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Abstract

A central question in multilingual language
modeling is whether large language models
(LLMs) develop a universal concept represen-
tation, disentangled from specific languages.
In this paper, we address this question by an-
alyzing the Llama-2’s forward pass during a
word translation task. We strategically extract
latents from a source translation prompt and
insert them into the forward pass on a target
translation prompt. By doing so, we find that
the output language is encoded in the latent at
an earlier layer than the concept to be translated.
Utilizing this insight we show that both, target
concept in source language and source concept
in target language, are achievable via patching
alone. Furthermore, we show that patching in
the mean of multiple source language latents
does not impair our ability to decode source
concept in target language, indicating that con-
cept representations are language-agnostic.

1 Introduction

The emergence of the field of mechanistic inter-
pretability has led to the conception of powerful
tools (Carter et al., 2019; Nostalgebraist, 2020;
Schubert et al., 2020; Belrose et al., 2023; Cun-
ningham et al., 2023; Kramar et al., 2024; Marks
et al., 2024; O’Neill and Bui, 2024; Tufanov et al.,
2024) for the investigation of the inner workings of
deep neural networks such as large language mod-
els (LLMs) (Vaswani et al., 2017; Radford et al.,
2019; Touvron et al., 2023) with the ultimate goal
of reverse engineering the algorithms encoded in
their weights. As a result, researchers today are
often able to open up a “black box” neural network,
and with near surgical precision pinpoint where a
certain input-output behaviour comes from (Wang
etal., 2022; Conmy et al., 2023; Nanda et al., 2023;
Zhong et al., 2024; Furuta et al., 2024).

One such recent approach has been to use patch-
scopes (Ghandeharioun et al., 2024). The key idea
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Figure 1: For two given concepts, e.g., BOOK and
LEMON, we construct a source prompt for translating
from German to English, and a target prompt for translat-
ing from French to Chinese. Then we extract the latent
of the last token after some layer j from the source
prompt and insert it at the corresponding position in
the forward pass of the target prompt. The resulting
next token probabilities will concentrate on the rarget
concept in target language (LEMON?Y), i.e. ¥7'15%) when
patching at layers 0-11, on the farget concept in source
language (“lemon”) for layers 12-16, and on the source
concept in source language (“book”) for layers 17-31.

of a patchscope is to repurpose a LLM! to unpack
information contained in its own intermediate re-
sults. This can be achieved by patching a latent
from one forward pass into another one while ob-
serving the output (cf. Fig. 1).

Summary of contributions. In this work, we
leverage patchscopes to understand how Llama-
2 (Touvron et al., 2023) processes multilingual
text. In particular, we investigate whether it uses
a language-agnostic concept space as theorized

"Note that we use LLM and transformer (Vaswani et al.,
2017) interchangeably.



by Wendler et al. (2024). In such a space, con-
cepts would be represented independently of the
language used to express them. In order to do so,
we design multiple patchscope experiments lever-
aging pairs of translation prompts with differing
expected predicted concept and language.

1. We start by patching at the last token (as in
Fig. 1). As aresult, we find that first the model
resolves the output language and, in later lay-
ers, the concept to be translated.

2. Next, we come up with two hypotheses
about how Llama-2’s forward pass might have
solved the task. H1 in which language and
concept are represented in a disentangled way
and H2 in which they are always entangled.

3. Finally, we perform targeted experiments to
gather more evidence for either H1 or H2 and
find H1 is better supported by our results.

Therefore, our results agree with the theory out-
lined by Wendler et al. (2024). In contrast to their
analysis which is purely observational with the
logit lens, ours is based on interventions by virtue
of on the patchscope. Additionally, by using patch-
scopes we circumvent the potential pitfalls of co-
sine similarity (Steck et al., 2024) inherent in the
logit lens analysis and instead utilize Llama-2’s full
power to draw coclusions about the computations
performed and representations used.

2 Llama-2’s forward pass

Because we need full model access for our analysis,
we focus on Llama-2 (Touvron et al., 2023). Llama-
2 is an autoregressive, decoder-only, residual-based
transformer (Vaswani et al., 2017) that was trained
to map a sequence of input tokens x1,...,x, € V,
where n is the sequence length, to a sequence of
latents in R¢ that is refined layer by layer such that
the final latents are well-suited for predicting the
next tokens x2,...,xp41 € V.

On a technical level, this is achieved using trans-
former blocks, consisting of a causally masked self-
attention layer followed by a feed-forward layer
with a residual connection and root mean square
(RMYS) normalization in between (Vaswani et al.,
2017; Touvron et al., 2023), that are used to update
the latent at position ¢ in layer j:

R =nf0 g (R0 )
G-1)

where bV hY ™Y and B € R
The initial latents hgo)’ e hno) € R are learnt

token embeddings. Finally, for a m-layer trans-

former, the next-token probabilities are obtained
via a learnt linear layer followed by a softmax op-

eration mapping hl(-m) to P(zi1 \hl(.m)).
3 Exploratory analysis with patchscopes

Notation. Let C' denote an abstract concept and C
its language-specific version. Further, let w(C?) de-
note the set of words? expressing the abstract con-
cept C in language ¢. For example using capitaliza-
tion to denote the abstract concepts, let C' = CAT.
Then for £ = EN we have w(C®™) = {“cat”} and
similarly w(CP¥) = {“Katze”, “Kater”}.

Problem statement. We aim to understand
whether language- and concept information can
vary independently during Llama-2’s forward pass
when processing a multilingual prompt. For exam-
ple, a representation of C* of the form zoe = 2o +
zp,inwhich zo € U, zp € Ut and U ® U+ = R?
is a decomposition of R? into a subspace U and
its orthogonal complement U+, would allow for
language- and concept information to vary inde-
pendently: language can be varied by changing
2y € UL and concept by changing z¢ € U.3 Con-
versely, if language- and concept information were
entangled a decomposition like this should not ex-
ist: varying the language would mean varying the
concept and vice-versa.

3.1 Experimental design

We start our analysis with an exploratory exper-
iment in which we utilize simple few-shot trans-
lation prompts from Wendler et al. (2024) to cre-
ate paired source- and target prompt datasets with
different input language Egn) #* €§3n), concept
Cs # Cr, output language Egmt) % K(To“t).

If not mentioned otherwise £g and ¢ refer to the
output language of the source and target prompt.

Prompt design. An example translation prompt:

English: “lake” - Francais: “lac"
English: “south” - Francais: “sud"
English: “mother" - Francais: “mere"
English: “seat" - Francais: “siege"
English: “cloud" - Frangais: “

Here the task is to translate w(CLOUD®™) =
{*cloud"} into w(CLOUD™®) = {“nuage"}.

2We talk about words for the sake of simplicity. However,
on a technical level w refers to the set of starting tokens of
these words.

3Note that we are not trying to claim that this indeed is the
form of the representations, instead it is a cartoon to help us
think about the phenomenon of interest.



Importantly, whether the model correctly an-
swers the prompt is determined by its next token
prediction. For example above, the next token pre-
dicted should be “nu", the first token of “nuage".
Thus, we can track P (C’é), i.e., the probability of
the concept C occurring in language ¢, by simply
summing up the probabilities of all starting tokens
of w(C?) in the next-token distribution.

We improve upon the construction of Wendler
et al. (2024) by considering all the possible ex-
pressions of C in £ using BabelNet (Navigli et al.,
2021), instead of GPT-4 translations, when com-
puting P(C*). This allows us to capture many
possible translations, instead of one. For exam-
ple, “commerce”, “magasin” and “boutique” are
all valid words for SHOP™®,

Patchscope setup. We would like to infer at which
layers the output language and the concept enter
the latent hng) (T') respectively and whether they
can vary independently. In order to investigate this
question, we perform the experiment depicted in
Fig. 1. For each transformer block f; we create two
parallel forward passes, one processing the source
prompt S = (s1,..., Sng) and one processing the
target prompt 7' = (¢, ..., %y, ). While doing so,
we extract the latent of the last token of the source
prompt at layer j, h,&@ (S), and insert it at the same
layer at position np in the forward pass of the tar-
get prompt, i.e., by setting hg}(T) = hﬁfS)(S) and
subsequently completing the altered forward pass.
From the resulting next token distribution, we com-
pute P(CEF), P(C), P(C4), and P(CT).

3.2 Results

In this experiment, we use differing concepts and
Eg”) = DE,EE;M) = EN for the source- and
6&3") = FR,K&?M) = zH for the target prompt.
We perform the patching at one layer at a time
and report the probability that is assigned to
P(CE), P(CE), P(CL), and P(CLT). As a re-
sult we obtain Fig. 2 in which we report means and
95% confidence interval over 200 examples. As
model we use Llama-2-7B-base.

Interpretation. We observe the following pattern
while patching at different layers (see Fig. 2):
» Layers 0-11: Target concept decoded in target
language, resulting in large P(CZ").
e Layers 12-16: Target concept decoded in
source language, resulting in large P(CF}").
» Layers 16-31: Source concept in source lan-
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Figure 2: Our first patchscope experiment with a DE to
EN source prompt and a FR to ZH target prompt with dif-
ferent concepts. We patch at the last token respectively.
For each of the plots the x-axis shows at which layer the
patching was performed during the forward pass on the
target prompt and the y-axis shows the probability of
predicting the correct concept in language £ (see legend).
In the legend the prefix "src" stands for source and "tgt"
for target concept. We report means and 95% Gaussian
confidence intervals computed over 200 soure-, target
prompt pairs.

guage, resulting in large P(Cg").

This pattern suggests that the model first com-
putes the output language: from layer 12 onwards
we decode in the source output language, indicat-
ing that z,(ut), a function vector (Todd et al., 2023)
indicating the need to decode to £(°*Y)  is overwrit-
ten at layer 12. In later layers, it determines the
concept: from layer 16 on the source concept is
decoded, suggesting that z etin) €Nters in layer 16.

Hypotheses. We are left with two hypotheses com-
patible with these results depicted in App. Fig. 4:

* H1: Concept and language are represented
independently. When doing the translation,
the model first computes £(°“*) from context,
and then identifies C' In the last layers, it then
maps C' to the first token of w(C’W“t) ).

* H2: The representation of a concept is al-
ways entangled with its language. When do-
ing the translation, the model first computes
Zy(out), then computes 2@ and €™ from its
context and solves the language-pair-specific
translation task of mapping ct o 01,

4 Ruling out hypotheses

Next, we run additional experiments to (1.) provide
further evidence that we are either in H1 or H2 and
(2.) to disambiguate whether we are in H1 or H2.

Further evidence experiment. In the experiments
in Sec. 3 we did not observe source concept in tar-
get language. However, both H1 and H2 would
allow for that to happen via patching in the right



way. Therefore, in this experiment, instead of over-
writing latents at the last token of the prompt, we
overwrite them at the last token of the word to be
translated. Let pg and pr denote the position of
that token in source and target prompt respectively.
Since the concept information seems to enter via
multiple layers (16-20) into the latent of the last
token, we overwrite the latent corresponding to the
token at position pr at layer j and all subsequent
ones. By patching in this way in both H1 and H2
we’d expect to see large P (CgT).

Formally, we patch by setting hng) (T) =
r5)(S), ..., hS™ (1) = hS™(S) (in Llama-2-7B
with O-indexing m = 31).

Disambiguation experiment. Both H1 and H2
compute w(CgT) but in different ways. In H1 one
decoding circuit per output language is required in
order to compute the expression for the concept C'
in language ¢7. In contrast, in H2 one translation
circuit per input-output language pair is required
to map the entangled ct o CH. Therefore,
in order to disambiguate the two we construct a
patching experiment that should work under H1
but fail under H2.

In order to do so, instead of patching the la-
tent containing C’Z(SW from a single source for-
ward pass, we create multiple source prompts
with the same concept but in different in-
put languages 6(531") £ .. # Eg:)
patch by setting thT) (T) = % Zle h,()js)i (Si), -
hg,?) (T) = %Zle hg:i)(Si). Under H1 taking
the mean of several language-specific concept rep-
resentations should keep the concept information
intact, since 1 3% | zcg(im) =20+ 138, zeg:).

and

Therefore, we’d expect high P (quT) in this case.
However, under H2 in which z (tim) €ANNOL be dis-
S.

entangled this mean is not a well-defined concept
and additionally the interference inbetween multi-
ple input languages should cause difficulties for the
language-pair-specific translation, which should
result in a drop in P (C’gT).

Results. In the first experiment we use the same
languages as above and in the second one we used
DE, NL, ZH, ES, RU as input- and FR, FI, ES, RU, KO
as output languages for the source prompts, and,
FR to ZH for the target prompt.

In Fig. 3 we observe, that in both experiments we
obtain very high probability for the source concept

in the target language P(CZ) from layers 0 to
15, i.e., exactly until the latents at the last token
stop attending to the last concept-token.

Therefore, Fig. 3 (a) supports that we are indeed
either in H1 or H2 since we successfully decode
source concept in the target language P(CZH)
from layers O to 15 and Fig. 3 (b) supports that
we are in H1 and not in H2 because patching in the
mean keeps the P(CZH) intact.

(b) Mean over source prompts
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Figure 3: Here we use different input languages (DE,
FR), different concepts, different output languages (EN,
ZH) in (a). In (b) we use multiple source input languages
DE, NL, ZH, ES, RU and output languages FR, FI, ES,
RU, KO. We patch at the last token of the concept-word
at all layers from j to 31. In (a) we patch latents from
the single source prompt in (b) we patch the mean of
the latents over the source prompts. For each of the
plots, the x-axis shows at which layer the patching was
performed during the forward pass on the target prompt
and the y-axis shows the probability of predicting the
correct concept in language ¢ (see legend). The prefix
"src" stands for source and "tgt" for target concept. We
report means and 95% Gaussian confidence intervals
computed over a dataset of size 200.

5 Discussion

In this paper, we performed multiple experiments
that indeed indicate that Llama-2 processes lan-
guage and concept information independently in
the few shot translation prompts used. This also
speaks for language- and concept information be-
ing represented in a disentangled way. Our results
are aligned with findings from prior work (Wendler
et al., 2024) that indicate that Llama-2 represents
concepts in a concept space independent of the lan-
guage of the prompt. However, our analysis goes
beyond the purely observational logit lens analysis
performed by Wendler et al. (2024). Using patch-
scopes we circumvent potential pitfalls of cosine
similarity (Steck et al., 2024) and instead utilize
Llama-2’s full power.



Limitations

In this work, we studied how Llama-2 represents
concepts when processing multilingual text. How-
ever, we only considered very simple translation
prompts and also probed only for the language-
specific words describing the concept. While our
results are clearly interesting, further experiments
are needed to make claims about how Llama-2 and
other language models process multilingual text in
general settings. Furthermore, more finegrained
probing will be required to determine to which de-
gree Llama-2 is able to specialize a concept to a
language and whether concepts and languages are
entangled in more subtle ways.
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A Appendix

In Fig. 4 we provide a visualization of our hypothe-
ses about Llama-2-7B’s forward pass on the trans-
lation prompts after the explorative experiment in
Sec. 3.
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Figure 4: Our hypothesis about how the forward pass
could look like on our translation prompts. Every block
consists of multiple transformer blocks and inbetween
the blocks we denote the relevant content contained in
the latents (in the residual stream). Because in hypothe-
sis 2 concept and language cannot be disentangled one
input-output language specific translation circuit per lan-
guage pair is required.
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