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Abstract—The electrocardiogram (ECG) has been the gold
standard for heart disease evaluation due to the rich information
about the electrical activity of the heart contained in it. However,
existing ECG monitoring devices either lack the capability for
continuous monitoring or are unable to support multi-lead ECG
recordings. To address the issues, we propose an approach for
generating multi-lead ECG from photoplethysmogram (PPG),
which can be passively monitored by wearable devices such as
smartwatches. The PPG collected from wearable devices is first
passed to a trained conditional diffusion model to generate the
single-lead ECG, and then through a long short-term memory
(LSTM) model to construct and predict the multi-lead ECG.
The final outputs can be used to monitor and detect abnormal
cardiac patterns in daily life. We evaluate the performance of
our proposed approach with the dataset collected from daily-
life scenarios involving 32 subjects. The results show that our
approach can generate multi-lead ECGs accurately. In addition,
a case study is conducted using data collected from the hospital,
which demonstrates the effectiveness of our approach in detecting
ST elevation.1
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I. INTRODUCTION

Cardiovascular disorders are the leading cause of death in
many countries with continually rising rates due to the change
to modern lifestyle. As a result, the early detection of abnormal
cardiac activity and timely intervention are essential for pre-
venting the progression of cardiovascular disease and reducing
associated economic and social burden. The electrocardiogram
(ECG) is widely regarded as the gold standard for heart disease
evaluation, owing to its ability to provide detailed insights into
the heart’s electrical activity. It is important to have real-time
ECG monitoring, especially as part of daily out-of-clinic care,
to capture transient abnormalities in cardiac patterns that might
otherwise go unnoticed during routine clinical assessments.

Portable devices, like Holter monitors [1], can enable multi-
lead ECG monitoring outside clinical settings. Despite their
functionality, such devices are often large and require consis-
tent skin contact via multiple electrodes, making them unsuit-
able for prolonged use. As an alternative, wearable devices
with ECG capabilities, like the Zio Patch [2] and Apple

1ST elevation refers to an upward deviation of the ST segment on an
electrocardiogram (ECG) from the baseline, indicating a potential heart attack
or other cardiac issues. It is a crucial diagnostic finding in acute myocardial
infarction (heart attack) and requires prompt medical attention. It is a key
indicator of myocardial ischemia in practice.

Watch, have been introduced. These devices offer enhanced
convenience but are typically limited to fixed body locations
and only support single-lead ECG recordings. This limitation
may compromise their reliability for comprehensive clinical
evaluations. Moreover, wrist-worn devices often require users
to manually maintain finger contact with the device for ap-
proximately 30 seconds to complete a single ECG recording.

In light of this situation, we study the feasibility of gener-
ating multi-lead ECG signals from the existing biosensors on
off-the-shelf wearables, particularly the photoplethysmogram
(PPG) sensor. This approach leverages the intrinsic physi-
ological relationship between ECG and PPG signals: ECG
reflects the heart’s electrical activity, while PPG captures
its mechanical response. Specifically, the QRS complex in
an ECG represents ventricular depolarization, which triggers
cardiac contraction and blood ejection, leading to volumetric
changes that are readily detectable by PPG [3]. Recent studies
have demonstrated the potential of generative models [4], such
as GANs and diffusion models, to synthesize one-lead ECG
from PPG measurements. Separately, other works have shown
success in reconstructing a full 12-lead ECG from limited or
single-lead ECG signals using signal completion or domain
translation techniques [5]. However, none of these works are
able to directly generate the multi-lead ECG from the PPG.
One significant and often overlooked reason for this is the
accumulation of modeling errors in a multi-stage pipeline,
especially when starting from a non-electrical signal like PPG,
which is the focus of this paper.

In this paper, we present a wearable approach for converting
PPG signals into multi-lead ECG data to support continuous
and wearable cardiac monitoring. At the high level, the pro-
posed approach contains two phases: (i) generating the single-
lead ECG from the PPG and (ii) predicting the multi-lead
ECG with the generated single-lead ECG. Specifically, we
combine the conditional diffusion model and the long short-
term memory model, leveraging their abilities to generate out-
puts based on specific input conditions and handle time series
inputs. Moreover, we incorporate the physiological constraints
between ECG leads into the loss function to minimize the
accumulated errors incurred when combining the two phases.
The final results can be used to monitor transient abnormalities
in cardiac patterns. Our approach offers continuous monitoring
without requiring additional user cooperation, while providing
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Fig. 1. The overview of our proposed approach.

rich diagnostic information through multi-lead ECG.
We evaluate our approach on a public dataset with both

PPG and multi-lead ECG from daily-life scenarios involving
32 subjects. Our proposed approach demonstrates satisfactory
accuracy in generating multi-lead ECGs from PPG, with an
average root mean square error of 0.24 and an average Fréchet
distance of 3.108.

II. METHODOLOGY

A. Data preprocessing

Due to the nature of ECG signal acquisition, various electri-
cal signals from muscles other than the heart are also collected,
which can introduce muscular artifacts into the recordings.
Moreover, poor electrical contact between the ECG electrodes
and the skin can further contribute to signal noise. Since the
frequencies of the ECG typically range from 0.5 to 150 Hz,
we apply a low-pass filter with a 150 Hz cutoff and a zero-
phase filter to remove the noise. The signals are segmented
into windows of 4 seconds for the following modules.

B. Cross-signal generator for single-lead ECG

The cross-signal generator takes PPG signals as inputs
and generates ECG signals accordingly. Prior studies [4]
have demonstrated that the diffusion model outperforms other
generative models, such as GAN. In this work, we adapt
the denoising diffusion probabilistic model (DDPM) [4] to
generate the single-lead ECG from PPG. It progressively adds
noise to the training data in a forward process and then learns
to reverse this process to synthesize new data samples. As
shown in Figure 1, given a segment of the original ECG signal
x0 at timestep 0, the forward process adds Gaussian noise
gradually to the data at each timestep t until the T -th step as
a Markov chain:

q(xT |x0) =

T∏
t=1

q(xt|xt−1), (1)

where
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI). (2)

βt is the noise variance obtained from a pre-defined variance
schedule β1, . . . , βT that guides the addition of noise at

timestep t, and I is the identity matrix. The forward process
of each step can be formulated as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, and ϵ ∼ N (0, I). At the
end of the forward process, xT is considered as an isotropic
Gaussian.

The reverse process can also be defined as a Markov
chain to obtain the original signal x0 from xt using the
transition kernel pθ(xt−1|xt) and the posterior distribution
pθ(xt−1|xt, x0). According to DDPM [6], the diffusion model
can be trained on the following loss function, maximizing
the variational lower bound (ELBO) to learn the probability
distribution of the original single-lead ECG dataset:

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)∥2], (4)

where ϵ = (xt −
√
ᾱtx0)/

√
1− ᾱt is the added noise in

each step, ϵθ(xt, t) is a noise-prediction network to estimate
ϵ, and c is the input control signal that the diffusion model is
conditioned on. In our work, c is the corresponding PPG of the
original ECG. We adopt a 1D U-Net model as the backbone
of the conditional diffusion model. After training, the cross-
signal generator uses the trained diffusion model to generate
the single-lead ECG signals with unseen PPG signals. We
specifically generate Lead II in the signal generation phase and
use it in subsequent predictions, given its clinical importance
and clarity in visualizing ECG waveforms.

C. Error-resilient cross-lead ECG predictor

Model overview and data representation: The core of the
cross-lead ECG predictor is a Long Short-Term Memory
(LSTM) neural network, chosen for its strong capability in
modeling temporal dynamics commonly seen in physiological
signals such as ECGs. The training signals are processed with
a sliding window of length m. The training data at time t
is represented as dt = {xt, yit}, yit ∈ {y1t, y2t, . . . , ynt, },
where n is the number of leads to be predicted. The output
of model f , denoted by ŷit, has the same dimensionality
as yit. The training objective minimizes the mean squared



error (MSE) across all predicted leads. The loss function is
formulated as:

Lp =
1

n

n∑
i=1

MSE(yit, ŷit). (5)

Reducing accumulated error via physiological constraints:
A key limitation of prior approaches is that they typically
treat the lead generation and prediction stages independently,
ignoring the accumulated errors that arise when early predic-
tion errors propagate into later stages. This accumulation can
lead to clinically misleading reconstructions. To address this,
our method integrates mathematical relationships among ECG
leads, which reflect underlying cardiac vector projections,
directly into the learning objective. For example, the well-
known Einthoven’s law: LeadII = LeadI + LeadIII allows
us to derive one limb lead from the other two. Similarly,
augmented leads such as aVF or aVL can be expressed using
limb lead combinations. By incorporating these constraints
during training, we reduce accumulated error by ensuring that
the model’s predictions remain internally consistent across
leads. That is, not only are the leads predicted to match ground
truth values, but they are also constrained to satisfy known
inter-lead dependencies. The relationship-based loss quantifies
deviations from these expected inter-lead constraints:

Lm =
1

n

n∑
i=1

MSE(yit, ymit), (6)

where ymit represents the value calculated using the mathe-
matical relationships with the already generated leads. There-
fore, the total loss is calculated as: L = Lp + Lm. This
dual-objective formulation ensures that the model not only
produces accurate lead estimates but also maintains fidelity
to the physiological laws governing ECG signal morphology.

D. Cardiac function monitoring

Our system can facilitate cardiac function monitoring out-
side clinics. Specifically, wearable devices passively collect
users’ PPG data, process it, and forward it to the cross-signal
generator. The generator produces single-lead ECG signals,
which are then input to the cross-lead ECG predictor to
synthesize the desired multi-lead ECG signals. These outputs
can subsequently be fed into pre-trained diagnostic models [7]
for monitoring and detecting abnormal cardiac patterns.

III. EVALUATION

A. Experimental Setup

1) Data preparation: We evaluate the quality of generated
multi-lead ECG signals using the SensSmartTech database of
cardiovascular signals [8] that contains synchronized ECG and
PPG collected from 32 healthy subjects. The heart rates of the
subjects range from 58 bpm - 173 bpm. The dataset contains
4 leads of ECG signals (Lead I, II, V3, and V4). Lead I and
Lead II are measured by limb electrodes, and Lead V3 and
Lead V4 are measured by precordial electrodes. We chose the
PPG collected from the brachial artery instead of one from
the left carotid because it is closer to the position of wearing

smartwatches. The ECG signals are collected with a sampling
rate of 500 Hz, and the PPG signals are collected with a
sampling rate of 100 Hz. Both ECG and PPG are resampled to
128 Hz and normalized to the range (-1, 1) in the experiments.
We choose to generate Lead II of ECG from PPG and then
generate the other three leads of ECG because Lead II is the
most commonly monitored ECG lead. We process the signals
with a 4-second window and a window shift of 0.5 seconds.
In total, we have 17689 samples of synchronized multi-lead
ECG signals and PPG signals. 80% of the samples are used
as training data and the rest 20% are used for testing.

2) Software implementation: The experiments are per-
formed on two NVIDIA RTX A600 GPUs. The diffusion
model is trained for 1000 epochs using the Adam optimizer
with a 1e-4 learning rate. For the LSTM model predicting the
multi-lead ECG signals, we use the Adam optimizer with a 1e-
3 learning rate. The LSTM model is trained for 200 epochs.

B. Performance Metrics

1) Data fidelity: We evaluate the performance of generating
multi-lead ECG from PPG using Root Mean Square Error
(RMSE) and Fréchet distance (FD) [9]. The RMSE calculates
the quadratic mean of the differences between the original
ECG signals and the generated ones. A small RMSE indicates
the high accuracy of the generated ECG compared with the
original ECG. The FD measures the similarity between the
original ECG and the generated ECG, taking into account the
location and ordering of the points along the signal curves. A
small FD means the high similarity of the original ECG and
the generated ECG.

2) Feature authenticity: We compute normalized errors of
Q-T interval and R-R interval of the generated multi-lead ECG
signals against the original ones to evaluate the outputs’ ability
for heart electrical activity computing. The Q-T interval and
R-R interval are crucial for the detection of several diseases,
such as ventricular proarrhythmia, diabetes, and insomnia. The
Q-T interval represents the time elapsed between the start
of the QRS complex and the end of the T wave. The R-R
interval represents the time elapsed between R waves of two
successive QRS complexes. The normalized error is computed
as |Ig−Io|

Heartbeat duration , where Ig and Io represent the intervals
of the generated ECG and the original ECG, respectively.

C. Overall Performance
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Fig. 2. The comparison between the original ECG and the generated ECG.



1) Data evaluation: Figure 2 depicts the visualization of
the original and generated multi-lead ECG. The generated
multi-lead ECG shows nearly identical cycle length and am-
plitude. This demonstrates the high fidelity of the generated
multi-lead ECG. Figure 2 also zooms in two cycles of the lead
I ECG to show the comparison of the fiducial points between
the original ECG and the generated ECG. The generated ECG
preserves consistency with the original ECG in most key
measurements, including the R-R interval and the Q-T interval.

ECG Lead RMSE FD
Lead I 0.239 3.074
Lead II 0.260 3.017

Lead V3 0.227 3.425
Lead V4 0.234 2.916

TABLE I
THE PERFORMANCE OF GENERATED MULTI-LEAD ECG SIGNALS.

Table I shows the RMSE and FD of each lead of the gen-
erated ECG signals. The baseline performance from previous
work [4] is as follows: The average RMSE is 0.22, and the
average FD is 5.23. The results indicate that our method
can generate high-quality multi-lead ECG signals with similar
performance compared with state-of-the-art approaches.

Fig. 3. The normalized errors of ECG features across multi-leads.
2) Feature evaluation: Figure 3 shows the ECG feature

evaluation results. We calculate the normalized errors of the
features, such as R-R interval and Q-T interval, between the
original ECG and the generated ECG. The normalized errors
of the R-R interval range from 0.035 to 0.058. The normalized
errors of the Q-T interval range from 0.117 to 0.151. The
generated multi-lead ECG signals achieve better performance
on R-R interval extraction compared with that of the Q-T
interval. This is primarily because existing algorithms can
detect R peaks more reliably, as they correspond to the points
of maximum amplitude in the ECG waveform.

D. Case Study: ST Elevation Detection

Original ECG Generated ECG ST Elevation

Fig. 4. The visualization of the generated ECG showing ST Elevation.
We present a case study using the MIMIC-III waveform

database [10] to demonstrate that our method can generate
ECG signals exhibiting clinically relevant features, such as
ST elevation. ST elevation refers to an upward deviation of

the ST segment and is commonly associated with myocardial
ischemia. Its presence across multiple leads is a critical di-
agnostic indicator. As shown in Figure 4, the generated ECG
signals for lead V and lead aVR—based on data collected
from intensive care unit (ICU) patients—clearly display ST
elevation in both leads. This result highlights the potential clin-
ical applicability of our approach in generating diagnostically
meaningful ECG waveforms.

IV. CONCLUSION

In this paper, we present an approach for generating a multi-
lead ECG from PPG, combining the advantages of continuous
PPG monitoring and the rich information provided by the
multi-lead ECG. It consists of data preprocessing, a cross-
signal generator for single-lead ECG, and an error-resilient
cross-lead ECG predictor. The results show that our work can
generate accurate multi-lead ECG signals, which can be used
to detect real-world heart diseases. In future work, we will
include a more diverse patients with various cardiac conditions
in our study. We aim to evaluate the generalizability of our
method across different pathological scenarios.
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