
TwinStar: A Practical Multi-path Transmission Framework for
Ultra-Low Latency Video Delivery

Haiping Wang
ByteDance

wanghaiping.paloma@bytedance.com

Zhenhua Yu∗

Meituan

yuzhenhua02@meituan.com

Ruixiao Zhang
The University of Hong Kong

zrxhku@hku.hk

Siping Tao
ByteDance

siping.tao@bytedance.com

Hebin Yu
ByteDance

yuhebin.824@bytedance.com

Shu Shi
ByteDance

shishu.1513@bytedance.com

ABSTRACT
Ultra-low latency video streaming has received explosive growth in
the past few years. However, existing methods all focus on single-
path transmission, which is ineffective in dealing with really poor
network conditions. To tackle their problems, we propose TwinStar,
a novel multi-path framework to improve the experience quality of
ultra-low latency video. The core idea of TwinStar is to concurrently
leverage multiple paths to mitigate the negative impacts of network
jitter on a single path. In particular, by carefully designing the
video encoding, data allocation and loss recovery, TwinStar is very
robust to handle network dynamics and deliver high-quality video
services. We have deployed TwinStar in a commercial cloud gaming
platform and evaluated it with real-world networks. The extensive
experiments demonstrate that TwinStar significantly outperforms
the single-path transmission methods, with 91% reduction in stall
ratio and 11% improvement in PSNR across all regions.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Cloud Gaming, Multi-path, Video Delivery

ACM Reference Format:

Haiping Wang, Zhenhua Yu, Ruixiao Zhang, Siping Tao, Hebin Yu, and Shu
Shi. 2023. TwinStar: A Practical Multi-path Transmission Framework for
Ultra-Low Latency Video Delivery. In Proceedings of the 31st ACM Inter-
national Conference on Multimedia (MM ’23), October 29-November 3, 2023,
Ottawa, ON, Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3581783.3613443

∗This work was completed before the author joined Meituan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3613443

(a) Previous methods (b) Our method

Figure 1: Previous methods are all based on single-path transmis-
sion, through which the video frames may be blocked in poor net-
work conditions (as denoted in red color); our method addresses
their shortcomings through multi-path transmission.

1 INTRODUCTION
The rapid advancement of network infrastructure and cloud technol-
ogy has given rise to numerous ultra-low latency video streaming
applications, including cloud gaming, cloud virtual reality(VR), and
virtual desktops [25]. These applications utilize remote servers to
stream interactive video content to users’ portable devices, obvi-
ating the need for hardware upgrades. For such applications, an
optimal user experience typically requires high-quality and smooth
video playback as well as a stable interaction latency (also referred
to as motion-to-photon or MTP latency in VR applications) of only
100 ms or even less [28], which presents significant challenges for
delivering ultra-low latency video over the best-effort Internet.

Existing methods proposed for optimizing videoconferencing and
real-time video streaming, including adaptive bitrate streaming [17,
31], dynamic frame control [7, 19], loss recovery [22, 25] and loss
prevention techniques [3, 14], are not as effective for ultra-low la-
tency streaming. This is because most of those solutions aim to
mitigate the impact of network interruptions rather than prevent
them from occurring.1 For ultra-low latency video applications,
the stringent latency constraints leave too limited buffering capac-
ity to counteract even mild network fluctuations and thus result
in frequent video stalls. Our analysis of a large-scale Quality-of-
Service(QoS) dataset from a commercially operating cloud gaming
platform (§2.1) reveals that over half of users experience video

1Although forward error correction(FEC) has been widely adopted in real-time stream-
ing, it can only effectively prevent random packet loss rather than the burst loss in
most real-world scenarios [26].

https://doi.org/10.1145/3581783.3613443
https://doi.org/10.1145/3581783.3613443
https://doi.org/10.1145/3581783.3613443

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Haiping Wang et al.

freeze for more than 5.2% of their session time - a far from satisfac-
tory experience.

Nevertheless, our data analysis (§2.2) suggests a potential solution.
By simultaneously measuring Wi-Fi and cellular network condi-
tions, we observe that although neither consistently offers stable
service, it is rare for both to perform poorly at the same time. Stream-
ing on both Wi-Fi and cellular network paths concurrently allows
each path to serve as a backup when the other experiences fluctua-
tions. A multi-path transport framework can substantially reduce
video stalls, as long as not all paths are simultaneously congested.

Although multi-path transport has been extensively researched for
over a decade [10], an effective multi-path solution for ultra-low
latency video streaming remains elusive. Recent studies, such asMP-
DASH [11] and XLINK [33] propose novel scheduling algorithms
on top of transport layer multi-path protocols like MPTCP [13] and
MPQUIC [4] to improve video streaming performance. However,
these reliable transport protocols are not designed to discard data
from a congested path or adjust sending speed to minimize video
stalls. We argue that an ideal multi-path design for ultra-low latency
video should integrate video encoding, data allocation, application
layer FEC(Forward Error Correction), and network transport all
together to address various challenges (§2.3).

In this paper, we present TwinStar, a novel multi-path transport
framework for ultra-low latency video streaming. TwinStar’s core
concept, illustrated in Figure 1, involves dividing the original high-
frame-rate video into two independently encoded low-frame-rate
substreams and transmitting each substream via separate network
paths. If one network experiences fluctuations, the system can
seamlessly display the other low-frame-rate substream from the
stable network. The key design contributions of TwinStar are as
follows:

• Flexible Multi-path Framework (§3.1): TwinStar achieves ultra-
low latency multi-path transmission with a configurable frame-
work, that has different modes to cater to diverse performance
and cost requirements.

• Joint Rate Control (§3.2): We use separate video encoders to
eliminate stream dependency, and propose a joint rate control
algorithm to calculate encoding bitrate for both substreams, en-
suring consistent video quality for display.

• Bitrate Allocation (§3.3): We implement network-aware bitrate
allocation between the two paths to address network dynam-
ics and redistribute excessive bitrates from overloaded paths to
underutilized paths.

• Inter-Path FEC Recovery (§3.4): We allocate FEC parities packets
to paths separate from media packets, making TwinStar more
resilient against network loss than conventional intra-path FEC
methods.

We have implemented TwinStar and evaluated its performance
on real-world networks. The results indicate that TwinStar sig-
nificantly outperforms the start-of-art methods with 91% stalling
reduction, and 11% quality improvement.

2 MOTIVATION
In this section, we analyze the data from a commercial cloud gam-
ing system to evaluate the real-world performance of single-path
streaming and the potential improvements achievable through a
multi-path framework. We then discuss the key challenges associ-
ated with designing a practical multi-path transport framework.

2.1 Cloud Gaming Performance Analysis
We collaborated with ByteDance’s Volcengine2, and obtained a
cloud gaming dataset which was collected in June 2022, spanning
one month3. The dataset consists of each session’s access type (Wi-
Fi or cellular), average RTT, average Loss Rate, average interaction
latency (calculated by measuring the delay between user clicks and
corresponding frame displays), stall ratio (time spent on the stall
events4) and other related session information.

We first measure the average RTT and loss rate for each session
and presented the results in the form of a cumulative distribution
function (CDF) in Figure 2. Two observations can be made: Wi-Fi
performs better than cellular networks (as indicated by the curves
being further to the left), and a significant number of sessions suf-
fer from poor networking services. Despite the rapid growth of
overall network conditions [1, 30], providing stable and satisfac-
tory network services remains a significant challenge. This quality
degradation adversely affects high-level user engagement.

To illustrate this further, we calculate the distribution of interaction
latency, with the results shown in Figure 3 (top). We found that
about 63% of sessions in our dataset experience over 100 ms of
interaction latency.We also measure the stall ratio for one week and
present the results in Figure 3 (bottom). More than 50% of sessions
experience over 5.2% stall ratio. These results are unsatisfactory,
given that ultra-low latency users are extremely sensitive to latency
and stall events, demonstrating that the existing solution that relies
on single-path transmission is insufficient to meet ultra-low latency
service requirements.

2.2 Potential Multi-path Gain
Wedesign a new experiment to evaluate the potential improvements
a multi-path framework could offer over conventional single-path
streaming. We add an active probing module to Volcengine’s real-
time voice chat service to collect RTT and loss rate information from
all available paths every second5. This specific application is chosen
for three reasons: 1) it already implements multi-path transport and
sets up both Wi-Fi and cellular connections at the start; 2) it shares
the same edge cloud infrastructure with the previously mentioned
2Volcengine is a cloud service platform from ByteDance, offering services including
content delivery network, live streaming, real-time communication, cloud gaming,
and more.
3It is worth noting that the dataset contains no user privacy information. Users are
notified before streaming that the service is experimental and the network data is
collected for research purpose to improve user experience. Users need to give explicit
approval for streaming to start.
4The stall event is recorded when the gap between consecutive frames is larger than
a certain threshold 𝑡ℎ. We set 𝑡ℎ = 100ms in this paper. Other 𝑡ℎ settings are also
acceptable and will not lead to significant differences.
5By default the multi-path transport feature remains off for all users. The probing
module is only activated when the user explicitly checks the setting box to enable the
multi-path transport feature, which incurs cellular data cost and gives permission to
use network data for research purpose.

TwinStar: A Practical Multi-path Transmission Framework for Ultra-Low Latency Video Delivery MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Figure 2: The RTT and loss rate CDF for Wi-Fi
and cellular networks.

Figure 3: The interaction latency and stall ratio
of online cloud-gaming users.

Figure 4: Potential improvement when using
multi-path transmission

cloud gaming system; 3) the voice chat app is lightweight and
capable of recording network information at a finer granularity.

In total, we collect 1.6 million sessions covering 1.3 million unique
users frommore than twenty countries. We use this probing dataset
for a simple analysis to estimate multi-path potential benefits. We
compare two analysis methods: Single-best (upper-bound of single-
path transmission), which analyzes both Wi-Fi and cellular net-
works and selects the best path to send all frames, and Multi-best,
which dynamically selects the best path for each frame. In practice,
for each session, we calculate the average value of RTT and loss rate
for both Wi-Fi and cellular and select the better value of the two
(in this case, the lower value is better) to represent the Single-best
value of the session. To calculate theMulti-best value, we compare
at the second level and only picked the better value between Wi-Fi
and cellular to calculate the session average.

We choose the top six countries with the most users and label them
from A to F. For each country, we first use the session average value
to calculate the country’s average and 99th percentile and then
plotted the reduction percentage of Multi-best over Single-best
in Figure 4. The results indicate that Multi-best performs much
better than Single-best in both RTT and loss rate, with consistent
improvements across different countries. Moreover,Multi-best’s
outperformance is particularly significant for optimizing tail per-
formance (E.g. Multi-best achieves 38% improvement in reducing
average RTT, but over 44% for 99-th percentile RTT of country
A). These observations demonstrate that while Wi-Fi and cellular
networks may experience fluctuations, it is uncommon for both
network paths to perform poorly simultaneously.

2.3 Multi-path Challenges
Although multi-path transmission has the potential to provide bet-
ter QoS, simply duplicating single-path to multi-path is inefficient.
We outline three key design challenges for a practical multi-path
streaming framework.

Design Challenge #1: stream dependency. Mere use of transport
layers multi-path protocols, such as MPTCP or MPQUIC, does not
work effectively for ultra-low latency video due to path heterogene-
ity and frame inter-dependence. This approach can cause Head-of-
Line (HoL) blocking, where frames from the faster path must wait

for those from the slower path to ensure reliability. To avoid HoL
blocking, it is crucial to ensure the video streams of each path can
be independently decoded. While copying the same video stream
for each path, like Re-MP [8], solves the dependency problem, it
results in significant overhead (i.e., 100% redundancy). Our design
goal is to generate independent video streams using less bandwidth
than Re-MP.

Design Challenge #2: bitrate allocation. Conventionally, real-time
video streaming dynamically updates the encoding video bitrate to
match the available network bandwidth. When network conditions
deteriorate, the streaming application typically reduces the video
encoding bitrate to prevent network congestion. However, in the
multi-path scenario, it is not necessary to cut the video bitrate if the
transport framework can dynamically allocate excessive bits to the
uncongested path so that the video quality maintains. Furthermore,
the multi-path framework may need to support flexible bitrate
allocation strategies to maintain the advantages of multi-path as
well as meet application need, such as minimizing cellular data
usage particularly in areas where the cost of cellular data remains
high.

Design Challenge #3: data recovery. Although using multiple
paths prevents video stalls when only one path losses packets,
the streaming framework still needs to improve the efficiency of
data recovery because it requires data from all paths to deliver the
best quality video. FEC is widely used as a recovery method to
overcome packet loss in ultra-low latency applications. However,
high FEC packet volume can decrease video encoding bitrate when
both types of packets share the same path. Existing data recovery
strategies typically respond to high packet loss rates by increasing
the number of FEC packets, which may worsen network conditions.
One advantage of a multi-path framework is that it can use another
path to pass recovery data, such as XLINK [33], which uses a dif-
ferent path for retransmission. The multi-path framework design
should also consider adding inter-path recovery to further improve
streaming performance.

3 SYSTEM DESIGN
In this section, we present TwinStar. Our design aims to meet the
following goals: (1) eliminate HoL blocking between different paths
with less than 100% overhead; (2) support dynamically allocating

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Haiping Wang et al.

Joint Rate Control Inter-path FEC
Allocation

Video Decoder

Video Decoder
Stream#1

Stream#2
Packet Decoder

Packet Decoder

Independent Streaming Inter-path FEC

FEC#1
FEC#2

Inter-path FEC

Receiver-side Feedback

Bitrate
Allocation

Path-2

Packet Encoder Path-1

Packet Encoder

F3
F1 F2 F3 F4

F2 F4

Streams
Display Diff

Raw frames

F1
Video Encoder

Video Encoder

Short
Jitter
Buffer

Figure 5: The framework overview and workflow of TwinStar.

excessive data from congested paths to transmit via underutilized
paths; (3) enable inter-path data recovery to outperform intra-path
recovery efficiency; and (4) make the framework flexible for real-
world use.

3.1 Overview
We present the design of TwinStar framework in Figure 5. The
server sends the original uncompressed video stream to the bitrate
allocation module, which divides the frames with 1:1 ratio into
two separate streams and encodes them using different video en-
coders. Encoded Stream #1 and Stream #2 are then transmitted over
Wi-Fi and cellular paths, respectively. Additionally, each stream is
protected by an individual FEC encoder that generates and trans-
mits protection packets using different paths. On the receiver side,
Stream #1 and Stream #2 are decoded separately and then merged
to display the final output. If any path congestion occurs (e.g., if
Stream #1 on the Wi-Fi path experiences congestion), the decoded
video from the other path (i.e., Stream #2 on the cellular path) can
be displayed directly with a reduced frame rate without blocking.
The frame rate will soon resume by increasing recovery packets
from the non-congested path, based on feedback from the receiver
(i.e., FEC#1). Moreover, the short jitter buffer on the receiver side
allows the faster stream to wait a brief period for the slower stream
to catch up, preventing frame drops.

TwinStar also allows applications to configure the framework to
better meet their specific needs. For example, if users are sensitive
to cellular data cost, the application provider may want to mini-
mize bandwidth consumption on the cellular path. In such cases,
TwinStar can be configured to operate in a bandwidth-saving mode,
which only encodes the full video as one stream (using one encoder
and decoder) and transmits media data over the Wi-Fi path. By
doing so, the bandwidth cost on the cellular path is minimized, as
it only needs to transmit inter-path FEC traffic when the Wi-Fi
path experiences packet loss and high RTT. This mode can still
outperform single-path transmission, as it can assist the Wi-Fi path
in data recovery without affecting the original video stream (as
demonstrated in §5).

For the rest of the section, we will introduce in details three key
modules in TwinStar’s design: joint rate control, network-aware
bitrate allocation, and inter-path FEC recovery.

3.2 Joint Rate Control
To eliminate the stream dependency between two paths, we use
two individual video encoders to encode the video frame allocated
to each path. These substreams can be transmitted and displayed
independently without head-of-line blocking or merged together
to aggregate the bandwidth of multipath.

However, merely utilizing two default real-time encoders to gener-
ate independent streams may lead to quality fluctuations, which can
adversely impact the user experience when merging two streams.
Several factors can lead to such quality differences. Firstly, real-
time video encoders often employ the variable bitrate rate control
(VBR) algorithm that adjusts the encoding bitrate based on the path-
level estimated bandwidth. In an environment with heterogeneous
bandwidth, the encoding bitrate of the two encoders may differ
significantly. Secondly, the complexity of the source video put into
each encoder may vary in terms of frame content and frame rate.
Even if both encoders use the same bitrate, the encoded picture
quality between them may differ.

To solve the problem, we use a framerate-bitrate model for joint
rate control, which enables two encoders to synchronize encoding
quality. The model is first employed in [16] and illustrated as Eq.(1),
where 𝑡 is the input framerate, 𝑡𝑚𝑎𝑥 is the max framerate of the
video source, and the normalized bitrate 𝑅𝑡 (𝑡) = 𝑅(𝑡) / 𝑅(𝑡𝑚𝑎𝑥).
The parameter 𝑏 indicates how fast the bitrate decreases with a
reduction in framerate, while maintaining consistent video quality.
With this model, we can estimate the bitrate relationship between
the two encoders and calculate the target bitrate of each stream
that satisfies their bandwidth restriction.

𝑅𝑡 (𝑡) = (𝑡/𝑡𝑚𝑎𝑥)𝑏 (1)

In the offline stage, we use a large number of video sequences
covering different scenarios to train the model parameter 𝑏. We
have found that the model fits very well and remains stable in most
situations. This means that we can use well-trained parameters
in the online system for quality synchronization. At runtime, the
model is integrated to update the two encoders by taking the frame
rate allocation as input and the target bitrate for two streams as
output.

3.3 Network-aware Bitrate Allocation
The bitrate allocation module is responsible for dividing video
traffic into two paths. By decoupling data allocation and encoding,
we can enable flexible video split strategies. By default, TwinStar

TwinStar: A Practical Multi-path Transmission Framework for Ultra-Low Latency Video Delivery MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

uses a simple 1:1 round-robin split strategy, which allocates frames
evenly to two video encoders6. This strategy is easy to implement
and can provide at least half of the full frame rate to avoid stalls,
regardless of which path becomes congested. Our experimental
results demonstrate that, despite using such a simple strategy, we
still outperform state-of-the-art methods (as shown in §5).

The bitrate allocation also needs to consider network dynamics.
When the estimated bandwidth of a path deteriorates and the en-
coding rate drops, the encoding rate of the other high-bandwidth
path is also decreased in order to match the synchronized quality.
This could result in low bandwidth utilization and unnecessary low
encoding quality.

The fundamental idea of TwinStar is to dynamically offload exces-
sive bits to the uncongested path so that the video quality maintains.
First, we use a bandwidth threshold 𝜃 to identify the low-bandwidth
scenario. When a path gets congested and the estimated bandwidth
decrease to lower than 𝜃 , we check whether there exists idle band-
width resource on another path. If there is, then the constrained
path will 1) use adjusted bandwidth constraint (i.e. local-path band-
width plus left bandwidth from another path) for joint rate control;
2) randomly drop part of frames from encoded sub-stream to ensure
transmission data do not exceed local-path capacity; 3) increase the
ratio of inter-path FEC on the dropped frame to 100% to ensure the
recovery of dropped frames.

3.4 Inter-path FEC Recovery
Inter-path FEC Allocation. TwinStar follows a basic recovery
principle of transmitting FEC packets through a different path from
the media data to prevent simultaneous stream failure. For instance,
if theWi-Fi path becomes congested, neither FEC packets nor media
packets can be received in intra-path FEC protection methods. This
ultimately leads to the failure of stream #1. In contrast, with inter-
path FEC protection methods, even if media packets are congested
in the Wi-Fi path, stream #1 can be recovered by using the FEC
packets from the cellular path.

Specifically, TwinStar needs to decide how many FEC packets
should be generated and how to allocate them within the avail-
able bandwidth. The FEC allocation strategy is illustrated in Al-
gorithm 1. Firstly, for the calculation of the FEC ratio, we follow
the approach used in WebRTC, which is based on the packet loss
rate. The difference is that we use the packet loss rate and media
packet count of the other path to calculate the FEC count of the
current path (lines 1-4). Note that if low-bandwidth offloading is
triggered, the relative inter-path FEC ratio will be directly set to
100%. Secondly, when transmitting FEC packets across paths, we
also need to consider the bandwidth allocation between FEC and
media data. If both paths have sufficient bandwidth, the FEC data
is transmitted across paths directly (as in lines 5-6). If one path has
insufficient bandwidth but the other is sufficient, the FEC payload is
offloaded into the sufficient path (as in lines 7-14). If both paths have
insufficient bandwidth, we adjust the bitrates of the two streams
to ensure that the total data volume does not exceed the available
bandwidth (as in lines 15-17).
6In future work, we will explore the integration of more complex split strategies (such
as the classic scheduling algorithm in [13]) into TwinStar.

Algorithm 1: Inter-path FEC Allocation Algorithm
Input: 𝑏𝑤1, 𝑏𝑤2, 𝑙𝑜𝑠𝑠1, 𝑙𝑜𝑠𝑠2,𝑚𝑒𝑑𝑖𝑎𝑏𝑟1,𝑚𝑒𝑑𝑖𝑎𝑏𝑟2
Output: 𝑓 𝑒𝑐𝑏𝑟1, 𝑓 𝑒𝑐𝑏𝑟2

1 𝑓 𝑒𝑐𝑏𝑟1 =𝑚𝑒𝑑𝑖𝑎𝑏𝑟1 · 𝑙𝑜𝑠𝑠1
2 𝑓 𝑒𝑐𝑏𝑟2 =𝑚𝑒𝑑𝑖𝑎𝑏𝑟2 · 𝑙𝑜𝑠𝑠2
3 Δ1 = 𝑏𝑤1 − (𝑚𝑒𝑑𝑖𝑎𝑏𝑟1 + 𝑓 𝑒𝑐𝑏𝑟2)
4 Δ2 = 𝑏𝑤2 − (𝑚𝑒𝑑𝑖𝑎𝑏𝑟2 + 𝑓 𝑒𝑐𝑏𝑟1)
5 if Δ1 > 0 and Δ2 > 0 then
6 return;
7 else if Δ1 > 0 and Δ2 ≤ 0 and |Δ2 | < Δ1 then
8 𝑓 𝑒𝑐𝑏𝑟1 = 𝑏𝑤2 −𝑚𝑒𝑑𝑖𝑎𝑏𝑟2
9 𝑓 𝑒𝑐𝑏𝑟2+ = |Δ2 |

10 end
11 else if Δ2 > 0 and Δ1 ≤ 0 and |Δ1 | < Δ2 then
12 𝑓 𝑒𝑐𝑏𝑟2 = 𝑏𝑤1 −𝑚𝑒𝑑𝑖𝑎𝑏𝑟1
13 𝑓 𝑒𝑐𝑏𝑟1+ = |Δ1 |
14 end
15 else
16 inform rate control to adjust𝑚𝑒𝑑𝑖𝑎𝑏𝑟1,𝑚𝑒𝑑𝑖𝑎𝑏𝑟2
17 end

Receiver-feedback FECAdjustment.Relying solely on the sender’s
state to determine the FEC ratio may not achieve the expected effect
in real-world scenarios. Since network bursts and dynamics are
often unpredictable, once the number of FEC packets falls below
the number of lost packets, all FEC protection will fail [21, 25].
Fortunately, we have observed that under the multi-path frame-
work, the states of the two streams can provide good guidance for
FEC adjustment. For example, if stream #1 significantly falls behind
stream #2, it means that it is congested and its FEC protection is
not sufficient for recovery. The sender should increase the FEC
ratio of stream #1 until the playback progress of the two streams
is equal. This insight allows us to use the difference in playback
progress between the two streams as a compass for FEC recovery
efficiency perception and adjustment.

Overall, we design a double-threshold dynamic adjustment mecha-
nism, which works as follows:

• The receiver periodically updates the playback progress differ-
ence between the two streams and sends a notification to the
sender. The metric is calculated as the number of video frames
that lag behind in the late stream.

• The sender uses two thresholds to adjust the FEC ratio based on
receiver-side feedback. i) If the difference in playback progress is
greater than threshold 𝛼 , the sender increases the FEC ratio of
the lagging stream to provide full protection; ii) If the difference
decreases to lower than threshold 𝛽 , the sender decreases the
FEC ratio of the lagging stream to the baseline value, which
is calculated by the sender based on the loss rate of the paths.
Parameters 𝛼 and 𝛽 can be assigned using empirical values.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Haiping Wang et al.

4 IMPLEMENTATION
Multipath Extensions. TwinStar extends WebRTC to support
multipath transport for real-time video based on [29]. In particular,
TwinStar uses a separate space to allocate packet sequence numbers
in different paths. This enables the receiver to determine subpath-
related packet jitter and packet loss. Similar to single transmission,
sub-path transmission in TwinStar uses negative acknowledgment
(NACK) for loss detection and packet retransmission. Additionally,
we introduce a two-level Real-Time Control Protocol (RTCP). The
top-level RTCP reports receiver-side feedback to support FEC ad-
justment. The second-level RTCP reports separately by two paths,
which enables individual sender reports and receiver reports to
maintain path-level congestion control.

Video Encoders and Decoders. To enable correct frame compres-
sion and displaying, TwinStar use a separate frame sequence space
(i.e. local frame ID) by each encoder for video decoding, and use a
global frame sequence space (i.e. global frame ID) for video display.
The local frame ID can help decoders find correct reference relation-
ships and decode frames. The global frame ID is useful in finding
the correct displaying order and discarding outdated frames.

FEC Encoders and Decoders. To enable inter-path FEC, TwinStar
move the FEC packet encoding and decoding module from the sub-
path transport layer to the application layer. When video frames are
compressed, the FEC encoding module will generate frame-level
protection packets. By using the global frame ID as a grouping key,
FEC packets can be delivered with any paths and can be successive
to recover. The FEC decoder in the receiver collects FEC packets
from all network pipelines, mapping them with global frame ID,
and transfers recovered media packets to relative video decoders.

Short Jitter Buffer. The buffer performs two key functions: first,
NACK can wait for a short period of time for the arrival of the
FEC packet from the other path instead of an immediate request.
Second, a received frame can wait for a short time instead of directly
sending to the decoder, to avoid the next frame from the other path
becoming outdated and discarded. For ultra-low latency, we set
the buffer length to the 100ms threshold minus current interaction
latency, as exceeding 100ms might affects user experience.

Path Management. Besides connectivity, TwinStar put a require-
ment of latency on path availability. Specifically, TwinStar requires
the RTT difference of two paths no greater than the length of the
short jitter buffer. If the delay requirement is not met, TwinStar
will revert to a single-path transmission. Since the slower stream
will always be late and discarded by the receiver, streaming such a
stream will not only waste bandwidth but also incurs unnecessary
codec resources.

Integration with Applications and CDN Server A TwinStar
client is written in C++with 13k LoC, including video decoders, FEC
decoders and short jitter buffer, which is integrated into an Android
App. TwinStar offers APIs for applications to pass parameters(e.g.
mode). A TwinStar server is also written in C++ with 20k LoC
including video encoders and FEC encoders and related algorithms,
which is deployed in commercial servers equipped with hardware
codecs.

5 EVALUATION
5.1 Methodology
Baselines. We compare TwinStar with the following three base-
lines, all of which are implemented on top of WebRTC:

⊲ Single-path (denoted as Single) [9]: This algorithm represents the
state-of-art single-path streaming, which utilizes multiple recovery
techniques to handle packet loss, such as NACK, FEC and IDR. By
default, Wi-Fi access takes priority over cellular network access for
users.

⊲ Vanilla Multi-path (denoted as Vanilla-MP): This algorithm repre-
sents the state-of-art multi-path streaming with a default MinRTT
scheduler and traditional intra-path recovery techniques. The im-
plementation of Vanilla-MP is mainly based on the design principles
of MPTCP [13, 24].

⊲ ReMP [8]: This algorithm duplicates each packet, and sends them
through two paths. Although this method requires a 100% redun-
dancy and is inappropriate to serve online users, it can be used to
evaluate the improvement space of multi-path transmission on loss
rate and RTT reduction.

Performance Metrics. The comparison consists of two parts,
which are QoE and bandwidth cost. For QoE, we consider two
industrial standard metrics including stall ratio (denoted as Stall)
and Peak Signal-to-Noise Ratio (denoted as PSNR). Stall cares about
the time spent on stall event; PSNR represents the video quality.
For the cost, we compare the bandwidth costs when all baselines
achieve the same PSNR.

Environmental Setup.Through cooperationwith the cloud-gaming
platform, we have deployed TwinStar in the real world and con-
ducted a large-scale test spanning one week (from March 1st to
8th, 2023). The users come from five cities (denoted as 𝐷1 to 𝐷5)
in China, and all of them are equally divided to run with different
algorithm.

5.2 Results and Discussion
QoE Gains: We first analyze QoE, and Table 1 shows the aver-
age experimental results of all sessions (the values in parentheses
represent the 95th percentile stall ratio and 5th percentile PSNR,
respectively). In terms of stall ratio, TwinStar significantly outper-
forms Single and achieves results comparable to the improvement
space of multipath transmission (i.e. ReMP). Take 𝐷1 as an example,
TwinStar reduces average stall by 91% and reduces 95th percentile
stall by 93%, leveraging multipath transmission and HoL blocking
elimination to effectively reduce stall events. We confirm that the
outperformance of TwinStar is consistent among all regions, and
becomes more significant for tail optimization. However, despite
utilizing multiple paths, Vanilla-MP fails to decrease stall and per-
forms even worse than Single. For example, in 𝐷2, there is a 7.4%
increase in average stall ratio and a 24% increase in 95th percentile
stall ratio. Due to its susceptibility to HoL blocking and poor per-
formance in highly dynamic networks [33], Vanilla-MP results in a
higher tail stall than Single in ultra-low latency streaming.

In terms of PSNR, TwinStar achieves the best performance among
all baselines. For example, in the region 𝐷1, TwinStar improves the

TwinStar: A Practical Multi-path Transmission Framework for Ultra-Low Latency Video Delivery MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Table 1: The evaluation on real-world deployment.

Single Vanilla-MP TwinStar-S TwinStar ReMP
Stall (%) PSNR (dB) Stall (%) PSNR (dB) Stall (%) PSNR (dB) Stall (%) PSNR (dB) Stall (%) PSNR (dB)

𝐷1 8.3 (21.3) 28.4 (24.8) 9.3 (27.5) 28.2 (25.8) 3.1 (8.9) 28.8 (26.4) 0.7 (1.5) 31.7 (28.6) 0.4 (1.1) 28.9 (26.5)
𝐷2 8.1 (20.4) 28.3 (24.6) 8.7 (25.3) 28.5 (26.7) 3.3 (9.2) 28.5 (26.2) 0.8 (1.6) 31.8 (28.5) 0.5 (1.4) 28.4 (26.1)
𝐷3 6.1 (15.9) 28.2 (24.1) 7.1 (17.3) 28.7 (26.8) 3.0 (8.9) 29.1 (26.7) 0.6 (1.1) 31.5 (28.1) 0.2 (0.4) 29.1 (26.8)
𝐷4 7.5 (19.8) 28.7 (24.6) 9.0 (26.7) 28.2 (26.1) 3.1 (9.0) 28.9 (26.5) 0.8 (1.8) 31.4 (28.2) 0.3 (1.0) 28.7 (26.4)
𝐷5 7.2 (16.4) 28.2 (24.2) 8.6 (20.7) 27.6 (25.3) 2.7 (8.5) 29.3 (26.8) 0.4 (0.7) 31.6 (28.4) 0.2 (0.6) 28.9 (26.6)

average and 95th percentile PSNR by 12% and by 15% respectively,
as compared to Single. What’s more, TwinStar also significantly
outperforms the second-best baseline (i.e., ReMP). This is rational:
although both TwinStar and ReMP leveragemulti-path transmission
without path dependency, however, through video splitting and
sub-stream encoding instead of copying, TwinStar can aggregate
the bandwidth of two paths and therefore higher bitrate.

At the same time, we also demonstrate the configurability of Twin-
Star. Specifically, it is set to the bandwidth-saving mode that only
uses theWi-Fi path to send video data and uses cellular path to send
inter-path FEC. The results are also presented in Table 1 (denoted
as TwinStar-S). We can see that TwinStar-S still significantly out-
performs Single in all QoE metrics. Across all regions, TwinStar-S
achieves a 63% reduction on average stall and 2% improvement
on average PSNR as compared to Single. Meanwhile, as shown in
Table 2, TwinStar-S effectively reduces data usage7 on the cellular
path to as low as 17% of the Wi-Fi path.

Table 2: Normalized data usage of TwinStar and TwinStar-S.

Wi-Fi Cellular Total
TwinStar 0.568 0.432 1.000
TwinStar-S 0.547 0.096 0.643

Bandwidth Cost: We assess bandwidth costs by comparing the
normalized bandwidth cost of different algorithms, using a target
PSNR. In dynamic networks, maintaining consistent encoding qual-
ity across systems is difficult. Therefore, we evaluate the amount of
video data that needs to be transmitted under a fixed PSNR setting,
without considering the cost of FEC data. We use four different
games, i.e. Stickfight, Beheweled, Honor of King, and Maplestory.
The results are shown in Figure 6. From the results, we can derive
the following findings. First of all, Single and Vanilla-MP achieve the
lowest bandwidth costs by employing non-redundant data trans-
mission, resulting in a bandwidth cost equal to the media bitrate.
Second, the bandwidth cost of TwinStar is slightly higher than Sin-
gle (from 1.08× to 1.32×), but significantly lower than ReMP. This is
rational: on the one hand, TwinStar uses two independent encoders,
which will decrease the encoding efficiency (more I frames and
increasing the difference between frames); on the other hand, as
ReMP duplicates packets on all paths, it will need 2× traffic to the
media bitrate. Considering the benefits we obtain in terms of QoE,
we believe that the bandwidth overhead is acceptable.
7Data usage is normalized by dividing the maximum element in the table (i.e., the total
data usage in TwinStar).

5.3 Framework Deep Dive
We conduct the ablation study and illustrate the necessity of each
component in TwinStar’s design. The experiment is performed in a
controlled server where we can configure the path characteristics.

HoL Blocking: We first demonstrate that our two-encoder de-
sign effectively eliminates the HoL blocking problem. We collected
cellular and Wi-Fi traces in a shopping mall and conducted a trace-
driven evaluation using Mahimahi emulation tools [20]. One of the
traces is plotted on the right-hand side of Figure 7, from which we
can observe that the latency of both paths is highly variable. We
compare TwinStar and TwinStar with only one encoder, and focus
on the length of blocked frames in the receiver buffer. The results
are presented on the left-hand side of Figure 7. We observed that
TwinStar with a single encoder cannot handle path heterogeneity
well and its queue length keeps growing as 𝛿𝑅𝑇𝑇 increases. In con-
trast, TwinStar consistently performs well even with high 𝛿𝑅𝑇𝑇 ,
which can also explain the low stall ratio observed in §5.2.

Rate Control: Furthermore, we demonstrate the necessity of the
joint rate control when merging streams from two paths. We mea-
sure the variation in PSNR (denoted as 𝛿𝑃𝑆𝑁𝑅) between two adja-
cent frames to indicate quality fluctuation, where a smaller 𝛿𝑃𝑆𝑁𝑅

indicates better stability. We conduct experiments on four games,
and Figure 8 shows the 𝛿𝑃𝑆𝑁𝑅 of TwinStar with and without joint
rate control. We observed that without the rate control algorithm
(i.e., when the bitrate of each stream is set to the available band-
width of that path), the merged stream suffers from significant
PSNR variation of 3-6 dB on average, which can negatively impact
the user’s viewing experience. In contrast, the joint rate control
algorithm maintains an average 𝛿𝑃𝑆𝑁𝑅 of less than 0.2 dB, resulting
in a much more stable stream and higher user engagement.

Recovery Efficiency: Finally, we evaluate the impact of inter-
path FEC design on video bitrate and rendering frame rate. Bitrate
evaluates the rationality of FEC allocation, while frame rate reflects
on recovery effectiveness. We use frame rate instead of stall ratio
here because TwinStar uses two encoders, and therefore, the failure
of FEC recovery for one stream may not necessarily result in a stall
event. We set a 4Mbps bandwidth limit for both Wi-Fi and cellular
paths and introduce varying loss rates on the Wi-Fi path (the top
sub-figure in Figure 9). We observed that the bitrate and frame
rate with inter-path FEC are both higher than with intra-path FEC
(the middle and bottom sub-figures). This can be explained by our
inter-path design, which can effectively offload FEC traffic to the
more abundant cellular path when Wi-Fi has encountered high loss
rates (i.e., after 70s). The feedback-based FEC adjustment enables

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Haiping Wang et al.

Figure 6: The comparison of bandwidth cost. Figure 7: The necessity of two encoders.

Figure 8: The necessity of rate control algorithm. Figure 9: The necessity of inter-path recovery.

TwinStar to quickly resume the damaged stream (i.e., Wi-Fi stream)
and maintain a high frame rate for most of the time.

Computation Overhead: We also evaluated the computational
overhead of using two encoders and decoders. Table 3 presents
the CPU utilization and power consumption of TwinStar-S, which
employs one encoder/decoder instance, and TwinStar, which uses
two. The power consumption data of the server has been omitted
because the server is constantly powered on. The results show that
the CPU utilization for TwinStar on the server increased by only
3.30%, and the power consumption on the client increased by 2.72%
This is because, even though two encoder and decoder instances
were used, the total number of video frames remained the same.

Table 3: CPU utilization and power consumption.

Client Server
CPU Uti. (%) Power (mW) CPU Uti. (%)

TwinStar 16.07 3092.09 10.24
TwinStar-S 15.54 3008.05 9.84

6 RELATEDWORK
Ultra-low Latency Video Streaming Optimization.Many op-
timizations have been proposed to enhance the QoE of ultra-low
latency video streaming. Some focus on FEC[2, 15, 23], which trans-
mit redundant packets to achieve fast data recovery from loss events.
Some works, such as scalable video coding(SVC), have designed spe-
cial codec modes that support layer coding[12, 27]. Some works try

to recover from data loss by leveraging the independent data refresh
(IDR) frames[25] which can be decoded independently. Other works,
also focus on bitrate adaption[7, 32], frame rate control[19] and
middlebox modification[18] to improve the overall performance.
Although all of the above methods improve transmission efficiency
to some extent, they are limited by single-network resources, espe-
cially when the network is in bad condition.

Multi-networking Transmission for Video Streaming.MPTCP
was standardized by IETF in 2013[6, 24]. By enabling end hosts to
leverage multiple NICs, MPTCP greatly improves transmission
efficiency. Based on MPTCP, MP-DASH[11] introduces support for
the DASH framework and it can provide better support for video
services by taking interface preferences from users. Different from
MP-DASH’s tight integration with TCP, the userspace property
of MPQUIC provides a more flexible design space[4, 5]. However,
existing schemes still suffer from the hair-trigger HoL blocking,
leading to a poor performance in ultra-low latency video streaming.

7 CONCLUSION
We have described TwinStar, a flexible multipath framework for
ultra-low latency video delivery. Observing that the probability
of two paths simultaneously encountering issues is much lower
than that of a single path, TwinStar split video into two indepen-
dent substreams on distinct paths to avoid stalling. We show that
with minor bandwidth cost compared to single-path transmission,
TwinStar improve the QoE by 91% reduction on stall ratio and 11%
improvement on PSNR.

TwinStar: A Practical Multi-path Transmission Framework for Ultra-Low Latency Video Delivery MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. 2023. Bolt:

Sub-RTT Congestion Control for Ultra-Low Latency. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 219–236. https://www.usenix.org/conference/nsdi23/presentation/
arslan

[2] Ke Chen, Han Wang, Shuwen Fang, Xiaotian Li, Minghao Ye, and H Jonathan
Chao. 2022. RL-AFEC: adaptive forward error correction for real-time video
communication based on reinforcement learning. In Proceedings of the 13th ACM
Multimedia Systems Conference. 96–108.

[3] Sheng Cheng, Han Hu, and Xinggong Zhang. 2023. ABRF: Adaptive BitRate-FEC
Joint Control for Real-Time Video Streaming. IEEE Transactions on Circuits and
Systems for Video Technology (2023).

[4] QD Coninck and Olivier Bonaventure. 2020. Multipath Extensions for QUIC (MP-
QUIC). IETF, Individual Submission, Internet Draft draftdeconinck-quic-multipath-
04 (2020).

[5] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath quic: Design
and evaluation. In Proceedings of the 13th international conference on emerging
networking experiments and technologies. 160–166.

[6] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. TCP
extensions for multipath operation with multiple addresses. Technical Report.

[7] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify: Low-latency network video through tighter in-
tegration between a video codec and a transport protocol. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 267–
282.

[8] Alexander Frommgen, Tobias Erbshäußer, Alejandro Buchmann, Torsten Zim-
mermann, and Klaus Wehrle. 2016. ReMP TCP: Low latency multipath TCP. In
2016 IEEE international conference on communications (ICC). IEEE, 1–7.

[9] Google. 2018. WebRTC Home. https://webrtc.org/.
[10] Sana Habib, Junaid Qadir, Anwaar Ali, Durdana Habib, Ming Li, and Arjuna

Sathiaseelan. 2016. The Past, Present, and Future of Transport-Layer Multipath.
Journal of Network and Computer Applications 75 (01 2016). https://doi.org/10.
1016/j.jnca.2016.09.005

[11] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH:
Adaptive video streaming over preference-aware multipath. In Proceedings of
the 12th International on Conference on emerging Networking EXperiments and
Technologies. 129–143.

[12] Yi-Mao Hsiao, Chia-Hsiang Chen, Jeng-Farn Lee, and Yuan-sun Chu. 2012. De-
signing and implementing a scalable video-streaming system using an adaptive
control scheme. IEEE Transactions on Consumer Electronics 58, 4 (2012), 1314–
1322.

[13] IP Networking Lab. 2019. Linux Kernel Implementation. https://multipath-
tcp.org/.

[14] Insoo Lee, Seyeon Kim, Sandesh Sathyanarayana, Kyungmin Bin, Song Chong,
Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2022. R-FEC: RL-based FEC Ad-
justment for Better QoE in WebRTC. In Proceedings of the 30th ACM International
Conference on Multimedia. 2948–2956.

[15] Yanlin Liu and Mark Claypool. 1999. Using redundancy to repair video damaged
by network data loss. In Multimedia Computing and Networking 2000, Vol. 3969.
SPIE, 73–84.

[16] ZhanMa,Meng Xu, Yen-Fu Ou, and YaoWang. 2012. Modeling of Rate and Percep-
tual Quality of Compressed Video as Functions of Frame Rate and Quantization
Stepsize and Its Applications. IEEE Transactions on Circuits and Systems for Video
Technology 22 (05 2012), 671–682. https://doi.org/10.1109/TCSVT.2011.2177143

[17] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the conference of the ACM special
interest group on data communication. 197–210.

[18] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. 2022. Achieving consistent low latency for wireless real-
time communications with the shortest control loop. In Proceedings of the ACM
SIGCOMM 2022 Conference. 193–206.

[19] Zili Meng, TingfengWang, Yixin Shen, BoWang, Mingwei Xu, Rui Han, Honghao
Liu, Venkat Arun, Hongxin Hu, and Xue Wei. 2023. Enabling High Quality Real-
Time Communications with Adaptive Frame-Rate. In USENIX NSDI.

[20] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (Santa Clara, CA) (USENIX ATC ’15). USENIX Association,
USA, 417–429.

[21] Colin Perkins and Orion Hodson. 1998. Options for repair of streaming media.
Technical Report.

[22] Dimitri Podborski, Yago Sanchez, Robert Skupin, Cornelius Helige, and Thomas
Schierl. 2017. Tile based panoramic streaming using shifted IDR representations.
In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE,
565–570.

[23] Rohit Puri, Kannan Ramchandran, Kang-Won Lee, and Vaduvur Bharghavan.
2001. Forward error correction (FEC) codes based multiple description coding for
Internet video streaming and multicast. Signal Processing: Image Communication
16, 8 (2001), 745–762.

[24] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard
can it be? designing and implementing a deployable multipath {TCP}. In 9th
{USENIX} symposium on networked systems design and implementation ({NSDI}
12). 399–412.

[25] Devdeep Ray, Vicente Bobadilla Riquelme, and Srinivasan Seshan. 2022. Prism:
Handling Packet Loss for Ultra-low Latency Video. In Proceedings of the 30th
ACM International Conference on Multimedia. 3104–3114.

[26] Michael Rudow, Francis Y. Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and K.V. Rashmi. 2023. Tambur: Efficient loss recovery for videocon-
ferencing via streaming codes. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 953–971.
https://www.usenix.org/conference/nsdi23/presentation/rudow

[27] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the
scalable video coding extension of the H. 264/AVC standard. IEEE Transactions
on circuits and systems for video technology 17, 9 (2007), 1103–1120.

[28] Shu Shi, Varun Gupta, and Rittwik Jana. 2019. Freedom: Fast recovery enhanced
vr delivery over mobile networks. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services. 130–141.

[29] Varun Singh, Saba Ahsan, and Jörg Ott. 2013. MPRTP: multipath considerations
for real-time media. In Proceedings of the 4th ACMMultimedia Systems Conference.
190–201.

[30] Ping Yang, Yue Xiao, Ming Xiao, and Shaoqian Li. 2019. 6G wireless communica-
tions: Vision and potential techniques. IEEE network 33, 4 (2019), 70–75.

[31] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication.
325–338.

[32] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping Wang, Xinyu
Zhang, Huadong Ma, Leilei Wu, Aiyun Chen, and Changhui Wu. 2021. Loki:
improving long tail performance of learning-based real-time video adaptation
by fusing rule-based models. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking. 775–788.

[33] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. 2021. Xlink: Qoe-driven
multi-path quic transport in large-scale video services. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference.

https://www.usenix.org/conference/nsdi23/presentation/arslan
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://webrtc.org/
https://doi.org/10.1016/j.jnca.2016.09.005
https://doi.org/10.1016/j.jnca.2016.09.005
https://multipath-tcp.org/
https://multipath-tcp.org/
https://doi.org/10.1109/TCSVT.2011.2177143
https://www.usenix.org/conference/nsdi23/presentation/rudow

	Abstract
	1 Introduction
	2 Motivation
	2.1 Cloud Gaming Performance Analysis
	2.2 Potential Multi-path Gain
	2.3 Multi-path Challenges

	3 System Design
	3.1 Overview
	3.2 Joint Rate Control
	3.3 Network-aware Bitrate Allocation
	3.4 Inter-path FEC Recovery

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Results and Discussion
	5.3 Framework Deep Dive

	6 Related Work
	7 Conclusion
	References

