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Abstract
Generative adversarial networks (GAN) and generative diffusion
models (DM) have been widely used in real-world image super-
resolution (Real-ISR) to enhance the image perceptual quality. How-
ever, these generative models are prone to generating visual arti-
facts and false image structures, resulting in unnatural Real-ISR
results. Based on the fact that natural images exhibit high self-
similarities, i.e., a local patch can have many similar patches to it
in the whole image, in this work we propose a simple yet effective
self-similarity loss (SSL) to improve the performance of genera-
tive Real-ISR models, enhancing the hallucination of structural
and textural details while reducing the unpleasant visual artifacts.
Specifically, we compute a self-similarity graph (SSG) of the ground-
truth image, and enforce the SSG of Real-ISR output to be close
to it. To reduce the training cost and focus on edge areas, we gen-
erate an edge mask from the ground-truth image, and compute
the SSG only on the masked pixels. The proposed SSL serves as
a general plug-and-play penalty, which could be easily applied to
the off-the-shelf Real-ISR models. Our experiments demonstrate
that, by coupling with SSL, the performance of many state-of-the-
art Real-ISR models, including those GAN and DM based ones,
can be largely improved, reproducing more perceptually realistic
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image details and eliminating many false reconstructions and vi-
sual artifacts. Codes and supplementary material are available at
https://github.com/ChrisDud0257/SSL
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1 Introduction
Image super-resolution (ISR) is a fundamental problem in low-
level vision. Given a low-resolution (LR) input, ISR aims to re-
cover its high-resolution (HR) counterpart with high fidelity in
contents, which has a wide range of applications in digital pho-
tography [28], high definition display [83], medical image analy-
sis [27], remote sensing [34], etc. Starting from SRCNN [13], var-
ious convolutional neural network (CNN) based methods have
been proposed to improve the ISR performance, such as residual
connections [22, 31, 39, 42], dense connections [91] and channel-
attention [23, 90]. Recently, some transformer-based ISR methods
[7–9, 17, 40, 89] have also emerged and demonstrated more power-
ful performance.

In the early stage, researchers usually employed simple degra-
dations, such as bicubic downsampling and downsampling after
Gaussian smoothing, to synthesize the LR-HR training pairs, while
focusing on the study of ISR network design. However, the image
degradations in real-world are much more complex, and the ISR
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Figure 1: From left to right and top to bottom: the Real-ISR
results generated by SwinIRGAN [40], StableSR [63], our SSL
guided StableSR and the ground-truth (GT) image. SwinIR-
GAN produces over-smoothed and wrong results, while Sta-
bleSR produces more details but with false structures and
artifacts. Our SSL guided StableSR generates more faithful
details while suppressing much the artifacts.

models trained on those simple synthetic data can hardly be gener-
alized to real-world applications. Therefore, in recent years many
works have been done on real-world ISR (Real-ISR), aiming to obtain
perceptually realistic ISR results on degraded images in real-world
scenarios [10, 19, 36–38, 45, 53, 64, 65, 71, 73, 77, 80, 82, 85, 93].
Some researchers proposed to collect real-world LR-HR image pairs
by using long-short camera focal lengths [4, 5, 69, 70, 74, 75, 88];
however, this is very costly and the trained models may only work
well when similar photographing devices are used. Therefore, re-
searchers propose to synthesize more realistic training data by
designing more complex degradation models. The notable works
include BSRGAN [84] and Real-ESRGAN [65]. In BSRGAN [84],
Zhang et al. randomly shuffled and combined blur, downsampling
and noise degradations to form a complex degradation, while in
Real-ESRGAN [65], Wang et al. developed a high-order degrada-
tion model with several repeated degradation operations. Recently,
researchers have also proposed to introduce human guidance into
the training data generation process [6].

Given the training data with more realistic degradations, another
issue is how to train the network to achieve the goal of Real-ISR.
It is well-known that the 𝐿1 or 𝐿2 loss, which aims to minimize
the fidelity error, often results in over-smoothed image details. To
tackle this issue, in the past a few years, the generative adversarial
networks (GANs) [18] have been widely adopted to train Real-ISR
models [33, 35, 41, 46, 52, 66, 67, 87]. With the help of adversarial
loss, GAN models can learn to find an image reconstruction path
to generate more sharp details. Though great progress has been
made, one critical limitation of GAN based Real-ISR models remain,
i.e., they incline to hallucinate visually unpleasant artifacts. Very
recently, with the rapid development of diffusion models (DMs)
[25, 59], it becomes popular to leverage the pre-trained large scale
text-to-image models, such as stable diffusion (SD) [55], to achieve
Real-ISR. Benefiting from the strong generative priors in DMs, some

recent works [56, 63, 79] have demonstrated encouraging Real-ISR
results with fine-scale and realistic details. However, DMs have
high randomness, which lead to unstable Real-ISR outputs and false
image details.

In this paper, we aim to improve the GAN and DM based Real-
ISR methods, reducing the artifacts and producing more realistic
details, by proposing a new training loss function. It is well-known
that natural images exhibit repetitive patterns across the whole
image. Such a property of self-similarity has been extensively used
in many image restoration algorithms, such as BM3D [11], NCSR
[15], WNNM [21], and NLSN [49], where the image self-similarity
is used as a prior to regularize the restored image. In this work, we
employ the image self-similarity property as a powerful penalty
to supervise the Real-ISR training progress. The proposed image
self-similarity loss (SSL) could act as a plug-and-play penalty in
most of the existing generative Real-ISR models, guiding them to ex-
ploit more effectively the inherent image self-similarity information
for detail reconstruction. Specifically, we compute a self-similarity
graph (SSG) to describe the image structural dependency, and mini-
mize the distance between the SSGs of the ground-truth (GT) and
Real-ISR output to optimize the model. To make the training pro-
cess more efficient and focus more image edge/texture areas, we
generate an edge mask from the GT image in an offline manner,
and only build the SSG upon the edge pixels.

Our proposed SSL can be easily adopted into the off-the-shelf
GAN-based and DM-based Real-ISR models as an extra penalty
to enhance image details and reduce the unpleasant artifacts. An
example is shown in Fig. 1. One can see that SwinIRGAN [40] over-
smooths the image textures and generates wrong details, while the
recent DM-based StableSR [63] restores much clearer details but
still fails to generate some fine scale structures or correct textures.
In comparison, the StableSR model trained with our SSL could
reconstruct both clear content and more realistic textures with
better perception quality. Our extensive experiments on state-of-
the-art Real-ISR models validate the effectiveness of our proposed
SSL, either in GAN-based or DM-based ISR tasks.

2 Related Work
Traditional Fidelity-Oriented ISR. Since SRCNN [13], many
CNN backbones have been developed to promote the ISR perfor-
mance in terms of PSNR and SSIM [68] measures. EDSR [42] and
RDN [91] incorporate residual and densely connections, respec-
tively. RCAN [90], OA-DNN [16], CRAN [92] and HAN [51] make
use of channel/spatial attention modules. Recently, transformer-
based models have shown stronger ability towards long-range de-
pendency modeling. SwinIR [40] utilizes shifted partition windows
to compute the image self-attention. ELAN [89] introduces multi-
scale self-attention blocks to extract long-distance dependency.
ACT [78] utilizes CNN to extract local interaction and transformer
to obtain long-range dependency.

GAN-based Generative Real-ISR. The fidelity-oriented ISR
models often generate over-smoothed details, sacrificing the percep-
tual quality of natural images. Inspired by GAN[18], many genera-
tive ISR methods have been proposed to obtain more photo-realistic
results. SRGAN [33], and ESRGAN [67] utilize VGG-style [58] dis-
criminator to perform the adversarial training. BSRGAN [84] and
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Figure 2: Illustration of the training progress of (a) generative adversarial network (GAN) based and (b) latent diffusion model
(DM) based Real-ISR by using our proposed self-similarity loss (SSL). The GAN or DM network is employed to map the input
LR image to an ISR output. We calculate the self-similarity graphs (SSG) of both ISR output and ground-truth (GT) image, and
calculate the SSL between them to supervise the generation of image details and structures.

Figure 3: Illustration of the self-similarity graph (SSG) computing process. We first generate a mask to indicate the image edge
areas by applying the Laplacian Operator on the GT image. During the training period, for each edge pixel in the mask, we
find the corresponding pixels in the GT image and ISR image, and set a search area centred at them. A local sliding window is
utilized to calculate the similarity between each pixel in the search area and the central pixel so that an SSG can be respectively
computed for the GT image and the ISR image, with which the SSL can be computed. The red pixel means the edge pixel, while
the blue block means the sliding window.

Real-ESRGAN [65] introduce complex degradation processes to
synthesize the real-world degradation. HGGT [6] annotates posi-
tive and negative training pairs to enhance the perceptual quality
in GAN training progress. In order to make the GAN training pro-
cess more stable, SROBB [54] presents an enhanced perceptual
loss to restrain the model with different semantic labels. SPSR [46]
embeds the well-extracted structure prior into the RRDB network
[67]. RankSRGAN [87] firstly trains a ranker model to indicate
the relative perception quality of an image, and then utilizes a
well-trained ranker to guide the generator to reconstruct better
details. BebyGAN [35] searches the best candidate GT patch in the
neighborhood to perform LR-HR supervision. LDL [41] computes
an artifact map to indicate the local artifacts in ISR outputs, then
imposes appropriate penalty on the artifact areas to improve the
perceptual quality.

DM-based Generative Real-ISR. The powerful generative pri-
ors embedded in DMs can be exploited for Real-ISR. SR3 [56] utilizes
a conditional pixel-level DM to iterativelly denoise and generate

super-resolved results. StableSR [62] performs Real-ISR in the latent
diffusion space by using a controllable feature wrapping module
to balance between the reconstruction fidelity and the perceptual
quality. PASD [76] introduces a pixel-aware cross attention block as
a controllable module to guide the high-quality details generation.
DiffBIR [43] utilizes a two-stage model, which first reduces compli-
cated degradation factors and then uses the well-trained generative
prior in SD to reconstruct delicate contents. DiffIR [72] pre-trains
a DM with high-quality GT images to obtain abundant priors and
then finetunes the DM with their low-quality counterparts to com-
plete the Real-ISR task. ResShift [79] adopts an efficient sampling
strategy through shifting the residual between high-quality and
low-quality images to largely accelerate the diffusion steps.

3 Image Self-similarity Loss
The proposed training framework is illustrated in Fig. 2. In addi-
tion to the commonly used 𝐿1, perceptual loss, adversarial loss in
GAN-based methods, or the Gaussian noise prediction MSE loss in
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Table 1: Quantitative results of seven representative GAN-based Real-ISR models and their counterparts coupled with the
proposed SSL. The bicubic degradation model is used here. For each of the seven groups of comparisons, the better results are
highlighted in boldface. The PSNR and SSIM indices are computed in the Y channel of Ycbcr space.

Method ESRGAN ESRGAN
-SSL

RankSR
GAN

RankSR
GAN-SSL SPSR SPSR

-SSL
Beby
GAN

Beby
GAN-SSL LDL LDL

-SSL
ELAN
GAN

ELAN
GAN-SSL

SwinIR
GAN

SwinIR
GAN-SSL

Training Dataset DF2K_OST DIV2K DIV2K DF2K DF2K DIV2K DF2K

Set5

PSNR↑ 30.4378 30.7786 29.6518 30.1834 30.3967 30.4476 30.4951 31.0239 31.0332 31.1106 30.7134 30.7942 31.0982 31.1616
SSIM↑ 0.8523 0.8582 0.8379 0.8517 0.8443 0.8458 0.8550 0.8652 0.8611 0.8660 0.8526 0.8588 0.8686 0.8702
LPIPS↓ 0.0739 0.0621 0.0699 0.0675 0.0615 0.0598 0.0595 0.0583 0.0660 0.0617 0.0547 0.0528 0.0682 0.0594
DISTS↓ 0.0970 0.0929 0.1038 0.1014 0.0924 0.0906 0.0912 0.0906 0.0934 0.0924 0.0854 0.0840 0.0977 0.0936

Set14

PSNR↑ 26.2786 26.7148 26.4514 26.6163 26.6423 26.6410 26.8625 27.1674 26.9378 27.1195 26.9128 27.0785 27.0486 27.3178
SSIM↑ 0.6992 0.7114 0.7030 0.7132 0.7138 0.7091 0.7270 0.7272 0.7212 0.7263 0.7242 0.7287 0.7314 0.7385
LPIPS↓ 0.1314 0.1202 0.1350 0.1337 0.1303 0.1331 0.1204 0.1200 0.1198 0.1169 0.1144 0.1123 0.1201 0.1114
DISTS↓ 0.0985 0.0937 0.1104 0.1065 0.0990 0.0960 0.0930 0.0937 0.0917 0.0924 0.0940 0.0934 0.0983 0.0962

DIV2K100

PSNR↑ 28.1983 28.7341 28.0314 28.3523 28.2042 28.5881 28.6301 29.1332 28.8401 29.0378 28.6631 28.8978 28.9873 29.3940
SSIM↑ 0.7773 0.7896 0.7667 0.7822 0.7734 0.7849 0.7907 0.8012 0.7910 0.7985 0.7882 0.7959 0.8026 0.8118
LPIPS↓ 0.1150 0.0995 0.1207 0.1143 0.1085 0.1021 0.1021 0.0974 0.0993 0.0952 0.0978 0.0936 0.0944 0.0911
DISTS↓ 0.0594 0.0518 0.0637 0.0610 0.0541 0.0510 0.0491 0.0522 0.0522 0.0519 0.0494 0.0499 0.0496 0.0490

Urban100

PSNR↑ 24.3548 25.2991 24.4686 24.5959 24.7978 25.2672 25.2205 25.6060 25.4537 25.5851 25.5041 25.7764 25.8311 26.2520
SSIM↑ 0.7340 0.7606 0.7294 0.7366 0.7473 0.7573 0.7628 0.7696 0.7661 0.7705 0.7696 0.7761 0.7850 0.7929
LPIPS↓ 0.1234 0.1061 0.1381 0.1287 0.1186 0.1087 0.1094 0.1048 0.1084 0.1037 0.1053 0.1007 0.0998 0.0941
DISTS↓ 0.0879 0.0811 0.1044 0.1010 0.0850 0.0809 0.0797 0.0786 0.0793 0.0785 0.0805 0.0788 0.0807 0.0783

BSDS100

PSNR↑ 25.3277 25.7504 25.4646 25.5562 25.5092 25.6818 25.7918 26.1428 25.9741 26.0676 25.7897 25.9174 26.1063 26.2676
SSIM↑ 0.6533 0.6723 0.6510 0.6598 0.6599 0.6649 0.6791 0.6849 0.6818 0.6870 0.6731 0.6768 0.6908 0.6957
LPIPS↓ 0.1601 0.1477 0.1736 0.1675 0.1602 0.1568 0.1505 0.1490 0.1534 0.1469 0.1492 0.1436 0.1574 0.1450
DISTS↓ 0.1173 0.1148 0.1280 0.1274 0.1186 0.1160 0.1137 0.1155 0.1175 0.1160 0.1113 0.1122 0.1168 0.1126

Manga109

PSNR↑ 28.4125 29.2324 27.8481 28.2400 28.5608 28.9309 29.1934 29.7105 29.6204 29.7949 29.2020 29.4077 29.8802 30.2567
SSIM↑ 0.8595 0.8697 0.8497 0.8583 0.8591 0.8618 0.8754 0.8794 0.8734 0.8807 0.8698 0.8753 0.8892 0.8935
LPIPS↓ 0.0644 0.0566 0.0754 0.0690 0.0663 0.0622 0.0524 0.0520 0.0540 0.0502 0.0577 0.0532 0.0469 0.0440
DISTS↓ 0.0468 0.0403 0.0577 0.0564 0.0460 0.0454 0.0355 0.0378 0.0354 0.0353 0.0436 0.0429 0.0341 0.0345

General100

PSNR↑ 29.4251 30.0092 29.1108 29.4338 29.4237 29.7783 29.9510 30.3979 30.2891 30.4594 29.9434 29.9606 30.4339 30.4839
SSIM↑ 0.8095 0.8215 0.8017 0.8122 0.8091 0.8160 0.8222 0.8317 0.8280 0.8330 0.8220 0.8230 0.8352 0.8370
LPIPS↓ 0.0878 0.0795 0.0954 0.0908 0.0863 0.0809 0.0780 0.0761 0.0800 0.0760 0.0768 0.0760 0.0765 0.0727
DISTS↓ 0.0877 0.0832 0.0977 0.0948 0.0890 0.0859 0.0801 0.0814 0.0806 0.0796 0.0817 0.0826 0.0824 0.0826

DM-based methods, we calculate the self-similarity graphs (SSG)
of both ISR output and ground-truth (GT), and consequently in-
troduce a self-similarity loss (SSL) between them to supervise the
reconstruction of image details and structures.

3.1 Image Self-similarity
For a natural image, one can observe many repetitive patterns
across it, known as the image self-similarity. Such a property has
been used to improve the image restoration performance for a
long time [3, 11]. Actually, the self-attention mechanism [44, 61]
in transformer models exploits the image self-similarity in deep
feature space. In this paper, we adopt the Exponential Euclidean
distance [3] to calculate the self-similarity. For any two patches
𝐼𝑝 , 𝐼𝑞 ∈ R(2𝑓 +1)×(2𝑓 +1)×𝐶 centered at pixels 𝜇𝑝 and 𝜇𝑞 in image
𝐼 ∈ R𝐻×𝑊 ×𝐶 , respectively, where 𝑓 denotes the patch radius, 𝐻 ,
𝑊 and𝐶 are the image height, width and channel number (𝐶=3 for
RGB images), we firstly compute the squared Euclidean distance
between 𝐼𝑝 and 𝐼𝑞 :

𝑑2 (𝐼𝑝 , 𝐼𝑞) =
1

𝐶 (2𝑓 + 1)2

𝐶∑︁
𝑖=1

𝑓∑︁
𝑗=−𝑓

(𝜇𝑖𝑝+𝑗 − 𝜇
𝑖
𝑞+𝑗 )

2, (1)

where 𝜇𝑖
𝑝+𝑗 and 𝜇

𝑖
𝑞+𝑗 denote the neighborhood pixels around 𝜇

𝑖
𝑝 and

𝜇𝑖𝑞 in patch 𝐼𝑝 and 𝐼𝑞 , respectively. The similarity 𝑆 (𝐼𝑝 , 𝐼𝑞) between

𝐼𝑝 and 𝐼𝑞 is calculated as:

𝑆 (𝐼𝑝 , 𝐼𝑞) = 𝑒−
𝑑2 (𝐼𝑝 ,𝐼𝑞 )

ℎ , (2)

where ℎ > 0 is a scaling factor. One can see that 0 ≤ 𝑆 (𝐼𝑝 , 𝐼𝑞) ≤ 1.
When the Euclidean distance 𝑑2 (𝐼𝑝 , 𝐼𝑞) approaches to 0, the simi-
larity 𝑆 (𝐼𝑝 , 𝐼𝑞) approaches to 1, indicating that the two patches are
highly similar.

3.2 Mask Generation
By using the self-similarity measure defined in Eq. 2, we could
compute the similarity of a patch with all the other patches in the
whole image, and construct a self-similarity graph (SSG). However,
this is computationally expensive because the size of such an SSG
will be 𝐻2 ×𝑊 2. Actually, we do not need to calculate the self-
similarity for each patch since the challenges of Real-ISR lie in edge
and texture areas instead of smooth regions. Therefore, we can
generate a mask of edge/texture pixels to indicate where we should
calculate the SSG. For simplicity, we first generate an edge map
𝐸 ∈ R𝐻×𝑊 by applying the Laplacian operator, denoted by 𝐿, to
the GT image 𝐼𝐻𝑅 ∈ R𝐻×𝑊 ×𝐶 , i.e., 𝐸 = 𝐿 ⊗ 𝐼𝐻𝑅 . Then, we obtain
the binary mask𝑀 ∈ R𝐻×𝑊 by thresholding 𝐸:

𝑀𝑖, 𝑗 =

{
0, 𝐸𝑖, 𝑗 ≤ 𝑡
1, 𝐸𝑖, 𝑗 > 𝑡

(3)
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ESRGAN RankSRGAN SPSR BebyGAN LDL SwinIRGAN ELANGAN

Figure 4: Visual comparison of the state-of-the-art GAN based Real-ISR models and their counterparts trained with our SSL.
The bicubic degradation model is used here. From the top row to the bottom row are the results of bicubic interpolation, the
original Real-ISR model, the Real-ISR model trained with our SSL, and the GT image. Please zoom in for better observation.

where 𝑡 is a threshold. We empirically set it to 20 to retain most of
the true edge pixels while filtering out smooth and trivial image
features.𝑀 is computed in an off-line manner to avoid the repetitive
computation in each iteration.

In the training progress, for pixels at (𝑖, 𝑗) where 𝑀𝑖, 𝑗 = 1, we
find the corresponding RGB pixels 𝜇𝑝 in the GT image and the ISR
output, and calculate their SSG for comparison. On the DF2K_OST
training dataset, the edge pixels occupy only 13% of the total amount
of image pixels. By using𝑀 to guide the construction of SSG, we can
not only reduce significantly the training cost, but also concentrate
on the image edges and textures.

3.3 Self-similarity Graph Calculation
For an edge pixel 𝑝 in the original RGB image 𝐼 (the corresponding
pixel in the Mask 𝑀 is 𝑀𝑝 = 1), we define a search area 𝐼𝐾𝑠 ∈
R𝐾𝑠×𝐾𝑠×𝐶 as well as a local window 𝐼𝑝 ∈ R𝐾𝑤×𝐾𝑤×𝐶 centered at
it, where 𝐾𝑤 = 2𝑓 + 1 and 𝑓 is the radius of the window. Then
for each pixel 𝑞 in the search area, we extract a sliding window
𝐼𝑞 ∈ R𝐾𝑤×𝐾𝑤×𝐶 to calculate its similarity with 𝐼𝑝 , i.e., 𝑆 (𝐼𝑝 , 𝐼𝑞), by
Eq. 1 and Eq. 2. Then we normalize 𝑆 (𝐼𝑝 , 𝐼𝑞) as:

𝑆 (𝐼𝑝 , 𝐼𝑞) =
1
𝜖
∗ 𝑆 (𝐼𝑝 , 𝐼𝑞), (4)

where 𝜖 =
∑
𝑞∈𝐼𝐾𝑠 𝑆 (𝐼𝑝 , 𝐼𝑞) is the normalization factor.

The overall calculation procedure of SSG is illustrated in Fig. 3.
To be more specific, for each edge pixel in the mask, we find the
corresponding pixels in the GT image and ISR image, and set a
search area centred at them. Then we set a local sliding window
to calculate the similarity between the patch centered at the cen-
tral pixel and another patch centered at the pixels in the search
area. All the values of 𝑆 (𝐼𝑝 , 𝐼𝑞) builds the SSG of image 𝐼 , which de-
scribes the inherent structural similarity distribution of the image.
In practice, we could sample 𝐼𝑞 with a stride 𝑠 to further reduce the
computational cost (we set 𝑠 = 3 in our implementation).

3.4 Self-similarity Loss
Denote by 𝑆𝐻𝑅 and 𝑆𝐼𝑆𝑅 the SSG of the GT image and the ISR output,
respectively. We can use their distance as the loss to supervise
the network training. Here we employ the KL-divergence and 𝐿1
distance to build the SSL:

𝐿𝑆𝑆𝐿 = 𝐷𝐾𝐿 (𝑆𝐻𝑅 | |𝑆𝑆𝑅) + 𝛼 |𝑆𝑆𝑅 − 𝑆𝐻𝑅 |, (5)

where 𝛼 is a balance parameter and we simply set it as 1 in all our
experiments.

SSL in GAN-based Models. To apply SSL into an off-the-shelf
GAN-based Real-ISR method, we just need to add the above 𝐿𝑆𝑆𝐿
loss to its original loss function 𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (e.g. pixel-wise 𝐿1 loss,
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Table 2: Quantitative results of three representative DM-based Real-ISR models and their counterparts coupled with the
proposed SSL. For each of the three groups of comparisons, the better results are highlighted in boldface. The PSNR and SSIM
indices are computed in the Y channel of Ycbcr space.

Method StableSR StableSR-SSL ResShift ResShif-SSL DiffIR DiffIR-SSL

Training Dataset DF2K_OST+DIV8K+FFHQ

DIV2K100

PSNR↑ 23.2988 23.1111 23.6136 24.7275 25.5008 25.4124
SSIM↑ 0.5654 0.5203 0.5701 0.6161 0.6570 0.6470
LPIPS↓ 0.3125 0.3588 0.3712 0.3417 0.2651 0.2664
DISTS↓ 0.2045 0.2323 0.2379 0.2236 0.2013 0.1977
FID↓ 24.4578 28.0564 49.3542 35.4661 25.7638 26.1045
NIQE↓ 4.7806 4.5219 6.2656 6.6347 5.1936 4.9569

CLIP-IQA↑ 0.6694 0.6940 0.6859 0.5343 0.5130 0.5262
MUSIQ↑ 65.7710 67.7485 64.0147 57.1369 58.5725 60.8936

DRealSR

PSNR↑ 28.1526 27.6065 27.5799 29.4468 29.9046 29.5164
SSIM↑ 0.7529 0.6736 0.7364 0.7975 0.8188 0.8171
LPIPS↓ 0.3315 0.4312 0.3941 0.3818 0.2895 0.2683
DISTS↓ 0.2263 0.2810 0.2709 0.2684 0.2118 0.2031
FID↓ 151.1807 156.5795 180.2996 161.8707 141.2654 141.9467
NIQE↓ 6.5808 6.2259 7.0837 9.0121 7.1668 7.5738

CLIP-IQA↑ 0.6207 0.6103 0.6490 0.3922 0.3191 0.3722
MUSIQ↑ 58.4207 60.5404 58.4495 38.3946 41.9419 45.0333

RealSR

PSNR↑ 24.7021 25.3236 25.5153 26.6132 27.4546 26.9851
SSIM↑ 0.7065 0.6563 0.7024 0.7493 0.7848 0.7847
LPIPS↓ 0.3018 0.3744 0.3759 0.3446 0.2538 0.2411
DISTS↓ 0.2135 0.2496 0.2725 0.2552 0.1928 0.1892
FID↓ 129.5313 131.4425 164.7055 149.3277 117.8279 119.3884
NIQE↓ 5.9430 5.1812 6.3815 7.0816 6.4811 6.2603

CLIP-IQA↑ 0.6178 0.6324 0.6838 0.4760 0.3437 0.3677
MUSIQ↑ 65.7834 65.6814 63.2059 52.8008 52.0040 54.8398

DPED-iPhone
NIQE↓ 6.7597 6.1154 8.9634 9.4691 7.2465 7.1488

CLIP-IQA↑ 0.4694 0.4944 0.6174 0.4109 0.2664 0.3045
MUSIQ↑ 50.6582 53.7349 47.8474 37.6449 36.4193 41.2825

perceptual loss and GAN loss), and then re-train the model:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝛽𝐿𝑆𝑆𝐿, (6)

where 𝛽 is a balance parameter.
SSL in DM-based Models. As for those latent DM-based Real-

ISRmethods, StableSR [63] and ResShift [79], the 𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is applied
to predict the desired noise in latent space. Since SSL is computed
in image space, we need to pass the predicted noise through the
VAE decoder to output the ISR image, as shown in Fig. 2(b), and
then apply the SSL to the reconstructed image. We also employ a
pixel-wise 𝐿1 loss for more stable training. The total loss is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝛽𝐿𝑆𝑆𝐿 + 𝛾𝐿1, (7)

where 𝛽 , 𝛾 are balance parameters. The 𝐿𝑆𝑆𝐿 and 𝐿1 will back-
propagate their gradients to update the parameters of the denoising
UNet and the controlling parts in DMs.

4 Experimental Results
4.1 Experiments on GAN-based Models
Comparison Methods. Our proposed SSL can be directly applied
to the existing GAN-based Real-ISR models with either simple

bicubic degradation or complex mixture degradations [65, 84] as
a plug-and-play module to improve their performance. For bicu-
bic degradation, we embed SSL into ESRGAN [67], RankSRGAN
[87], SPSR [46], BebyGAN [35] and LDL [41]. For complex mixture
degradations, we embed SSL into Real-ESRGAN [65] and BSRGAN
[84]. Most of the above models employ the CNN backbone (e.g.,
RRDB [67] or SRResNet [33]) as the generator. In this paper, we
also employ the transformer backbones, i.e., SwinIR [40] and ELAN
[89], as the generator, resulting in the SwinIRGAN and ELANGAN
models. For each of the above Real-ISR models (e.g., ESRGAN), we
denote by “*-SSL" (e.g., ESRGAN-SSL).

Training Details. For each of the evaluated Real-ISR meth-
ods, we train its SSL guided counterpart with the same patch size
and training dataset (i.e., DIV2K [60], DF2K [1, 60] and DF2K-OST
[1, 60, 66]) as the original method. In the experiments with com-
plex degradations, since the original degradation setting in Real-
ESRGAN and BSRGAN is too heavy, we follow the Real-ESRGAN
and BSRGAN settings in HGGT [6] (which has weaker degrada-
tion level) for training data generation. The Adam [32] optimizer is
adopted. The initial learning rate is set to 1e-4, which is halved after
200K iterations for CNN backbones, and 200K, 250K, 275K, 287.5K



SSL: A Self-similarity Loss for Improving Generative Image Super-resolution MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

StableSR StableSR ResShift ResShift DiffIR DiffIR

Figure 5: Visual comparison of the state-of-the-art DM based Real-ISR models and their counterparts trained with our SSL.
From the top row to the bottom row are the results of bicubic interpolation, the original Real-ISR model, the Real-ISR model
trained with our SSL, and the GT image. Please zoom in for better observation.

iterations for transformer backbones. When calculating SSG, the
search area 𝐼𝐾𝑠 is set to 25, the sliding window 𝐼𝐾𝑤 is set to 9, and
the scaling factor ℎ is set to 0.004. 𝛽 is set to 1000. All experiments
are conducted on NVIDIA RTX 3090 GPUs. All of the SSL guided
models are fine-tuned from a well-trained fidelity-oriented version
(e.g. RRDB [67], SwinIR [40] or ELAN [89]which is trained only
with 𝐿1 loss without a discriminator) for better initialization.

Evaluation Datasets and Metrics. We employ the widely-used
testing benchmarks, including Set5 [2], Set14 [81], DIV2K100 [60],
Urban100 [26], BSDS100 [47], Manga109 [48], General100 [14], to
evaluate the competing methods. Considering the fact that there is
certain randomness in the synthesis of LR images when using the
complex mixture degradation models in [65, 84], for each test image,
we synthesize a group of 30 LR images using randomly sampled
degradation factors, and report the averaged metrics for fair and
solid evaluation. We compute PSNR and SSIM [68] in the Y channel
for fidelity measurement. For perceptual quality, LPIPS [86] and
DISTS [12] are used for quantitative assessment.

Results for Bicubic Degradation. Table 1 shows the quantita-
tive results of different Real-ISR models when bicubic degradation
is used. It can be seen that on all the 7 testing datasets, our SSL

guided models surpass their original counterparts in most of the
fidelity (PSNR, SSIM) and perceptual (LPIPS, DISTS) measures, no
matter the CNN or transformer backbones are used. This demon-
strates that the image SSG could characterize the image inherent
structures, and our SSL could provide effective supervision in the
Real-ISR model training process, enforcing the models to halluci-
nate more correct contents with better fidelity and suppressing
the visual artifacts to achieve better perceptual quality. It is worth
mentioning that our SSL will not introduce any extra cost in the
inference process.

Qualitative Result. Fig .4 provides visual comparisons between
major Real-ISR models and their SSL-guided version in the case
of bicubic degradation. One can clearly see that the SSL-guided
models could generate clearer textures (the 1st column), or richer
details (the 2nd column) and correct the twisted textures (the
3rd/4th/5th/6th/7th columns) generated by the original models.
Such observations echo with the results in Table 1, proving again
that SSL could hallucinate correct details and suppress artifacts.

Results for Complex Degradation. Due to the page limit, we
provide the quantitative results of GAN-based Real-ISR models and
their SSL guided versions under complex image degradation, as
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well as the visualization comparisons between them, in the supple-
mentary material.

4.2 Experiments on DM-based Models
Comparison Methods. We embed SSL into three representative
DM-based models, including StableSR [62], ResShift [79] and DiffIR
[72]. For each of the above Real-ISR models (e.g., StableSR), we
denote by "*-SSL" (StableSR-SSL).

Training Details. For each of the evaluated DM-based Real-ISR
method, we employ the same training datasets (including DF2K-
OST [1, 60, 66], DIV8K [20], FFHQ [29]), and apply the same degra-
dation pipeline as that used in StableSR [62]. The training patch
size and iterations in SSL-guided versions are set to the same as the
original method. The Adam [32] optimizer is used. The learning
rate is fixed to 5e-5. When calculating SSG, the search area 𝐼𝐾𝑠 is
set to 25, the sliding window 𝐼𝐾𝑤 is set to 9, and the scaling factor
ℎ is set to 0.004. For SSL guided StableSR and DiffIR, the weight
𝛽 and 𝛾 in Eq. 7 are set to 1 and 0.1, respectively. For SSL guided
DiffIR, since the original model [72] already utilizes pixel-wise 𝐿1
loss, then we implement the loss function type as Eq. 6, 𝛽 is set to
1000. All experiments are conducted on NVIDIA V100 GPUs. We
update all of the parameters of UNet in the pre-trained DM as well
as the controlling parts towards the SSL-guided counterparts.

Evaluation Datasets and Metrics. We utilize the testing im-
ages from StableSR [62], including the 3000 synthesized DIV2K100
low-quality testing images (each GT image has a group of 30 LR
images generated from DIV2K100 [60] dataset with complicated
degradation factors), RealSR [4] (100 real-world low-quality images
with their corresponding GTs obtained by cameras), DRealSR [70]
(93 real-world low-quality images with their corresponding GTs cap-
tured by cameras), DPED-iphone [28] (113 real-world low-quality
images taken by iPhone without GT). We compute full-reference
image quality metrics, including PSNR, SSIM [68], LPIPS [86] and
DISTS [12], and no-reference image quality metrics, including NIQE
[50], CLIP-IQA [62] and MUSIQ [30]. The statistical distance metric
FID [24] is also calculated.

Quantitative Result. Tab. 2 shows the numerical results of the
original DM-based Real-ISR methods and their SSL guided versions.
One can see that StableSR-SSL obtains better no-reference metrics
(NIQE/CLIP-IQA/MUSIQ) while gets worse full-reference metrics
(PSNR/SSIM/LPIPS/DISTS). ResShift-SSL gets better full-reference
metrics (PSNR/SSIM/LPIPS/DISTS) but worse no-reference met-
rics (NIQE/CLIP-IQA/MUSIQ). DiffIR-SSL gets better perceptual-
relevant metrics (LPIPS/DISTS/NIQE/CLIP-IQA/MUSIQ). While dif-
ferent SSL guided models obtain different performance, it is still
reasonable for the following reasons: (1). StableSR-SSL leverages a
pretrained Stable-Diffusion model [55], which is trained on LAION-
5B [57], a multi-modal dataset that contains a vast number of text-
to-image pairs. This results in a distinct data distribution diver-
gence when compared to the general training datasets used for SR
tasks, such as DF2K [1, 60] and DIV8K [20]. Consequently, during
inference stage, the results generated by StableSR-SSL, exhibit a
notable difference from the GT in the test set (such as DIV2K100).
Thus all full-reference metrics get failure, while get much better
no-reference metrics, which also indicate better perception quality.
(2) ResShift-SSL gets better FR-IQA (PSNR/SSIM/LPIPS/DISTS/FID)

results, this indicated that SSL could help ResShift reconstruct tex-
tures with higher fidelity. As for the worse NR-IQA metrics, this is
mainly because the existing NR-IQA metrics, including NIQE, CLIP-
IQA andMUSIQ, favor the images with more high-frequency details,
even these details are wrong. As can be seen from Fig. 6 in the sup-
plementary, ResShift hallucinates many wrong details (e.g., on the
windows in column 1), while ResShift-SSL successfully removes
those artifacts. Our user study in Fig. ?? also showed that 73.07% of
the observers pick the results of ResShift-SSL. However, the NR-IQA
metrics prefer the results of ResShift because they are not accurate
enough to represent the human perception yet. (3). DiffIR-SSL not
only trains a latent-diffusion model from scratch, but also utilizes a
discriminator. Due to the influence introduced by the discrimina-
tor, the PSNR/SSIM just get worse, but obtains better perception-
relevant metrics (LPIPS/DISTS/NIQE/CLIP-IQA/MUSIQ).

Qualitative Result. Fig. 5 shows the visualization results. One
can see that compared with the original DM-based Real-ISR meth-
ods, their SSL guided versions perform significantly better in restor-
ing the image structures and details, demonstrating the strong
structure regularization capability of SSL. For example, StableSR
generates false patterns in the T-shirt (column 1) and incomplete
details on the peristyle (column 2), while the SSL guided StableSR
restores correct T-shirt pattern and hallucinates more complete
structures on peristyle. For ResShift, it either over-smooths the
details (column 3) or generate wrong textures (column 4), while
SSL can help to solve this issue. Similar observations go to DiffIR.
All these results validate the effectiveness of SSL in encouraging
the Real-ISR model to generate more delicate details. More visual
comparisons that validate the perception imporvement of SSL can
be found in the supplementary material.

Due to the limited pages, we also provide the following contents
in our supplementary material: (1). A user study to validate the
performance of SSL. (2). The training cost analysis towards SSL. (3).
Ablation studies about the selection of hyper-parameters, such as
𝐾𝑠 , 𝐾𝑤 , 𝛽 in Eq. 6 and Eq. 7. (4). Limitation of SSL.

5 Conclusion
Generative image super-resolution methods, including GAN-based
and DM-based ones, are prone to generating visual artifacts. In this
work, we proposed a novel use of the image self-similarity prior for
improving the generative real-world image super-resolution results.
Specifically, we explicitly computed the self-similarity graph (SSG)
of the image, and took the difference between the SSG maps of
ground-truth image and Real-ISR output as a self-similarity loss
(SSL) to supervise the network training. SSL could be easily em-
bedded in off-the-shelf Real-ISR models, including GAN-based and
DM-based ones, as a plug-and-play penalty, guiding the model to
more stably generate realistic details and suppress false genera-
tions and visual artifacts. Our extensive experiments on benchmark
datasets validated the generality and effectiveness of the proposed
SSL in generative Real-ISR tasks.
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