
000 UNIVERSAL ORDERING FOR EFFICIENT PAC LEARNING

001

002

003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 We initiate the study of the *universal ordering* problem within the PAC learning framework: given a set of n samples independently drawn from an unknown distribution \mathcal{D} , can we order these samples such that every prefix of length $k \leq n$ yields a near-optimal subset for training a PAC learner? This question is fundamentally motivated by practical scenarios involving incremental learning and adaptive computation, where guarantees must hold uniformly across varying data budgets. We formalize this requirement as achieving anytime-valid PAC guarantees. As a warm-up, we analyze the simple random ordering baseline using classical concentration inequalities. Through a careful union bound over a geometric partitioning of prefixes, we establish that it provides a surprisingly strong universal guarantee, incurring at most an $O(\log \log n)$ overhead compared to a random subset of size k . We then present a more powerful analysis based on the theory of test martingales and Ville's inequality, demonstrating that a random permutation achieves PAC guarantees for all prefixes that match the statistical rate of a random subset of size k , without the logarithmic overhead incurred by naive union-bound techniques. Our work establishes a conceptual bridge between universal learning on fixed datasets and the broader field of sequential analysis, revealing that random permutations are efficient and provably robust anytime-valid learners but opening the door to further improvements.

027 028 029 1 INTRODUCTION

030 031 032 033 034 035 036 037 038 039 040 Modern machine learning increasingly deals with massive datasets that significantly exceed practical computational capacities, rendering it infeasible to utilize all available data simultaneously (Bachem et al., 2017; Kettnering, 2009; Labrinidis & Jagadish, 2012). Consequently, practitioners commonly resort to selecting representative subsets of data to train algorithms effectively within stringent computational budgets (Bubeck et al., 2019; Muennighoff et al., 2023; Thompson et al., 2020). Classical Probably Approximately Correct (PAC) learning theory provides fundamental guarantees regarding the minimum number of samples necessary to achieve prescribed accuracy and confidence thresholds (Kearns & Vazirani, 1994). However, traditional PAC bounds assume a static, predetermined sample size. In sharp contrast, practical scenarios frequently involve dynamic computational budgets, requiring robust guarantees that hold simultaneously across multiple scales of data usage (Jiang et al., 2020; McIntosh et al., 2018).

041 042 043 044 045 046 047 048 049 050 051 Addressing this critical gap motivates our systematic investigation of the **universal ordering problem**: given n samples drawn i.i.d. from an unknown distribution \mathcal{D} , can these samples be arranged in a fixed sequence such that every initial segment (or prefix) of length $k \leq n$ forms an approximately optimal subset for PAC learning? We formalize this desideratum through the notion of Universal PAC-Validity. This requirement is structurally identical to the demand for a confidence sequence in modern sequential analysis—a sequence of confidence intervals that are guaranteed to contain the true parameter of interest uniformly over all time steps (Waudby-Smith & Ramdas, 2020). In our context, the “time step” is the prefix length k , and the parameter of interest is the true error of the hypothesis learned from that prefix. This reframing is not merely semantic; it allows for the deployment of powerful tools from sequential analysis that are designed to handle such uniform-over-time guarantees.

052 053 The universal ordering problem holds considerable practical relevance. Consider the crucial goal of reproducibility and fair benchmarking in machine learning. A fixed, universal ordering for a benchmark dataset (e.g., ImageNet (Deng et al., 2009)) would ensure that researchers comparing

054 models with different computational budgets are all training on valid, nested subsets of the same data
055 sequence. This allows us to view the learning process as traversing a valid confidence sequence: a
056 model trained on a prefix of size 100,000 is directly comparable to one trained on the first 1,000,000
057 points, as both are certified snapshots along the same statistical trajectory. Furthermore, in scenarios
058 of resource-adaptive learning, a model may train on a device with a variable power budget or on a
059 shared cluster where it can be preempted at any time. A universal ordering ensures that if the process
060 halts at an arbitrary point k , the resulting model is not just a partial result but one that comes with a
061 valid PAC guarantee for the data seen so far.

062 While related concepts such as coresets (Chai et al., 2023), curriculum learning (Bengio et al., 2009),
063 and submodular optimization (Mirzasoleiman et al., 2013) have been extensively explored, these ex-
064 isting methodologies typically target subset construction tailored to a predetermined size or employ
065 heuristic-based approaches that lack robust guarantees for dynamically varying data sizes. Conse-
066 quently, the universal ordering problem delineates a new and compelling intersection among com-
067 binatorial optimization, statistical learning theory, and adaptive computational frameworks.

068 The primary difficulty arises from the “for all k ” quantifier in the problem definition. From a classi-
069 cal statistical perspective, this introduces a severe multiple testing problem. A naive analysis using
070 standard concentration inequalities would require applying a union bound over all n prefixes, in-
071 curring a substantial statistical penalty that would render the resulting error bounds vacuous. This
072 challenge underscores the need for more sophisticated analytical techniques that can account for the
073 strong dependencies between hypotheses trained on nested prefixes.

074

075 1.1 OUR CONTRIBUTIONS

076 This paper provides a comprehensive theoretical analysis of random permutations as a first solution
077 to the universal ordering problem as a means to present two distinct but complementary analytical
078 frameworks, probing the noted multiple testing problem.

079

- 080 1. First, we formalize the universal ordering problem and establish a strong baseline for task-
081 agnostic random permutations using a classical analysis (and further discuss optimality
082 under the task-agnostic constraint in Appendix A.3). This approach, based on a careful
083 union bound over a geometric partitioning of prefixes, reveals that a random ordering incurs
084 a surprisingly small $O(\log \log n)$ overhead in sample complexity compared to an optimal
085 random subset selected for a specific size k . This result serves as a valuable warm-up and
086 demonstrates the inherent robustness of random shuffling.
- 087 2. Second, we introduce a more direct and powerful analysis rooted in the theory of anytime-
088 valid inference (Robbins & Siegmund, 1974; Wald, 2004). By constructing a specific
089 test supermartingale for each potentially “bad” hypothesis, we leverage Ville’s inequality
090 (Wald, 2004) to provide a uniform guarantee over all prefixes. This approach is more
091 elegant, avoids the need for explicit union bounds over prefixes, and yields a tighter bound
092 that removes the logarithmic factors entirely. The construction of this martingale is in-
093 formed by a key observation: a random permutation of a fixed dataset is equivalent to
094 sampling without replacement from a finite population, allowing us to adapt powerful mar-
095 tingale constructions from that literature (Hall & Heyde, 2014).
- 096 3. Third, we establish a conceptual bridge between the universal ordering problem in PAC
097 learning and the broader fields of sequential analysis and safe testing (Grünwald et al.,
098 2024; Ramdas et al., 2023). This connection suggests that the principles of designing and
099 analyzing data orderings for robust, incremental performance have wide applicability be-
100 yond the standard PAC framework.

101 Most crucially, by defining this problem and the strengths of different analytic approaches, we hope
102 to inspire future work on improved (task optimal) data ordering approaches.

103

104 2 RELATED WORK

105 Our universal ordering problem intersects multiple domains within combinatorial optimization, ma-
106 chine and statistical learning theory (Shalev-Shwartz & Ben-David, 2014; Vapnik & Chervonenkis,

108 2015). Largely, our work is grounded in the tradition of PAC learning, which provides formal guarantees
109 on a model’s generalization performance (Kearns & Vazirani, 1994). While foundational,
110 our work departs from the standard PAC setting by focusing on incremental performance guarantees
111 across subsets of a single dataset rather than on learning a single hypothesis for one underlying
112 distribution. Closely related extensions of the PAC learning framework to the present work, such as
113 collaborative PAC learning (Blum et al., 2017), often consider scenarios involving multiple learners
114 working collaboratively to find an optimal hypothesis across distinct distributions. However, unlike
115 collaborative PAC learning, which emphasizes multi-distribution scenarios, our universal ordering
116 framework focuses explicitly on incremental guarantees across subsets of a single dataset.

117 Our problem formulation is conceptually connected to classical problems in universal approximation
118 algorithms and incremental optimization (Lin et al., 2010). For instance, universal approximations
119 for the Steiner tree and set cover problems (Jia et al., 2005) aim to identify single solutions or structures
120 that approximately solve combinatorial optimization problems simultaneously under multiple
121 potential inputs or constraints. Similarly, oblivious network design (Gupta et al., 2006), the universal
122 traveling salesman problem and related routing challenges (Jia et al., 2005; Schalekamp & Shmoys,
123 2008) explore scenarios that require performance guarantees across multiple, dynamically varying
124 instances without prior knowledge of specific instance parameters. These works underscore the
125 broader theoretical difficulty inherent in obtaining universal or incremental performance guarantees,
126 highlighting the analytical challenges in the present problem context.

127 Additionally, extensive literature has examined sufficient summarization techniques through core-
128 sets and related subset selection methodologies for diverse learning and optimization prob-
129 lems (Mirzasoleiman et al., 2020; Bachem et al., 2017; Phillips, 2017). These approaches typically
130 focus on constructing fixed-budget approximations for specific tasks. In contrast, our universal ap-
131 proach uniquely aims to identify a single sequence of points with simultaneous guarantees across all
132 input subset sizes through a single computationally efficient pass.

133 Finally, curriculum learning (Bengio et al., 2009; Hacohen & Weinshall, 2019; Weinshall et al.,
134 2018) offers empirically successful heuristics for ordering data to accelerate model convergence or
135 enhance performance. This problem deviates from the present in two crucial ways: (1) curriculum
136 learning sequentially presents data with the goal of achieving an improved model *at the end of the*
137 *full data sequence* and (2) relies on expensive model fitting and data diagnostics for each sample to
138 examine how it will contribute to the final model’s performance. In contrast, we seek to compute
139 a single, computationally efficient, pass over the data such that any subsequence of the returned
140 ordered is nearly optimal. Despite its practical effectiveness, curriculum learning lacks the necessary
141 uniform theoretical guarantees for such prefix lengths. Active learning, a related problem, involves
142 iterative querying of an oracle to select data points sequentially, optimizing marginal information
143 gains. Our problem instead assumes a fixed dataset without additional queries and must return a
144 static ordering, rather than incrementally include query for points to incorporate into the training
145 data.

146 3 PRELIMINARIES

147 We adopt the standard PAC learning framework (Kearns & Vazirani, 1994). Let \mathcal{X} be a domain and
148 \mathcal{Y} be a label set. A hypothesis $h : \mathcal{X} \rightarrow \mathcal{Y}$ is drawn from a class \mathcal{H} . Given a distribution \mathcal{D} over
149 $\mathcal{X} \times \mathcal{Y}$, the population loss (or error) is $\text{err}_{\mathcal{D}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[1[h(x) \neq y]]$. A learning algorithm \mathcal{A}
150 maps a sample S to a hypothesis $h \in \mathcal{H}$.

151 **Definition 3.1** $((\varepsilon, \delta)\text{-PAC Learnable})$. A hypothesis class \mathcal{H} is PAC learnable if there exists an
152 algorithm \mathcal{A} and a function $n_{\mathcal{H}}(\varepsilon, \delta)$ such that for any distribution \mathcal{D} , given $n \geq n_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d.
153 samples, \mathcal{A} returns a hypothesis h satisfying $\text{err}_{\mathcal{D}}(h) \leq \varepsilon$ with probability at least $1 - \delta$.

154 Throughout our results, ε is used to denote the error rate bound for a model trained on n samples.
155 For a finite hypothesis class, we have the following standard result on the sample complexity.

156 **Theorem 3.2** (Finite Hypothesis Class Sample Complexity (Kearns & Vazirani, 1994)). *Let \mathcal{A} be*
157 *an algorithm that learns a finite hypothesis class \mathcal{H} in the consistency model (that is, returns $h \in \mathcal{H}$*
158 *whenever a consistent concept w.r.t. S exists). Then, \mathcal{A} learns the concept class \mathcal{H} in the PAC*

173 Figure 1: Conceptualizing independent random subsets vs. universal ordering. (a) shows traditional
 174 independent random subsets for different data budgets ($k_1 = 3, k_2 = 4, k_3 = 5$) which are generally
 175 not nested. (b) illustrates a universal ordering, where any prefix naturally forms a nested subset for
 176 a given budget, a property crucial for anytime-valid guarantees.

177 *learning model using*

$$180 \quad n_{\varepsilon, \delta} \in \mathcal{O} \left(\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{\varepsilon} \right).$$

183 For the broader class of hypotheses with finite VC dimension $d = \text{VC}(\mathcal{H})$, we further have the
 184 following bound.

185 **Theorem 3.3** (Infinite Hypothesis Class Sample Complexity (Hanneke, 2016)). *Let \mathcal{A} be an algo-
 186 rithm that learns a hypothesis class \mathcal{H} in the consistency model (that is, returns $h \in \mathcal{H}$ whenever a
 187 consistent concept w.r.t. S exists). Then, \mathcal{A} learns the concept class \mathcal{F} in the PAC learning model
 188 using*

$$189 \quad n_{\varepsilon, \delta} \in \Theta \left(\frac{1}{\varepsilon} \left(d + \log \frac{1}{\delta} \right) \right).$$

192 Throughout our analysis for infinite classes, we assume the prefix length k is at least d , as guarantees
 193 are not meaningful otherwise.

195 3.1 UNIVERSAL PAC-VALIDITY CRITERION

197 We now formalize the central notion of our work.

198 **Definition 3.4** (Universal PAC-Validity). *Let $S_n = (z_1, \dots, z_n)$ be a sequence of n examples drawn
 199 from a distribution \mathcal{D} . We say that S_n is universally PAC-valid for a learner \mathcal{A} with error bound
 200 sequence $\{\varepsilon_k\}_{k=1}^n$ and confidence $1 - \delta$ if, with probability at least $1 - \delta$ over the generation of S_n ,
 201 the sequence of hypotheses $h_k = \mathcal{A}(S_k)$ satisfies $\text{err}_{\mathcal{D}}(h_k) \leq \varepsilon_k$ for all $k \in [n]$.*

202 This definition requires a single sequence to support correct generalization across all prefixes, which,
 203 as noted, is equivalent to constructing a confidence sequence for the true error of the learner at each
 204 prefix length (Waudby-Smith & Ramdas, 2020).

205 We here briefly note the discrepancy between the universal bounds we explore and simpler notions
 206 of PAC complexity on samples of size $k \leq n$. Observe that if we randomly sample k points from the
 207 distribution \mathcal{D} , we can trivially apply the result of Theorem 3.2 to obtain an error bound of at most
 208 $\mathcal{O}(n\varepsilon/k)$ where ε is the error rate on n samples. However, this error bound holds with probability
 209 $1 - \delta$ for only this value of k . In order to obtain a bound which holds for all k at the same error
 210 rate, we must naturally degrade our error bound and refer to the additional error incurred (as a
 211 multiplicative factor to ε) as the *overhead*.

213 3.2 MARTINGALES AND VILLE'S INEQUALITY FOR SEQUENTIAL GUARANTEES

215 Our main results rely on the theory of martingales, which provides a principled framework for
 216 analyzing sequential processes.

216 **Definition 3.5.** A sequence of random variables $(M_k)_{k \geq 0}$ is a supermartingale with respect to a
 217 filtration $(\mathcal{F}_k)_{k \geq 0}$ (an increasing sequence of σ -algebras representing information available at time
 218 k) if for all $k \geq 0$:

219

- 220 1. M_k is \mathcal{F}_k -measurable.
- 221 2. $\mathbb{E}[|M_k|] < \infty$.
- 223 3. $\mathbb{E}[M_{k+1} | \mathcal{F}_k] \leq M_k$.

224

225 A non-negative supermartingale is a powerful tool for deriving concentration inequalities. The fol-
 226 lowing result, Ville’s inequality, is a time-uniform extension of Markov’s inequality and forms the
 227 mathematical engine of our improved analysis.

228 **Theorem 3.6** (Ville’s Inequality (Wald, 2004)). *Let $(M_k)_{k \geq 0}$ be a non-negative supermartingale
 229 with $M_0 \leq 1$. Then for any $\alpha \in (0, 1)$:*

231

$$P\left(\exists k \geq 0 : M_k \geq \frac{1}{\alpha}\right) \leq \alpha$$

232

234 Ville’s inequality converts a statement about one-step-ahead expectations into a strong probabilistic
 235 bound on the entire trajectory of the process (Shafer & Vovk, 2019). This allows us to control the
 236 “bad events” over all prefixes k simultaneously without incurring the penalty of a union bound. The
 237 intuition behind the “stability of consistency” lemma, which we discuss in Section 4.2, is captured
 238 formally by this supermartingale property.

240

4 WARM-UP: CLASSICAL UNION BOUND ANALYSIS

243 We first the universal guarantees that come from a standard union bounding argument, highlighting
 244 the deficiency in this method and motivating our later study of anytime-valid approaches.

246

4.1 A NAIVE LOGARITHMIC BOUND

248 For a finite hypothesis class \mathcal{H} , we can bound the probability of a “bad event” at a fixed prefix k
 249 (i.e., a consistent hypothesis having high error) and sum these probabilities.

250 **Theorem 4.1.** *Let \mathcal{H} be a finite hypothesis class and \mathcal{A} a consistent learning algorithm. A random
 251 order of n examples $S_n = (z_1, \dots, z_n)$ drawn i.i.d. from \mathcal{D} is universally PAC-valid with error at
 252 most $\min\{\frac{n\varepsilon + \log n}{k}, 1\}$ and confidence $1 - \delta$, provided n is large enough for (ε, δ) -PAC learnability.*

254 *Proof Sketch.* We proceed by considering a fixed prefix length, k , and bound the probability of the
 255 bad event that the corresponding hypothesis, h_k , has large despite being consistent with the prefix.
 256 More formally, we bound the probability that h_k is consistent given that its error is at least ε_k . This
 257 probability is equivalent to a Bernoulli trial and can be upper bounded as $(1 - \varepsilon_k)^k \leq e^{-k\varepsilon_k}$. Taking a
 258 union bound over the the hypothesis hypothesis class, we obtain a bound for the failure probability at
 259 a fixed k value. To ensure the at most n prefixes satisfy the desired error guarantee of ε corresponding
 260 to the sample complexity $n_{\varepsilon, \delta}$, we apply a union bound over all the event failure probablities to
 261 obtain the adaptive bound $\varepsilon_k \geq \frac{n\varepsilon + \log n}{k}$. The full proof is detailed in Appendix A. \square

263
 264 Thus, the overhead for ensuring universality is at most logarithmic in the overall sample complexity.
 265 If we were to instead select k data points at random, the standard PAC learning results would
 266 guarantee an error of at most $\frac{n\varepsilon}{k}$ with probability $1 - \delta$. However, we reiterate that our framing seeks to
 267 define a bound on the k -sized prefix training set which holds with high probability across all such
 268 values of k , incurring an additional logarithmic error. In the next section, we show how this bound
 269 can be tightened significantly by recognizing that adjacent prefixes are highly correlated, allowing
 us to control far fewer “bad events”, improving the overhead to $O(\log \log n)$.

Figure 2: Comparison of Generalization Error Bounds. Naive union bound analysis (dotted red) incurs pessimistic logarithmic overhead, whereas a double counting argument yields an exponential improvement dotted blue) that nearly matches independent random sampling.

4.2 AN EXPONENTIAL IMPROVEMENT TO A $O(\log n)$ OVERHEAD

The prior analysis assumed a conservative worst-case scenario where each prefix length was an independent event, requiring us to control the generalization error separately for all n prefixes. However, a crucial structural property of data orderings allows us to significantly tighten this analysis. The key insight is that hypotheses trained on similar-sized prefixes are highly correlated. Specifically, if a hypothesis is consistent on a prefix of size k , it is likely to remain consistent on slightly longer prefixes, e.g. those of size $(1+\eta)k$ for small $\eta > 0$. This suggests that controlling error at exponentially spaced prefix sizes suffices to ensure correctness for all intermediate values.

Formally, we construct a geometrically growing sequence of prefix sizes and bound the error only at these anchor points. Because consistency at size k propagates to $(1+\eta)k$ with high probability, we need only apply a union bound over $O(\log n)$ such anchor prefixes. This reduces the overhead to $\log \log n$. We note that this reduction is not merely a technical improvement, but rather it underscores a key qualitative advantage of universal orderings: small-scale generalization guarantees can be leveraged (and propagated) to ensure performance at much larger scales. We proceed to formalize this insight.

Lemma 4.2 (Stability of Consistency under Prefix Extension). *Let h_k be a hypothesis consistent with the first k samples of a random ordering $S_n = (z_1, \dots, z_n)$ drawn i.i.d. from a distribution \mathcal{D} , and assume $\text{err}_{\mathcal{D}}(h_k) \leq \epsilon_k$. Then for any $\eta \in (0, 1]$, the probability that h_k is also consistent with the next ηk examples in the sequence is at least $(1 - \epsilon_k)^{\eta k}$.*

This fact applies to both finite and infinite hypothesis class settings, as it relies solely on the generalization error bound of the hypothesis h_k , rather than the size of the class itself. As a result, it suffices to control the generalization error only at exponentially spaced prefixes of the form $k_j = (1+\eta)^j$, reducing the total number of bad events from n to $O(\log n)$. We proceed to revise the proof of Theorem 4.1 accordingly to obtain the improved result in Appendix A.

Theorem 4.3. *Let \mathcal{H} be a finite hypothesis class. A random ordering of n examples is universally PAC-valid with error $\min\{\frac{n\epsilon + \log \log n}{k}, 1\}$ and confidence $1 - \delta$, provided n is large enough for (ϵ, δ) -PAC learnability.*

This same argument can be extended to hypothesis classes with finite VC dimension. The proof is again deferred to the appendix due to space constraints.

Theorem 4.4. *Let \mathcal{H} be a hypothesis class with $\text{VC}(\mathcal{H}) = d$. A random ordering of n examples is universally PAC-valid with confidence $1 - \delta$ and error bounded by $O(\frac{n\epsilon + \log \log n}{k})$ for any $d \leq k \leq n$.*

324 5 MAIN RESULT: ANYTIME-VALID ANALYSIS

326 While the $O(\log \log n)$ result is strong, we demonstrate that the overhead factor is an artifact of the
 327 union-bound technique. Towards this, we now introduce a more direct analysis using the machinery
 328 of anytime-valid inference, which reveals that no such penalty is fundamentally necessary. This
 329 highlights the power of the confidence interval literature’s machinery to resolve problems in our
 330 universal learning framework. These methods show that fixing a random permutation of the data is
 331 equivalent to randomly sampling k points—a fact which will further inspire optimality questions in
 332 Section 6.

334 5.1 CONSTRUCTING THE SUPERMARTINGALE AND APPLYING VILLE’S INEQUALITY

336 We can frame our analysis using a game-theoretic analogy. For any given hypothesis $h \in \mathcal{H}$, we can
 337 define a “null hypothesis”:

$$338 H_0^{(h,k)} := \text{err}_{\mathcal{D}}(h) > \varepsilon_k,$$

339 or that h is ‘bad’ for prefix size k . A skeptic can then place bets *against* this null hypothesis. This
 340 skeptic’s bet is designed to form a non-negative supermartingale under $H_0^{(h,k)}$. If the bet amount
 341 grows significantly, it provides strong evidence to reject the null, meaning we can be confident that
 342 h is ‘good’.

343 To formalize this, we construct a test supermartingale $(M_k^{(h)})_{k \geq 1}$ for each hypothesis $h \in \mathcal{H}$. A
 344 crucial observation is that a random permutation of a fixed dataset of size n (where n is sufficiently
 345 large) is equivalent to sampling without replacement from that finite population (conditioned on the
 346 sample complexity). This allows us to adapt powerful martingale constructions from the sampling
 347 without replacement literature (Waudby-Smith & Ramdas, 2020), such as the prior-posterior-ratio
 348 martingale. For the i.i.d. setting, a simple and powerful choice is a likelihood-ratio martingale.

349 We form a mixture martingale over the entire hypothesis class: $M_k = \sum_{h \in \mathcal{H}} \pi(h) M_k^{(h)}$, where
 350 $\pi(h)$ is a prior over \mathcal{H} (e.g., uniform for a finite class). This mixture process $(M_k)_{k \geq 1}$ is also a
 351 non-negative supermartingale with $M_0 = 1$. We can now apply Ville’s inequality directly to this
 352 single process. With probability at least $1 - \delta$, we have $M_k < 1/\delta$ for all $k \in \{1, \dots, n\}$. If
 353 there existed some k and a hypothesis h_k that was consistent with the prefix S_k but had high error,
 354 its corresponding martingale $M_k^{(h_k)}$ would be large. This would cause the mixture M_k to become
 355 large, an event that Ville’s inequality bounds with probability at most δ . This line of reasoning leads
 356 to our main, improved theorems.

357 **Theorem 5.1** (Anytime-Valid Guarantee, Finite Class). *Let \mathcal{H} be a finite hypothesis class. A random
 358 order of n examples is universally PAC-valid with error $\epsilon_k \leq \frac{\log |\mathcal{H}| + \log(1/\delta)}{k}$ and confidence $1 - \delta$.*

361 *Proof.* We construct a single non-negative supermartingale and apply Ville’s inequality to obtain a
 362 uniform bound over all prefix lengths k .

363 For each hypothesis $h \in \mathcal{H}$, consider testing the null hypothesis $H_0^{(h)} : \text{err}_{\mathcal{D}}(h) > \epsilon_k$ against the
 364 alternative $H_1^{(h)} : \text{err}_{\mathcal{D}}(h) = 0$, where we will set ϵ_k shortly. We can construct a likelihood-ratio
 365 process for a sequence of observations (z_1, z_2, \dots) as

$$366 M_t^{(h)} = \prod_{i=1}^t \frac{P(z_i | H_1^{(h)})}{P(z_i | \text{err}_{\mathcal{D}}(h) = \epsilon_k)}.$$

367 If h is consistent with sample z_i , this ratio is $\frac{1}{1 - \epsilon_k}$. If not, the numerator is 0. Thus, for a prefix S_k ,
 368 $M_k^{(h)} = (1 - \epsilon_k)^{-k}$ if h is consistent with S_k , and 0 otherwise. For any h where $\text{err}_{\mathcal{D}}(h) > \epsilon_k$, this
 369 process is a non-negative supermartingale.

370 Now, define a mixture martingale over the entire class using a uniform prior $\pi(h) = 1/|\mathcal{H}|$:

$$371 M_k = \sum_{h \in \mathcal{H}} \pi(h) M_k^{(h)} = \frac{1}{|\mathcal{H}|} \sum_{h \text{ consistent with } S_k} (1 - \epsilon_k)^{-k}$$

378 This mixture process $(M_k)_{k \geq 1}$ is a non-negative supermartingale under the global null hypothesis
 379 that any hypothesis consistent with the data has error at least ϵ_k . By Ville’s inequality (Theorem 3.6),
 380 we have $P(\exists k : M_k \geq 1/\delta) \leq \delta$.

381 We now define the target error bound as $\epsilon_k = \frac{\log(|\mathcal{H}|/\delta)}{k}$. We prove by contradiction. Assume a “bad
 382 event” occurs: for some $k \in \{1, \dots, n\}$, the learner returns a hypothesis h_k that is consistent with S_k
 383 but has true error $\text{err}_{\mathcal{D}}(h_k) > \epsilon_k$. If this event occurs, then at that prefix length k , the martingale
 384 M_k must be at least:
 385

$$M_k \geq \frac{1}{|\mathcal{H}|} M_k^{(h_k)} = \frac{1}{|\mathcal{H}|} (1 - \epsilon_k)^{-k}$$

386 We can lower-bound this term by taking the natural logarithm, using the inequality $-\log(1-x) \geq x$
 387 for $x \in [0, 1)$, and exponentiating both sides to give $(1 - \epsilon_k)^{-k} \geq |\mathcal{H}|/\delta$. Substituting this back, we
 388 find that if the bad event occurs, then $M_k \geq \frac{1}{|\mathcal{H}|} \left(\frac{|\mathcal{H}|}{\delta} \right) = \frac{1}{\delta}$.

389 We have thus far shown that if a bad hypothesis is learned at any step k , it implies $M_k \geq 1/\delta$. But
 390 Ville’s inequality tells us that the probability of the event $\{\exists k : M_k \geq 1/\delta\}$ is at most δ . Therefore,
 391 the probability of a bad hypothesis being learned at any step is also at most δ .

392 Thus, with probability at least $1 - \delta$, for all $k \in \{1, \dots, n\}$, any hypothesis h_k returned by a consistent
 393 learner on S_k satisfies $\text{err}_{\mathcal{D}}(h_k) \leq \epsilon_k = \frac{\log(|\mathcal{H}|/\delta)}{k}$. Relating this to the standard sample complexity
 394 $n\epsilon = O(\log |\mathcal{H}| + \log(1/\delta))$, we see the bound is $O(\frac{n\epsilon}{k})$. \square

395 As before, we extend this logic to the case of infinite hypothesis class with finite $\text{VC}(\mathcal{H})$. The full
 396 proof details are deferred to the appendix due to space constraints.

401 **Theorem 5.2** (Anytime-Valid Guarantee, Infinite VC-dim Class). *Let \mathcal{H} be a hypothesis class
 402 with $\text{VC}(\mathcal{H}) = d$. A random ordering of n examples is universally PAC-valid with error
 403 $\epsilon_k = O(\frac{d+\log(1/\delta)}{k}) = O(\frac{n\epsilon}{k})$ for any $d \leq k \leq n$ with confidence $1 - \delta$.*

404 The proofs for these theorems rely on the properties of the constructed supermartingale and a single
 405 application of Ville’s inequality. The analysis correctly models the dependencies between prefixes
 406 from first principles, demonstrating that the logarithmic overhead factors from the union-bound
 407 analysis are not fundamental to the problem but are artifacts of that specific proof technique.

409 6 DISCUSSION

411 In this work, we formally defined the universal data ordering problem within the PAC framework
 412 and provided a rigorous baseline analysis for the performance of a random permutation, a provably
 413 optimal task-agnostic method. Our goal was to establish whether this simple, natural approach could
 414 serve as a strong foundation for this problem, and our results show that it is surprisingly effective.

415 Our investigation yielded progressively stronger results, highlighting the power of modern sequential
 416 analysis tools. The warm-up analysis, based on classical union bounds, established that random
 417 orderings are surprisingly robust, suffering only a minor $O(\log \log n)$ penalty. However, our main
 418 contribution is the tighter analysis via test supermartingales and Ville’s inequality. This approach
 419 not only removes the logarithmic overhead, achieving the optimal statistical rate, but also provides
 420 a more profound understanding of the problem’s structure.

421 The primary limitation of our work is that the analysis centers on random orderings. While we show
 422 such orderings are surprisingly effective, they are unlikely to retain optimality when restricted to
 423 subclasses of tasks (rather than fully agnostic). Our work opens several avenues for future research:

- 425 • **Designing Optimal Orderings:** The martingale framework suggests a new direction for
 426 designing structured orderings. Could one design an ordering algorithm that actively tries
 427 to maximize the growth of martingales corresponding to incorrect hypotheses, thereby fal-
 428 sifying them more quickly? This connects to ideas in “safe testing” and could lead to
 429 provably better-than-random orderings (Ramdas et al., 2023).
- 430 • **Beyond PAC Learning:** The anytime-valid perspective on data ordering could be extended
 431 to other sequential learning settings, such as online convex optimization or regret minimiza-
 432 tion in bandits, where the sequence of data presentation is crucial.

432 • **PAC-Bayes Confidence Sequences:** A more advanced direction is to move beyond high-
433 probability bounds to full distributional guarantees. One could leverage the rich literature
434 on PAC-Bayes analysis to construct anytime-valid PAC-Bayes bounds, or confidence se-
435 quences, for the risk of the hypothesis at each prefix k (Chugg et al., 2023; Rodriguez-
436 Galvez et al., 2024). This would provide a posterior distribution over the possible error
437 values, offering a more complete characterization of uncertainty.

438 Overall, our analysis establishes rigorous baseline guarantees for universal orderings, highlights the
439 surprising effectiveness of random permutations, and connects this fundamental problem in learn-
440 ing theory to the powerful and general framework of anytime-valid inference. Future work should
441 explore methods for constructing orderings that outperform random permutations.

443 REFERENCES

445 Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coresets constructions for machine
446 learning. *arXiv preprint arXiv:1703.06476*, 2017.

447

448 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
449 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

450

451 Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collaborative pac learning.
452 *Advances in Neural Information Processing Systems*, 30, 2017.

453

454 Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples from com-
455 putational constraints. In *International Conference on Machine Learning*, pp. 831–840. PMLR,
456 2019.

457

458 Chengliang Chai, Jiayi Wang, Nan Tang, Ye Yuan, Jiabin Liu, Yuhao Deng, and Guoren Wang.
459 Efficient coresets selection with cluster-based methods. In *Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining*, pp. 167–178, 2023.

460

461 Ben Chugg, Hongjian Wang, and Aaditya Ramdas. A unified recipe for deriving (time-uniform)
462 pac-bayes bounds. *Journal of Machine Learning Research*, 24(372):1–61, 2023.

463

464 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
465 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
466 pp. 248–255. Ieee, 2009.

467

468 Peter Grünwald, Rianne de Heide, and Wouter Koolen. Safe testing. *Journal of the Royal Statistical
Society Series B: Statistical Methodology*, 86(5):1091–1128, 2024.

469

470 Anupam Gupta, Mohammad T Hajiaghayi, and Harald Räcke. Oblivious network design. In *Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pp. 970–979,
471 2006.

472

473 Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
474 works. In *International conference on machine learning*, pp. 2535–2544. PMLR, 2019.

475

476 Peter Hall and Christopher C Heyde. *Martingale limit theory and its application*. Academic press,
477 2014.

478

479 Steve Hanneke. The optimal sample complexity of pac learning. *Journal of Machine Learning
Research*, 17(38):1–15, 2016.

480

481 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal
482 approximations for tsp, steiner tree, and set cover. In *Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing*, pp. 386–395, 2005.

483

484 Junguang Jiang, Ximeい Wang, Mingsheng Long, and Jianmin Wang. Resource efficient domain
485 adaptation. In *Proceedings of the 28th ACM International Conference on Multimedia*, pp. 2220–
2228, 2020.

486 Michael J Kearns and Umesh Vazirani. *An introduction to computational learning theory*. MIT
487 press, 1994.
488

489 Jon R Kettenring. Massive datasets. *Wiley Interdisciplinary Reviews: Computational Statistics*, 1
490 (1):25–32, 2009.
491

492 Alexandros Labrinidis and Hosagrahar V Jagadish. Challenges and opportunities with big data.
493 *Proceedings of the VLDB Endowment*, 5(12):2032–2033, 2012.
494

495 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P Williamson. A gen-
496 eral approach for incremental approximation and hierarchical clustering. *SIAM Journal on Com-
497 puting*, 39(8):3633–3669, 2010.
498

499 Lane McIntosh, Niru Maheswaranathan, David Sussillo, and Jonathon Shlens. Recurrent segmen-
500 tation for variable computational budgets. In *Proceedings of the IEEE Conference on Computer
501 Vision and Pattern Recognition Workshops*, pp. 1648–1657, 2018.
502

503 Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
504 maximization: Identifying representative elements in massive data. *Advances in Neural Informa-
505 tion Processing Systems*, 26, 2013.
506

507 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
508 machine learning models. In *International Conference on Machine Learning*, pp. 6950–6960.
509 PMLR, 2020.
510

511 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
512 Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
513 models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.
514

515 Jeff M Phillips. Coresets and sketches. In *Handbook of discrete and computational geometry*, pp.
516 1269–1288. Chapman and Hall/CRC, 2017.
517

518 Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statistics and
519 safe anytime-valid inference. *Statistical Science*, 38(4):576–601, 2023.
520

521 Herbert Robbins and David Siegmund. The expected sample size of some tests of power one. *The
522 Annals of Statistics*, 2(3):415–436, 1974.
523

524 Borja Rodriguez-Galvez, Ragnar Thobaben, and Mikael Skoglund. More pac-bayes bounds: From
525 bounded losses, to losses with general tail behaviors, to anytime validity. *Journal of Machine
526 Learning Research*, 25(110):1–43, 2024.
527

528 Frans Schalekamp and David B Shmoys. Algorithms for the universal and a priori tsp. *Operations
529 Research Letters*, 36(1):1–3, 2008.
530

531 Glenn Shafer and Vladimir Vovk. *Game-theoretic foundations for probability and finance*. John
532 Wiley & Sons, 2019.
533

534 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-
535 rithms*. Cambridge university press, 2014.
536

537 Neil C Thompson, Kristjan Greenewald, Keeheon Lee, Gabriel F Manso, et al. The computational
538 limits of deep learning. *arXiv preprint arXiv:2007.05558*, 10, 2020.
539

540 Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
541 events to their probabilities. In *Measures of complexity: festschrift for alexey chervonenkis*, pp.
542 11–30. Springer, 2015.
543

544 Abraham Wald. *Sequential analysis*. Courier Corporation, 2004.
545

546 Ian Waudby-Smith and Aaditya Ramdas. Confidence sequences for sampling without replacement.
547 *Advances in Neural Information Processing Systems*, 33:20204–20214, 2020.
548

549 Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
550 and experiments with deep networks. In *International conference on machine learning*, pp. 5238–
551 5246. PMLR, 2018.
552

540 **A OMITTED PROOFS**

541 **A.1 UNION BOUND PROOFS**

544 *Proof.* To show universal PAC-validity, we must demonstrate that with probability at least $1 - \delta$, for
 545 every prefix S_k of size $k \in \{1, \dots, n\}$, the hypothesis $h_k = \mathcal{A}(S_k)$ has error at most some ε_k .

546 Let B_k be the "bad event" for a prefix of size k :

548
$$B_k := \{\exists h \in \mathcal{H} \text{ consistent with } S_k \text{ but } \text{err}_{\mathcal{D}}(h) > \varepsilon_k\}$$

549 We bound the probability of the union of these bad events over all k .

551
$$P(\bigcup_{k=1}^n B_k) \leq \sum_{k=1}^n P(B_k)$$

554 For a fixed hypothesis $h \in \mathcal{H}$ with $\text{err}_{\mathcal{D}}(h) > \varepsilon_k$, the probability that it is consistent with k i.i.d.
 555 samples is $(1 - \text{err}_{\mathcal{D}}(h))^k < (1 - \varepsilon_k)^k \leq e^{-k\varepsilon_k}$. By a union bound over all hypotheses in \mathcal{H} , we
 556 get $P(B_k) \leq |\mathcal{H}|e^{-k\varepsilon_k}$.

557 To ensure the total failure probability is at most δ , we allocate a failure probability of δ/n to each
 558 prefix size k . Thus, we require $P(B_k) \leq \delta/n$ for each k .

560
$$|\mathcal{H}|e^{-k\varepsilon_k} \leq \frac{\delta}{n}$$

562 Solving for ε_k :

563
$$-k\varepsilon_k \leq \log\left(\frac{\delta}{n|\mathcal{H}|}\right) = \log\left(\frac{\delta}{|\mathcal{H}|}\right) - \log n$$

564
$$\varepsilon_k \geq \frac{\log(|\mathcal{H}|/\delta) + \log n}{k}$$

566 This proves the theorem. □

570 In resolving this additional $\log n$ factor to $\log \log n$ as discussed in Section 4.2, we first prove the
 571 critical "stability" lemma.

572 **Lemma A.1.** *Let h_k be a hypothesis consistent with the first k samples of a random ordering,
 573 S_n , drawn i.i.d. from a distribution \mathcal{D} , and assume $\text{err}_{\mathcal{D}}(h_k) \leq \varepsilon_k$. Then for any $\eta \in (0, 1]$, the
 574 probability that h_k is also consistent with the next ηk examples in the sequence is at least $(1 - \varepsilon_k)^{\eta k}$.*

576 *Proof of Lemma 4.2.* The samples $z_{k+1}, \dots, z_{k+\eta k}$ are i.i.d. draws from \mathcal{D} . The probability that h_k
 577 is consistent with a single new sample z_i is $1 - \text{err}_{\mathcal{D}}(h_k)$, which is at least $1 - \varepsilon_k$. Since the samples
 578 are independent, the probability of being consistent with all ηk new samples is $(1 - \text{err}_{\mathcal{D}}(h_k))^{\eta k} \geq$
 579 $(1 - \varepsilon_k)^{\eta k}$. □

580 Armed with this lemma, we proceed to revise the Proof of Theorem 4.1 with a more careful accounting
 581 of accumulated errors to obtain the main result of the warm-up section.

583 *Proof of Theorem 4.3.* Instead of a union bound over all n prefixes, we use a more efficient union
 584 bound over a set of geometrically spaced "anchor points." Let $\eta \in (0, 1]$ and define the anchor
 585 points as $k_j = \lfloor (1 + \eta)^j \rfloor$ for $j = 0, 1, \dots, L$, where $L = \lceil \log_{1+\eta} n \rceil$. The number of anchor points
 586 is $L + 1 = O(\log n)$.

588 Let B_j be the bad event at anchor point k_j :

590
$$B_j := \{\exists h \in \mathcal{H} \text{ consistent with } S_{k_j} \text{ but } \text{err}_{\mathcal{D}}(h) > \varepsilon_{k_j}\}.$$

591 We apply a union bound over these $L + 1$ events, allocating a failure probability of $\delta/(L + 1)$ to
 592 each.

593
$$P(B_j) \leq |\mathcal{H}|e^{-k_j\varepsilon_{k_j}} \leq \frac{\delta}{L + 1}$$

594 Solving for ε_{k_j} :

$$595 \quad \varepsilon_{k_j} \geq \frac{\log(|\mathcal{H}|(L+1)/\delta)}{k_j} = \frac{\log(|\mathcal{H}|/\delta) + \log(L+1)}{k_j}$$

598 For any $k \in [d, n]$, let j be such that $k_j \leq k < k_{j+1}$. The hypothesis h_k is trained on S_k .
599 With probability at least $1 - \delta$, for all $j = 0, \dots, L$, any hypothesis h'_{k_j} consistent on S_{k_j} has
600 $\text{err}_{\mathcal{D}}(h'_{k_j}) \leq \varepsilon_{k_j}$. By Lemma A.1, h_{k_j} is also consistent on S_k with high probability. In the
601 realizable setting, this implies that the hypothesis h_k found by a consistent learner on S_k must also
602 satisfy $\text{err}_{\mathcal{D}}(h_k) \leq \varepsilon_{k_j}$. Since $k \geq k_j$, the bound thus holds for all intermediate k . \square

604 Lastly, we prove a matching result in the finite VC dimension setting.

606 *Proof of Theorem 4.4.* The proof structure is identical to that of Theorem 4.3 for finite classes, but
607 we adapt it for a hypothesis class \mathcal{H} with a finite VC-dimension $d = VC(\mathcal{H})$. The key difference is
608 that the number of ways the hypothesis class can label a sample of size k is no longer bounded by
609 $|\mathcal{H}|$, but by the growth function, $\tau_{\mathcal{H}}(k)$. For $k \geq d$, Sauer's Lemma provides the bound $\tau_{\mathcal{H}}(k) \leq$
610 $(\frac{ek}{d})^d$.

612 As in the proof of Theorem 4.3, we define a set of $L+1 = O(\log n)$ geometrically spaced anchor
613 points $k_j = \lfloor (1+\eta)^j \rfloor$. Our goal is to ensure that with high probability, for every anchor point k_j ,
614 any hypothesis consistent with the prefix S_{k_j} has a low true error.

615 Let B_j be the bad event at anchor point k_j :

$$616 \quad B_j := \{\exists h \in \mathcal{H} \text{ consistent with } S_{k_j} \text{ but } \text{err}_{\mathcal{D}}(h) > \varepsilon_{k_j}\}$$

618 By applying a union bound over the $\tau_{\mathcal{H}}(k_j)$ possible labelings of the sample S_{k_j} , the probability of
619 this bad event is bounded by:

$$620 \quad P(B_j) \leq \tau_{\mathcal{H}}(k_j) e^{-k_j \varepsilon_{k_j}}$$

622 We apply a union bound over all $L+1$ anchor points, allocating a failure probability of $\delta/(L+1)$
623 to each. To ensure the total probability of failure is at most δ , we require for each j :

$$624 \quad \tau_{\mathcal{H}}(k_j) e^{-k_j \varepsilon_{k_j}} \leq \frac{\delta}{L+1}$$

626 Solving for the error ε_{k_j} :

$$628 \quad -k_j \varepsilon_{k_j} \leq \log \left(\frac{\delta}{(L+1)\tau_{\mathcal{H}}(k_j)} \right)$$

$$630 \quad \varepsilon_{k_j} \geq \frac{\log(\tau_{\mathcal{H}}(k_j)) + \log((L+1)/\delta)}{k_j}$$

633 Now, we substitute the bound for the growth function and the fact that $L+1 = O(\log n)$:

$$635 \quad \varepsilon_{k_j} \geq \frac{d \log(ek_j/d) + \log(O(\log n)) + \log(1/\delta)}{k_j} = O \left(\frac{d \log(k_j) + \log \log n + \log(1/\delta)}{k_j} \right)$$

637 This bound holds simultaneously for all anchor points $j = 0, \dots, L$ with probability at least $1 - \delta$.

639 For any intermediate prefix length k such that $k_j \leq k < k_{j+1}$, the prefix S_{k_j} is a subset of S_k . If our
640 guarantee holds at anchor point k_j , it means no hypothesis h with error $\text{err}_{\mathcal{D}}(h) > \varepsilon_{k_j}$ is consistent
641 with S_{k_j} . Therefore, no such hypothesis can be consistent with the larger sample S_k . This implies
642 that the hypothesis h_k returned by a consistent learner on S_k must have an error $\text{err}_{\mathcal{D}}(h_k) \leq \varepsilon_{k_j}$.
643 Since $k \geq k_j$, its error is bounded by:

$$644 \quad \text{err}_{\mathcal{D}}(h_k) \leq \varepsilon_{k_j} = O \left(\frac{d \log(k) + \log \log n}{k_j} \right)$$

646 Using the standard sample complexity definition where $n\epsilon = O(d + \log(1/\delta))$, this bound simplifies
647 to $O(\frac{n\epsilon + \log \log n}{k})$. This completes the proof. \square

648 A.2 ANYTIME-VALID PROOFS
649

650 *Proof of Theorem 5.2.* The proof is analogous to that of Theorem 5.1, but we must handle the fact
651 that the hypothesis class \mathcal{H} is infinite. We achieve this by replacing the uniform prior over \mathcal{H} with
652 an adaptive prior that considers only the set of behaviors of \mathcal{H} on the observed data prefix S_k . The
653 size of this set of behaviors (dichotomies) is bounded by the growth function $\tau_{\mathcal{H}}(k)$.

654 Let $\epsilon_k = \frac{\log(\tau_{\mathcal{H}}(k)) + \log(1/\delta)}{k}$. For each k , we construct a mixture martingale to test the global null
655 hypothesis that any hypothesis consistent with S_k has an error of at least ϵ_k .
656

657 Let $\Pi_{\mathcal{H}}(S_k)$ be the set of all possible labelings (dichotomies) that the class \mathcal{H} can induce on the
658 sample S_k . We know that $|\Pi_{\mathcal{H}}(S_k)| \leq \tau_{\mathcal{H}}(k)$. We can define a mixture martingale with a uniform
659 prior over these dichotomies:

660
$$M_k = \frac{1}{|\Pi_{\mathcal{H}}(S_k)|} \sum_{h \in \Pi_{\mathcal{H}}(S_k)} M_k^{(h)}$$

661
662

663 where $M_k^{(h)} = (1 - \epsilon_k)^{-k}$ is the test martingale for a single hypothesis (labeling) h against the
664 null $\text{err}_{\mathcal{D}}(h) = \epsilon_k$. As the size of the set of dichotomies can change with k , this is an adaptive
665 mixture. This process $(M_k)_{k \geq d}$ remains a non-negative supermartingale. We can now apply Ville's
666 inequality, which states that $\bar{P}(\exists k \geq d : M_k \geq 1/\delta) \leq \delta$.

667 We proceed by contradiction. Assume a "bad event" occurs: for some $k \geq d$, the learner returns a
668 hypothesis h_k that is consistent with S_k but has true error $\text{err}_{\mathcal{D}}(h_k) > \epsilon_k$.
669

670 If this bad event occurs at step k , then the martingale M_k is lower-bounded by the term correspond-
671 ing to the observed labeling induced by h_k :

672
$$M_k = \frac{1}{|\Pi_{\mathcal{H}}(S_k)|} \sum_{h \in \Pi_{\mathcal{H}}(S_k), \text{consistent}} (1 - \epsilon_k)^{-k} \geq \frac{1}{\tau_{\mathcal{H}}(k)} (1 - \epsilon_k)^{-k}$$

673
674

675 We want to show that this event implies $M_k \geq 1/\delta$. This requires showing that $\frac{1}{\tau_{\mathcal{H}}(k)} (1 - \epsilon_k)^{-k} \geq$
676 $1/\delta$. Taking the logarithm of the desired inequality $(1 - \epsilon_k)^{-k} \geq \tau_{\mathcal{H}}(k)/\delta$:

677
$$-k \log(1 - \epsilon_k) \geq \log(\tau_{\mathcal{H}}(k)/\delta)$$

678

679 Using the fact that $-\log(1 - x) \geq x$ for $x \in [0, 1)$, it is sufficient to show:

680
$$k \epsilon_k \geq \log(\tau_{\mathcal{H}}(k)) + \log(1/\delta)$$

681

682 By our definition of $\epsilon_k = \frac{\log(\tau_{\mathcal{H}}(k)) + \log(1/\delta)}{k}$, this condition is met exactly.

683 Therefore, the occurrence of a "bad event" at step k implies that $M_k \geq 1/\delta$. Since the probability
684 of the latter is bounded by δ for all k simultaneously, the probability of a bad event ever occurring
685 is also at most δ .

686 This means, with probability at least $1 - \delta$, for all $k \in \{d, \dots, n\}$, any hypothesis h_k returned by a
687 consistent learner on S_k satisfies:

688
$$\text{err}_{\mathcal{D}}(h_k) \leq \epsilon_k = \frac{\log(\tau_{\mathcal{H}}(k)) + \log(1/\delta)}{k}$$

689
690

691 Substituting the bound $\tau_{\mathcal{H}}(k) \leq (ek/d)^d$, we get:

692
$$\text{err}_{\mathcal{D}}(h_k) \leq \frac{d \log(ek/d) + \log(1/\delta)}{k} = O\left(\frac{d \log k + \log(1/\delta)}{k}\right)$$

693
694

695 This is the standard, fixed-sample-size PAC bound for a VC class. Our anytime-valid analysis proves
696 that it holds uniformly for all prefixes $k \geq d$. Relating this to the sample complexity $n\epsilon = O(d +$
697 $\log(1/\delta))$, the bound is $O(\frac{n\epsilon}{k})$. \square

698 A.3 OPTIMALITY OF RANDOM ORDERING
699

700 In this section, we formalize the comparison between deterministic and random orderings in the
701 task-agnostic setting.

702 A.3.1 DETERMINISTIC ORDERINGS SUBOPTIMALITY
 703

704 We show that for any deterministic ordering algorithm, there exists a realizable PAC learning task
 705 where the algorithm fails to provide universal guarantees.

706 **Theorem A.2.** *Let \mathcal{A}_{det} be a deterministic ordering algorithm. There exists a domain \mathcal{X} , a distribution \mathcal{D} , and a hypothesis class \mathcal{H} such that a consistent learner returns a hypothesis with high error on the prefix samples from \mathcal{A}_{det} .*

710 *Proof.* Let $\mathcal{X} = \{x_A, x_B\}$ and let the true distribution \mathcal{D} be defined such that $\Pr(x_A) = \epsilon$ and
 711 $\Pr(x_B) = 1 - \epsilon$ for a small $\epsilon > 0$. Let the target concept c be $c(x_A) = 0$ and $c(x_B) = 1$.

712 We define the hypothesis class $\mathcal{H} = \{h_0, h^*\}$ where $h^*(x) = c(x)$ and $h_0(x) = 0$ for all $x \in \mathcal{X}$.
 713 Note that the problem is realizable because $h^* \in \mathcal{H}$ that has VC dimension 1?

714 Assume without loss of generality that \mathcal{A}_{det} orders x_A before x_B . We further assume to have a
 715 consistent learner who draws an n sample set from \mathcal{D} . Let E be the event that this sample set
 716 contains at least one x_A sample: $\Pr[E] = 1 - (1 - \epsilon)^n$ which tends to 1 as $n \rightarrow \infty$. Conditional
 717 on E , we have that the sampled set contains $k \geq 1$ instances of x_A and $n - k$ of x_B . The algorithm
 718 applied to this set produces an ordering where the first k elements are x_A . For the prefixes up to
 719 $k+1$, the learner only sees samples with label 0. Thus, both h^* and h_0 are consistent with this prefix.
 720 A consistent learner may therefore return h_0 . However, the true error of h_0 on the distribution is:

$$721 \quad 722 \quad \text{err}_{\mathcal{D}}(h_0) = \Pr(x_B) \cdot \mathbb{I}[h_0(x_B) \neq 1] = 1 - \epsilon$$

723 Thus, for the prefix where only x_A is observed, the learner suffers maximal error, proving that
 724 deterministic orderings are not universally PAC-valid. \square
 725

726 A.4 MINIMAX OPTIMALITY OF UNIFORM RANDOM PERMUTATIONS
 727

728 We explicitly show that the uniform random ordering is the unique minimax optimal strategy for
 729 task-agnostic ordering.

730 **Theorem A.3.** *The Uniform Random Ordering minimizes the maximum risk of failing to include a
 731 critical sample in a prefix of size k .*

732 *Proof.* Let S_k be the set of indices in the prefix of size k for a drawn dataset $S \sim \mathcal{D}$. Consider
 733 a similar task to the construction in Theorem A.2 where the concept is revealed by a single ideal
 734 index $i^* \in \{1, \dots, n\}$. For any randomized ordering algorithm defined by a distribution \mathcal{P} over
 735 permutations, the expected size of the prefix is exactly k . By linearity of expectation:

$$737 \quad 738 \quad \sum_{i=1}^n \Pr_{\pi \sim \mathcal{P}}[i \in S_k] = \mathbb{E}[|S_k|] = k$$

740 This implies that the arithmetic mean of the inclusion probabilities is exactly k/n regardless of
 741 the algorithm. An adversary, observing the algorithm \mathcal{P} , will select the index i^* to minimize its
 742 probability of inclusion:

$$743 \quad \min_i \Pr[i \in S_k]$$

744 Since the minimum of a set of numbers is bounded above by their average, we have:

$$746 \quad 747 \quad \min_i \Pr[i \in S_k] \leq \frac{1}{n} \sum_{i=1}^n \Pr[i \in S_k] = \frac{k}{n}$$

749 This upper bound is achieved if and only if all inclusion probabilities are equal. Thus, any non-
 750 uniform distribution implies there exists some index j such that $\Pr[j \in S_k] < k/n$, which the
 751 adversary will exploit to maximize the failure rate. The uniform random ordering is therefore the
 752 unique strategy that assigns $\Pr[i \in S_k] = k/n$ for all i , and thus it is minimax optimal. \square
 753
 754
 755