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Abstract001

A central question in multilingual language002
modeling is whether large language models003
(LLMs) develop a universal concept represen-004
tation, disentangled from specific languages.005
In this paper, we address this question by an-006
alyzing the Llama-2’s forward pass during a007
word translation task. We strategically extract008
latents from a source translation prompt and009
insert them into the forward pass on a target010
translation prompt. By doing so, we find that011
the output language is encoded in the latent at012
an earlier layer than the concept to be translated.013
Utilizing this insight we show that both, target014
concept in source language and source concept015
in target language, are achievable via patching016
alone. Furthermore, we show that patching in017
the mean of multiple source language latents018
does not impair our ability to decode source019
concept in target language, indicating that con-020
cept representations are language-agnostic.021

1 Introduction022

The emergence of the field of mechanistic inter-023

pretability has led to the conception of powerful024

tools (Carter et al., 2019; Nostalgebraist, 2020;025

Schubert et al., 2020; Belrose et al., 2023; Cun-026

ningham et al., 2023; Kramár et al., 2024; Marks027

et al., 2024; O’Neill and Bui, 2024; Tufanov et al.,028

2024) for the investigation of the inner workings of029

deep neural networks such as large language mod-030

els (LLMs) (Vaswani et al., 2017; Radford et al.,031

2019; Touvron et al., 2023) with the ultimate goal032

of reverse engineering the algorithms encoded in033

their weights. As a result, researchers today are034

often able to open up a “black box” neural network,035

and with near surgical precision pinpoint where a036

certain input-output behaviour comes from (Wang037

et al., 2022; Conmy et al., 2023; Nanda et al., 2023;038

Zhong et al., 2024; Furuta et al., 2024).039

One such recent approach has been to use patch-040

scopes (Ghandeharioun et al., 2024). The key idea041

Figure 1: For two given concepts, e.g., BOOK and
LEMON, we construct a source prompt for translating
from German to English, and a target prompt for translat-
ing from French to Chinese. Then we extract the latent
of the last token after some layer j from the source
prompt and insert it at the corresponding position in
the forward pass of the target prompt. The resulting
next token probabilities will concentrate on the target
concept in target language (LEMONZH), i.e. 柠檬) when
patching at layers 0-11, on the target concept in source
language (“lemon”) for layers 12-16, and on the source
concept in source language (“book”) for layers 17-31.

of a patchscope is to repurpose a LLM1 to unpack 042

information contained in its own intermediate re- 043

sults. This can be achieved by patching a latent 044

from one forward pass into another one while ob- 045

serving the output (cf. Fig. 1). 046

Summary of contributions. In this work, we 047

leverage patchscopes to understand how Llama- 048

2 (Touvron et al., 2023) processes multilingual 049

text. In particular, we investigate whether it uses 050

a language-agnostic concept space as theorized 051

1Note that we use LLM and transformer (Vaswani et al.,
2017) interchangeably.
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by Wendler et al. (2024). In such a space, con-052

cepts would be represented independently of the053

language used to express them. In order to do so,054

we design multiple patchscope experiments lever-055

aging pairs of translation prompts with differing056

expected predicted concept and language.057

1. We start by patching at the last token (as in058

Fig. 1). As a result, we find that first the model059

resolves the output language and, in later lay-060

ers, the concept to be translated.061

2. Next, we come up with two hypotheses062

about how Llama-2’s forward pass might have063

solved the task. H1 in which language and064

concept are represented in a disentangled way065

and H2 in which they are always entangled.066

3. Finally, we perform targeted experiments to067

gather more evidence for either H1 or H2 and068

find H1 is better supported by our results.069

Therefore, our results agree with the theory out-070

lined by Wendler et al. (2024). In contrast to their071

analysis which is purely observational with the072

logit lens, ours is based on interventions by virtue073

of on the patchscope. Additionally, by using patch-074

scopes we circumvent the potential pitfalls of co-075

sine similarity (Steck et al., 2024) inherent in the076

logit lens analysis and instead utilize Llama-2’s full077

power to draw coclusions about the computations078

performed and representations used.079

2 Llama-2’s forward pass080

Because we need full model access for our analysis,081

we focus on Llama-2 (Touvron et al., 2023). Llama-082

2 is an autoregressive, decoder-only, residual-based083

transformer (Vaswani et al., 2017) that was trained084

to map a sequence of input tokens x1, . . . , xn ∈ V ,085

where n is the sequence length, to a sequence of086

latents in Rd that is refined layer by layer such that087

the final latents are well-suited for predicting the088

next tokens x2, . . . , xn+1 ∈ V .089

On a technical level, this is achieved using trans-090

former blocks, consisting of a causally masked self-091

attention layer followed by a feed-forward layer092

with a residual connection and root mean square093

(RMS) normalization in between (Vaswani et al.,094

2017; Touvron et al., 2023), that are used to update095

the latent at position i in layer j:096

h
(j)
i = h

(j−1)
i + fj

(
h
(j−1)
1 , . . . , h

(j−1)
i

)
, (1)097

where h
(j−1)
1 , . . . , h

(j−1)
i and h

(j)
i ∈ Rd.098

The initial latents h(0)1 , . . . , h
(0)
n ∈ Rd are learnt099

token embeddings. Finally, for a m-layer trans-100

former, the next-token probabilities are obtained 101

via a learnt linear layer followed by a softmax op- 102

eration mapping h
(m)
i to P (xi+1|h(m)

i ). 103

3 Exploratory analysis with patchscopes 104

Notation. Let C denote an abstract concept and Cℓ 105

its language-specific version. Further, let w(Cℓ) de- 106

note the set of words2 expressing the abstract con- 107

cept C in language ℓ. For example using capitaliza- 108

tion to denote the abstract concepts, let C = CAT. 109

Then for ℓ = EN we have w(CEN) = {“cat”} and 110

similarly w(CDE) = {“Katze”, “Kater”}. 111

Problem statement. We aim to understand 112

whether language- and concept information can 113

vary independently during Llama-2’s forward pass 114

when processing a multilingual prompt. For exam- 115

ple, a representation of Cℓ of the form zCℓ = zC + 116

zℓ, in which zC ∈ U , zℓ ∈ U⊥ and U ⊕ U⊥ = Rd 117

is a decomposition of Rd into a subspace U and 118

its orthogonal complement U⊥, would allow for 119

language- and concept information to vary inde- 120

pendently: language can be varied by changing 121

zℓ ∈ U⊥ and concept by changing zC ∈ U .3 Con- 122

versely, if language- and concept information were 123

entangled a decomposition like this should not ex- 124

ist: varying the language would mean varying the 125

concept and vice-versa. 126

3.1 Experimental design 127

We start our analysis with an exploratory exper- 128

iment in which we utilize simple few-shot trans- 129

lation prompts from Wendler et al. (2024) to cre- 130

ate paired source- and target prompt datasets with 131

different input language ℓ
(in)
S ̸= ℓ

(in)
T , concept 132

CS ̸= CT , output language ℓ
(out)
S ̸= ℓ

(out)
T . 133

If not mentioned otherwise ℓS and ℓT refer to the 134

output language of the source and target prompt. 135

Prompt design. An example translation prompt: 136

English: “lake” - Français: “lac"
English: “south" - Français: “sud"
English: “mother" - Français: “mère"
English: “seat" - Français: “siège"
English: “cloud" - Français: “

137

Here the task is to translate w(CLOUDEN) = 138

{“cloud"} into w(CLOUDFR) = {“nuage"}. 139

2We talk about words for the sake of simplicity. However,
on a technical level w refers to the set of starting tokens of
these words.

3Note that we are not trying to claim that this indeed is the
form of the representations, instead it is a cartoon to help us
think about the phenomenon of interest.
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Importantly, whether the model correctly an-140

swers the prompt is determined by its next token141

prediction. For example above, the next token pre-142

dicted should be “nu", the first token of “nuage".143

Thus, we can track P (Cℓ), i.e., the probability of144

the concept C occurring in language ℓ, by simply145

summing up the probabilities of all starting tokens146

of w(Cℓ) in the next-token distribution.147

We improve upon the construction of Wendler148

et al. (2024) by considering all the possible ex-149

pressions of C in ℓ using BabelNet (Navigli et al.,150

2021), instead of GPT-4 translations, when com-151

puting P (Cℓ). This allows us to capture many152

possible translations, instead of one. For exam-153

ple, “commerce”, “magasin” and “boutique” are154

all valid words for SHOPFR.155

Patchscope setup. We would like to infer at which156

layers the output language and the concept enter157

the latent h(j)nT (T ) respectively and whether they158

can vary independently. In order to investigate this159

question, we perform the experiment depicted in160

Fig. 1. For each transformer block fj we create two161

parallel forward passes, one processing the source162

prompt S = (s1, . . . , snS ) and one processing the163

target prompt T = (t1, . . . , tnT ). While doing so,164

we extract the latent of the last token of the source165

prompt at layer j, h(j)nS (S), and insert it at the same166

layer at position nT in the forward pass of the tar-167

get prompt, i.e., by setting h
(j)
nT (T ) = h

(j)
nS (S) and168

subsequently completing the altered forward pass.169

From the resulting next token distribution, we com-170

pute P (CℓS
S ), P (CℓT

S ), P (CℓS
T ), and P (CℓT

T ).171

3.2 Results172

In this experiment, we use differing concepts and173

ℓ
(in)
S = DE, ℓ

(out)
S = EN for the source- and174

ℓ
(in)
T = FR, ℓ

(out)
T = ZH for the target prompt.175

We perform the patching at one layer at a time176

and report the probability that is assigned to177

P (CℓS
S ), P (CℓT

S ), P (CℓS
T ), and P (CℓT

T ). As a re-178

sult we obtain Fig. 2 in which we report means and179

95% confidence interval over 200 examples. As180

model we use Llama-2-7B-base.181

Interpretation. We observe the following pattern182

while patching at different layers (see Fig. 2):183

• Layers 0-11: Target concept decoded in target184

language, resulting in large P (CZH
T ).185

• Layers 12-16: Target concept decoded in186

source language, resulting in large P (CEN
T ).187

• Layers 16-31: Source concept in source lan-188

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0
src en
src zh
tgt en
tgt zh

Figure 2: Our first patchscope experiment with a DE to
EN source prompt and a FR to ZH target prompt with dif-
ferent concepts. We patch at the last token respectively.
For each of the plots the x-axis shows at which layer the
patching was performed during the forward pass on the
target prompt and the y-axis shows the probability of
predicting the correct concept in language ℓ (see legend).
In the legend the prefix "src" stands for source and "tgt"
for target concept. We report means and 95% Gaussian
confidence intervals computed over 200 soure-, target
prompt pairs.

guage, resulting in large P (CEN
S ). 189

This pattern suggests that the model first com- 190

putes the output language: from layer 12 onwards 191

we decode in the source output language, indicat- 192

ing that zℓ(out) , a function vector (Todd et al., 2023) 193

indicating the need to decode to ℓ(out), is overwrit- 194

ten at layer 12. In later layers, it determines the 195

concept: from layer 16 on the source concept is 196

decoded, suggesting that z
Cℓ(in) enters in layer 16. 197

Hypotheses. We are left with two hypotheses com- 198

patible with these results depicted in App. Fig. 4: 199

• H1: Concept and language are represented 200

independently. When doing the translation, 201

the model first computes ℓ(out) from context, 202

and then identifies C. In the last layers, it then 203

maps C to the first token of w(Cℓ(out)). 204

• H2: The representation of a concept is al- 205

ways entangled with its language. When do- 206

ing the translation, the model first computes 207

zℓ(out) , then computes ℓ(in) and Cℓ(in)
from its 208

context and solves the language-pair-specific 209

translation task of mapping Cℓ(in)
to Cℓ(out) . 210

4 Ruling out hypotheses 211

Next, we run additional experiments to (1.) provide 212

further evidence that we are either in H1 or H2 and 213

(2.) to disambiguate whether we are in H1 or H2. 214

Further evidence experiment. In the experiments 215

in Sec. 3 we did not observe source concept in tar- 216

get language. However, both H1 and H2 would 217

allow for that to happen via patching in the right 218
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way. Therefore, in this experiment, instead of over-219

writing latents at the last token of the prompt, we220

overwrite them at the last token of the word to be221

translated. Let ρS and ρT denote the position of222

that token in source and target prompt respectively.223

Since the concept information seems to enter via224

multiple layers (16-20) into the latent of the last225

token, we overwrite the latent corresponding to the226

token at position ρT at layer j and all subsequent227

ones. By patching in this way in both H1 and H2228

we’d expect to see large P (CℓT
S ).229

Formally, we patch by setting h
(j)
ρT (T ) =230

h
(j)
ρS (S), . . . , h

(m)
ρT (T ) = h

(m)
ρS (S) (in Llama-2-7B231

with 0-indexing m = 31).232

Disambiguation experiment. Both H1 and H2233

compute w(CℓT
S ) but in different ways. In H1 one234

decoding circuit per output language is required in235

order to compute the expression for the concept C236

in language ℓT . In contrast, in H2 one translation237

circuit per input-output language pair is required238

to map the entangled Cℓ(in)
to Cℓ(out) . Therefore,239

in order to disambiguate the two we construct a240

patching experiment that should work under H1241

but fail under H2.242

In order to do so, instead of patching the la-243

tent containing Cℓ
(in)
S from a single source for-244

ward pass, we create multiple source prompts245

with the same concept but in different in-246

put languages ℓ
(in)
S1

̸= . . . ̸= ℓ
(in)
Sk

and247

patch by setting h
(j)
ρT (T ) =

1
k

∑k
i=1 h

(j)
ρSi

(Si), . . .248

h
(m)
ρT (T ) = 1

k

∑k
i=1 h

(m)
ρSi

(Si). Under H1 taking249

the mean of several language-specific concept rep-250

resentations should keep the concept information251

intact, since 1
k

∑k
i=1 zCℓ(in)

Si

= zC + 1
k

∑k
i=1 zℓ(in)

Si

.252

Therefore, we’d expect high P (CℓT
S ) in this case.253

However, under H2 in which z
Cℓ(in)

Si

cannot be dis-254

entangled this mean is not a well-defined concept255

and additionally the interference inbetween multi-256

ple input languages should cause difficulties for the257

language-pair-specific translation, which should258

result in a drop in P (CℓT
S ).259

Results. In the first experiment we use the same260

languages as above and in the second one we used261

DE, NL, ZH, ES, RU as input- and FR, FI, ES, RU, KO262

as output languages for the source prompts, and,263

FR to ZH for the target prompt.264

In Fig. 3 we observe, that in both experiments we265

obtain very high probability for the source concept266

in the target language P (CZH
S ) from layers 0 to 267

15, i.e., exactly until the latents at the last token 268

stop attending to the last concept-token. 269

Therefore, Fig. 3 (a) supports that we are indeed 270

either in H1 or H2 since we successfully decode 271

source concept in the target language P (CZH
S ) 272

from layers 0 to 15 and Fig. 3 (b) supports that 273

we are in H1 and not in H2 because patching in the 274

mean keeps the P (CZH
S ) intact. 275

(a) Single source prompt

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0
tgt zh
src zh

(b) Mean over source prompts

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

tgt zh
src zh

Figure 3: Here we use different input languages (DE,
FR), different concepts, different output languages (EN,
ZH) in (a). In (b) we use multiple source input languages
DE, NL, ZH, ES, RU and output languages FR, FI, ES,
RU, KO. We patch at the last token of the concept-word
at all layers from j to 31. In (a) we patch latents from
the single source prompt in (b) we patch the mean of
the latents over the source prompts. For each of the
plots, the x-axis shows at which layer the patching was
performed during the forward pass on the target prompt
and the y-axis shows the probability of predicting the
correct concept in language ℓ (see legend). The prefix
"src" stands for source and "tgt" for target concept. We
report means and 95% Gaussian confidence intervals
computed over a dataset of size 200.

5 Discussion 276

In this paper, we performed multiple experiments 277

that indeed indicate that Llama-2 processes lan- 278

guage and concept information independently in 279

the few shot translation prompts used. This also 280

speaks for language- and concept information be- 281

ing represented in a disentangled way. Our results 282

are aligned with findings from prior work (Wendler 283

et al., 2024) that indicate that Llama-2 represents 284

concepts in a concept space independent of the lan- 285

guage of the prompt. However, our analysis goes 286

beyond the purely observational logit lens analysis 287

performed by Wendler et al. (2024). Using patch- 288

scopes we circumvent potential pitfalls of cosine 289

similarity (Steck et al., 2024) and instead utilize 290

Llama-2’s full power. 291
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Limitations292

In this work, we studied how Llama-2 represents293

concepts when processing multilingual text. How-294

ever, we only considered very simple translation295

prompts and also probed only for the language-296

specific words describing the concept. While our297

results are clearly interesting, further experiments298

are needed to make claims about how Llama-2 and299

other language models process multilingual text in300

general settings. Furthermore, more finegrained301

probing will be required to determine to which de-302

gree Llama-2 is able to specialize a concept to a303

language and whether concepts and languages are304

entangled in more subtle ways.305
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A Appendix402

In Fig. 4 we provide a visualization of our hypothe-403

ses about Llama-2-7B’s forward pass on the trans-404

lation prompts after the explorative experiment in405

Sec. 3.406

Figure 4: Our hypothesis about how the forward pass
could look like on our translation prompts. Every block
consists of multiple transformer blocks and inbetween
the blocks we denote the relevant content contained in
the latents (in the residual stream). Because in hypothe-
sis 2 concept and language cannot be disentangled one
input-output language specific translation circuit per lan-
guage pair is required.
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