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a b s t r a c t 

Consider a database consisting of a set of tuples, each of which contains an interval, a type and a weight. 

These tuples are called typed intervals and used to support applications involving diverse intervals. In this 

paper, we study top- k queries on typed intervals. The query reports k intervals intersecting the query 

time, containing a particular type and having the largest weight. The query time can be a point or an 

interval. Further, we define top- k continuous queries that return qualified intervals at each time point 

during the query interval. To efficiently answer such queries, a key challenge is to build an index structure 

to manage typed intervals. Employing the standard interval tree, we build the structure in a compact way 

to reduce the I/O cost, and provide analytically derived partitioning methods to manage the data. Query 

algorithms are proposed to support point, interval and continuous queries. An auxiliary main-memory 

structure is developed to report continuous results. Using large real and synthetic datasets, extensive 

experiments are performed in a prototype database system to demonstrate the effectiveness, efficiency 

and scalability. The results show that our method significantly outperforms alternative methods in most 

settings. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Intervals representing axis-parallel line segments have been

widely used in a plethora of application domains. In temporal and

multi-version databases, intervals are typically defined as trans-

action time and valid time ranges for recording changes (up-

date, insertion or deletion), versions and the lifetime of objects

[9,11,30,32,38] . In spatial and geographic information systems, in-

tervals occur as line segments on a space-filling curve, e.g., model-

ing a printed circuit board [8,19] . Intervals also play a pivotal role

in constraint databases [26] . 

In the literature, a number of operators have been studied on

querying intervals such as intersecting [18] , stabbing [5] , splitters

[30] , and joins [13,17] . This work differs from them by investigat-

ing top-k queries on intervals which are associated with types and

weights. Recent advances in sensing technologies have made col-

lecting data with extensive information in ease. In real applica-

tions, intervals with diverse types may be collected due to different

data sources. The system should be able to represent and manage

the data for further queries. To the best of our knowledge, typed
intervals have not been considered before. 

∗ Corresponding author. 
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In this paper, we investigate a database storing a set of tu-

les, each of which contains an interval consisting of start and

nd points, a type and a weight. Typed intervals enrich the data

epresentation and support applications requiring different kinds

f intervals, e.g., various genome intervals in genomics datasets,

ifferent versions of data items, and line segments categorized

nto several groups. Various choices are provided on the website

www.booking.com ” for tourists such as five-star hotels, apart-

ents and motels, and room rates change over time (e.g., hot and

old seasons, weekdays and weekends). The system needs to man-

ge a large amount of typed intervals representing different hotel

oom rates. We study top- k queries on typed intervals in the pa-

er. Formally, given a query time and a type, the system reports

 intervals fulfilling the condition: (i) intersecting the query time;

ii) containing the type; and (iii) having the largest weight. To help

nderstand the problem, we give some application examples. 

Example 1. Fig. 1 shows a running example. The database stores

 set of computer science projects. Each tuple keeps record of the

ifetime, the project category and the budget (weight). There are

otally four types of projects: {AI, DB, DM, OS}. A top- k query is

return the top-1 DB project running at the time37”, denoted by Q (37,

B, 1). Three intervals intersecting the time: { o 1 , o 7 , o 8 }. However,

 1 is not reported because it is not a DB project. The system re-

urns o 7 as the result because its weight is larger than o 8 . 

Example 2. In traffic monitoring systems, to analyze vehicles ap-

earing in certain areas, we need to distinguish the different vehi-

http://dx.doi.org/10.1016/j.is.2017.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2017.08.005&domain=pdf
mailto:jianqiu@nuaa.edu.cn
mailto:luhua@cs.aau.dk
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http://dx.doi.org/10.1016/j.is.2017.08.005
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Fig. 1. A running example. 
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vided. 
les such as { Taxi, Bus, Truck, Car }. The database stores the number

f vehicles appearing in a district. Such a value changes over time

uch that one district will have a sequence of typed intervals. Each

uple corresponds to a district and records the number of vehicles

aving the same type during a time interval. A top- k query is “re-

urn the district with the largest number of trucks at 7:00am”. 

Such applications impose new challenges regarding indexing

nd querying intervals, in particular, supporting combined selec-

ions on different attributes. We define the query time by a point

r an interval. The type predicate is included. Continuous queries

re also studied to report top- k intervals at each time point during

he query interval. This complicates the evaluation because the re-

ult changes at certain time points. Consider Q c ([20, 50], DB, 1) by

eferring to Fig. 1 . The query aims to return the maximum budget

B project at each time during [20, 50]. One can see that o 7 is the

B interval with the maximum budget but is only valid during [35,

5]. The system will return o 8 during [20, 35]. 

To efficiently answer top- k queries, the key issue is to develop

n index structure that can (i) efficiently index intervals for inter-

ecting queries; (ii) well manage different types such that we can

uickly find intervals with a particular type; and (iii) order inter-

als on weights to minimize the number of accessed intervals as

nly k intervals are reported. It is not difficult to achieve each of

hem individually, but a complex task to well support all of them.

ne can treat each condition as a predicate and we need an ac-

ess structure that allows a combined evaluation of three predi-

ates. This motivates us to develop an efficient index structure for

yped intervals. 

We choose Edelsbrunner’s interval tree [14] as the basic struc-

ure. This structure and its variants have been commonly used in

xisting works [4,9,18,28] , and the interval tree provides the prim-

tive functionality needed in solving our problem. In principle, an

nterval tree is a binary tree that serves as the primary structure.

ach node maintains a value called the split point and two lists

f sorted intervals that intersect the split point, called the sec-

ndary structure. Intervals smaller and larger than the split point

re stored in the left and right subtrees, respectively. The standard

nterval tree, however, does not well manage typed intervals be-

ause of the following reasons. 

• By observation, we find that there is a large number of nodes

at the bottom level only containing a few intervals (sometimes

only one). That means, we require many nodes but only store a

small number of intervals. 
• The standard structure uses two sorted lists to maintain inter-

vals. To determine intervals intersecting a query point (inter-

val), we need to scan the list until the position after which

intervals cannot be the result. The complexity is proportional

to the number of intervals intersecting the query. Given a large

dataset, too many intervals may be accessed, but the query only

needs k intervals. 
• The standard structure is not capable of managing types. There-

fore, the intervals are iteratively evaluated on the type condi-

tion, decreasing the query efficiency. 

To overcome these shortcomings, we build the structure in a

ompact way by defining a bound to determine the minimum

umber of intervals maintained in a node. If the number of in-

ervals is less than the bound, we stop partitioning intervals which

ill result in creating nodes for intervals at lower level, and just

se one node to store the intervals. A list is defined in the node

o maintain the intervals. If the number of intervals is larger than

he bound, we propose a new structure to substitute the sorted list

or the interval management. The idea is, the interval data space in

he node is partitioned into a set of equal-length slots. Two tables

re defined in which each row corresponds to a slot and stores a

ist of intervals. One table maintains intervals containing the slots,

alled full table , and the other maintains intervals intersecting (par-

ially overlapping) the slots, called partial table . Given a query, we

alculate its slot and then access tables to retrieve intervals. Since

he intervals in the full table contain the slot, we can skip testing

he intersection condition, reducing CPU time and I/O accesses. In

ontrast, intervals in the partial table have to be iteratively evalu-

ted. 

Intuitively, the more intervals in the full table, the better the

erformance is. This is affected by the slot length. A short slot is

ore likely to be contained by intervals than a long slot. Therefore,

t is possible to create more slots with small lengths to increase the

umber of intervals in the full table. However, this raises two is-

ues. First, the storage overhead increases because an interval will

e distributed in all slots that the interval contains. Second, if the

uery is an interval, a set of slots will be determined. We have to

ccess tables for each slot to retrieve intervals. To sum up, short

lots have a high probability of being contained by intervals, but

ncrease the number of table accesses, incurring more I/O cost. This

omplicates the partitioning issue. 

We provide a thorough analysis on the partition strategy and

nalytically determine the slot length to perform an optimal parti-

ion. This enables the structure to be adaptive and self-adjusting be-

ause each node automatically determines the slot length accord-

ng to the intervals in the node. The slot length differs from node

o node, rather than being a dominating value for all nodes. We

uild type indexes to efficiently find intervals according to types

nd order intervals on weights to avoid accessing intervals with

mall weights that cannot contribute to the result. We make the

ollowing contributions in the paper: 

• We formalize three kinds of top- k queries on typed intervals. 
• We build the interval tree in a compact way and propose a new

secondary structure to efficiently manage intervals by perform-

ing an optimal partition and building type indexes. The index

storage cost is analyzed. We also discuss how to update the

structure for new arrival intervals. 
• We develop efficient algorithms for point and interval queries.

To optimize the query procedure, interval queries are converted

to point queries. The query time complexity is analyzed. 
• For continuous queries, we develop an auxiliary structure to

maintain top- k intervals at each time point and propose a

heuristic to prune intervals in batch. The structure is general

that can also be used to process continuous queries on stan-

dard intervals. 
• We implement the proposals in a prototype database system

and conduct extensive experiments on large real and syn-

thetic datasets to demonstrate the performance advantage of

our method over alternative methods. 
• The discussion on the generality of the method and the imple-

mentation/integration in a conventional database system is pro-
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Fig. 2. The interval tree. 
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The rest of the paper is organized as follows. Section 2 defines

the problem and reviews the interval tree. Section 3 details the hy-

brid index for typed intervals. Section 4.2 presents the algorithms

for top- k point and interval queries, and analyzes the time com-

plexity. Section 5 addresses continuous queries. Section 6 reports

the results of the experimental evaluation. Section 7 provides the

discussion. Section 8 reviews the related work, followed by conclu-

sion in Section 9 . 

2. Preliminaries 

2.1. Problem definition 

Let the database O be a set of objects, each of which represents

a typed interval. Interval start and end points are defined in a real

domain. The type domain is a set of positive integers, denoted by

T , and the weight domain is a set of positive real numbers, denoted

by R 

+ . 

Definition 2.1. Typed intervals 

I = {( s, e )| s, e ∈ R , s < e } 

O = {( i, t, w )| i ∈ I, t ∈ T, w ∈ R 

+ } 

We associate a type with each interval to enrich the data rep-

resentation and support applications involving diverse intervals or

intervals coming from different data sources. Standard intervals

(intervals with the same type) are a special form of typed intervals,

i.e., | T | = 1. We investigate three kinds of top- k queries, formulated

by: 

Definition 2.2. Top- k point queries 

Given a query Q ( x, t, k ) in which x ∈ R , t ∈ T , and k is a positive

integer, the system returns k tuples O 

′ ⊆ O decreasingly ordered by

weight such that ∀ o ′ ∈ O 

′ : 
( i ) Q.x ∈ o ′ . i ; 
( ii ) Q.t = o ′ . t ; 
( iii ) � o ∈ O \ O 

′ : Q.x ∈ o.i ∧ Q.t = o.t ∧ o.w > o ′ . w . 

Likewise, we define a top- k interval query Q ( i, t, k ) ( i ∈ I ) by

changing the condition ( i ) to Q.i ∩ o ′ . i . Furthermore, we have 

Definition 2.3. Top- k continuous queries 

Given a query Q c ( i, t, k ), at each time point x ∈ Q c .i the system

returns a set of k tuples O 

′ ⊆ O decreasingly ordered by weight

such that ∀ o ′ ∈ O 

′ : 
( i ) x ∈ o ′ . i ; 
( ii ) Q c .t = o ′ . t ; 

′ ′ 
( iii ) � o ∈ O \ O : x ∈ o.i ∧ Q c .t = o.t ∧ o.w > o . w . t  
.2. Interval tree 

Our method is based on the standard interval tree [14] . Using

he running example, we review the structure, as demonstrated in

ig. 2 . Initially, all intervals are sorted in ascending order accord-

ng to start and end points. The structure is built recursively from

he root down following the procedure: Step 1, a split point among

ll intervals is computed, denoted by p . Step 2, we use p to divide

he interval set into three parts: (i) intervals fully to the left of p ;

ii) intervals containing p ; (iii) intervals fully to the right of p . The

plit point should be picked in such a way that the tree is rela-

ively balanced, usually the center point. Step 3, a node is created

o hold the part (ii) and two child pointers are defined for nodes

aintaining the parts (i) and (iii), respectively. We repeat Steps 1–

 for (i) and (iii) until no interval is left. The primary structure is

 complete binary tree and each internal node is associated with

wo lists of intervals that form the secondary structure . 

An interval tree node contains three parts: (i) the split point p ;

ii) left and right node pointers; and (iii) left and right lists hold-

ng intervals containing p . Intervals in the left and right lists are

orted by start and end points, respectively. During the query pro-

edure, the algorithm traverses a path from the root node to the

ottom level and progressively reports intervals intersecting the

uery. Given a node, if the query is smaller than the split point, we

alk through the left list to report intervals, and then call the left

ree. Otherwise, we walk through the right list and call the right

ree. This procedure is iteratively executed until no node is found.

ince intervals in the left and right lists are sorted, the search pro-

edure terminates when the visited interval does not intersect the

uery. 

The storage cost is O ( n ) because each interval is only stored at

ne node and exactly twice: once in the left list and the other in

he right list. An interval tree is a balanced binary search tree and

as the depth O (log n ) [33] . 

. Hybrid representation 

.1. Motivation 

According to the standard algorithm of creating an interval tree,

he procedure stops partitioning the interval set until no interval is

eft. By observation, we find that the number of intervals in a node

ecreases when the level of the node increases, assuming the level

f the root node is 1. Usually, the interval count becomes a small

alue (sometimes only one) for the majority of nodes at the bot-

om level. Given a set of intervals, we store intervals intersecting

he split point in a node and process the rest of the intervals at

he next level. Since the tree is created following a top-down ap-

roach, the number of intervals decreases gradually from the root

o bottom level. The recursive procedure to build the index termi-
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Fig. 3. Define a bound. 
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Fig. 4. The new structure. 

Fig. 5. The partition impact. 
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ates if either a branch of intervals all intersect the split point or

nly one interval is left (no partition is needed). 

At each level in the tree, let | N | and Avg ( N ) denote the node

ount and the average number of intervals in a node, respectively.

or example, in Fig. 2 at level 2 we have | N | = 2 and Avg ( N ) = 

5 
2 

 2.5. Fig. 3 shows the distributions of | N | and Avg ( N ) by building

n interval tree on 50 million randomly generated intervals over

he space [1, 10 0 0 0 0]. The results show that Avg ( N ) is quite small

almost 1) from level 15. The value | N | keeps increasing from level

 until its largest value and then drops quickly. We can see that

t certain levels the method requires a large number of nodes but

ach only maintains a few intervals. 

Since a node corresponds to a record, accessing nodes incurs

he I/O cost. Hence, we reduce the number of nodes by defining

 bound in order to determine whether the interval set is further

artitioned or not. Such a value representing the minimum num-

er of intervals in a node is defined by the record size in the sys-

em. If the number of intervals is less than the bound, we do not

ivide the interval set into three parts but store all intervals in

his node, i.e., terminating the recursive procedure. This leads to

 compact structure. Using the method, we create the interval tree

n the same dataset and report | N | and Avg ( N ) with the bound in

ig. 3 . The tree height decreases from 20 to 18 and the number of

odes is almost reduced by half . According to Kriegel et al. [28] ,

he tree height depends on interval bounds (start and end points).

f the data range is large, a high tree will be created. 

Intervals in the node created with respect to the bound may

ot have a common point and thus the split point is not defined.

e propose a new structure to substitute the sorted lists for the

odes created by the standard method (i.e., the number of intervals

s larger than the bound and all intervals contain the split point),

resented in the following. 

.2. Partitioning the space into slots 

Given a node, let min and max denote the minimum and maxi-

um endpoints of all intervals, respectively. We partition the data

pace [ min, max ] into a set of equal-length slots. Each slot has an

nique id numbered from 1 to | s | and represents a subinterval with

he length len = 

max −min 
| s | . Given a slot s i ( i ∈ [1, | s |]), the space cov-

red by the slot is [ min + ( i − 1 ) · len, min + i · len ]. Fig. 4 (a) shows

he partition for the root node holding { o 1 , o 5 , o 7 } by setting | s | =
. 

We use slot tables to maintain intervals instead of sorted lists.

ach row in the table has a slot id and a list of tuple ids for inter-

als. Depending on whether the interval contains (i.e., completely

over the slot) or intersects (partially overlap) a slot, we define two

lot tables named full and partial , respectively. In a full table, only

ntervals containing the slot are recorded. In a partial table, inter-

als intersecting the slot are recorded. Note that if an interval over-

aps (contain or intersect) a slot, it will be stored in either the full

r partial table, but not in both. The two tables form the secondary
tructure. As a result, by removing the sorted lists, components

f a node become (i) the split point p ; (ii) left and right point-

rs, denoted by lp and rp ; (iii) the minimum and maximum end-

oints and the number of slots | s |; and (iv) full and partial tables.

he new structure to maintain intervals { o 1 , o 5 , o 7 } is depicted in

ig. 4 (b). 

Employing the slot method, to find intervals intersecting a

uery point, we first determine the slot for the query and then ac-

ess full and partial tables to retrieve intervals. Since the full table

tores intervals containing slots, we do not have to evaluate the in-

ersection condition. In contrast, intervals in the partial table have

o be iteratively tested. 

.3. Determining the slots 

Intervals in a partial table do not contain a slot. To determine

ntervals intersecting the query, we need to search the table and

teratively perform the intersecting operation between the interval

nd the query. This will lead to false hits . In other words, an inter-

al is accessed but does not contribute to the result. Consider the

uery Q (37) in Fig. 5 (a). The query intersects s 3 and therefore o 5 is

etched from the partial table. However, o 5 does not intersect the

uery. False hits increase CPU and IO costs because intervals are

etched from the database and then evaluated. 

In order to reduce false hits, the number of intervals in the par-

ial table should be minimized. Intuitively, one can set a large | s |

o produce many slots with small lengths. Short slots are likely to

e contained by intervals. If the partition is fine enough, the par-

ial table can even be empty, as depicted in Fig. 5 (b). In this case,

here will be no false hit. Let P ( s i ) be the number of intervals in the

artial table for the slot s i . We analytically derive the relationship

etween | s | and P ( s i ). 

Although interval start and end points are located at different

laces in a node, all intervals contain the split point and not all of

hem fully cover the space [ min, max ]. The number of intervals at

ach point in [ min, max ] changes because intervals start and end at

ifferent places. A special case is that all intervals have the same

ndpoints, leading to a constant interval count. Such a case will

ot happen for standard intervals because duplicated data will be
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Fig. 6. Interval count distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Type index in the full table. 
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removed. For typed intervals, they can have the same endpoints

but with different types and weights. 

Assume start and end points are uniformly distributed over

[ min, max ]. The number of intervals in the node reaches the peak

around the split point p and decreases from p to min and max .

Fig. 6 depicts the interval count distribution of a node by using

example data. 

Given a value x ∈ [ min, max ], the number of intervals contain-

ing x is approximated by: 

f (x ) = 

{
a 1 x + b 1 , x ∈ [ min , p] 
−a 2 x + b 2 , x ∈ [ p, ma x ] 

a 1 , b 1 , a 2 , b 2 > 0 (1)

Constant values a 1 , b 1 , a 2 , b 2 are determined by min, max and

the interval count at p, min and max . One can set a 1 = a 2 = 0 and

b 1 = b 2 for the special case that the interval count is a constant

value. Given a slot s i , the number of intervals in the partial table is

calculated by: 

P (s i ) = 

{
X ∈ [ f (p) − f (s i .s ) , f (p)] if s i contains p 
| f (s i .e ) − f (s i .s ) | else 

(2)

Here, s i .s and s i .e are the start and end points of the slot. If s i
contains p (the split point), all intervals can be in the partial ta-

ble. Intervals in such a slot are divided into two sets: O s = { o | o.i.s

< s i .s } (intervals whose start points are smaller than s i .s ) and O l 

= { o | o.i.s ≥ s i .s } (intervals whose start points are larger than s i .s ).

If all intervals in O s have end points smaller than s i .e , then they

are in the partial table. All intervals in O l are definitely in the par-

tial table. Therefore, | O s | + | O l | = f ( p ). The minimum value appears

when intervals in O s have end points larger than s i .e . In this case,

only intervals in O l are in the partial table, resulting in P ( s i ) = | O l |

= f ( p ) - f ( s i .s ). If s i does not contain p , then f ( x ) is monotonous for

x ∈ [ s i .s, s i .e ]. 

The relationship between | s | and P ( s i ) is as follows: if | s | in-

creases, then the slot length len = 

max −min 
| s | decreases and so does

P ( s i ). For example, in Fig. 6 , if | s | = 2, then P ( s 1 ) = P ( s 2 ) ≈ 45. If

| s | = 3, P ( s 1 ) = P ( s 3 ) ≈ 30 and P ( s 2 ) ∈ [15, 45]. 

Now let us consider the number of intervals in a full table. 

F (s i ) = 

{ 

f (s i .s ) s i .e < p 
X ∈ [0 , f (s i .s )] s i contains p 
f (s i .e ) s i .s > p 

(3)

The relationship between | s | and F ( s i ) is as follows: if | s | in-

creases, then F ( s i ) increases too. The storage increases because in-

tervals are distributed into slots. The shorter the slots are, the more

intervals are stored in each slot. In Fig. 5 (a), 
∑ 4 

i =1 F ( s i ) = 5, while

in Fig. 5 (b), 
∑ 6 

i =1 F ( s i ) = 6 + 2 + 1 = 9. The overall storage is 
∑ | s | 

i =1
P ( s i ) + F ( s i ) and the value is dominated by F ( s i ). This is because an

interval is stored two times in the partial table in maximum (two

slots that intersect start and end points, respectively) but � | o.i | 
len 

�
times in the full table. Therefore, the number of false hits and the
pace cost are inversely related. Furthermore, if | s | increases, more

lots will be visited for continuous queries. Consider Q c ([20, 50]) in

ig. 5 . Four slots are accessed if | s | = 4, but six slots are accessed

f | s | = 6. We need to find an optimal slot setting to achieve the

alance. 

Consider the lower and upper bounds for the number of slots,

hat are [2, max (| s |)] in which max (| s |) is the maximum number

f slots in a node, determined by the record size. Given a node,

et Avg (| o.i |) be the average interval length and the slot count | s | is

efined by 

in { α| max − min 

α
< A v g (| o.i | ) ∧ α ∈ [2 , max (| s | )] } (4)

This is motivated by two effects: (i) if | s | increases, then len =
max −min 

| s | decreases. Short slots increase the probability for intervals

ontaining slots. Meanwhile, we choose the minimal value such

hat the storage cost is minimized; (ii) different nodes will have

heir own slot settings because registered intervals result in differ-

nt min, max and Avg (| o.i |) values. 

.4. Managing types and weights 

Given a query type and k , the straightforward way to find top-k

ntervals with a particular type is to iteratively access each tuple

nd test the type. Then, intervals containing the query type are

ecreasingly sorted on weights and the first k tuples are returned.

o accelerate the query procedure, we manage the intervals in each

lot as follows. 

In the full table, we do not have to test intervals on the in-

ersection condition. Therefore, intervals are grouped by type and

hen decreasingly sorted on weights. A type index consisting of

 list of items is built, denoted by I f = 〈 ( t 1 , off1 ),... ,( t | T | , off| T | ) 〉 .
ach item records a type and the offset for the first interval in the

roup. Instead of performing a sequential scan, we employ I f to

nd the intervals. The search procedure terminates after accessing

he first k tuples. Fig. 7 depicts the type index in the full table for

 o 1 , o 5 , o 7 } by setting | s | = 4. 

In the partial table, one can employ the same method as in the

ull table to manage the intervals, i.e., sort intervals by type and

eight. However, the search procedure cannot terminate after vis-

ting the first k intervals containing the query type because the

rst k intervals in the partial table may not all intersect the query.

e have to keep searching the intervals and testing the intersec-

ion condition until top- k intervals are found in the partial table.

o avoid searching intervals that cannot intersect the query, we de-

ne an interval that is retrieved by performing the union on inter-

als with the same type. Start and end points are bounded by the

lot. Such a value represents the overall space for intervals with

he same type. We add the value into each item of the index. The

ndex for the partial table is denoted by I p = 〈 ( t 1 , off1 , i 1 ),... ,( t | T | ,

ff| T | , i | T | ) 〉 , i j ⊆ [ s i .s, s i .e ], j ∈ [1, | T |]. If the query point is located

utside of the bound interval, we can safely prune all intervals in

he slot. 

Let us consider the node { o 2 , o 3 , o 6 } with three slots, as shown

n Fig. 8 . The added interval for s 1 is [60, 63.3] although o 3 . i = [60,

5]. The interval for s 2 is the union of o 3 and o 6 . Given a query

 (85, DM, 1), the slot s 3 is accessed but o 2 is pruned by the type

ndex because the query is not located in [76.7, 80]. 
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Fig. 8. Type index in the partial table. 
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.5. Index storage 

We have two ways of managing the intervals in the nodes:

sing in a list or using the slot representation. If the number

f intervals in a node is less than a certain value (the bound

n Section 3.1 ), a list is used. Otherwise, the slot method is ap-

lied. Let n = n 1 + n 2 be the total number of intervals in which

 1 intervals are stored in the nodes using lists and n 2 intervals

re stored in the nodes using slots. The list method needs the

torage O ( n 1 ) because each interval is stored once. Consider the

torage for the slot representation. Assume m tree nodes are re-

uired. In each node, we have full and partial tables, requiring

he storage space 
∑ | s | 

i =1 
( P ( s i ) + F ( s i )) + | s | · | T | = O (| s | · ( f (p) + | T | )) ,

here f ( p ) is the number of intervals in the node and | T | is for

he type index in each slot. Let Max (| s |) be the maximum slot

ount among m nodes. To sum up, the index needs the storage

 (n 1 + Max (| s | ) · (n 2 + m · | T | )) ( n 2 = 

∑ m 

i =1 f (p) ). 

.6. Update 

In addition to maintain the historical data, the index should

upport updating the incoming data in order to be consistent with

he underlying data space. Given a new arrival interval, the index

s updated as follows. 

We perform a binary search on the primary structure to find

he node in which the new interval should be located. If the new

nterval does not update the minimum and maximum endpoints at

his node, the slots for the new interval are determined and then

he full and partial tables are updated accordingly. Consider updat-

ng the new interval o 9 in Fig. 9 (a). The interval intersects two slots

 3 and s 4 in which one belongs to the partial table and the other

elongs to the full table. We insert the new interval into each table

nd update the type index, as demonstrated in Fig. 9 (b). 

A complex case occurs when the new interval updates the min-

mum or maximum endpoint, e.g., o 10 in Fig. 9 (a). In this case, the

ull and partial tables are reset at this node because the slot length

nd slot count will be changed. In the example, inserting o 10 will

ead to five slots and new slot tables are shown in Fig. 9 (c). 

If we do not find any node to put the new interval (e.g., the

ew interval incurs an ongoing expansion of the data space), we

reate a node to hold the interval and insert the new node into the

tructure. A rotation may be performed to keep the tree balanced.

he rotation will change the parent-child relationship among ro-

ated nodes. After the operation, we need to move intervals among

otated nodes if necessary. This is because each interval is regis-

ered at the first node whose split point intersects the interval by

erforming a top-down traversal. 

Given a set of new arrival intervals, iteratively updating the in-

ex for each interval is costly. The procedure will perform a binary

earch and then update slot tables. One tree node will be accessed

everal times for updating different intervals which are in fact lo-

ated in the same node. To reduce the overhead, in particular the

/O cost, one can perform the update by bulkload [6,10] . We main-

ain a buffer for the updated node and read/write the node once

o perform the update for a batch of new intervals. 
. Algorithms for point and interval queries 

.1. Point queries 

To answer such queries, the root node, the query and a min-

eap are taken as input. We start from the root node and perform

he traversal in a top-down approach. A min-heap with the size k

s used to maintain candidates and the heap is kept updating dur-

ng the query procedure. If the accessed node maintains intervals

y a list (the number of intervals is less than the bound), we iter-

tively test each interval. Otherwise, we compare the query point

.x with the minimum and maximum endpoints in this node. If

.x is located in the data space, we calculate the slot for the query

nd proceed to access slot tables. A subroutine called AccessSlot is

nvoked in which intervals in the full and partial tables are pro-

essed individually. The algorithm named TopK_Point is given in

lgorithm 1 . 

lgorithm 1 TopK_Point ( N, Q, H ). 

1: if N stores intervals by a list then 

2: for all o ∈ N do 

3: if Q .x ∈ o.i ∧ Q .t = o.t then 

4: if | H| < Q .k or Top (H) < o.w then insert o to H; 

5: else 

6: if Q .x ∈ [ N. min , N. max ] then AccessSlot( N, Q , H); 

7: if Q .x < N.p then TopK_Point( N.l p, Q , H); 

8: else TopK_Point( N.rp, Q , H); 

The type index is used to retrieve intervals. In both full and par-

ial tables, intervals having the same type are decreasingly ordered

y weights. Intervals in the full table contain Q.x , and therefore

e do not perform the intersecting testing and just visit the first

 intervals. To process intervals in the partial table, we first test

hether the interval bound contains Q.x . If so, each interval in the

able is tested on the intersecting condition. Let | H | be the number

f elements in the min-heap. Intervals containing Q.x will be in-

erted into the min-heap if (i) | H | < Q.k or (ii) | H | = Q.k and their

eights are larger than the minimum value in the heap. 

Using Q (37, DB, 1) in the running example, we elaborate on the

rocedure by referring to Fig. 10 . Starting from the root node, we

alculate the slot for the query, that is s 3 for 37. By accessing the

ull table, o 1 is pruned and o 7 is put into the heap. In the partial

able, although o 5 is a DB project, the interval does not contain

he query point and will be discarded. Because of Q.x < p (the

plit point is 45), the next node to access is { o 4 , o 8 }. o 4 does not

ntersect the query. o 8 is a DB project and contains the query, but

ts weight is smaller than the minimum value in the heap, i.e., the

eight of o 7 . Therefore, o 8 will not be inserted into the heap. The

uery procedure terminates at this node and returns o 7 as the re-

ult. 

Remove long intervals. In some cases, long intervals may be not

nteresting, e.g., if they span the overall data space. Users may

ant to exclude them in the result. To support the operation, the

uery expression is extended to include predicates on the inter-

al length. Long intervals will be removed when we access the full

nd partial tables. If the slot length is larger than the query, all in-

ervals in the full table can be removed. Otherwise, the intervals

ill be checked before putting into the min-heap. Intervals with

engths larger than the defined value will not be considered. In

lgorithm 2 , evaluating interval lengths occurs after line 1 for full

able and after line 5 for partial table. 

Time complexity. The time cost consists of two parts: (i) tra-

erse the binary tree and (ii) retrieve intervals from the slot tables

nd insert them into the min-heap. Given a set of n typed inter-

als, the first part is O (log n ) as we visit at most one node at each
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Fig. 9. Update the structure. 

Fig. 10. Example of point query. 

Algorithm 2 AccessSlot ( N, Q, H ). 

1: calculate the slot id and retrieve intervals containing Q .x from full 

and partial tables, denoted by F and P ; 

2: for all o ∈ { o 1 , o 2 , … , o k } ⊆ F do 

3: if | H| < Q .k ∨ Top (H) < o.w then insert o to H; 

4: if the interval bound contains Q .x then 

5: for all o ∈ P do 

6: if Q .x ∈ o.i then 

7: if | H| < Q .k ∨ Top (H) < o.w then 

8: insert o to H; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Example of an interval query. 
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level. Consider the part (ii). Let K be the total number of accessed

intervals and we require O ( K · log k ) to report top- k intervals. 

Theorem 4.1. The time cost is O ( log n + K · log k ) . 

We analyze K as follows. If the visited node maintains inter-

vals by a list, then O ( B ) intervals are accessed in which B is the

minimum number of intervals in a node (the bound defined in

Section 3.1 ). During the query procedure, such a node appears only

once (at the bottom level). The other visited nodes define slots. The

slot for the query is determined in constant time. Assuming inter-

val types are uniformly distributed, the number of accessed inter-

vals in each node is bounded by [ k , f (p) 
| T | ]. The lower bound occurs

when the partial table is empty (or all intervals in the partial ta-

ble have smaller weights than intervals in the full table) and thus

only k intervals from the full table are accessed. The upper bound

occurs when all intervals containing the query type are accessed.

We make use of the Equation (1) to set the value at the split point,

i.e., f ( p ). The average interval count over [ min, max ] is determined

by ∫ max 

min f (x ) dx 

max − min 

= 

∫ p 
min (a 1 x + b 1 ) dx + 

∫ max 

p (a 2 x + b 2 ) dx 

max − min 

≈ (a 1 − a 2 ) f 
2 (p) + (b 1 − b 2 ) f (p) 

2 · ( ma x − min ) 
(5)

Summarizing all accessed nodes, K is bounded by [ B + k · log n ,
n 
| T | ]. We do not make any assumption about interval endpoints. If

start and end points are represented by integers, the complexity

becomes O ( log n + (B + k · log n ) · log k ) . As the minimum interval
ength is 1, one can set the slot length by 1. Then, all slots are con-

ained by intervals, leading to empty partial tables. Therefore, only

 intervals in the full table are accessed at each node. The inte-

er representation has some practical applications. In transaction-

ime databases, time is assumed to be discrete and represented by

 succession of non-negative integers [39] . 

.2. Extension to interval queries 

We can easily adjust the algorithm TopK_Point to support inter-

al queries. For each accessed node, a set of slots will be deter-

ined for the query. We access full and partial tables for each slot

o obtain intervals and insert them into the heap. Consider Q ([37,

0], DB, 2) in Fig. 11 . Two slots { s 3 , s 4 } are determined for the

uery in the root node. We iteratively access each slot and have

he min-heap H = { o 5 , o 7 } after processing the node. 

The shortcoming of the straightforward method is that all slots

ntersecting the query interval have to be accessed. The complexity

s proportional to the length of the query interval. If a long interval

s issued, all slots may be visited. To speed up the search process,

e propose an optimal method such that the complexity is not

ffected by the length of the query interval. 

Given a query, if Q.i intersects a node, there are two relation-

hips between the split point p and Q.i . 

• p ∈ Q.i : Note that p is not the middle point of intervals at this

node but the split point to partition intervals. Since all intervals

at this node contain p , they also intersect Q.i . Therefore, the in-

tersecting condition does not have to be evaluated. An example

is given in Fig. 12 (a). 



J. Xu, H. Lu / Information Systems 71 (2017) 164–181 171 

Fig. 12. Q.i and p . 
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• p �∈ Q.i : There are two possibilities: (i) Q.i is located on the left

of p , i.e., Q.i.e < p ; and (ii) Q.i is located on the right of p , i.e.,

Q.i.s > p , as exemplified in Fig. 12 (b) and (c), respectively. In

case (i), we choose Q.i.e as the query and perform a point query.

This is because if an interval does not intersect Q.i.e , its start

point is between Q.i.e and p , and therefore cannot intersect Q.i .

In case (ii), we choose Q.i.s as the query and perform a point

query. 

To conclude, we use the following lemma to perform queries. 

emma 1. We transform an interval query into a point query in each

ode by setting : ( i ) Q.x = p for p ∈ Q.i; ( ii ) Q.x = Q.i.e for Q.i.e < p;

nd ( iii ) Q.x = Q.i.s for Q.i.s > p. 

roof. We prove Lemma 1 by considering the correctness, no du-

licate and no missing result. The first two properties are guaran-

eed by the point query algorithm and we prove the third in the

ollowing: 

If p ∈ Q.i , assume there is an interval o in the node that o.i ∩
.i but is not found. Since we use p to perform the query, o.i is

ocated either on the left or right part of p . This contradicts the

ondition that all intervals in the node contain p . 

If p �∈ Q.i , let o be the missing interval such that o.i ∩ Q.i . If Q.i

 p , we use Q.i.e to perform the query and therefore the missing

nterval o is located either on the left or right part of Q.i.e . If o is

n the left part, o.i cannot contain p . If o is on the right part, o.i

annot intersect Q.i . Both lead to contradiction. The case Q.i > p is

imilar and the proof is omitted here. �

We transform an interval query to a point query. The method

s optimal because we terminate the search if the start point of an

nterval is larger than the query point. In contrast, given a query

nterval, we will terminate the search when the start point of an

nterval is larger than the end point of the query. Our method re-

uces the number of accessed intervals. Lemma 1 can also be used

or intersecting queries on standard intervals. 

lgorithm 3 TopK_Interval ( N, Q, H ). 

1: if N stores intervals by list then 

2: for all o ∈ N do 

3: if o.i ∩ Q .i ∧ o.t = Q .t then 

4: if | H| < Q .k ∨ Top (H) < o.w then 

5: insert o to H; 

6: else 

7: if Q .i ∩ [ N. min , N. max ] then 

8: apply Lemma 1 to perform a point query ; 

9: if Q .i.s < N.p then TopK_Interval ( N.l p, Q , H); 

10: if Q .i.e > N.p then TopK_Interval ( N.rp, Q , H); 

We give the algorithm in Algorithm 3 . Different from a point

uery, an interval query may incur both left and right child nodes

eing visited, see lines 9 and 10. Instead of performing O ( | Q .i | 
len 

) ( len

s the slot length) loops in each node, one time access is sufficient,

educing both CPU and I/O costs. 
Time complexity. Given an interval, the procedure traverses the

ree to find the nodes intersecting the query. For each accessed

ode, an interval may cause both child nodes to be visited. This

epends on the interval length and the space covered by the node.

n an optimal case, the interval regresses to a point, leading to

 ( log n + K · log k ) . In the worst case, we have Q.i = [ Min ( o.i.s ),

ax ( o.i.e )] such that all nodes will be accessed. Assuming types

re uniformly distributed, O ( n 
| T | ) intervals intersect the query and

hus the time complexity is 

heorem 4.2. The time cost is O ( n 
| T | · log k ) . 

. Top- k continuous queries 

.1. Framework 

We make use of the well-known filter-and-refinement strategy

o answer top- k continuous queries. Specifically, 

Filter. This step traverses the tree to find a set of candidates

ach of which intersects the query and contains the type. During

he procedure, a set of slots will be determined for each accessed

ode and we search both full and partial tables for each slot. 

Refinement. This step iteratively checks each candidate from

he filter step. If the candidate belongs to top- k intervals, we put it

nto the result set. Otherwise, the candidate is pruned. Because of

he continuous query, the result changes at certain points, compli-

ating the query procedure. 

The filter algorithm is straightforward, see Algorithm 4 . 

lgorithm 4 Filter ( N, Q c ). 

1: C ← ∅ ; 

2: if N stores intervals by list then 

3: for all o ∈ N do 

4: if Q c .i ∩ o.i ∧ Q c .t = o.t then C ← C ∪ { o}; 

5: else 

6: if Q c .i ∩ [ N. min , N. max ] then 

7: calculate slots S on Q c .i ∩ [ N. min , N. max ] ; 

8: for all s ∈ S do 

9: retrieve intervals containing Q c .t from full and partial

tables, denoted by F and P , respectively ; 

10: C ← C ∪ F ; 

11: for all o ∈ P do 

12: if o.i ∩ Q c .i then C ← C ∪ { o}; 

13: if Q c .i.s < N.p then C ← C ∪ Filter( N.l p, Q c ); 

14: if Q c .i.e > N.p then C ← C ∪ Filter ( N.r p, Q c ) 

15: return C 

.2. The refinement 

To continuously report top- k intervals, we build a main-

emory structure called BD-tree (Bound tree). The BD-tree is in

rinciple a binary tree created on the fly and serves to prune can-

idates that cannot be the answer and maintain top- k intervals at

ach time point. The structure is progressively built in the refine-

ent by iteratively inserting candidates during which candidates

ay be kept in the structure or pruned. After processing all candi-

ates, we traverse the BD-tree to report the final result. 

Each node in the BD-tree is composed of an interval, the left

nd right child pointers and a sorted list with k elements in max-

mum. Each element defines a weight and an interval id. Elements

ave the same start and end points, and are increasingly sorted on

nterval weights. We denote a BD-tree node by β( i, lp, rp, L ), i ∈
, L = 〈 ( w , oid ), ( w , oid )... ( w , oid ) 〉 . The BD-tree nodes are
1 1 2 2 k k 
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Fig. 13. Split the candidate. 

Fig. 14. Example of the refinement. 
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ordered on interval endpoints and come with the following condi-

tion. 

Lemma 2. BD-tree nodes 

Given two BD-tree nodes β1 , β2 : β1 � = β2 ⇒ β1 . i ∩ β2 . i = ∅ . 

Nodes should fulfill the condition when they are inserted into

the tree. Let c ( i, w, oid ) be a candidate interval. The type condition

is checked in the filter step. Hence, the BD-tree does not evaluate

the type predicate. This leads to a general structure such that one

can use the BD-tree to answer continuous queries on standard in-

tervals as well. We start from the root node and perform a binary

search to find the place to insert c or prune it if there are enough

intervals. Given a node β , if β .i ∩ c.i , we will insert c into β . The

candidate c will be split into three parts { c l , c m 

, c r } in which they

have the same weight but different intervals. In Fig. 13 (a), c l is lo-

cated on the left part of β .i; c m 

.i = c.i ∩ β .i; c r is located on the

right part of β .i . Each part is set empty if such an interval does

not exist, as demonstrated in Fig. 13 (b). We go to the left child of

β for c l and the right child of β for c r . Regarding c m 

, we perform

the pruning by using Lemma 3 or update the node. 

Lemma 3. Pruning criteria 

If | β .L | = Q.k ∧ β .L [0]. w > c m 

.w, then c m 

is pruned. 

Proof. Prove by contradiction. Suppose that c m 

cannot be pruned,

then 

case ( i ): ∃ β .L [ i ], β .L [ i ]. w < c m 

.w. β .L is sorted, and this contra-

dicts the condition that | β .L | = Q.k ∧ β .L [0]. w > c m 

.w . 

case ( ii ): ∃ β ′ ( � = β), β ′ . i ∩ c m 

.i ∧ (| β ′ . L | < Q.k ∨ β ′ . L [0] <

c m 

.w ). This contradicts Lemma 2 . �

Using the running example, Fig. 14 depicts the procedure of in-

serting the candidates into the BD-tree. The filter step returns C =
{ o 7 , o 5 , o 8 }. In the refinement, a root node is initially created for

o 7 . Then, we insert another interval o 5 in the root node. According

to Lemma 3 , we prune o 5 . Next, o 8 is processed and will be split

into two parts: (i) c l = ([20, 35], 23, o 8 )); and (ii) c m 

= ([35, 40],

23, o 8 ). For c l , we go to the left child, which is empty, and create

a new node. c m 

is pruned according to the pruning criteria. In the

end, the query reports {([20, 35], o 8 ), ([35, 45], o 7 )}. 

If the pruning condition does not hold, we have to update the

node by c m 

. There are two cases: (i) c m 

.i = β .i , then we do β .L [0]

= ( c m 

.w, c m 

.oid ) and sort β .L ; (ii) c m 

.i � = β .i , we split the node.

Case (i) is simple. In case (ii), β will be split because ( c m 

.w, c m 

.oid )

only corresponds to the interval c m 

.i ⊂ β .i . Thus, we update the
lement list for c m 

.i but keep the same one for β .i �c m 

.i . There are

hree split operations depending on where the intersection part

 m 

.i ∩ β .i is located, as shown in Fig. 15 (a). 

• Operation (i). c m 

.i.s = β .i.s ∧ c m 

.i.e < β .i.e . A new node β l is

created and its content is set as follows: β l .i ← c m 

.i, β l .L ←
β .L ∪ ( c m 

.w, c m 

.oid ). Then, we update β .i ← β .i �c m 

.i and insert

β l into the BD-tree: β l .lp ← β .lp, β .lp ← β l . 
• Operation (ii). c m 

.i.s > β .i.s ∧ c m 

.i.e < β .i.e . Two new nodes β l 

and βr are created: 

β l .i ← [ β .i.s, c m 

.i.s ], β l .L ← β .L ; 

βr .i ← [ c m 

.i.e, β .i.e ], βr .L ← β .L . 

We update β .i ← c m 

.i , and insert β l and βr into the BD-tree: 

β l .lp ← β .lp, β .lp ← β l ; 

βr .rp ← β .rp, β .rp ← βr . 
• Operation (iii). c m 

.i.s > β .i.s ∧ c m 

.i.e = β .i.e . A new node βr is

created and its content is set as: 

βr .i ← c m 

.i, βr .L ← β .L ∪ ( c m 

.w, c m 

.oid ). 

Then, we update β .i ← β .i �c m 

.i and insert βr into the BD-tree:

βr .rp ← β .rp, β .rp ← βr . 

Fig. 15 (b) shows the example of splitting the node in which we

et Q.k = 2. The BD-tree already contains ([20, 35], o 8 ) and ([35,

5], o 7 ). To insert ([40, 45], o 5 ), we follow the procedure in case

iii). The node containing ([35, 45], o 7 ) is split into two parts: [35,

0] and [40, 45]. Since o 7 does not have a right child, ([40, 45],

 (30, o 7 ) 〉 ) is set as the right child and (15, o 5 ) is inserted into the

ist. 

The complete algorithm of inserting a candidate into BD-tree

s given in Algorithm 5 . A candidate is split into several parts and

lgorithm 5 InsertBDTree ( β , c ). 

1: if β = ∅ then 

2: create a node based on c; 

3: return FALSE; 

4: split c into { c l , c m 

, c r }; 

5: if c l then 

6: PF l ← InsertBDTree ( β.l p, c l ); 

7: if c r then 

8: PF r ← InsertBDTree ( β.rp, c r ); 

9: if c m 

then 

10: if c m 

is pruned then 

11: PF m 

← TRUE 

12: else 

13: if c m 

.i = β.i then β.L [0] ← ( c m 

.w , c m 

.oid) 

14: else split the node ; 

15: PF m 

← FALSE 

16: return PF l ∧ PF r ∧ PF m 

; 

ach part is individually processed. We define a Boolean value rep-

esenting whether the candidate is pruned or not. We mark the

alue for each part and perform the intersection on all parts to

et the final result. The candidate will be pruned if all parts are

runed. 

.3. Enhancing the filter 

In the filter step, candidates are processed one by one. The per-

ormance can be further improved if the pruning is able to filter

 set of candidates once. Recall that we use the full and partial

ables to maintain intervals based on the slot representation. For

ach slot s , we set the candidate from the full table by c.i = [ s.s,

.e ] and have the following property. 

emma 4. Prune in Batch 
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Fig. 15. Split BD-tree node. 

Table 1 

Dataset statistics. 

Name | O | (million) [ Min, Max ] | T | Weight Avg(| o.i |) 

O1 1 [1, 10 0 0 0 0] 100 [1, 500] 500 

O2 5 

O3 10 

O4 20 

O5 50 

Bus 25 [1, 96170] 70 [1, 100] 158 

Taxi 22 [1, 173459] 8 [0, 255] 47 
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Table 2 

Parameter settings. 

| T | {10, 50, 100 , 200, 500} 

| Q.i |, | Q c .i | {10 0, 20 0, 50 0, 10 0 0 , 20 0 0, 50 0 0, 10 0 0 0} 

k {1, 5, 10 , 20, 50} 
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Given a slot s, let C ( s ) = < c 1 , ... ,c l > be the set of candidates

rom full table. We have ( i ) c 1 . w > ... > c m 

.w and ( ii ) ∀ i, j ∈ [ 1, l ]:

 i .i = c j .i = s. Then, if ∃ i ∈ [ 1, l ]: c i is pruned, then < c i +1 , ... ., c l >

an be pruned. 

roof. ∀ c ′ ∈ < c i +1 , ... ., c l > : c ′ . i = c i .i ∧ c ′ . w < c i .w ⇒ c ′ can be

runed. �

We integrate Lemma 4 into the filter and replace line 10 in

lgorithm 4 by Algorithm 6 . Since candidates created from the full

lgorithm 6 BatchPruning. 

1: s ′ ← [ s.s , s.e ] ∩ Q c .i ; 

2: Path ← ∅ and let Flag be the pruning flag; 

3: for all o ∈ F do 

4: create a candidate c( s ′ , o.w , o.oid); 

5: if Path then 

6: follow Path to insert c into BD-Tree and set Flag; 

7: else 

8: Flag ← InsertBDTree ( β , c) and set Path ; 

9: if Flag then break ; 

able have the same interval (see line 1 in Algorithm 6 ), the path

f traversing the BD-tree is the same. We record the path when in-

erting the first candidate and will follow the path for the remain-

ng candidates. Employing this method, the number of candidates

or refinement is reduced. Pruning in batch does not apply to can-

idates from the partial table because they do not have the same

nterval. 

. Experimental evaluation 

The evaluation is conducted in a standard PC (Intel(R) Core(TM)

7-4770CPU, 3.4 GHz, 8GB memory, 2TB disk) running Ubuntu

4.04 (64 bits, kernel version 4.8.2-19). We develop all index

tructures and query algorithms (including alternative methods)

n C/C++ and integrate the implementation into an extensible

atabase system Secondo [21] . 

.1. Datasets and parameters 

Both real and synthetic datasets are used in the evaluation. The

ataset statistics is reported in Table 1 . Synthetic datasets {O1, O2,
3, O4, O5} are generated as follows. The start point of an interval

s randomly chosen within the domain [1, 10 0 0 0 0], and the length

s a stochastic value between 1 and 10 0 0. Types and weights are

andomly generated within their domains. 

Two real datasets are from a data company DataTang [2] . A

ample data can be found at [1] . One is bus card records of Bei-

ing in 2014, named Bus , and the other is taxi GPS records of Bei-

ing in 2012, named Taxi . In the dataset Bus , each tuple stores the

umber of passengers in a bus during a time interval. The type is

he bus route and the weight is the number of passengers. In the

ataset Taxi (30,0 0 0 taxis in total), we take two continuous time

oints for each taxi and treat them as an interval. Thus, the inter-

al length is the span between two GPS records. The type shows

he direction towards the taxi moves to. We partition the direction

 [0, 360) into 8 parts representing northeast, southwest and so

n. Each part is defined by an integer between [1, 8]. The speed

alue is set as weight. 

Index creating time and storage. Using the synthetic datasets,

e report the time to create our index structure and the storage

ost in Fig. 16 . We need around 6 s for one million intervals and

round 300 s for 50 million intervals. When the data size increases,

he time to build the index rises clearly. The storage cost has the

ame behavior. 

Experimental parameters are reported in Table 2 where bold

ont is for default values. In the evaluation, we use CPU time and

/O accesses as performance metrics and report the result averaged

ver 30 runs. In the system, we set the record size for holding a

ode by 1kb, leading to the bound value B = 19 (the minimum

umber of intervals in a node). 

.2. The improvement by bound and slot 

We test the effect of defining a bound and performing the par-

ition, and compare the performance with the method that em-

loys a standard interval tree and integrates a bit string into each

ode to represent all types contained by intervals. For each ac-

essed node, the competing algorithm checks the type and then

erforms a linear scan in the left or right list. Point and interval

ueries are evaluated, and datasets O5, Taxi and Bus are used. De-

ault query parameters are defined. 

Fig. 17 reports CPU time and I/O accesses. The results demon-

trate that the proposed method achieves more than an order of

agnitude performance improvement. In particular, the number

f I/O accesses drops significantly. The reason is two-fold: on one

and, defining a bound makes a compact structure and greatly re-

uces the number of nodes, leading to less number of data blocks;

n the other hand, the partition method is employed and at most
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Fig. 16. Index overhead. 

Fig. 17. Effect by Bound + Slot. 
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k intervals in the full table are accessed in each node. In contrast,

the approach without bound and slot needs to process all intervals

intersecting the query. 

6.3. Verifying the slot setting 

We test our slot setting method and show the impact on the

performance and storage overhead. We generate four sets of in-

tervals by setting different interval lengths. In each dataset, the

start point of an interval is randomly chosen within the domain [1,

10 0 0 0 0] and the length value is a random value between [1, 100],

[1, 500], [1, 10 0 0] and [1, 20 0 0]. Each dataset contains 50 million

intervals. 

We compare two slot setting methods: applying the Eq. (4) and

defining a fixed value for all nodes. In the system, the size of a

record for the slot representation is defined to be 1kb, leading to

Max (| s |) = 19. The number of slots by our method is different in

each node and the value is in [2, 4]. We take the average value

to draw the figure. Regarding a fixed slot number for all nodes,

we make four values {5, 10, 15, Max (| s |)}. Point and continuous

queries are evaluated, and default query parameters are used. We

report I/O accesses and storage sizes in Fig. 18 . The CPU time is less

than 15 ms for point queries and varies between 0.5 and 1.6 s for

continuous queries. The deviation is not significant and therefore

the time cost is omitted. The results demonstrate that (i) both the

I/O cost and storage increase when the slot number becomes large

(i.e., short slots); (ii) among all settings of interval lengths, our
ethod achieves better performance than defining a fixed value

or all nodes; and (iii) long intervals incur less I/O cost for con-

inuous queries because the places where the result changes are

ewer. 

.4. Query performance 

.4.1. Alternative methods 

The Baseline method is to perform a linear scan over the

atabase to check the type and intersection condition. Intervals in-

ersecting the query are put into a min-heap to report top-k re-

ults. 

Three alternative methods employing index structures are de-

eloped. One extends the standard interval tree by integrating a

oolean bit string with the length | T | into each node. Each bit cor-

esponds to a type and represents whether there are intervals with

 certain type. If so, the bit is 1. Otherwise, the bit is 0. The sec-

ndary structure is defined to be 2 · T ′ ( T ′ ≤ T ) lists. Intervals are

artitioned into T ′ groups according to the type. Each group stores

ntervals with the same type in the left and right lists. The sec-

nd method uses a relational interval tree in which the bit string

s also integrated. The third method employs a 2D R-tree by treat-

ng the interval and the type as two dimensions. The R-tree is built

y bulkload. The three methods are named Ext-I-tree, RI-tree , and

-tree , and our method is named Slot . Correspondingly, query algo-

ithms based on those structures are also implemented. We briefly

ntroduce each of them. 



J. Xu, H. Lu / Information Systems 71 (2017) 164–181 175 

Fig. 18. Test the slot. 

Fig. 19. Using one million typed intervals(O1). 
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• Ext-I-tree : We perform a binary search on the structure during

which nodes intersecting the query are accessed. This includes

nodes containing the type and intersecting the point (interval).

For each accessed node, we retrieve a list of intervals with a

particular type and then perform a linear scan to report quali-

fied intervals. 
• RI-tree : The method performs a binary search on the primary

structure. For each node intersecting the query, we access the

relations to retrieve intervals by employing a B-tree to effi-

ciently find corresponding tuples. Afterwards, each interval is

evaluated on the type and intersecting condition. 
• R-tree : To form the query, we create a box based on the interval

and type. The R-tree is traversed in a top-down approach dur-

ing which nodes intersecting the box are accessed. If the node

is a non-leaf node, we iteratively visit each child node. Other-

wise, we access each entry in the node to obtain the interval

for testing. 

In all alternative methods, a min-heap with the size k is used

or point and interval queries, and the BD-tree is used for contin-

ous queries. We perform the evaluation by testing (i) the scala-

ility in terms of the number of intervals and types, (ii) the ef-

ect of k , (iii) the query length, and (iv) the data interval length.

n general, our method requires less CPU time and I/O accesses in

ost settings. In the case of large type values and a long interval

uery, Ext-I-tree and R-tree are sometimes better than our method

n terms of the I/O cost. 

Effect of Index. The Baseline method does not use any index

tructure. We report the query performance by comparing Baseline

nd methods employing index structures, see Fig. 19 . We use the

ataset O1 including 1 million typed intervals. The results show

hat query algorithms using indexes reduce CPU time in two orders

f magnitude and I/O accesses at five times compared to Baseline .

ince the performance advantage of using index structures is ob-

ious, we only compare methods that employ index structures in

he following. 
.4.2. Scalability 

Using the synthetic datasets, two groups of experiments are

arried out to study the effect of scaling the number of intervals

 O | and the number of types | T |. The results are reported in Figs. 20

nd 21 , respectively. We perform point, interval and continuous

ueries. The results demonstrate that Slot is superior than alter-

ative methods when scaling | O |. We have the following findings

hen scaling | T |. 

• If | T | is not large (e.g., < 150), our method outperforms all al-

ternative methods in terms of CPU time and I/O accesses. 
• If | T | becomes large, our method is still the best with respect to

CPU time. Regarding the I/O cost, the R-tree is the best and the

Ext-I-tree performance also increases. Our method is not very

sensitive to | T |. 

We analyze the results as follows. In the scenario of a large | T |,

he type predicate is very selective (a good filter). The 2D R-tree

valuates the type and intersecting predicates simultaneously. The

hape of the structure becomes better if the number of types in-

reases. If the type domain is within a small range, this dimension

s not comparable to the time dimension, leading to a weak selec-

ivity on the type condition. 

Employing the Ext-I-tree in which each node maintains 2| T | lists,

he procedure evaluates the type predicate at first and then col-

ects intervals with a particular type to test the intersecting condi-

ion. The number of intervals in each list becomes small when | T |

ncreases, reducing the number of evaluated intervals. In contrast,

ur method first evaluates the intersecting condition and then de-

ermines the intervals with a certain type. If | T | is large, evaluating

he type condition before testing the intersecting is better because

ess candidates are received. 

.4.3. Effect of k 

We report the results in Figs. 22–24 . Our method outper-

orms the alternative methods in most cases. For point and in-

erval queries, the performance is not sensitive to k for all meth-
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Fig. 20. Scaling | D |. 

Fig. 21. Scaling | T |. 

Fig. 22. O5 ( k ). 
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Fig. 23. Taxi ( k ). 

Fig. 24. Bus ( k ). 
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Table 3 

Minimum and maximum lengths. 

[1, 100] [10 0, 20 0] [20 0, 50 0] [50 0, 10 0 0] [10 0 0, 20 0 0] 
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ds because the procedure just keeps updating a min-heap, taking

 (log k ). The CPU time is a few milliseconds for point queries using

axi , and hence a small deviation may lead to a sharp slope of the

urve. 

For continuous queries, the CPU time increases proportionately

hen k becomes large. This is because the procedure continuously

pdates the results changing over time. The larger k is, the longer

he sorted list in the BD-tree is maintained. Whenever a split oc-

urs, the list (main-memory resident) has to be moved from one

ode to another, requiring the time cost. The R-tree and Ext-I-tree

ave slightly less I/O accesses than Slot in some settings using Bus .

.4.4. Effect of the query length 

We evaluate interval and continuous queries. According to

emma 1 , the query interval is converted to a point. This applies

o Ext-I-tree, RI-tree and Slot . The results are reported in Figs. 25

nd 26 . As expected, when the length of the query increases, more

ntervals are accessed, incurring both CPU and I/O overhead. Our

ethod achieves the best performance except that the I/O cost is

igher than the R-Tree and Ext-I-tree in a few cases. The reason is,

lmost all slots in a node are accessed for a long query interval.

ne interval may be visited several times in different slots, leading

o the extra I/O cost. 
.4.5. Effect of the data interval length 

In this part, we investigate the query performance by scaling

nterval lengths. Five datasets are used in the evaluation by setting

ifferent minimum and maximum lengths, as listed in Table 3 . 

Each dataset contains 50 million typed intervals, the length of

ach is randomly selected between the minimum and maximum

alues. Default query parameters are used. Fig. 27 reports the re-

ults of three kinds of queries. The CPU time of our method is

ot significantly influenced by interval lengths, but I/O accesses

ncrease clearly. This is because the number of slots for an inter-

al increases when the interval length becomes larger, resulting in

ore times of accessing slots. Our method outperforms the alter-

ative methods in most settings. Similar to the results in other ex-

erimental settings, R-tree is the most competitive method to Slot

n terms of I/O accesses but its CPU time is at least 2 times more

han ours. 
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Fig. 25. Interval queries (| Q.i |). 

Fig. 26. Continuous queries (| Q c .i |). 
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7. Discussion 

We discuss how to leverage our structure to support a wide

range of queries on typed intervals and make a comparison with

spatial indexes that are already built in most database systems. 

7.1. Predicate and join queries 

Specific predicates can be evaluated on intervals. One may want

to return intervals with a certain length or define the length of the

intersection part between data intervals and the query, e.g., “re-

turn intervals intersecting [10, 100] and the intersection part is longer

than 50 ”. If we use the standard interval tree, the intervals in each

node are iteratively evaluated for the predicate. Employing the slot

method, we follow the procedure that first determines the corre-

sponding slots for the query. The predicate will be evaluated be-

fore accessing the full and partial tables. If the slot length is larger

than 50, all intervals in the full table fulfill the condition and do

not have to be evaluated. Intervals in the partial table will be iter-

atively evaluated. 
Given two sets of typed intervals, a join query includes a type

redicate ( t a , t b ∈ T ) and returns all pairs of overlapping intervals

ontaining query types. For example, return all DB and AI overlap-

ing projects ( t a = DB, t b = AI). If the two query types are equal,

his is the overlapping join on standard intervals. We assume that

ifferent query types are issued. The query can be answered by

sing two proposed indexes built on the dataset. 

The idea is as follows. We traverse one index called target from

op to bottom level by taking each node from the other index

alled source . We first determine whether the interval ranges of the

wo nodes overlap. If so, we put such a pair of nodes into the can-

idate set. After iteratively processing each node from the source ,

e receive a group of candidates each of which is in fact a pair of

odes, one from the source and the other from the target. 

We find overlapping slots for each candidate and check the type

ndex to determine the intervals containing the query. The inter-

als are marked full or partial , representing the table they are from.

here are three cases between the intervals from the two slots: (i)

ull-full; (ii) full-partial; (iii) partial-partial. For case (i), intervals

an be directly reported without evaluating the overlap predicate.
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Fig. 27. Scaling interval lengths. 
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or case (ii), we do not have to fetch intervals from the full table

ut test whether intervals from the partial table intersect the slot.

f so, we report the answer. For case (iii), the intervals are fetched

rom the two partial tables and then evaluated. The method for

valuating the predicate (e.g., the length) can also be applied to

eturn interval portions with particular lengths. 

.2. Comparison with spatial indexes 

In the experimental evaluation ( Section 6.4 ), we compare the

erformance between the proposed method and the spatial index

D R-tree. The results show that the R-tree is the most competi-

ive method. Furthermore, such a spatial index has been commonly

sed in many database systems, making this method attractive. We

urther analyze the performance difference as follows. 

The R-tree treats the data in different dimensions equally and

erforms the evaluation on all dimensions simultaneously. This

eads to a good performance if data is uniformly distributed and

he tree has a good shape, i.e., if data in different dimensions is

imilar in terms of distributions and ranges. However, the domains

f different dimensions may deviate significantly depending on the

atasets. In such a case, the R-tree may not be the best choice

s the index structure. In Section 6.4.2 , the R-tree performance is

uch worse than our method when the number of types becomes

mall (see Fig. 21 ). For example, when the number of types is 10,

ur method achieves an order of magnitude faster in performance

han the R-tree. This is because the type domain is within a small

ange and thus the dimension is not as selective as others. An ex-

reme case occurs when intervals have the same type, leading to

D R-tree. However, the R-tree is supposed to manage the multidi-

ensional data. 

The proposed index in this paper can be implemented in a

onventional database system by making use of nested relations.

ased on the interval tree in Fig. 2 , we exemplify how to integrate

he proposed index structure into a conventional database system,

s demonstrated in Fig. 28 . 

The primary structure is represented by a relation in which a

uple corresponds to a tree node and stores basic information as

elational attributes such as the split point and the minimum and

aximum endpoints. Since we use the full and partial tables to
anage typed intervals, two sub-relations are embedded as at-

ributes in the relation. In each sub-relation, a tuple represents a

yped interval and stores the slot id. We sort tuples by slot id,

ype and weight. To efficiently access the full and partial tables, the

ype indexes are built and also embedded as relational attributes.

he indexes essentially record the interval positions in the sub-

elations. 

. Related work 

.1. Queries on intervals 

Queries on interval data are defined based on the primitive in-

erval relationships. Interval join [20] is studied as a specific join

peration in temporal databases. A stabbing-max query [3] returns

he interval that contains the query point and has the maximum

eight. The sequenced semantics [11,12] provides a relational alge-

ra solution to support outer joins, antijoins and aggregations with

redicates and functions over interval timestamped data. The bi-

ary interval search [29] counts the intersections between two sets

f intervals. The temporal aggregations [35,40] compute aggregates

n all tuples whose valid intervals overlap a time interval or point.

nterval queries are also investigated in cloud key-value stores [37] .

 system named TemProRA is developed to provide the analysis

f the top-k temporal probabilistic results of a query on time and

robability [36] . This paper differs from those works in that the

ntervals are associated with categorical types as well as numeric

eights. On one hand, our data representation is general, support-

ng typed intervals and standard intervals. We study not only top-k

oint and interval queries, but also top-k continuous queries, com-

licating the evaluation. On the other hand, the query procedure

eeds to be optimized because several predicates are combined.

xisting structures have some drawbacks that decrease the perfor-

ance, as we have discussed in the introduction. Typed intervals

re introduced in [25] with a preliminary solution to answer top-k

oint and interval queries, but how to set an optimal slot is not

nalytically provided and continuous queries are not supported. 

The closest work to this paper is the top- k interval keyword

uery [31] in which each interval contains a list of keywords. The

oal is to return a set of temporal-textual objects in descending
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Fig. 28. Integrate the proposed index into a conventional database system. 

Fig. 29. top- k interval keyword search. 
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order of relevance scores that combine interval overlap and key-

word similarity. Consider the following temporal-textual objects:

{([20, 40], (AI, State)), ([50, 80], (AI, University)), ([40, 60], (DB, En-

terprise)), ([30, 60], (AI, Enterprise))}, as depicted in Fig. 29 . The

first word in each object describes the project topic and the sec-

ond indicates the sponsor. An example of top- k interval keyword

queries is “find the most relevant object that contains AI and exists

between [ 30, 70 ]”. The result is ([30, 60], (AI, Enterprise)) because

this object contains the keyword “AI” and has the longest interval

intersection. 

There are several differences between top-k keyword queries

and our queries. Firstly, top- k keyword queries only support in-

terval queries because the query computes the overlap between

an object interval and a query interval, whereas our top- k queries

accept both intervals and points. Secondly, the top- k keyword

query evaluates the textual similarity, whereas our query finds ob-

jects with the exact keyword match. Thirdly, the concrete algo-

rithms and experimental evaluation are not given for top- k key-

word queries. 

8.2. Storing and indexing intervals 

To facilitate the overlap interval join [20] , the interval partition-

ing [13] divides the interval range of a relation into granules in

equal size and uses sequences of granules as partitions of different

sizes such that each tuple, associated with an interval, is stored in

the smallest covering partition. Although we also use equally sized

partitions called slots, we allow a tuple interval intersecting multi-

ple consecutive slots and aim to make the slots as small as possible

such that they can be contained by tuple intervals. 

Assuming a tuple is associated with a number of intervals, the

approach of optimal splitters partitions the interval domain into

a given number of buckets such that the size of the maximum

bucket, that contains and intersects the largest number of inter-

vals, is minimized [30] . In contrast, we assume that each tuple is

associated with one interval, and distinguish between an interval

containing and intersecting a partition. We perform the partition

in an optimal way in order to achieve the balance between the

number of granules and the storage overhead. 
Several data structures have been proposed for managing the

ntervals in the field of computational geometry. The interval

ree [14,15] and the segment tree [7,24] are ordered binary trees.

o maintain n intervals, the segment tree’s storage cost is O ( n log n )

nd the interval tree needs O ( n ). The efficiency of answering in-

ersecting queries is the same for the two structures. The prior-

ty search tree [34] is a hybrid of binary search tree and priority

ueue. The structure can efficiently report points in a range where

he query on one dimension is unbounded. Each node maintains

wo values from points in the subtree. One is the median value

mong x-coordinates and the other is an index to the point with

he smallest y-coordinate. The structure is not appropriate for in-

exing intervals because the start and end values belong to the

ame dimension and the continuous space between them cannot

e represented by points. The interval skip list [23] extends the

andomized list and is used to efficiently find the intervals over-

apping a particular point in active database rule systems. The R-

ree [22] can be used to index intervals in the 1-dimensional case.

he B-tree and its variants are also widely used to index temporal

atabases [16] . Since our method is based on the interval tree, we

roceed to focus on the techniques closely related to the interval

ree. 

Several variations based on the interval tree have been de-

ised by combining auxiliary structures, and some secondary stor-

ge structures are proposed when data is too large to fit in main

emory. By organizing interval endpoints, the augmented B + -
ree [4] reduces both the storage space and the time complexity

or insertions and deletions. The interval B 

+ -tree [9] is used to in-

ex a dynamic set of valid time intervals. A tertiary structure uses

 binary tree to manage the indexes in a bucket. The B 

+ -trees are

efined on the start points of the intervals augmented with the

aximum endpoint in the internal nodes. The interval B 

+ -tree ef-

ciently processes queries capturing temporal relationships based

n the start points of the intervals. 

Extending Edelsbrunner’s interval tree [14] , the relational inter-

al tree [28] uses two relational indexes to index intervals accord-

ng to a key, a start point, and an end point. All intervals in the

ree nodes are stored in two relations: one is for lower bounds of

ll intervals and the other is for upper bounds. Interval intersec-

ion queries can be efficiently answered. The balanced binary tree

s not materialized but exists as a purely virtual structure. The rela-

ional interval tree is further used for intersection and join queries

17,18] . 

The external internal tree [5] is an optimal external memory

ata structure that facilitates stabbing queries on a set of dynam-

cally intervals. The method makes extensive use of two auxiliary

tructures. Each internal node is associated with an interval that is

he union of intervals in child nodes. Such an interval is divided

nto a set of small slabs. Left and right slab lists are maintained

o store intervals with the left and right endpoints located in each
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lab, respectively. Depending on the number of intervals intersect-

ng the slab, either a multislab list or an underflow structure is

sed to store the intervals. The external internal tree is modified to

 linear-size structure to solve the one-dimensional version of the

nterval-stabbing max problem [3] . The method named segment

ndexes [27] extends conventional database indexing techniques to

mprove the search performance of spatial data composed of K -

imensional ( K ≥ 1) intervals. 

The proposal in this paper manages the intervals in a way

learly different from existing techniques. A compact structure is

eveloped by defining a bound to determine the minimum num-

er of intervals at a node. Our structure contains less nodes and

as a smaller tree height than the standard structure. In each node

f our tree, we carefully and optimally design slot tables to cate-

orize intervals into two groups instead of simply using lists. The

oal is to maximize the number of intervals in one group at the

inimum storage cost such that intervals in the group intersect-

ng the query can be reported without performing the intersecting

esting. We associate each group with a type index to speed-up

ook for intervals with a particular type. 

. Conclusion and future research 

In this paper, we study top- k queries on typed intervals. Based

n the standard interval tree, a new structure is developed to cap-

ure intervals, types, and weights in a hybrid presentation, and par-

ition the interval domain in a query-efficient manner. Employing

he proposed structure, query algorithms are developed for static

point and interval) and continuous queries that ask for data ob-

ects with qualified intervals and types as well as top weights. Ex-

ensive experiments using both real and synthetic data are con-

ucted to evaluate the proposed approach. The experimental re-

ults demonstrate the efficiency and scalability of our proposal. 

There exists a number of directions for future research. The top-

 queries in this paper search for individual data objects with re-

pect to different attributes (interval, type, and weight). Finding

roups of objects based on aggregates on a particular attribute is

n interesting issue. For example, the academic administration of-

en needs to obtain the statistics about the number of students

ho attend a particular course in a given semester. When two sets

f intervals are available, e.g., from two management departments

f a university, it is useful to support joins to capture knowledge

hat is unavailable in a single dataset. Intervals can be associated

ith probabilistic distribution functions to capture a range of pos-

ible values. It is interesting to investigate queries on probabilistic

ntervals, e.g., return intervals containing the query type and hav-

ng the highest probabilities of overlapping the query. 
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