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ABSTRACT

We initiate the study of the universal ordering problem within the PAC learning
framework: given a set of n samples independently drawn from an unknown dis-
tribution D, can we order these samples such that every prefix of length £k < n
yields a near-optimal subset for training a PAC learner? This question is fun-
damentally motivated by practical scenarios involving incremental learning and
adaptive computation, where guarantees must hold uniformly across varying data
budgets. We formalize this requirement as achieving anytime-valid PAC guaran-
tees. As a warm-up, we analyze the simple random ordering baseline using clas-
sical concentration inequalities. Through a careful union bound over a geometric
partitioning of prefixes, we establish that it provides a surprisingly strong univer-
sal guarantee, incurring at most an O(log logn) overhead compared to a random
subset of size k. We then present a more powerful analysis based on the theory of
test martingales and Ville’s inequality, demonstrating that a random permutation
achieves PAC guarantees for all prefixes that match the statistical rate of a random
subset of size k, without the logarithmic overhead incurred by naive union-bound
techniques. Our work establishes a conceptual bridge between universal learn-
ing on fixed datasets and the broader field of sequential analysis, revealing that
random permutations are efficient and provably robust anytime-valid learners but
opening the door to further improvements.

1 INTRODUCTION

Modern machine learning increasingly deals with massive datasets that significantly exceed practical
computational capacities, rendering it infeasible to utilize all available data simultaneously Bachem
et al.| (2017); [Kettenring| (2009); [Labrinidis & Jagadish| (2012). Consequently, practitioners com-
monly resort to selecting representative subsets of data to train algorithms effectively within strin-
gent computational budgets|Bubeck et al.|(2019);Muennighoff et al.|(2023); Thompson et al.| (2020).
Classical Probably Approximately Correct (PAC) learning theory provides fundamental guarantees
regarding the minimum number of samples necessary to achieve prescribed accuracy and confidence
thresholds |[Kearns & Vazirani| (1994). However, traditional PAC bounds assume a static, predeter-
mined sample size. In sharp contrast, practical scenarios frequently involve dynamic computational
budgets, requiring robust guarantees that hold simultaneously across multiple scales of data us-
age|Jiang et al.| (2020); Mclntosh et al.|(2018).

Addressing this critical gap motivates our systematic investigation of the universal ordering prob-
lem: given n samples drawn i.i.d. from an unknown distribution D, can these samples be arranged in
a fixed sequence such that every initial segment (or prefix) of length £ < n forms an approximately
optimal subset for PAC learning? We formalize this desideratum through the notion of Universal
PAC-Validity. This requirement is structurally identical to the demand for a confidence sequence in
modern sequential analysis—a sequence of confidence intervals that are guaranteed to contain the
true parameter of interest uniformly over all time steps [Waudby-Smith & Ramdas| (2020). In our
context, the “time step” is the prefix length k, and the parameter of interest is the true error of the
hypothesis learned from that prefix. This reframing is not merely semantic; it allows for the deploy-
ment of powerful tools from sequential analysis that are designed to handle such uniform-over-time
guarantees.

The universal ordering problem holds considerable practical relevance. Consider the crucial goal
of reproducibility and fair benchmarking in machine learning. A fixed, universal ordering for a
benchmark dataset (e.g., ImageNet Deng et al.[ (2009)) would ensure that researchers comparing



models with different computational budgets are all training on valid, nested subsets of the same data
sequence. This enhances comparability, as a model trained on a prefix of size 100,000 is directly
comparable to one trained on the first 1,000,000 points. Furthermore, in scenarios of resource-
adaptive learning, a model may train on a device with a variable power budget or on a shared cluster
where it can be preempted at any time. A universal ordering ensures that if the process halts at an
arbitrary point k, the resulting model is not just a partial result but one that comes with a valid PAC
guarantee for the data seen so far.

While related concepts such as coreset |Chai et al.| (2023)), curriculum learning |Bengio et al.| (2009),
and submodular optimization Mirzasoleiman et al.|(2013)) have been extensively explored, these ex-
isting methodologies typically target subset construction tailored to a predetermined size or employ
heuristic-based approaches that lack robust guarantees for dynamically varying data sizes. Conse-
quently, the universal ordering problem delineates a new and compelling intersection among com-
binatorial optimization, statistical learning theory, and adaptive computational frameworks.

The primary difficulty arises from the “for all £ quantifier in the problem definition. From a classi-
cal statistical perspective, this introduces a severe multiple testing problem. A naive analysis using
standard concentration inequalities would require applying a union bound over all n prefixes, in-
curring a substantial statistical penalty that would render the resulting error bounds vacuous. This
challenge underscores the need for more sophisticated analytical techniques that can account for the
strong dependencies between hypotheses trained on nested prefixes.

1.1 OUR CONTRIBUTIONS

This paper provides a comprehensive theoretical analysis of random permutations as a first solution
to the universal ordering problem, presenting two distinct but complementary analytical frameworks.

1. First, we formalize the universal ordering problem and establish a strong baseline for ran-
dom permutations using a classical analysis. This approach, based on a careful union bound
over a geometric partitioning of prefixes, reveals that a random ordering incurs a surpris-
ingly small O(log logn) overhead in sample complexity compared to an optimal random
subset selected for a specific size k. This result serves as a valuable warm-up and demon-
strates the inherent robustness of random shuffling.

2. Second, we introduce a more direct and powerful analysis rooted in the theory of anytime-
valid inference Robbins & Siegmund, (1974); |Wald| (2004)). By constructing a specific test
supermartingale for each potentially “bad” hypothesis, we leverage Ville’s inequality to
provide a uniform guarantee over all prefixes. This approach is more elegant, avoids the
need for explicit union bounds over prefixes, and yields a tighter bound that removes the
logarithmic factors entirely. The construction of this martingale is informed by a key ob-
servation: a random permutation of a fixed dataset is equivalent to sampling without re-
placement from a finite population, allowing us to adapt powerful martingale constructions
from that literature .

3. Third, we establish a conceptual bridge between the universal ordering problem in PAC
learning and the broader fields of sequential analysis and safe testing . This connection
suggests that the principles of designing and analyzing data orderings for robust, incremen-
tal performance have wide applicability beyond the standard PAC framework.

Most crucially, by defining this problem and the strengths of different analytic approaches, we hope
to inspire future work on improved (or optimal) data ordering approaches.

2 RELATED WORK

Our universal ordering problem intersects multiple domains within combinatorial optimization, ma-
chine and statistical learning theory Shalev-Shwartz & Ben-David| (2014); |Vapnik & Chervonenkis
(2015). Largely, our work is grounded in the tradition of PAC learning, which provides formal guar-
antees on a model’s generalization performance Kearns & Vazirani| (1994). While foundational, our
work departs from the standard PAC setting by focusing on incremental performance guarantees
across subsets of a single dataset rather than on learning a single hypothesis for one underlying dis-
tribution. Closely related extensions of the PAC learning framework to the present work, such as



collaborative PAC learning Blum et al.| (2017)), often consider scenarios involving multiple learners
working collaboratively to find an optimal hypothesis across distinct distributions. However, unlike
collaborative PAC learning, which emphasizes multi-distribution scenarios, our universal ordering
framework focuses explicitly on incremental guarantees across subsets of a single dataset.

Our problem formulation is conceptually connected to classical problems in universal approximation
algorithms and incremental optimization Lin et al.| (2010). For instance, universal approximations
for the Steiner tree and set cover problems Jia et al.|(2005) aim to identify single solutions or struc-
tures that approximately solve combinatorial optimization problems simultaneously under multiple
potential inputs or constraints. Similarly, oblivious network design|Gupta et al.[(2006), the universal
traveling salesman problem and related routing challenges |Jia et al.|(2005)); Schalekamp & Shmoys
(2008) explore scenarios that require performance guarantees across multiple, dynamically vary-
ing instances without prior knowledge of specific instance parameters. These works underscore the
broader theoretical difficulty inherent in obtaining universal or incremental performance guarantees,
highlighting the analytical challenges in the present problem context.

Additionally, extensive literature has examined sufficient summarization techniques through core-
sets and related subset selection methodologies for diverse learning and optimization prob-
lems|Mirzasoleiman et al.|(2020); Bachem et al.[(2017); Phillips|(2017). These approaches typically
focus on constructing fixed-budget approximations for specific tasks. In contrast, our universal ap-
proach uniquely aims to identify a single sequence of points with simultaneous guarantees across all
input subset sizes through a single computationally efficient pass.

Finally, curriculum learning Bengio et al.| (2009); [Hacohen & Weinshalll (2019); |Weinshall et al.
(2018) offers empirically successful heuristics for ordering data to accelerate model convergence or
enhance performance. This problem deviates from the present in two crucial ways: (1) curriculum
learning sequentially presents data with the goal of achieving an improved model at the end of the
full data sequence and (2) relies on expensive model fitting and data diagnostics for each sample to
examine how it will contribute to the final model’s performance. In contrast, we seek to compute
a single, computationally efficient, pass over the data such that any subsequence of the returned
ordered is nearly optimal. Despite its practical effectiveness, curriculum learning lacks the necessary
uniform theoretical guarantees for such prefix lengths. Active learning, a related problem, involves
iterative querying of an oracle to select data points sequentially, optimizing marginal information
gains. Our problem instead assumes a fixed dataset without additional queries and must return a
static ordering, rather than incrementally include query for points to incorporate into the training
data.

3 PRELIMINARIES

We adopt the standard PAC learning framework . Let X be a domain and ) be a label set. A
hypothesis i : X — ) is drawn from a class H. Given a distribution D over X x )/, the population
loss (or error) is errp(h) = E¢, ,y~p[1[h(x) # y]|. A learning algorithm .A maps a sample S to a
hypothesis h € H.

Definition 3.1 ((¢, §)-PAC Learnable). A hypothesis class H is PAC learnable if there exists an
algorithm A and a function ny (e, d) such that for any distribution D, given n > ny(e,d) i.i.d.
samples, A returns a hypothesis h satisfying errp(h) < € with probability at least 1 — d.

For a finite hypothesis class, we have the following standard result on the sample complexity.

Theorem 3.2 (Finite Hypothesis Class Sample Complexity [Kearns & Vazirani| (1994)). Let A be an
algorithm that learns a finite hypothesis class H in the consistency model (that is, returns h € H
whenever a consistent concept w.rt. S exists). Then, A learns the concept class H in the PAC

learning model using
log |H| + log &
n57560<g| |€ g‘s).

For the broader class of hypotheses with finite VC dimension d = VC(H), we further have the
following bound.

Theorem 3.3 (Infinite Hypothesis Class Sample Complexity Hanneke| (2016))). Let A be an algo-
rithm that learns a hypothesis class H in the consistency model (that is, returns h € H whenever a
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(a) Subsets are not nested (b) Subsets are inherently nested

Figure 1: Conceptualizing independent random subsets vs. universal ordering. (a) shows traditional
independent random subsets for different data budgets (k; = 3, ks = 4, ks = 5) which are generally
not nested. (b) illustrates a universal ordering, where any prefix naturally forms a nested subset for
a given budget, a property crucial for anytime-valid guarantees.

consistent concept w.r.t. S exists). Then, A learns the concept class F in the PAC learning model

using
1 1
Nes €O ( (d—i—log)) .
3 1)

Throughout our analysis for infinite classes, we assume the prefix length & is at least d, as guarantees
are not meaningful otherwise.

3.1 UNIVERSAL PAC-VALIDITY CRITERION

‘We now formalize the central notion of our work.

Definition 3.4 (Universal PAC-Validity). An ordering S,, = (z1, ..., z,) of i.i.d. samples from D
is universally PAC-valid with error function € and confidence 1 — ¢ if, with probability at least 1 —§
over the draw of the initial n samples, the sequence of hypotheses hy = A(Sy) satisfies:

Vke{l,...,n}, errp(hg) <eg

This definition requires a single sequence to support correct generalization across all prefixes, which,
as noted, is equivalent to constructing a confidence sequence for the true error of the learner at each
prefix length Waudby-Smith & Ramdas| (2020).

We here briefly note the discrepency between the universal bounds we explore and simpler notions
of PAC complexity on samples of size k& < n. Observe that if we randomly sample & points from the
distribution D, we can trivially apply the result of Theorem [3.2]to obtain an error bound of at most
O (n¢/k) where ¢ is the error rate on n samples. However, this error bound holds with probability
1 — ¢ for only this value of k. In order to obtain a bound which holds for all k at the same error rate,
we must naturally degrade our error bound and refer to the additional error occured as the overhead.

3.2 MARTINGALES AND VILLE’S INEQUALITY FOR SEQUENTIAL GUARANTEES

Our main results rely on the theory of martingales, which provides a principled framework for
analyzing sequential processes.

Definition 3.5. A sequence of random variables (M});>o is a supermartingale with respect to a
filtration (F)x>0 (an increasing sequence of o-algebras representing information available at time
k) if for all k£ > 0:

1. My, is Fj-measurable.
2. E[|Mg|] < oc.
3. E[My41|Fr] < M.



A non-negative supermartingale is a powerful tool for deriving concentration inequalities. The fol-
lowing result, Ville’s inequality, is a time-uniform extension of Markov’s inequality and forms the
mathematical engine of our improved analysis.

Theorem 3.6 (Ville’s Inequality). Let (My)i>0 be a non-negative supermartingale with My < 1.
Then for any o € (0,1):

1
P<3k>0:Mk>><a
@

Ville’s inequality converts a statement about one-step-ahead expectations into a strong probabilistic
bound on the entire trajectory of the process Shafer & Vovk] (2019); Wald| (2004)). This allows us to
control the “bad events” over all prefixes & simultaneously without incurring the penalty of a union
bound. The intuition behind the “stability of consistency” lemma, which we discuss in Section 4.2}
is captured formally by this supermartingale property.

4  WARM-UP: CLASSICAL UNION BOUND ANALYSIS

We first the universal guarantees that come from a standard union bounding argument, highlighting
the deficiency in this method and motivating our later study of anytime-valid approaches.

4.1 A NAIVE LOGARITHMIC BOUND

For a finite hypothesis class H, we can bound the probability of a “bad event” at a fixed prefix k
(i.e., a consistent hypothesis having high error) and sum these probabilities.

Theorem 4.1. Let H be a finite hypothesis class and A a consistent learning algorithm. A random
order of n examples S, = (z1, ..., 2n) drawn ii.d. from D is universally PAC-valid with error at

most min{%7 1} and confidence 1 — 6, provided n is large enough for (¢, 6)-PAC learnability.

Proof Sketch. We proceed by considering a fixed prefix length, k, and bound the probability of the
bad event that the corresponding hypothesis, hj, has large despite being consistent with the prefix.
More formally, we bound the probability that i, is consistent given that its error is at least ;. This
probability is equivalent to a Bernoulli trial and can be upper bounded as (1—¢,)* < e~**. Taking a
union bound over the the hypothesis hypothesis class, we obtain a bound for the failure probability at
afixed k value. To ensure the at most n prefixes satisfy the desired error guarantee of € corresponding
to the sample complexity n. s, we apply a union bound over all the event failure probablities to

obtain the adaptive bound €, > W. The full proof is detailed in Appendix @ O

Thus, the overhead for ensuring universality is at most logarithmic in the overall sample complexity.
If we were to instead select k data points at random, the standard PAC learning results would guar-
antee an error of at most 4= with probability 1 — ¢. However, we reiterate that our framing seeks to
define a bound on the k-sized prefix training set which holds with high probability across all such
values of k, incurring an additional logarithmic error. In the next section, we show how this bound
can be tightened significantly by recognizing that adjacent prefixes are highly correlated, allowing

us to control far fewer “bad events”, improving the overhead to O(loglogn).

4.2 AN EXPONENTIAL IMPROVEMENT TO A O(loglogn) OVERHEAD

The prior analysis assumed a conservative worst-case scenario where each prefix length was an inde-
pendent event, requiring us to control the generalization error separately for all n prefixes. However,
a crucial structural property of data orderings allows us to significantly tighten this analysis. The
key insight is that hypotheses trained on similar-sized prefixes are highly correlated. Specifically, if
a hypothesis is consistent on a prefix of size k, it is likely to remain consistent on slightly longer pre-
fixes, e.g. those of size (1+n)k for small > 0. This suggests that controlling error at exponentially
spaced prefix sizes suffices to ensure correctness for all intermediate values.

Formally, we construct a geometrically growing sequence of prefix sizes and bound the error only
at these anchor points. Because consistency at size k propagates to (1 + 1)k with high probability,
we need only apply a union bound over O(log n) such anchor prefixes. This reduces the overhead to
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Figure 2: Comparison of Generalization Error Bounds. Naive union bound analysis (dotted red)
incurs pessimistic logarithmic overhead, whereas a double counting argument yields an exponential
improvement dotted blue) that nearly matches independent random sampling.

log log n. We note that this reduction is not merely a technical improvement, but rather it underscores
a key qualitative advantage of universal orderings: small-scale generalization guarantees can be
leveraged (and propagated) to ensure performance at much larger scales. We proceed to formalize
this insight.

Lemma 4.2 (Stability of Consistency under Prefix Extension). Let hy be a hypothesis consistent
with the first k samples of a random ordering S,, = (21, ..., zp,) drawn i.i.d. from a distribution D,
and assume errp(hy) < eg. Then for any n € (0, 1], the probability that hy, is also consistent with
the next nk examples in the sequence is at least (1 — ¢},)".

This fact applies to both finite and infinite hypothesis class settings, as it relies solely on the general-
ization error bound of the hypothesis hy, rather than the size of the class itself. As a result, it suffices
to control the generalization error only at exponentially spaced prefixes of the form k; = (1 + n)7,
reducing the total number of bad events from n to O(logn). We proceed to revise the proof of
Theorem .| accordingly to obtain the improved result in Appendix [A]

Theorem 4.3. Let ‘H be a finite hypothesis class. A random ordering of n examples is universally

PAC-valid with error min{%, 1} and confidence 1 — 6, provided n is large enough for
(e, 6)-PAC learnabiliry.

This same argument can be extended to hypothesis classes with finite VC dimension. The proof is
again deferred to the appendix due to space constraints.

Theorem 4.4. Let H be a hypothesis class with VC(H) = d. A random ordering of n examples is

universally PAC-valid with confidence 1 — 6 and error bounded by O(%) foranyd < k <
n.

5 MAIN RESULT: ANYTIME-VALID ANALYSIS

While the O(log log n) result is strong, we demonstrate that the overhead factor is an artifact of the
union-bound technique. Towards this, we now introduce a more direct analysis using the machinery
of anytime-valid inference, which reveals that no such penalty is fundamentally necessary. This
highlights the power of the confidence interval literature’s machinery to resolve problems in our
universal learning framework. These methods show that fixing a random permutation of the data is
equivalent to randomly sampling & points—a fact which will further inspire optimality questions in
Section (6l



5.1 CONSTRUCTING THE SUPERMARTINGALE AND APPLYING VILLE’S INEQUALITY

We can frame our analysis using a game-theoretic analogy. For any given hypothesis h € H, we can
define a “null hypothesis™:

Héh’k) :=errp(h) > e,

or that h is ‘bad’ for prefix size k. A skeptic can then place bets against this null hypothesis. This
skeptic’s bet is designed to form a non-negative supermartingale under H(()h’k). If the bet amount

grows significantly, it provides strong evidence to reject the null, meaning we can be confident that
h is ‘good’.

To formalize this, we construct a test supermartingale (M éh)) for each hypothesis h € H. A
E>1

crucial observation is that a random permutation of a fixed dataset of size n (where n is sufficiently
large) is equivalent to sampling without replacement from that finite population (conditioned on the
sample complexity). This allows us to adapt powerful martingale constructions from the sampling
without replacement literature [Waudby-Smith & Ramdas| (2020), such as the prior-posterior-ratio
martingale. For the i.i.d. setting, a simple and powerful choice is a likelihood-ratio martingale.

We form a mixture martingale over the entire hypothesis class: M, = >, 5, 7(h)M, ,gh), where
w(h) is a prior over # (e.g., uniform for a finite class). This mixture process (M} )x>1 is also a
non-negative supermartingale with My = 1. We can now apply Ville’s inequality directly to this
single process. With probability at least 1 — 0, we have M}, < 1/6 forall k € {1,...,n}. If
there existed some k and a hypothesis hj that was consistent with the prefix S but had high error,

its corresponding martingale M, éhk’) would be large. This would cause the mixture M}, to become
large, an event that Ville’s inequality bounds with probability at most d. This line of reasoning leads
to our main, improved theorems.

Theorem 5.1 (Anytime-Valid Guarantee, Finite Class). Let H be a finite hypothesis class. A random
order of n examples is universally PAC-valid with error €}, < w and confidence 1 — 6.

Proof. We construct a single non-negative supermartingale and apply Ville’s inequality to obtain a
uniform bound over all prefix lengths k.

For each hypothesis h € H, consider testing the null hypothesis Héh) s errp(h) > € against the

alternative H fh) : errp(h) = 0, where we will set €, shortly. We can construct a likelihood-ratio
process for a sequence of observations (21, 22, ...) as

t (h)
(h) z\H )
M, .
21;[1 P(z;lerrp(h) =€)

If h is consistent with sample z;, this ratio is 1 . If not, the numerator is 0. Thus, for a prefix Sy,

M,gh) = (1 — €)% if h is consistent with Sy, and 0 otherwise. For any h where errp(h) > ¢, this
process is a non-negative supermartingale.

Now, define a mixture martingale over the entire class using a uniform prior w(h) = 1/|H|:

My =Y a(h)M” = % o -t

heH ‘ ‘ h consistent with S

This mixture process (My)r>1 is a non-negative supermartingale under the global null hypothesis
that any hypothesis consistent with the data has error at least ;.. By Ville’s inequality (Theorem[3.6),
we have P(3k : My, > 1/5) <.

We now define the target error bound as €, = W. We prove by contradiction. Assume a “bad
event” occurs: for some k € {1, ...,n}, the learner returns a hypothesis hy, that is consistent with S,
but has true error errp(hy) > €. If this event occurs, then at that prefix length &, the martingale
M. must be at least:
1y 1
My, > ——M,"* L—e)F
gt Tt



We can lower-bound this term by taking the natural logarithm, using the inequality — log(1—z) > =
for z € [0, 1), and exponentiating both sides to give (1 —e;)~* > |#|/d. Substituting this back, we

find that if the bad event occurs, then M}, > ﬁ ( %

1

=1

We have thus far shown that if a bad hypothesis is learned at any step k, it implies My > 1/§. But
Ville’s inequality tells us that the probability of the event {3k : M}, > 1/6} is at most 6. Therefore,
the probability of a bad hypothesis being learned at any step is also at most d.

Thus, with probability at least 1—6, forall k € {1, ..., n}, any hypothesis hj, returned by a consistent

learner on Sy, satisfies errp(hy) < e = W. Relating this to the standard sample complexity
ne = O(log |H| +log(1/4)), we see the bound is O (7). O

As before, we extend this logic to the case of infinite hypothesis class with finite VC (7). The full
proof details are deferred to the appendix due to space constraints.

Theorem 5.2 (Anytime-Valid Guarantee, Infinite VC-dim Class). Let H be a hypothesis class
with VC(H) = d. A random ordering of n examples is universally PAC-valid with error

€r = O(%W) = O(%) for any d < k < n with confidence 1 — 4.

The proofs for these theorems rely on the properties of the constructed supermartingale and a single
application of Ville’s inequality. The analysis correctly models the dependencies between prefixes
from first principles, demonstrating that the logarithmic overhead factors from the union-bound
analysis are not fundamental to the problem but are artifacts of that specific proof technique.

6 DISCUSSION

In this work, we formally defined the universal data ordering problem within the PAC framework
and provided a rigorous baseline analysis for the performance of a random permutation. Our goal
was to establish whether this simple, natural approach could serve as a strong foundation for this
problem, and our results show that it is surprisingly effective.

Our investigation yielded progressively stronger results, highlighting the power of modern sequential
analysis tools. The warm-up analysis, based on classical union bounds, established that random
orderings are surprisingly robust, suffering only a minor O(loglogn) penalty. However, our main
contribution is the tighter analysis via test supermartingales and Ville’s inequality. This approach
not only removes the logarithmic overhead, achieving the optimal statistical rate, but also provides
a more profound understanding of the problem’s structure.

The primary limitation of our work is that the analysis centers on random orderings. While we show
such orderings are surprisingly effective, they are unlikely to be optimal. Our work opens several
avenues for future research:

* Designing Optimal Orderings: The martingale framework suggests a new direction for
designing structured orderings. Could one design an ordering algorithm that actively tries
to maximize the growth of martingales corresponding to incorrect hypotheses, thereby fal-
sifying them more quickly? This connects to ideas in “safe testing” and could lead to
provably better-than-random orderings Ramdas et al.| (2023).

* Beyond PAC Learning: The anytime-valid perspective on data ordering could be extended
to other sequential learning settings, such as online convex optimization or regret minimiza-
tion in bandits, where the sequence of data presentation is crucial.

* PAC-Bayes Confidence Sequences: A more advanced direction is to move beyond high-
probability bounds to full distributional guarantees. One could leverage the rich literature
on PAC-Bayes analysis to construct anytime-valid PAC-Bayes bounds, or confidence se-
quences, for the risk of the hypothesis at each prefix k |Chugg et al.| (2023); Rodriguez-
Galvez et al.| (2024). This would provide a posterior distribution over the possible error
values, offering a more complete characterization of uncertainty.

Overall, our analysis establishes rigorous baseline guarantees for universal orderings, highlights the
surprising effectiveness of random permutations, and connects this fundamental problem in learning
theory to the powerful and general framework of anytime-valid inference.



Future work should explore methods for constructing orderings that outperform random permuta-
tions.
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A OMITTED PROOFS

A.1 UNION BOUND PROOFS

Proof. To show universal PAC-validity, we must demonstrate that with probability at least 1 — 6, for
every prefix Sy, of size k € {1,...,n}, the hypothesis h = A(S)) has error at most some &.

Let By, be the bad event” for a prefix of size k:
By, := {3h € H consistent with Sy, but errp(h) > €}

We bound the probability of the union of these bad events over all k.

n
P(Up=1Br) SZ

For a fixed hypothesis h € H with errp(h) > ey, the probability that it is consistent with % i.i.d.
samples is (1 — errp(h))* < (1 —e)* < e~*¢*. By a union bound over all hypotheses in H, we
get P(By,) < |H|e *ex.

To ensure the total failure probability is at most J, we allocate a failure probability of § /n to each

prefix size k. Thus, we require P(By) < d/n for each k.

|H|€7kak S é
n

1)
—key, < log ( ) () —logn
g H| H]

> log(|H]/0) + logn
- k
This proves the theorem. O

Solving for e:

In resolving this additional log n factor to loglogn as discussed in Section we first prove the
critical “stability” lemma.

Lemma A.1. Let hy be a hypothesis consistent with the first k samples of a random ordering,
Sn, drawn i.i.d. from a distribution D, and assume errp(hy) < €. Then for any n € (0, 1], the
probability that hy, is also consistent with the next nk examples in the sequence is at least (1 —g3,)"*

Proof of Lemmad.2] The samples zj41, . .., Zk+nyk are i.i.d. draws from D. The probability that hy,
is consistent with a single new sample z; is 1 — errp(hy ), which is at least 1 — . Since the samples
are independent, the probability of being consistent with all nk new samples is (1 — errp(hy))"™ >
(1 —ex)™

Armed with this lemma, we proceed to revise the Proof of Theorem@] with a more careful account-
ing of accumulated errors to obtain the main result of the warm-up section.

Proof of Theorem[.3] Instead of a union bound over all n prefixes, we use a more efficient union
bound over a set of geometrically spaced “anchor points.” Let n € (0,1] and define the anchor
points as k; = |[(147)7| forj =0,1,..., L, where L = [log, ,, n]. The number of anchor points
is L+ 1 = O(logn).

Let B; be the bad event at anchor point k;:
Bj := {3h € H consistent with S, but errp(h) > ey, }.

We apply a union bound over these L + 1 events, allocating a failure probability of /(L + 1) to

each. 5
—kjep,
P(B)) < [Hle ™™ < -5
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Solving for e, :
o > log(|H|(L +1)/9) _ log(|#H|/d) + log(L + 1)
T kj kj
For any k£ € [d,n], let j be such that k; < k < kji1. The hypothesis hy is trained on Sj.
With probability at least 1 — ¢, for all j = 0,..., L, any hypothesis hj  consistent on S, has
errp(h%j) < €k,;. By Lemma hi, is also consistent on Sy with ﬁigh probability. In the

realizable setting, this implies that the hypothesis hj, found by a consistent learner on Sj must also
satisfy errp(hy) < eg;. Since k > k;, the bound thus holds for all intermediate k. O

Lastly, we prove a matching result in the finite VC dimension setting.

Proof of Theorem[{.4] The proof structure is identical to that of Theorem 4.3 for finite classes, but
we adapt it for a hypothesis class H with a finite VC-dimension d = VC(#H). The key difference is
that the number of ways the hypothesis class can label a sample of size k is no longer bounded by
|#], but by the growth function, 74, (k). For k > d, Sauer’s Lemma provides the bound 74 (k) <
()1,

As in the proof of Theorem 4.3, we define a set of L 4+ 1 = O(logn) geometrically spaced anchor
points k; = | (1 + n)7]. Our goal is to ensure that with high probability, for every anchor point k;,
any hypothesis consistent with the prefix Sy, has a low true error.

Let B; be the bad event at anchor point k;:
Bj := {3h € H consistent with Sy, but errp(h) > e, }

By applying a union bound over the 73, (k;) possible labelings of the sample Sy, the probability of
this bad event is bounded by:

P(Bj) < (k) "%
We apply a union bound over all L + 1 anchor points, allocating a failure probability of §/(L + 1)
to each. To ensure the total probability of failure is at most &, we require for each j:

. )
k. 7k16kj <
TH( J)e = 4 1

Solving for the error e :

—kjer, <log ((L—&-lfm(kg)>

o, log((k;)) + log((L +1)/9)
€kj = kj

Now, we substitute the bound for the growth function and the fact that L + 1 = O(log n):

S dlog(ek;/d) + log(O(logn)) + log(1/4) 0 (dlog(kj) + loglogn + log(1/5)>
ky = -
’ kj k;

This bound holds simultaneously for all anchor points j = 0, ..., L with probability at least 1 — 6.

For any intermediate prefix length & such that k; < k < k; 1, the prefix Sy is a subset of S. If our
guarantee holds at anchor point k;, it means no hypothesis / with error errp(h) > €, is consistent
with Sy, . Therefore, no such hypothesis can be consistent with the larger sample Sy. This implies
that the hypothesis h, returned by a consistent learner on Sy must have an error errp(hy) < ey;.
Since k > kj, its error is bounded by:

I log 1
errp(hg) < e, = O (d og(k) + log 0gn>

k;

Using the standard sample complexity definition where ne = O(d+1og(1/4)), this bound simplifies
to O(wflog”). This completes the proof. O
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A.2 ANYTIME-VALID PROOFS

Proof of Theorem[5.2] The proof is analogous to that of Theorem 5.1, but we must handle the fact
that the hypothesis class H is infinite. We achieve this by replacing the uniform prior over H with
an adaptive prior that considers only the set of behaviors of H on the observed data prefix Si. The
size of this set of behaviors (dichotomies) is bounded by the growth function 73, (k).

Let ¢, = 08(rn(k)+loe(1/9) "Eor eqch k, we construct a mixture martingale to test the global null

k
hypothesis that any hypothesis consistent with Sy has an error of at least €.

Let IT3,(Sk) be the set of all possible labelings (dichotomies) that the class H can induce on the
sample Si. We know that |TT5(S)| < 74 (k). We can define a mixture martingale with a uniform
prior over these dichotomies:

1 (h)
My=—"" M
o], 2,

where M, ,Eh) = (1 — €)% is the test martingale for a single hypothesis (labeling) h against the
null errp(h) = e;. As the size of the set of dichotomies can change with k, this is an adaptive
mixture. This process (M) >q remains a non-negative supermartingale. We can now apply Ville’s
inequality, which states that P(3k > d : My > 1/§) < 6.

We proceed by contradiction. Assume a “’bad event” occurs: for some k > d, the learner returns a
hypothesis hy, that is consistent with Sy, but has true error errp(hy) > €.

If this bad event occurs at step k, then the martingale Mj, is lower-bounded by the term correspond-
ing to the observed labeling induced by hg:

1 1
S
|H’H(Sk)| h€Tly (Sk),consistent TH(k)
We want to show that this event implies M}, > 1/6. This requires showing that #(k:) (I—e)™ >

1/6. Taking the logarithm of the desired inequality (1 — e;,) ™% > 73(k)/4:
—klog(l — €x) > log(y(k)/0)
Using the fact that —log(1 — x) > x for x € [0, 1), it is sufficient to show:
ke > log(my (k) + log(1/6)

__ log(r3 (k))+log(
k

By our definition of ¢ = 1/ 6), this condition is met exactly.

Therefore, the occurrence of a ”bad event” at step k implies that M > 1/4. Since the probability
of the latter is bounded by ¢ for all k£ simultaneously, the probability of a bad event ever occurring
is also at most 4.

This means, with probability at least 1 — 4, for all k € {d, ..., n}, any hypothesis h;, returned by a
consistent learner on S}, satisfies:
log(r#(k)) + log(1/9)

k

errp(hk) S €L —

Substituting the bound 7 (k) < (ek/d)?, we get:

errp(hy) < dlog(ek/d)k+ log(1/0) _0 (dlogk—i—klog(l/é))

This is the standard, fixed-sample-size PAC bound for a VC class. Our anytime-valid analysis proves
that it holds uniformly for all prefixes k > d. Relating this to the sample complexity ne = O(d +
log(1/4)), the bound is O(%*). O
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