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ABSTRACT

Aligning the decision-making process of machine learning algorithms with that of
experienced radiologists is crucial for reliable diagnosis. While existing methods
have attempted to align their diagnosis behaviors to those of radiologists reflected
in the training data, this alignment is primarily associational rather than causal, re-
sulting in pseudo-correlations that may not transfer well. In this paper, we propose
a causality-based alignment framework towards aligning the model’s decision pro-
cess with that of experts. Specifically, we first employ counterfactual generation
to identify the causal chain of model decisions. To align this causal chain with
that of experts, we propose a causal alignment loss that enforces the model to fo-
cus on causal factors underlying each decision step in the whole causal chain. To
optimize this loss that involves the counterfactual generator as an implicit func-
tion of the model’s parameters, we employ the implicit function theorem equipped
with the conjugate gradient method for efficient estimation. We demonstrate the
effectiveness of our method on two medical diagnosis applications, showcasing
faithful alignment to radiologists.

1 INTRODUCTION

Alignment is essential for developing reliable medical diagnosis systems Zhuang & Hadfield-Menell
(2020). For instance, in lung cancer diagnosis, using models that are misaligned with clinical pro-
tocols can result in reliance on contextual features or instrument markers (Fig. 1 (c)) for diagnosis,
leading to misdiagnosis and loss of timely treatment.

Despite the importance, alignment in medical imaging systems is largely understudied. Existing
studies that are mostly related to us primarily focused on visual alignment, including Zhang et al.
(2018); Chen et al. (2019); Brady et al. (2023) that proposed to learn object-centric representations,
and Hind et al. (2019); Rieger et al. (2020) that adopted multi-task learning schemes to predict labels
and expert decision bases simultaneously. Particularly, recent works Ross et al. (2017); Gao et al.
(2022); Zhang et al. (2023) have proposed to regularize the model’s input gradient to be within
expert-annotated areas. However, their alignment with expert behaviors is only associational, rather
than causal, making their models still biased towards spurious correlated features. This limitation is
further explained in Fig. 1 (a), where two decision chains with different causal structures can exhibit
similar correlation patterns.

In this paper, we propose a causal alignment approach that focuses on the alignment in the underly-
ing causal mechanism of the decision-making process. Specifically, we first identify causal factors
behind each decision step using counterfactual generation. We then propose a causal alignment loss
to enforce these identified causal factors to be aligned within those annotated by the radiologists.
To optimize this loss that involves the counterfactual generator as an implicit function of the model
parameters, we employ the implicit function theorem equipped with the conjugate gradient algo-
rithm for efficient estimation. To illustrate, we consider the lung cancer diagnosis as shown in Fig. 1
(b). Guided by the alignment loss, our model can mimic the clinical decision pipeline, which first
identifies the imaging area that describes attributes of the lesion, and then diagnoses based on these
attributes Xie et al. (2020). Such training is facilitated by employing causal attribution Zhao et al.
(2023) for inferring attributes that are causally related to the diagnosis. Returning to the lung cancer
diagnosis example, Fig. 1 (c) shows that our method can learn causally aligned representations, in
contrast to the features adopted by baseline methods, which are challenging to interpret.
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Figure 1: (a) Two decision chains with different causal structures but present similar correlation
patterns. The left chain “mass (X)→ attributes (A)→ label (Y )” aligns with radiologists, while
the right chain “shortcut→ label (Y )” is misaligned. However, both (X,Y ) and (shortcut, Y ) are
correlated, due to the confounding bias between the shortcut and Y . (b) Our approach for learn-
ing causally aligned models. We first identify features and attributes that causally influence the
model’s decision, then align them to that of radiologists in a hierarchical fashion. Here, “Calcifi-
cation”, “Subtlety”, “Margin”, etc., refer to attributes listed in Armato III et al. (2011). The check
(resp. cross) mark denotes the presence (resp. absence) of an attribute (c) Class Activation Mapping
(CAM) visualization and comparison of CAM precision on lung cancer diagnosis.

Contributions. To summarize, our contributions are:

1. (Causal alignment) We propose a novel causal alignment approach to achieve alignment
of causal mechanisms underlying the decision process of experienced radiologists.

2. (Optimization) We propose an efficient optimization algorithm by employing the implicit
function theorem along with the conjugate gradient method.

3. (Experiment) We demonstrate the utility of our approach through significant improve-
ments in alignment and diagnosis, on lung cancer and breast cancer diagnosis tasks.

2 RELATED WORKS

Learning Visual Alignment. Alignment is more broadly studied, e.g., in natural language pro-
cessing Ouyang et al. (2022) and reinforcement learning Ibarz et al. (2018). In the realm of visual
alignment, Hind et al. (2019); Rieger et al. (2020) proposed to align deep learning models with hu-
mans by simultaneously predicting the class label and the decision area. Zhang et al. (2018); Liu
et al. (2021); Müller et al. (2023) aligned the decision-making process of neural networks by incor-
porating expert knowledge into architecture design. Of particular relevance to our work are Ross
et al. (2017); Gao et al. (2022); Zhang et al. (2023), which suggested constraining the input image
gradient to be significant in areas annotated by experts. However, the input gradient can be biased
by pseudo-correlations that exist between expert features and shortcut features Geirhos et al. (2020),
leading to a misaligned model. In contrast, we adopt counterfactual generation to identify causal ar-
eas that determine the model’s prediction. By ensuring these factors are confined to expert-annotated
areas, our model can be effectively aligned with the expert’s decision process.

Explaining Medical AI. Explainability is essential for physicians to trust and utilize medical diag-
nosis models Lipton (2017). To achieve this, attribution-based methods explained model predictions
by assessing the importance of different features Suryani et al. (2022); Yuen (2024). Example-based
methods utilized similar images Barnett et al. (2021) or prototypes Gallée et al. (2024) to interpret
the underlying decision rules. However, these approaches focused on interpreting models that have
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been trained. If misalignment occurs during the training process, their utility could be limited. In
contrast, we propose an alignment loss to learn an intrinsically explainable model.

3 PROBLEM SETUP & BACKGROUND

In this section, we formulate our problem and introduce the background knowledge.

Problem Setup. We consider the classification scenario, where the system contains an image x ∈ X
and a label y ∈ Y from an expert annotator. In addition to y, we assume the expert also provides
an explanation e to explain his decision of labeling x as y. Commonly, the explanation could refer
to region of interest annotations or attribute descriptions. For example, radiologists often write
an annotation section and an observation section, which respectively describe which body part is
abnormal and what phenomena are observed, in their reports to explain their diagnosis Xie et al.
(2020). Motivated by this, we assume for each sample, the explanation can be formulated as a binary
mask m indicating the abnormal area, along with a binary attribute description a = [a1, ..., ap] ∈ A
of the abnormality. In this regard, our data can be denoted as D = {(xi, yi, ei = (mi, ai))}ni=1.
With this data, our goal is then to learn a classifier fθ : X 7→ Y that i) predicts y accurately ii) has
a decision mechanism that is aligned with the radiologists. Note that our procedure does not depend
on specific model families.

Structural Counterfactuals Pearl (2013). To measure the likelihood that one event caused another,
Pearl (2009) defines the following counterfactual quantity known as the probability of causation:

P(Yx = y|X = x0, Y = y0), (1)
which reads as “the probability of Y would be y had X been x if we factually observed that X = x0

and Y = y0”1. Here, Yx denotes the unit-counterfactual Pearl (2009) or potential outcome. In our
scenario, rather than considering the whole image x, we are interested in specific regions within
the image that causally determine the model’s decision. To identify these regions, we adopt the
following counterfactual generation scheme.

Counterfactual (CF) Generation. Given the classifier fθ and any sample pair (x0, y0), CF gen-
erates the counterfactual image x∗ with respect to the counterfactual class y∗ ̸= y via Dhurandhar
et al. (2018); Verma et al. (2020); Guyomard et al. (2023); Augustin et al. (2024):

x∗ = argmin
x
Lce(fθ(x), y

∗) + αd(x, x0), (2)

where Lce is the cross-entropy loss for classification, d(·, ·) is a distance metric that constrains the
modification to be sparse, and α is the regularization hyperparameter. In this regard, the modified
area supp(x∗ − x0) is responsible for the classification of x0 as y0, in that if we modified x0 to
x∗, the model would have made a different decision y∗. Indeed, in Prop. A.5, we can show that x∗

maximizes the probability of causation Pθ(Yx = y∗|X = x0, Y = y0)
2 induced by the classifier fθ,

subject to d(x, x0) ≤ dα for some dα.

To ensure the realism of the generated image, we can implement Eq. (2) using gradient descent in
the image’s latent space. Notably, this approach has proven effective for generating realistic images
Goyal et al. (2019); Balasubramanian et al. (2020); Zemni et al. (2023), as also verified by the
visualization of generated counterfactual images in Fig. 9.

Indeed, Eq. (2) is similar to but different from the optimization in Adversarial Attack (AA) Szegedy
et al. (2013) concerning perceptibility Verma et al. (2020). Although both methods share the same
objective framework, CF aims at highlighting significant areas that explain the classifier’s decision
process, whereas AA favors making small and imperceptible changes to alter the prediction outcome
Wachter et al. (2017). This often leads to different choices of the distance function d(·, ·) and the
hyperparameter α Freiesleben (2022); Guidotti (2024).

4 METHODOLOGY

In this section, we introduce our framework for medical decision alignment. This section is com-
posed of three parts. First, in Sect. 4.1, we introduce a causal alignment loss based on counterfactual

1Under the exogeneity and monotonicity conditions for binary X,Y , this quantity is identifiable.
2This term is identifiable since fθ is known (see Prop. A.4 for details).
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Figure 2: The schematic overview of our method. (a) We adopt a hierarchical structure that first
provides attribute descriptions for the image, and then shows the diagnosis result. (b) Training with
the proposed alignment loss. In the forward pass, a counterfactual image x∗ is generated and used
to compute the alignment loss Lalign relative to the expert’s annotation m. In the backward pass, we
use an implicit gradient solver to obtain the gradient∇θLalign and use it to update the parameter θ.

generation, to align the model’s decision bases with those of experts. Then, in Sect. 4.2, we propose
to use the implicit function theorem equipped with conjugate gradient estimation to compute the
gradient of our loss for optimization. Finally, in Sect. 4.3, we enhance our method with hierarchical
alignment for cases where attribute annotations are available, using a hierarchical pipeline based on
causal attribution. We summarize our framework in Fig. 2.

4.1 CASUAL ALIGNMENT LOSS

In this section, we propose a causal alignment loss to align the model with the experts. For illustra-
tion, we first consider the case where the attribute annotations are unavailable. The idea of our loss
is to penalize the model once its counterfactual image contains modifications beyond radiologist-
annotated areas. Specifically, we optimize a loss Lalign of the following form:

Lalign :=
1

n

n∑
i=1

∥(x∗
i − xi)⊙ (1−mi)∥ℓ1 , (3)

where ⊙ denotes the element-wise matrix product, x∗
i is the counterfactual image of xi obtained by

Eq. (2), and m ∈ {0, 1}dim(x) is the binary mask provided by radiologists. Then, by combining
Lalign with the cross-entropy loss for classification, we have our overall training objective:

L = Lce + λLalign,

where λ is a tuning hyperparameter. To understand how the objective works towards alignment, note
that x∗ maximizes the counterfactual likelihood Pθ(Yx = y∗|x0, y0), indicating that supp(x∗− x0)
represents the causal factors that influence the decision of the model fθ. Therefore, minimizing the
distance between supp(x∗−x0) and m encourages the model’s causal factors to align more closely
to those of the experts.

Our loss enjoys several advantages over alternative methods in visual alignment. Compared to Liu
et al. (2021); Müller et al. (2023) that incorporated prior knowledge into network architectures, our
loss is more flexible and can be easily adapted to other scenarios and backbones. In contrast to Ross
et al. (2017); Zhang et al. (2023) that constrained the input gradient, our approach can effectively
avoid pseudo-features, benefiting from the identification of causal factors.

4.2 OPTIMIZATION

In this section, we introduce the optimization process for the proposed alignment loss. For opti-
mization, we need to compute the gradient∇θLalign, which involves the Jacobian matrix∇θx

∗. The
main challenge here is that x∗ is an implicit function of θ, defined by the argmin operator in Eq. (2),
which makes it hard to compute∇θx

∗ explicitly.
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To address this challenge, we resort to the Implicit Function Theorem (IFT), which allows us to
compute the gradient in an implicit manner. Specifically, note that if x∗ is the minimum point of the
function T (x, θ) := Lce(fθ(x), y

∗) + αd(x, x0), it should satisfy that:

∇xT
∣∣∣
x∗

= 0.

According to the law of total derivation, this implies that:

∇θ∇xT
∣∣∣
x∗

= {∇x(∇xT ) · ∇θx
∗ +∇θ(∇xT )}

∣∣∣
x∗

= 0.

Therefore, computing∇θx
∗ boils down to the problem of solving the following linear equation:

Hz∗ = b, (4)

where we denote H := ∇x(∇xT ) as the Hessian matrix, z∗ := ∇θx
∗ as the Jacobian matrix, and

b := −∇θ(∇xT ) as the negative mixed derivative for brevity.

Formally speaking, we have the following theorem:

Theorem 4.1 (Implicit Function Theorem (IFT) Krantz & Parks (2002)). Consider two vectors x, θ,
and a differentiable function T (x, θ). Let x∗ := argminx T (x, θ). Suppose that: i) the argmin is
unique for each θ, and ii) the Hessian matrix H is invertible. Then x∗(θ) is a continuous function of
θ. Further, the Jacobian matrix∇θx

∗ satisfies the linear Eq. (4).

Thm. 4.1 suggests that we can compute the Jacobian matrix using ∇θx
∗ = −H−1b, which then

gives ∇θLalign with the chain-rule. Nonetheless, for imaging tasks, typically θ is the parameter
of high-dimensional neural networks, making it intractable to compute the Hessian matrix and its
inverse. To address this issue, we employ the conjugate gradient algorithm Vishnoi et al. (2013)
to estimate the solution of Eq. (4), without explicitly computing or storing the Hessian matrix.
Notably, the conjugate gradient method has been successfully deployed in Hessian-free methods for
deep learning Martens et al. (2010) and meta learning Sitzmann et al. (2020).

We briefly introduce the idea of conjugate gradient below, with a detailed discussion left to Vishnoi
et al. (2013) (Chap. 6). To begin with, note that solving Eq. (4) is equivalent to solving:

z∗ = argmin
z

g(z), where g(z) :=
1

2
z⊤Hz − b⊤z,

in that the minimum point z∗ satisfies∇zg
∣∣∣
z∗

= Hz∗ − b = 0.

In this regard, we can implement gradient descent to minimize g(·), where the minimum point gives
the solution of Eq. (4). During the minimization, the direction of the gradient updating is set to be
conjugate (i.e., orthogonal) to the residual b − Hz(i), where z(i) is the estimate of z∗ in the i-th
iteration, in order to achieve optimal convergence rate. To achieve this without explicitly forming
H , we can leverage the Hessian vector product Song & Vicente (2022). Specifically, for ϵ that is a
small perturbation around z, we have:

∇g(z + ϵz(i)) ≈ ∇g(z) +Hϵz(i).

It then follows that:

Hz(i) ≈ ∇g(z + ϵz(i))−∇g(z)
ϵ

,

which means we can estimate Hz(i) with the finite difference of∇g on the right-hand side.

Equipped with Thm. 4.1 especially the conjugate gradient method for estimation, we now summarize
the optimization process for our loss in Alg. 1.

4.3 HIERARCHICAL ALIGNMENT

In this section, we extend our method to the scenario where attribute annotations are available. We
introduce a hierarchical alignment framework to mimic the clinical diagnostic procedure.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Causal alignment training
Input: Data D,
Output: Decision model fθ,
Hyperparameters: Sparsity regularization α, weight of alignment loss λ, learning rate η.

1: while not converged do
2: **Forward pass
3: Compute Lce.
4: Optimize Eq. (2) to obtain x∗ and compute Lalign using Eq. (3).
5: Compute L ← Lce + λLalign.
6: **Back propagation
7: Estimate ∇θLalign with conjugate gradient.
8: Update θ: θ ← θ − η∇θL. // or Adam
9: end while

Causal diagram and assumptions. We characterize this diagnostic process with the causal graph
in Fig. 3. According to McNitt-Gray et al. (2007); Lee et al. (2017), the first step in the diagnosis is
annotating each mass attribute from the image Xie et al. (2020). Therefore, we assume causal edges
from the image X to the attributes A. Since these attributes are directly annotated from the image,
we assume no additional dependencies among them, implying their conditional independence given
X . Building on these attributes, we further assume a causal relationship A → Y , representing the
decision-making process from the attributes to the final decision label.

…𝑋

𝐴!

𝐴"

𝐴#

𝑌

Figure 3: Causal diagram of radi-
ologists’ decision process. A and
Y denote the expert’s annotations
of the attributes and the decision
label, respectively.

Specifically, our classifier fθ consists of an fθ1 : X 7→ A that
predicts the attributes from the image x, and an fθ2 : A 7→ Y
that classifies the label based on the predicted attributes, where
θ1 and θ2 are optimized in an end-to-end manner. For counter-
factual generation, we first find attributes responsible for pre-
dicting y by altering the predicted attributes â := fθ1(x) to the
counterfactual ones a∗. Then, we locate image features that
account for the modification of |a∗− â| via another counterfac-
tual optimization over x and obtain the counterfactual image
x∗. For hierarchical alignment, we require both |a∗ − â| and
|x∗ − x| to be aligned with the expert’s annotations of causal
attributes and image regions, respectively.

Causal Attribution for Annotations. Although the attribute
annotations can be available for many cases Armato III et al.
(2011); Lee et al. (2017), it is hard to know which ones of these
attributes causally determined the labeling of radiologists for each specific patient. To identify the
causal attributes for alignment, we employ causal attribution based on counterfactual causal effect
Zhao et al. (2023), which extends Eq. (1) to enable the quantification of the probability of causation
for any subsets of attributes while conditioning on the entire attribute vector. Specifically, given
evidence of the attributes A = a and the label Y = y, we calculate the Conditional Counterfactual
Causal Effect (CCCE) score for each attribute subset S ⊆ {1, ...,dim(A)}:

CCCE(S) := E(YAS=1 − YAS=0|A = a, Y = y),

which is the difference between the conditional expectations of the potential outcomes YAS=1 and
YAS=0 given the evidence. Recall that each attribute Ai is binary. Then, according to Zhao et al.
(2023) (Thm. 2), CCCE(S) is identifiable and equals to

CCCE(S)
(1)
= 1− P (YAS=1 = y | A = a)

P(Y = y | A = a)

(2)
= 1− P (Y = y | AS = 1, A−S = a−S)

P(Y = y | A = a)
,

where A−S denotes attributes beyond the subset S. Here, “(1)” arises from the exogeneity condition
that there is no confounding between A and Y (i.e., Ya ⊥⊥ A), and “(2)” is based on the monotonicity
condition 3 that Ya ≤ Ya′ if a ⪯ a′ 4. Both conditions are natural to hold in our scenario. Specif-
ically, the exogeneity condition holds since the radiologist’s decision Y is based only on attributes

3Zhao et al. (2023) also assumed exogeneity condition and the monotonicity conditions among A, if there
exist causal relations among A. Since there are no causal relations among A, we do not need these conditions.

4Here, a and a′ are both vectors. a ⪯ a′ denotes ak ≤ a′
k for each k.

6
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(Fig. 3). For the monotonicity condition, it is easy to see that each intervention on any attribute from
0 to 1 (e.g., from no speculation to speculation) will raise the probability of malignancy.

After computing the CCCE score for each attribute subset, we select the subset S with the highest
CCCE as the set of attributes causally related to the label. Accordingly, we set the annotation vector
r ∈ {0, 1}dim(A) such that rS = (1, ..., 1)⊤.

Hierarchical Alignment. With such annotations, we introduce our hierarchical alignment process.
Specifically, our objective function over θ = (θ1, θ2) is:

L(θ) := Lce(fθ2(fθ1(x)), y) + Lce(fθ1(x), a) + λ2Lalign(θ2) + λ1Lalign(θ1), (5)

where λ1 > 0, λ2 > 0 are tuning hyperparameters. Here, Lce(fθ2(fθ1(x)), y) and Lce(fθ1(x), a)
denote the cross-entropy losses for predicting y and a, respectively.

The alignment loss Lalign(θ2) over θ2 is defined as:

Lalign(θ2) :=
1

n

n∑
i=1

∥(a∗i (θ2)− âi)⊙ (1− ri)∥ℓ1 ,

where âi := fθ1(xi) and the counterfactual attributes a∗(θ2) is generated via:

a∗(θ2) = argmin
a′
Lce(fθ2(a

′), y∗) + α2d(a
′, â). (6)

Similarly, the alignment loss Lalign(θ1) over θ1 is defined by Eq. (3), where the counterfactual image
x∗(θ1) that explains the change of â to a∗ is generated by:

x∗(θ1) = argmin
x′
Lce(fθ1(x

′), a∗) + α1d(x
′, x). (7)

With the objective Eq. (5), we optimize θ by applying Alg. 1 to alignment terms. After the optimiza-
tion, our decision process x→ fθ2(fθ1(x)) aligns well with that of the experts, with fθ1 employing
causal imaging factors to predict attributes, and fθ2 using the causal attributes to predict y.

5 EXPERIMENT

In this section, we evaluate our method on two medical diagnosis tasks: the benign/malignant clas-
sification of lung nodules and breast masses5.

5.1 EXPERIMENTAL SETUPS

Datasets & Preprocessing. We consider the LIDC-IDRI dataset Armato III et al. (2011) for lung
nodule classification and the CBIS-DDSM dataset Lee et al. (2017) for breast mass classification.

The LIDC-IDRI dataset contains thoracic CT images, each associated with bounding boxes indicat-
ing the nodule areas, six radiologist-annotated attributes (subtlety, calcification, margin, speculation,
lobulation, and texture) and a malignancy score ranging from 1 to 5. Before analysis, we preprocess
the images by resampling the pixel space and normalizing the intensity. We label those images with
malignancy scores of 1-3 as benign (y = 0) and those with scores of 4-5 as malignant (y = 1). We
split the dataset into training (n = 731), validation (n = 238), and test (n = 244) sets. The CBIS-
DDSM dataset contains breast mammography images with fine-grained annotations (mass bounding
boxes, attributes, and malignancy). We preprocess the images by removing the background and nor-
malizing the intensity. We use the provided binary malignancy label and six annotated attributes
(subtlety, shape, circumscription, obscuration, ill-definiteness, and spiculation). We follow the offi-
cial dataset split, with 691 masses in the training set and 200 masses in the test set.

To test the ability of our method to learn expert-aligned features, we add a “+”/“−” symbol on the
top-left corner of each image as a spuriously correlated feature. This symbol coincides with the
malignancy label in the training set, where images with y = 1 are labeled with “+” and those with
y = 0 are labeled with “−”; but are assigned randomly in the validation and test sets. A well-aligned
model should focus on the radiologist-annotated areas rather than the symbol.

5We provide results on additional diagnosis tasks and data modalities in Appx. C.1.
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Evaluation Metrics. To assess the alignment of our model relative to radiologists, we compute
the Class Activation Mapping (CAM) Selvaraju et al. (2017) and report its precision relative to the
annotated areas, i.e., Area of (CAM ∩ Anno)

Area of CAM . We also report the overall classification accuracy.

Implementation Details. We use the Adam optimizer and set the learning rate as 0.001. We pa-
rameterize the attributes prediction network fθ1 with a seven-layer Convolutional Neural Network
(CNN), and train it for 100 epochs with a batch size of 128 for each iteration. For the classification
network fθ2 , we parameterize it with a two-layer Multi-Layer Perceptron (MLP), and train it for 30
epochs with a batch size of 128. Please refer to Appx. B for details of the network architectures. For
the hyperparameters α1 in Eq. (7) and α2 in Eq. (6), we set them to α1 = 0.01, α2 = 0.0005 for
LIDC-IDRI and α1 = 0.07, α2 = 0.0005 for CBIS-DDSM, respectively. For both datasets, we set
λ1 = λ2 = 1 in Eq. (5). For causal attribution, we calculate the CCCE scores of subsets containing
no more than three attributes and select the subset with the highest score. We adopt the TorchOpt
Ren et al. (2022) package to implement the conjugate gradient estimator. We repeat 3 different seeds
to remove the effect of randomness.

5.2 COMPARISON WITH BASELINES

Compared Baselines. We compare our method with the following baselines: i) Ross et al. (2017)
that achieved interpretability by penalizing the input gradient to be small in object-irrelevant areas;
ii) ICNN Zhang et al. (2018) that modified traditional CNN with an interpretable convolution layer
to enforce object-centered representations; iii) BagNet Brendel & Bethge (2019) that approximated
CNN with white-box bag-of-features models; iv) Rieger et al. (2020) that required the model to
produce a classification as well as an explanation (i.e., multi-tasks learning); v) Chang et al. (2021)
that augmented the dataset with various factual and counterfactual images to alleviate the problem
of learning spurious features; and vi) the Oracle classifier in which we manually restrict the input
features to areas annotated by radiologists.

Table 1: Comparison with baseline methods on LIDC-IDRI and CBIS-DDSM datasets. The result
of our method is boldfaced and the best result among baseline methods is underlined. For the Oracle
classifier, the input features are manually restricted to the areas annotated by radiologists.

Methodology Precision of CAM Classification accuracy

LIDC DDSM LIDC DDSM

Ross et al. (2017) 0.034 (0.06) 0.084 (0.11) 0.656 (0.00) 0.559 (0.05)
Zhang et al. (2018) 0.068 (0.11) 0.110 (0.13) 0.381 (0.03) 0.581 (0.00)
Brendel & Bethge (2019) 0.048 (0.04) 0.090 (0.04) 0.358 (0.00) 0.592 (0.00)
Rieger et al. (2020) 0.041 (0.05) 0.232 (0.17) 0.343 (0.00) 0.586 (0.01)
Chang et al. (2021) 0.074 (0.03) 0.119 (0.07) 0.503 (0.08) 0.496 (0.08)
Oracle classifier 1.000 (0.00) 1.000 (0.00) 0.789 (0.00) 0.726 (0.01)

Ours 0.751 (0.03) 0.805 (0.06) 0.722 (0.00) 0.656 (0.00)

Results & Analysis. Tab. 1 reports the alignment precision and classification accuracy. As shown,
our method demonstrates strong alignment with radiologists in the diagnostic process. This result
verifies the utility of our alignment loss and the optimization process. In contrast, other methods
with no alignment may learn unreliable features that are beyond the annotated areas, which de-
teriorates their alignment accuracy. Specifically, one should note that ICNN Zhang et al. (2018),
BagNet Brendel & Bethge (2019), and Rieger et al. (2020) imposed no explicit constraint for learn-
ing explainable features. As a result, these methods can be easily biased by background features or
pseudo-correlations in the image. Meanwhile, although gradient methods such as Ross et al. (2017)
and Chang et al. (2021) explicitly constrained the input gradient to human decision areas, the atten-
tion mechanism in their approaches only learn features that are correlated with, rather than causally
linked to the disease label Grimsley et al. (2020). As a result, these methods may capture spurious
features outside the causal regions.

Due to the capability of capturing causal features, our method also significantly surpasses baseline
models in terms of classification accuracy. This is due to the fact that, unlike the “+”/“−” symbol
that demonstrates only spurious correlation to the label, features within the annotated areas have a
causal relationship with the label, and therefore are transferable to test data.
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Additionally, it is worth noting from Tab. 1 that even the oracle classifier only reaches a classification
accuracy of 72% - 79%, which seems to contradict some previous results Wu et al. (2018); Wang
et al. (2022) that claimed an accuracy of more than 99% in lung nodule classification and 90% in
breast mass classification. To comprehend, this discrepancy is primarily due to the exclusion of
challenging samples (those with a malignancy score of 3) in Wu et al. (2018), and the usage of
custom training/test sets split in Wang et al. (2022).

5.3 ABLATION STUDY

In this section, we perform an ablation study on the causal alignment loss (Sect. 4.1) and the hierar-
chical alignment process (Sect.4.3). The results are shown in Tab. 2.

Table 2: Ablation study on LIDC-IDRI and CBIS-DDSM datasets.

Lalign Hierarchical align Precision of CAM Classification accuracy

LIDC DDSM LIDC DDSM

× × 0.057 (0.07) 0.143 (0.20) 0.535 (0.08) 0.592 (0.00)
✓ × 0.587 (0.08) 0.621 (0.03) 0.701 (0.02) 0.633 (0.03)
✓ ✓ 0.751 (0.03) 0.805 (0.06) 0.722 (0.00) 0.656 (0.00)

As we can see, both the alignment loss and the hierarchical procedure significantly improve the
performance. In detail, the alignment loss accounts for a substantial portion of the improvement,
yielding a 50% increase in CAM precision and a 15% boost in classification accuracy. Additionally,
the hierarchical training strategy contributes an extra 20% to alignment precision and a 2% increase
in classification performance. These results demonstrate the effectiveness of our alignment loss
in learning features that coincide with radiologist assessments, as well as the significance of the
hierarchical training strategy in mimicking the clinical diagnosis process.

5.4 VISUALIZATION

To further verify whether our method can learn radiologist-aligned features, we visualize the Class
Activation Mapping (CAM) and show the results in Fig. 4. The first two rows of Fig. 4 present cases
with lung nodules while the third and the fourth rows present cases with breast masses. The first
column shows the input image, with the nodule/mass areas marked by red bounding boxes, while
other columns present CAMs of various models.

Figure 4: CAM visualization. Each row denotes different cases. The first column is the input images,
where nodules and masses are marked by red bounding boxes. The second to seventh columns are
CAMs of compared baselines and our method, respectively. See Appx. D.2 for more results.
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As shown, the activation of our method concentrates on the nodule/mass areas, especially on the
margins of the nodules/mass, which is a key feature for radiologists to evaluate the malignancy
Sandler et al. (2023). In contrast, the activation of baseline methods focuses on lesion-irrelevant
areas, such as the shortcut symbol “+”/“−” region in the top-left corner for Ross et al. (2017) and
Brendel & Bethge (2019), or the background areas for Zhang et al. (2018), Rieger et al. (2020), and
Chang et al. (2021). This visual analysis corroborates the quantitative results, demonstrating our
method’s ability to learn features that are well-aligned with the radiologist’s diagnostic process.

6 CONCLUSION AND DISCUSSION

In this paper, we present a causal alignment framework to bridge the gap between the decision-
making process of machine learning algorithms and experienced radiologists. By identifying the
causal features that influence the model’s decision, we can enforce the alignment of these causal
areas with those of the radiologists through a causal alignment loss. This further allows us to train a
hierarchical decision model that closely mirrors the expert’s decision pipeline. The effectiveness of
our approach is demonstrated by improved alignment in lung cancer and breast cancer diagnosis.

Limitation and Future Works. The optimization of our causal alignment loss can be computa-
tionally expensive due to the estimation of the implicit Jacobian matrix. We will investigate efficient
linear equation solving techniques Mou et al. (2016) to address this challenge. Additionally, we plan
to apply our loss to alignment learning in multi-modality models and robotic systems.
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A CAUSAL ALIGNMENT THEORY

In this section, we discuss some theoretical aspects of causal alignment. We adopt the following
notational convenience. Let X and Y denote the image and the predicted label, respectively. Let
Yx denote the potential outcome of the predicted label under X being x. Let ϕθ,ζ be the generation
process that maps from the original image x0 and the label y0 to the counterfactual image x, which
relies on the model parameter θ and random seed ζ.

To entail the discussion, we require the following assumptions:

Assumption A.1 (Consistency). We assume that for each individual, the predicted label Y when
X = x is exactly the potential outcome Yx.

Assumption A.2. We assume Eq. (2) has a unique global minimum solution.

Remark A.3. It can be shown that the global minimum of Eq. (2) can be attained via gradient descent
under smoothness, and Polyak-Łojasiewicz conditions Csiba & Richtárik (2017); Polyak (1964).
For deep learning optimization, the global minimum can be obtained if fθ is over-parameterized Du
et al. (2019) or has sufficient width Haeffele & Vidal (2017); Kawaguchi & Huang (2019).

We first show the probability of causation Pθ(Yx = y|X = x0, Y = y0) is identifiable.

Proposition A.4. Assume Asms. A.2 and Asm. A.1, then the probability of causation is identifiable
with

Pθ(Yx = y|X = x0, Y = y0) = Pθ(Y = y|x)Pθ(x|x0, y0).

Proof. Denote the counterfactual generator as ϕθ,ζ . If we fix the model parameter θ and the random
seed ζ, ϕθ,ζ is a deterministic function, which means the conditional probability Pθ(x

′|x0, y0) =
1(x′ = ϕθ,ζ(x0, y0)) = 1(x′ = x) for any x′. In this regard, we have:

Pθ(Yx = y|X = x0, Y = y0) =

∫
Pθ(Yx = y|x′, x0, y0)Pθ(x

′|x0, y0)dx
′

= Pθ(Yx = y|x, x0, y0)Pθ(x|x0, y0).

Further, under the fixed seed ζ, the potential outcome Yx is fully determined by the classifier fθ and
the counterfactual image x:

Yx = sign(fθ(x, u)),

where u denotes the realization of the randomness U in network prediction under the seed ζ. There-
fore, we have Yx ⊥⊥ (X0, Y0)|X = x and

Pθ(Yx = y|X = x0, Y = y0) = Pθ(Yx = y|x, x0, y0)Pθ(x|x0, y0)

= Pθ(Yx = y|x)Pθ(x|x0, y0)

(1)
= Pθ(Y = y|x)Pθ(x|x0, y0),

where “(1)” is due to Asms. A.1. We then have the identifiability equation.
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Below, we show x∗ in Eq. (2) maximizes the probability of causation, indicating that supp(x∗−x0)
represents the causal factors that determine the model’s decisions. Consequently, minimizing Lalign
encourages the model’s causal factors to align more closely with those of the experts.

Proposition A.5. Assume Asm. A.2 and Asm. A.1, we then have:

x∗ = argmaxx:d(x,x0)≤dα
Pθ(Yx = y∗|X = x0, Y = y0)

for some dα.

Proof. We first show that Eq. (2) is equivalent to the following constrained optimization problem:

x∗ = argminx:d(x,x0)≤dα
Lce(fθ(x), y

∗). (8)

To this end, let dα := d(x∗, x0) and let x◦ := argminx:d(x,x0)≤dα
Lce(fθ(x), y

∗), we show:

Lce(fθ(x
∗), y∗) + λd(x∗, x0) = Lce(fθ(x

◦), y∗) + λd(x◦, x0). (9)

Since Asm. A.2 ensures the uniqueness of the minimum of Eq. (2), it then follows that x∗ = x◦ and
Eq. (8) holds. Now, note that x∗ satisfies d(x∗, x0) ≤ dα, which means:

Lce(fθ(x
∗), y∗) ≥ Lce(fθ(x

◦), y∗).

Since x◦ satisfies d(x◦, x0) ≤ dα = d(x∗, x0), we further have:

Lce(fθ(x
∗), y∗) + λd(x∗, x0) ≥ Lce(fθ(x

◦), y∗) + λd(x◦, x0).

Since x∗ minimizes Eq. (2), we also have:

Lce(fθ(x
∗), y∗) + λd(x∗, x0) ≤ Lce(fθ(x

◦), y∗) + λd(x◦, x0).

Therefore, we have Eq. (9) holds.

We then show x∗ maximize the probability of causation. From Eq. (8), we have:

x∗ = argmaxx:d(x,x0)≤dα
Pθ(Y = y∗|x)Pθ(x|x0, y0),

where the term Pθ(x|x0, y0) = 1(x = ϕθ,ζ(x0, y0)) represents the generating process of x, and the
term Pθ(Y = y∗|x) represents maximizing the logarithm likelihood in the cross-entropy loss.

Then, according to the identification quantity of Pθ(Yx = y∗|X = x0, Y = y0) shown in Prop. A.4,
we have:

x∗ = argmaxx:d(x,x0)≤dα
Pθ(Yx = y∗|X = x0, Y = y0).

This concludes the proof.

B FURTHER DETAILS ON IMPLEMENTATION

Below, we show the network architectures used in lung nodule classification (Fig. 5) and breast mass
classification (Fig. 6).

16
conv1,bn1,relu1

32
conv2,bn2,relu2

32,32
conv3,bn3,relu3

32,32
conv4,bn4,relu4

x

32
conv6,bn6,relu6,pooling

fc layers
32→ 64

fc layers
32→64

predicted attributes

fc layers
32→ 64

…1
conv5,sigmoid

CAT …

384→64→6
fc layers,sigmoid

x
384→2

fc layers,sigmoid

benign/malignant
classification

Image to Attributes 𝒇𝜽𝟏 Attributes to Label 𝒇𝜽𝟐

Figure 5: Network architecture used in lung nodule classification.
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Figure 6: Network architecture used in breast mass classification.

C EXTRA EXPERIMENTAL RESULTS

C.1 APPLICABILITY TO DIFFERENT DATA MODALITIES

In this section, we demonstrate the applicability of our method to different data modalities. Specif-
ically, we consider brain MRI data from the BraTS dataset, breast ultrasound data from the
Aryashah2k dataset, lung CT data from the LIDC-IDRI dataset Armato III et al. (2011), and breast
mammogram data from the CBIS-DDSM dataset Lee et al. (2017). The results are presented in
Tab. 3, showing that our method is consistently accurate across various data types.

Table 3: Performance of our method and baselines on different data modalities. The result of our
method is boldfaced and the best result among baselines is underlined.

Methodology Precision of CAM Classification Accuracy

MRI Ultra. CT Mamm. MRI Ultra. CT Mamm.

Ross et al. (2017) 0.036 0.197 0.034 0.084 0.730 0.679 0.656 0.559
Zhang et al. (2018) 0.168 0.159 0.068 0.110 0.698 0.764 0.381 0.581
Brendel & Bethge (2019) 0.111 0.165 0.048 0.090 0.270 0.321 0.358 0.592
Rieger et al. (2020) 0.097 0.184 0.041 0.232 0.099 0.509 0.343 0.586
Chang et al. (2021) 0.147 0.127 0.074 0.119 0.410 0.270 0.503 0.496

Ours 0.908 0.872 0.751 0.805 0.835 0.797 0.722 0.656

C.2 INSENSITIVITY TO HYPERPARAMETERS

In this section, we present the performance of our method across various hyperparameter configu-
rations, as shown in Tab. 4 and 5. The results demonstrate that our method is robust to changes in
hyperparameter settings, consistently achieving accurate alignment with the radiologists.

Table 4: Performance under different hyperparameters α1, which is the weight of the normalization
term in counterfactual generation. The results are obtained from the CBIS-DDSM dataset.

α1 Precision of CAM Classification Accuracy

0.05 0.819 0.650
0.06 0.801 0.648
0.07 0.805 0.656
0.08 0.833 0.642
0.09 0.796 0.655

C.3 RESULTS UNDER DIFFERENT SHORTCUT SYMBOLS

Below, we show the performance of our method under various shortcut symbol settings. Specifically,
we consider three cases: the +/- marker, intensity change, and the absence of a symbol. The results
are presented in Tab. 6, showing that our method is effective across different shortcut symbols.
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Table 5: Performance under different hyperparameters λ, which is the weight of the alignment loss
in the total loss. The results are obtained from the CBIS-DDSM dataset.

λ Precision of CAM Classification Accuracy

0.8 0.793 0.650
0.9 0.776 0.637
1.0 0.805 0.656
1.1 0.818 0.649
1.2 0.826 0.642

Table 6: Performance under different shortcut symbols.

Symbol Precision of CAM Classification Accuracy

LIDC DDSM LIDC DDSM

None 0.783 0.882 0.707 0.652
Intensity 0.760 0.783 0.723 0.670
+/- 0.751 0.805 0.722 0.656

C.4 IMPACT OF DIFFERENT DISTANCE FUNCTIONS

In the following, we conduct experiments to study the impact of different distance functions Wachter
et al. (2017) on counterfactual generation, with results presented in Fig. 7. Here, the scaled ℓ1 norm
is defined as:

d(xi, x
∗
i ) :=

dim(xi)∑
k=1

|xi,k − x∗
i,k|

MADk
, where MADk := mediani(|xi,k −medianj(xj,k)|)

and the scaled ℓ2 norm is defined as:

d(xi, x
∗
i ) :=

dim(xi)∑
k=1

|xi,k − x∗
i,k|2

stdk

where stdk is the standard deviation of the feature k among all samples.

L1𝑥! L2Scaled L1 Scaled L2

Figure 7: Generated counterfactual images using different distance functions.

As shown, the ℓ1 norm encourages sparse modifications in critical features for malignancy assess-
ment, such as spiculation and margin. In contrast, the ℓ2 norm tends to produce uniform changes

17
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across the whole nodule. This observation is consistent with the findings of Wachter et al. (2017).
Moreover, we notice that the performance of ℓ1/ℓ2 norms and their scaled versions are similar, which
can be attributed to the fact that we have already normalized the pixel values before training.

We then show the performance of our method under different distance functions in Tab. 7. The
results indicate that the ℓ1 norm outperforms the ℓ2 norm, which can be attributed to the sparser
modifications made by the ℓ1 norm, facilitating more accurate localization of causal decision areas.

Table 7: Ablation study of different distance functions on alignment and classification accuracy.
Distance functions Precision of CAM Classification accuracy

ℓ1 0.751 0.722
Scaled ℓ1 0.714 0.702
ℓ2 0.646 0.681
Scaled ℓ2 0.640 0.658

C.5 CAUSAL GRAPH OBTAINED VIA THE PC ALGORITHM

We also try the PC algorithm to recover the causal graph from data (see Fig. 8) under the Markov
and faithfulness assumptions. We find the skeleton of the recovered graph is consistent with that of
Fig. 3.

Figure 8: Recovered causal graph over nodule features (X), attributes (A), and label (Y ).
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D VISUALIZATION

D.1 VISUALIZATION OF COUNTERFACTUAL IMAGES

In this section, we visualize the generated counterfactual images and show the result in Fig. 9. As
we can see, the counterfactual modifications are clearly perceptible and align with specific clinical
concepts, thereby validating the effectiveness of our counterfactual generation method.

Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗)

(a) Margin changes from sharp to poorly defined (d) Texture changes from solid to GGO, spiculation from absent to present

Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗)

(b) Lobulation changes from absent to present

Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗)

(e) Internal structure changes from soft tissue to fluid

Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗)

Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗) Counterfactual 𝑥∗Original image (𝑥) Modified areas (𝑥 − 𝑥∗)

(c) Internal structure changes from soft tissue to fluid (f) sphericity changes from round to ovoid

Figure 9: Generated counterfactual images on the LIDC-IDRI dataset. For each sub-figure, the
left, middle, and right images denote the original image x, the counterfactual image x∗, and the
modified area supp(x − x∗), respectively. Positive modifications are marked in red and negative
ones are marked in blue. We can observe that the counterfactual modifications all correspond to
certain clinical attributes of the nodule, for example, in (a), the margin attribute changes from sharp
to poorly defined when the label y changes from benign to malignant.
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D.2 VISUALIZATION OF CAMS

In this section, we provide more visualizations of the CAMs.

Input Image Ross et al. ICNN BagNets Rieger et al. Chang et al. Ours

(1) (2) (3) (4) (5) (6) (7)

Figure 10: CAM visualization on the LIDC-IDRI dataset.
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Input Image Ross et al. ICNN BagNets Rieger et al. Chang et al. Ours

(1) (2) (3) (4) (5) (6) (7)

Figure 11: CAM visualization on the CBID-DDSM dataset.
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