefficients η2 in Equation (13)
are {5× 10−5, 0.0005, 0.005, 0.01, 0.5, 1.0, 5.0, 50.0} × 0.05 (resp. 0.00025) for atom types (resp. atom positions). The Vina score of
each point is averaged over 32 samples at this step and capped with 0.0 as the maximum value for clearer visualization.

G Experiments on Text-to-Image Generation
To demonstrate the generalizability of our method beyond the SBDD task, we also apply our method to text-to-image
generation. In this experiment, we use DiffAC to fine-tune text-to-image generative models to better align with human
preferences.

G.1 Experimental Setup

We use Stable Diffusion v1.5 (Rombach et al., 2022) as the baseline, which has been pre-trained on large image-text datasets
(Schuhmann et al., 2021; 2022). For compute-efficient fine-tuning, we use Low-Rank Adaption (LoRA) (Hu et al., 2022),
which freezes the parameters of the pre-trained model and introduces low-rank trainable weights. We apply LoRA to the
UNet (Ronneberger et al., 2015) module and only update the added weights. For the reward model, we use ImageReward
(Xu et al., 2023) which is trained on a large dataset comprised of human assessments of images. Compared to other scoring
functions such as CLIP (Radford et al., 2021) or BLIP (Li et al., 2022), ImageReward has a better correlation with human
judgments, making it the preferred choice for fine-tuning our baseline diffusion model. In practice, we use DiffAC (the
REINFORCE version, i.e., Equation (10)) to fine-tune Stable Diffusion.
We also compare our method with DPOK (Fan et al., 2023). DPOK is a strong baseline that updates the pre-trained
text-to-image diffusion models using policy gradient with KL regularization to maximize the reward. Notably, the difference
between DPOK and our method is that DPOK estimates policy gradient with real trajectories sampled by backward process
while our method estimates policy gradient with efficient forward process. And this difference is the key factor for stabler
policy gradient.
We adopt a straightforward setup that uses one text prompt “A green colored rabbit” during fine-tuning and compares
ImageReward scores of all methods. For both DPOK and our method, we perform 5 gradient steps per sampling step. The
sampling batch size is 10 and the training batch size is 32.

18

Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process

G.2 Experimental Results
We plot the optimization curves of all methods as shown in Figure 10. As the results indicates, our method can efficiently
improve ImageReward scores and outperform baselines by a large margin.
We provide image examples as shown in Figure 11. Stable Diffusion tends to generate images with obvious mistakes like
generating a rabbit with a green background given the prompt “A green colored rabbit”, while our method generates much
more satisfying images that are well aligned with the given text prompt.
The experiments on text-to-image generation along with structure-based drug design demonstrate the generalizability of our
method and reveal its great potential on many real-world applications.

0 100 200 300 400
Optimizatiom steps

0.0

0.5

1.0

1.5

2.0

Im
ag

eR
ew

ar
d

sc
or

e

Stable Diffusion DPOK DiffAC

Figure 10. Optimization curves of ImageReward scores.

Stable
Diffusion

DiffAC

Figure 11. Example images generated by Stable Diffusion (Rombach et al., 2022) (top row) and our method (bottom row) givne text
prompt “A green colored rabbit”.

19

