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ABSTRACT

Despite the recent success of machine learning (ML) in materials science, its suc-
cess heavily relies on the structural description of crystal, which is itself computa-
tionally demanding and occasionally unattainable. Stoichiometry descriptors can
be an alternative approach, which reveals the ratio between elements involved to
form a certain compound without any structural information. However, it is not
trivial to learn the representations of stoichiometry due to the nature of materi-
als science called polymorphism, i.e., a single stoichiometry can exist in multi-
ple structural forms due to the flexibility of atomic arrangements, inducing un-
certainties in representation. To this end, we propose PolySRL, which learns
the probabilistic representation of stoichiometry by utilizing the readily available
structural information, whose uncertainty reveals the polymorphic structures of
stoichiometry. Extensive experiments on sixteen datasets demonstrate the superi-
ority of PolySRL, and analysis of uncertainties shed light on the applicability of
PolySRL in real-world material discovery.

1 INTRODUCTION

Recently, ML techniques have found their applications in the field of materials science to analyze
the extensive amount of experimental and computational data available (Zhang et al., 2023; Wang
et al., 2023). However, the effectiveness of these ML models is not only influenced by the selection
of appropriate models but also reliant on the numerical descriptors used to characterize the systems
of interest. Although it is still an open problem to construct appropriate descriptions of materials,
there is a general agreement on effective descriptors that encompass the following principles (Huo
& Rupp, 2017; Faber et al., 2015; Bartók et al., 2013; Von Lilienfeld et al., 2015; Musil et al., 2021):
Descriptors should 1) preserve the similarity or difference between two data points (invariance), 2)
be applicable to the entire materials domain of interest (versatility), and 3) be computationally more
feasible to generate compared to computing the target property itself (computability).

Among various types of descriptors, there has been a notable surge of interest in using descrip-
tors based on the knowledge of crystal structure in materials science. In particular, as shown in
Figure 1(a), one can create graphical descriptions of crystalline systems by considering periodic
boundary conditions and defining edges as connections between neighboring atoms within a specific
distance (Xie & Grossman, 2018; Chen et al., 2019). However, these graphical descriptors depend
on the structural details of crystals, which are usually obtained through computationally demand-
ing and, in some cases, infeasible Density Functional Theory (DFT) calculations (Sholl & Steckel,
2022). As a result, graphical descriptors are limited by the same computational bottleneck as DFT
calculations, violating the principles of versatility and computability (Damewood et al., 2023).

An alternative approach to using graphical descriptors is to develop material representations solely
from stoichiometry, which refers to the ratio between elements involved in a chemical reaction to
form a compound, as shown in Figure 1(b) (Jha et al., 2018; Goodall & Lee, 2020). Despite its
simplicity, stoichiometry-based models have been shown to robustly offer a promising set of favor-
able elemental compositions for exploring new materials with cheap computational cost (Damewood
et al., 2023). However, this approach is inherently limited in that it overlooks the structural informa-
tion of crystals, leading to inferior performance compared to graphical models (Bartel et al., 2020)
given that structural details strongly influence the crystal properties, naturally prompting a question:
“Is it possible for stoichiometry-based models to also capture the structural information of crystals?”
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Figure 1: (a) Crystal structure of NaCl. (b), (c) Graphical and stoichiometry description of NaCl,
respectively. (d) Diamond and Graphite share a single stoichiometry but have different structures.

To answer the question, we propose a novel multi-modal representation learning framework for
stoichiometry that incorporates readily available crystal structural information (i.e., stoichiometry
and crystal structural information as multi-modal inputs), inspired by the recent success of multi-
modal contrastive learning approaches in various domains (Gan et al., 2022; Zong et al., 2023). For
example, in computer vision, CLIP (Radford et al., 2021) improves the zero-shot transferability of a
vision model by matching captions and images. Moreover, 3D Infomax (Stärk et al., 2022) improves
2D molecular graph representation in quantum chemistry by maximizing the mutual information
with its corresponding 3D molecular representations.

However, naively adopting existing multi-modal contrastive learning approaches to the stoichiome-
try representation learning task is non-trivial due to the intrinsic characteristics of crystal structures,
i.e., one-to-many relationship between stoichiometry and crystal structures stemming from the flexi-
bility of atomic arrangements, which is also known as polymorphism. In other words, solely relying
on stoichiometry would contradict the principle of invariance, especially for polymorphic materials
with the same stoichiometry. More specifically, polymorphism refers to the nature of a certain com-
pound to exist in different crystallographic structures due to different arrangements of atoms, result-
ing in totally different physical, and chemical properties (Bernstein, 2020). An illustrative example
of polymorphism is seen in the distinct forms of carbon: diamond and graphite (See Figure 1(c)).
Diamond has a tetrahedral lattice structure with each carbon atom bonded to four others, resulting in
its exceptional hardness and optical properties (Che et al., 2000; Kidalov & Shakhov, 2009). How-
ever, graphite has a planar layered structure where carbon atoms are bonded in hexagonal rings,
forming sheets that can easily slide past each other, giving graphite its lubricating and conducting
properties (Wissler, 2006; Jorio et al., 2008). Therefore, it is essential not only to obtain qualified
stoichiometry representations, but also to account for the uncertainties stemming from polymor-
phism for real-world material discovery, which has been overlooked in previous studies (Goodall &
Lee, 2020; Wang et al., 2021).

To this end, we propose Polymorphic Stoichiometry Representation Learning (PolySRL), which
aims to learn the representation of stoichiometry as a probabilistic distribution of polymorphs in-
stead of a single deterministic representation (Oh et al., 2018; Chun et al., 2021). In particular, by
assuming that polymorphs with an identical stoichiometry follow the same Gaussian distribution,
PolySRL models each stoichiometry as a parameterized Gaussian distribution with learnable mean
and variance vectors, whose distribution is trained to cover the range of polymorphic structures in
representation space. By doing so, we expect the mean of Gaussian distribution serves as the repre-
sentation of the stoichiometry, and the variance reflects the uncertainty stemming from the existence
of various polymorphic structures, enabling PolySRL to assess the degree to which the representa-
tion adheres to the principle of invariance. In this work, we make the following contributions:

• Recognizing the advantages and limitations of both structural and stoichiometry descriptors, we
propose a multi-modal representation learning framework for stoichiometry, called PolySRL,
which incorporates structural information of crystals into stoichiometry representations.

• To capture uncertainties of stoichiometry stemming from various polymorphs, PolySRL learns a
probabilistic representation for each stoichiometry instead of a deterministic representation.

• Extensive experiments on sixteen datasets demonstrate the superiority of PolySRL in learning
representation of stoichiometry and predicting its physical properties. Moreover, we observe that
measured uncertainties reflect various challenges in materials science, highlighting the applicabil-
ity of PolySRL for real-world material discovery.
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To the best of our knowledge, this is the first work that learns generalized representations of stoi-
chiometry by simultaneously considering the crystal structural information and the polymorphism
as uncertainty, which is crucial for the process of real-world material discovery. The source code for
PolySRL is available at https://anonymous.4open.science/r/PolySRL-8889.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS FOR MATERIALS

Recently, ML approaches have become game changers in the field of materials science, where tra-
ditional research has heavily relied on theory, experimentation, and computer simulation, which is
costly (Wei et al., 2019; Zhong et al., 2022; Zhang et al., 2023). Among various ML methods, graph
neural networks (GNNs) have been rapidly adopted by modeling crystal structures as graphical de-
scriptions inspired by the recent success of GNNs in biochemistry (Gilmer et al., 2017; Stokes et al.,
2020; Jiang et al., 2021; Huang et al., 2022). Specifically, CGCNN (Xie & Grossman, 2018) first
proposes a message-passing framework based on a multi-edge graph to capture interactions across
cell boundaries, resulting in highly accurate prediction for eight distinct material properties. Build-
ing upon this multi-edge graph foundation, MEGNet (Chen et al., 2019) predicts various crystal
properties by incorporating a physically intuitive strategy to unify multiple GNN models. Moreover,
ALIGNN (Choudhary & DeCost, 2021) proposes to utilize a line graph, in addition to a multi-edge
graph, to model additional structural features such as bond angles and local geometric distortions.
Despite the recent success of graph-based approaches, their major restriction is the requirement of
atomic positions, which are typically determined through computationally intensive and sometimes
infeasible DFT calculations. As a result, their effectiveness is mainly demonstrated in predicting
properties for systems that have already undergone significant computational effort, restricting their
utility in the materials discovery workflow (Damewood et al., 2023).

2.2 STOICHIOMETRY REPRESENTATION LEARNING

Material representations can be alternatively constructed solely based on stoichiometry, which in-
dicates the concentration of the constituent elements, without any knowledge of the crystal struc-
ture (Damewood et al., 2023). While stoichiometry has historically played a role in effective materi-
als design (Callister & Rethwisch, 1964; Pauling, 1929), it has been recently demonstrated that deep
neural networks (DNNs) tend to outperform conventional approaches when large datasets are avail-
able. Specifically, ElemNet (Jha et al., 2018) takes elemental compositions as inputs and trains
DNNs with extensive high-throughput OQMD dataset (Kirklin et al., 2015), showing improve-
ments in performance as the network depth increases, up to a point where it reaches 17 layers.
Roost (Goodall & Lee, 2020) utilizes GNNs for stoichiometry representation learning by creating a
fully connected graph in which nodes represent elements, allowing for the modeling of interactions
between these elements. Instead of the message-passing scheme, CrabNet (Wang et al., 2021) intro-
duces a self-attention mechanism to adaptively learn the representation of individual elements based
on their chemical environment. While these methods are trained for a specific task, PolySRL aims
to learn generalized stoichiometry representations for various tasks considering 1) the structural
information and 2) polymorphism in crystal, both of which have not been explored before.

2.3 PROBABILISTIC REPRESENTATION LEARNING

First appearing in 2014 with the introduction of probabilistic word embeddings (Vilnis & McCallum,
2014), probabilistic representations got a surge of interest from ML researchers by offering numer-
ous benefits in modeling uncertainty pertaining to a representation. Specifically, in the computer vi-
sion domain, Shi & Jain (2019) proposes to probabilistically represent face images to address feature
ambiguity in real-world face recognition. Moreover, Oh et al. (2018) introduces Hedged Instance
Embeddings (HIB), which computes a match probability between point estimates but integrates it
over the predicted distributions via Monte Carlo estimation. This idea has been successfully ex-
tended to cross-modal retrieval (Chun et al., 2021), video representation learning (Park et al., 2022),
and concept prediction (Kim et al., 2023). In this paper, we aim to learn a probabilistic represen-
tation of stoichiometry, where the uncertainties account for various polymorphs associated with a
single stoichiometry, enhancing the reliability of ML model for the material discovery process.
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3 PRELIMINARIES

3.1 STOICHIOMETRY GRAPH CONSTRUCTION

Given a stoichiometry, we use E = {e1, . . . , ene
} to denote its unique set of elements, and

R = {r1, . . . , rne
} to denote the compositional ratio of each element in the stoichiometry. We

construct a fully connected stoichiometry graph Ga = (E ,R,Aa), where Aa ∈ {1}ne×ne indicates
the adjacency matrix of a fully connected graph (Goodall & Lee, 2020). Then, we adopt GNNs
as the stoichiometry encoder fa, which aims to learn the stoichiometry representation by captur-
ing complex relationships between elements via the message-passing scheme. Additionally, Ga is
associated with an elemental feature matrix Xa ∈ Rne×F where F is the number of features.

3.2 STRUCTURAL GRAPH CONSTRUCTION

Given a crystal structure (P,L), suppose the unit cell has ns atoms, we have P =
[p1,p2, . . . ,pns

]
⊺ ∈ Rns×3 indicating the atom position matrix and L = [l1, l2, l3]

⊺ ∈ R3×3

representing the lattice parameter describing how a unit cell repeats itself in three directions.
Based on the crystal parameters, we construct a multi-edge graph Gb = (V,Ab) that captures
atom interactions across cell boundaries (Xie & Grossman, 2018). Specifically, vi ∈ V denotes
an atom i and all its duplicates in the infinite 3D space whose positions are included in the set
{p̂i|p̂i = pi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, where Z denotes the set of all the integers.
Moreover, Ab ∈ {0, 1}ns×ns denotes an adjacency matrix, where Ab

i,j = 1 if two atoms i and j are
within the predefined radius r and Ab

ij = 0 otherwise. Furthermore, a single stoichiometry graph Ga

is associated with a set of polymorphic crystal structural graphs PGa

, i.e., PGa

= {Gb
1, . . . ,Gb

np
},

where np is the number of polymorphs for the stoichiometry. Note that each node in Gb is associated
with a learnable feature xb ∈ RF , which is shared across all crystals, to make sure we utilize only
structural information. We provide further details on structural graph construction in Appendix A.

3.3 TASK DESCRIPTIONS

Given the stoichiometry graph Ga and the structural graph Gb of a single crystal, our objective is to
acquire a stoichiometry encoder denoted as fa, alongside mean and variance modules referred to
as faµ and faσ , which associate structural information of Gb into latent representation of stoichiom-
etry graph Ga. Then, the modules are applied to various downstream tasks, a scenario frequently
encountered in real-world material science where solely stoichiometry of material is accessible.

4 METHODOLOGY: POLYSRL

In this section, we present Polymorphic Stoichiometry Representation Learning (PolySRL),
which learns the representation of stoichiometry regarding polymorphic structures of crystals.
PolySRL utilizes two different GNNs, i.e., structural graph encoder (Section 4.1) and probabilistic
stoichiometry encoder (Section 4.2). Overall model architecture is illustrated in Figure 2.

4.1 STRUCTURAL GRAPH ENCODER

While structural information plays an important role in determining various properties of crystals,
previous studies have overlooked the readily available crystal structures (Jain et al., 2013) for sto-
ichiometry representation learning (Jha et al., 2018; Goodall & Lee, 2020; Wang et al., 2021). To
this end, we use a GNN encoder to learn the representation of crystal structure, which is expected to
provide guidance for learning the representation of stoichiometry. More formally, given the crystal
structural graph Gb = (xb,Ab), we obtain a structural representation of a crystal as follows:

zb = Pooling(Zb), Zb = f b(xb,Ab), (1)
where Zb ∈ Rns×F is a matrix whose each row indicates the representation of each atom in the
crystal structure, zb indicates the latent representation of a crystal structure, and f b is the GNN-
based crystal structural encoder. In this paper, we adopt graph networks (Battaglia et al., 2018) as
the encoder, which is a generalized version of various GNNs, and sum pooling is used as the pooling
function. We provide further details on the GNNs in Appendix B.1.

4



Under review as a conference paper at ICLR 2024

𝐙𝐫𝐎
𝟐

𝐙𝐫

𝐎

𝐒𝐧𝐒𝐞
𝐒𝐞

𝐒𝐧

Structural Graph Encoder

𝐒𝐧
𝐒𝐞

𝐙𝐫
𝐎
𝟐

Representation space Probabilistic Stoichiometry Encoder

𝒇𝒂

𝒇𝒂

𝒇𝝁𝒂

𝒇𝝈𝒂

𝐳𝝁𝒂

𝐳𝝈𝒂

𝒇𝝁𝒂
𝐳𝝁𝒂

𝐳𝝈𝒂
𝒇𝝈𝒂

𝒇𝒃

𝒇𝒃

Pull Push

Polymorphic structures (𝓟𝒂)

𝐙𝒂

𝐙𝒂

Figure 2: Overall model architecture. While the structural graph encoder obtains a deterministic
structural representation of crystal, the probabilistic stoichiometry encoder learns to represent each
stoichiometry as a parameterized probabilistic distribution by acquiring mean and diagonal covari-
ance matrices. Both encoders are jointly trained with soft contrastive loss in representation space.

4.2 PROBABILISTIC STOICHIOMETRY ENCODER

Deterministic Representation. After obtaining the structural representation zb, we also compute
the stoichiometry representation from the stoichiometry graph Ga as follows:

za = Pooling(Za), Za = fa(Xa,Aa), (2)

where Za ∈ Rne×F is a matrix whose each row indicates the representation of each element in a sto-
ichiometry, za ∈ RF indicates the stoichiometry representation of a crystal, and fa is a GNN-based
stoichiometry encoder. By utilizing GNNs, the stoichiometry encoder effectively learns intricate
relationships and chemical environments related to elements, thereby enhancing the stoichiometry
representation in a systematic manner (Goodall & Lee, 2020). For the stoichiometry encoder fa, we
adopt GCNs (Kipf & Welling, 2016) with jumping knowledge (Xu et al., 2018), and weighted sum
pooling with the compositional ratio (i.e., R in Section 3.1) is used as the pooling function.

One straightforward approach for injecting structural information into the stoichiometry representa-
tion would be adopting the idea of recent multi-modal contrastive learning approaches, which have
been widely known to maximize the mutual information between heterogeneous modality inputs
(two modalities in our case: stoichiometry and structure) (Radford et al., 2021; Stärk et al., 2022).
However, such a naive adoption fails to capture the polymorphic nature of crystallography: A sin-
gle stoichiometry can result in multiple distinct structures due to the diverse atomic arrangements,
leading to significantly different physical, and chemical properties (Bernstein, 2020). That is, the
relationship between the representations za and zb constitutes a one-to-many mapping rather than a
one-to-one mapping, leading to inherent uncertainties in the stoichiometry representation za.

Probabilistic Representation. To this end, we propose to learn a probabilistic representation of
stoichiometry za, which naturally exhibits uncertainties of the representation, inspired by the recent
Hedge Instance Embeddings (HIB) (Oh et al., 2018). The main idea here is to learn the Gaussian
representation of stoichiometry, which reveals the distribution of polymorphic structures Pa in rep-
resentation space. Intuitively, the variance of this distribution reflects the range of diversity within
these structures, giving us an idea of how well the representation adheres to the principle of invari-
ance. More formally, we model each stoichiometry as a parameterized Gaussian distribution with
learnable mean vectors and diagonal covariance matrices as follows:

p(z̃a|Xa,Aa) ∼ N (zaµ, z
a
σ), where zaµ = faµ(Z

a), zaσ = faσ (Z
a). (3)

Here, zaµ, z
a
σ ∈ RF denote the mean vector and the diagonal entries of the covariance matrix, re-

spectively, and faµ and faσ refer to the modules responsible for calculating the mean and diagonal
covariance matrices, respectively. During training, we adopt the re-parameterization trick (Kingma
& Welling, 2013) to obtain samples from the distribution, i.e., z̃a = diag(

√
zaσ) · ϵ + zaµ, where

ϵ ∼ N (0, 1). While mean and variance are obtained from the shared Za, we utilize different
attention-based set2set pooling functions for faµ and faσ (Vinyals et al., 2015), since the attentive
aspects involved in calculating the mean and variance should be independent from each other. We
provide further details on the probabilistic stoichiometry encoder in Appendix B.2.
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4.3 MODEL TRAINING VIA REPRESENTATION ALIGNMENT

To incorporate the structural information into the stoichiometry representation, we define a matching
probability between the stoichiometry graph Ga and its corresponding set of polymorphic crystal
structural graphs PGa

in the Euclidean space as follows:

p(m|Ga,PGa

) ≈
∑

p∈PGa

1

J

J∑
j=1

sigmoid
(
− c∥z̃aj − zbp∥2 + d

)
, (4)

where z̃aj is the sampled stoichiometry representation, zbp is the structural graph representation,
c, d > 0 are parameters learned by the model for soft threshold in the Euclidean space, J is the
number of samples sampled from the distribution, and sigmoid(·) is the sigmoid function. Moreover,
m is the indicator function of value 1 if PGa

is the set of polymorphic structures corresponding to
Ga and 0 otherwise. Then, we apply the soft contrastive loss (Oh et al., 2018; Chun et al., 2021) as:

Lcon =

{
− log p(m|Ga,PGa′

), if a = a′,

− log (1− p(m|Ga,PGa′
), otherwise.

(5)

Intuitively, the above loss aims to minimize the distance between a sampled stoichiometry repre-
sentation and its associated polymorphic structural representations, while maximizing the distance
between others. By doing so, PolySRL learns a probabilistic stoichiometry representation that con-
siders the structural information and its associated uncertainties, which tend to increase when mul-
tiple structures are associated with a single stoichiometry, i.e., polymorphism.

In addition to the soft contrastive loss, we utilize a KL divergence loss between the
learned stoichiometry distributions and the standard normal distribution N (0, 1), i.e., LKL =
KL(p(z̃a|Xa,Aa) ∥ N (0, 1)), which prevents the learned variances from collapsing to zero. There-
fore, our final loss for model training is given as follows:

Ltotal = Lcon + β · LKL, (6)

where β is the hyperparameter for controlling the weight of the KL divergence loss. During the
inference, we use the mean vector zaµ as the stoichiometry representation and the geometric mean of
diagonal covariance matrices zaσ as uncertainty (Chun et al., 2021).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. For training PolySRL, we collect 80,162 unique stoichiometries and their correspond-
ing 112,183 DFT-calculated crystal structures from Materials Project (MP) website 1. However,
since DFT-calculated properties often deviate from real-world wet-lab experimental properties (Jha
et al., 2019), we primarily evaluate PolySRL using wet-lab experimental datasets. Specifically,
we use publicly available datasets containing experimental properties of stoichiometries, including
Band Gap (Zhuo et al., 2018), Formation Enthalpies (Kim et al., 2017), Metallic (Morgan, 2018),
and ESTM (Na & Chang, 2022). More specifically, Band Gap and Formation Entalphies datasets
are composed of stoichiometries and their experimental band gaps and formation enthalpies, re-
spectively. Metallic dataset contains reduced glass transition temperatures for a variety of metallic
alloys, while ESTM dataset contains experimentally synthesized thermoelectrical materials and their
properties, i.e., Electrical conductivity, Thermal conductivity, and Seebeck coefficients. Moreover,
we conduct experiments on seven Matbench (Dunn et al., 2020) datasets related to DFT-calculated
properties. Additional details on the datasets are provided in the Appendix C.

Baseline Methods. Since PolySRL is the first work that learns stoichiometry representation without
any label information, we construct competitive baseline models from other domains. Rand init.
refers to a randomly initialized stoichiometry encoder without any training process. GraphCL (You
et al., 2020) learns the stoichiometry representation based on random augmentations on the stoi-
chiometry graph Ga, without utilizing structural information. MP Band G. and MP Form. E. learn
the stoichiometry representation by predicting the DFT-calculated properties, which are available in
MP database 1, i.e., band gap and formation energy per atom, respectively. 3D Infomax (Stärk et al.,

1https://materialsproject.org/
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Table 1: Representation learning performance (MAE) (Prop.: Property / Str.: Structure / Poly.: Poly-
morphism / Band G.: Band Gap / Form. E.: Formation Entalphies / E.C.: Electrical Conductivity /
T.C.: Thermal Conductivity).

Model
DFT

Poly. Band G. Form. E. Metallic
ESTM 300K ESTM 600K ZT̄

Prop. Str. E.C. T.C. Seebeck E.C. T.C. Seebeck 300K 600K

Rand init. ✗ ✗ ✗
0.439 0.671 0.211 1.029 0.225 0.451 0.714 0.218 0.437 0.099 0.261
(0.014) (0.066) (0.023) (0.119) (0.030) (0.031) (0.113) (0.024) (0.087) (0.017) (0.160)

GraphCL ✗ ✗ ✗
0.437 0.677 0.212 1.057 0.229 0.459 0.695 0.206 0.440 0.121 0.211
(0.022) (0.030) (0.019) (0.115) (0.040) (0.044) (0.119) (0.027) (0.077) (0.027) (0.043)

MP Band G. ✓ ✗ ✗
0.403 0.690 0.212 1.008 0.225 0.443 0.690 0.217 0.436 0.129 0.251
(0.011) (0.043) (0.028) (0.081) (0.026) (0.074) (0.085) (0.023) (0.075) (0.044) (0.161)

MP Form. E. ✓ ✗ ✗
0.416 0.619 0.203 1.121 0.228 0.441 0.784 0.220 0.444 0.093 0.328
(0.017) (0.062) (0.022) (0.137) (0.024) (0.078) (0.078) (0.021) (0.091) (0.008) (0.075)

3D Infomax ✓ ✓ ✗
0.428 0.654 0.201 0.969 0.217 0.432 0.692 0.212 0.428 0.105 0.171
(0.015) (0.032) (0.032) (0.110) (0.040) (0.070) (0.102) (0.013) (0.076) (0.030) (0.023)

PolySRL ✓ ✓ ✓
0.407 0.592 0.194 0.912 0.197 0.388 0.665 0.189 0.412 0.070 0.168
(0.013) (0.039) (0.017) (0.121) (0.020) (0.059) (0.126) (0.017) (0.043) (0.014) (0.021)

2022) learns stoichiometry representation by maximizing the mutual information between stochiom-
etry graph Ga and structural graph Gb with NTXent (Normalized Temperature-scaled Cross Entropy)
loss (Chen et al., 2020). To ensure that the variations in model performance are solely impacted by
the training strategy, all the baseline models utilize the same neural architecture, i.e., the encoder
fa and the mean module faµ . We provide further details on baseline methods in Appendix D. In ad-
dition, we also compare PolySRL with supervised stoichiometry representation learning methods,
i.e., Roost (Goodall & Lee, 2020) and CrabNet (Wang et al., 2021) in Appendix F.5.

Evaluation Protocol. After training all models in an unsupervised manner without any use of wet-
lab experimental data, we evaluate PolySRL in two evaluation schemes, i.e., representation learning
and transfer learning. Following previous representation learning scenarios (Veličković et al., 2018),
we fix the model parameters and train a three-layer MLP head with non-linearity to evaluate the
stoichiometry representations obtained by various models. For the transfer learning scenario, we
allow the model parameters to be fine-tuned while training the three-layer MLP head to evaluate
how previously obtained knowledge can be transferred in learning wet-lab experimental datasets.
In both scenarios, we evaluate the model under a 5-fold cross-validation scheme, i.e., the dataset is
randomly split into 5 subsets, and one of the subsets is used as the test set while the remaining subsets
are used to train the model. We further provide the detailed evaluation protocols in Appendix E.

5.2 EMPIRICAL RESULTS

Representation Learning. In Table 1, we have the following observations: 1) Comparing the base-
line methods that take into account structural information (Str. ✓) with those that do not (Str. ✗), we
find out that utilizing structural information generally learns more high-quality stoichiometry repre-
sentations. This is consistent with the established knowledge in crystallography, which emphasizes
that structural details, including crystal structure and symmetry, play a crucial role in determining a
wide range of physical, chemical, and mechanical properties (Bernstein, 2020; Braga et al., 2009).
2) Moreover, we observe PolySRL outperforms baseline methods that overlook polymorphism in
their model design. This highlights the significance of our probabilistic approach, which not only
offers insights into polymorphism-related uncertainties but also yields high-quality representations.
3) On the other hand, we notice that utilizing DFT-calculated values contributes to the model’s un-
derstanding of a specific target property (see Prop. ✓). For instance, when the model is trained with
a DFT-calculated band gap (i.e., MP Band G.), it surpasses all other models when predicting exper-
imental band gap values. This highlights that knowledge acquired from DFT-calculated properties
can be applied to wet-lab experimental datasets. However, these representations are highly tailored
to a particular target property, which restricts their generalizability for diverse tasks. We also provide
empirical results on Matbench datasets that contain DFT-calculated properties in Appendix F.2.

Physical Validity of Predicted Properties. To further verify the physical validity of predicted
properties, we theoretically calculate the figure of merit ZT̄ 2 of thermoelectrical materials with the
predicted properties in ESTM datasets in Table 1. More specifically, given predicted electrical con-
ductivity (E.C.) σ, thermal conductivity (T.C.) λ, Seebeck coefficient S, we can compute the figure
of merit ZT̄ as follows: ZT̄ = S2σ

λ T̄ , where T̄ indicates a conditioned temperature, i.e., 300 K and

2In thermoelectric materials, the figure of merit ZT̄ plays a fundamental role in determining how effectively
power can be generated and energy can be harvested across various applications (Nozariasbmarz et al., 2020).
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Table 2: Transfer learning (TL) performance.

Model Band G. Form. E. Metallic
ESTM 300 K ESTM 600 K

E.C. T.C. Seebeck E.C. T.C. Seebeck

Rand init. 0.390 0.599 0.204 0.849 0.202 0.425 0.659 0.209 0.402
(0.012) (0.053) (0.014) (0.174) (0.027) (0.048) (0.098) (0.019) (0.082)

GraphCL 0.391 0.607 0.193 0.862 0.198 0.412 0.643 0.205 0.412
(0.011) (0.026) (0.018) (0.236) (0.031) (0.006) (0.098) (0.021) (0.077)

MP Band G. 0.382 0.604 0.193 0.829 0.210 0.405 0.632 0.197 0.402
(0.012) (0.036) (0.025) (0.187) (0.038) (0.006) (0.095) (0.028) (0.081)

MP Form. E. 0.391 0.582 0.197 0.822 0.195 0.410 0.641 0.209 0.428
(0.013) (0.015) (0.019) (0.167) (0.031) (0.041) (0.102) (0.043) (0.086)

3D Infomax 0.391 0.606 0.194 0.844 0.210 0.402 0.633 0.207 0.391
(0.006) (0.027) (0.019) (0.195) (0.032) (0.005) (0.133) (0.018) (0.077)

PolySRL 0.386 0.576 0.191 0.822 0.189 0.386 0.626 0.195 0.390
(0.021) (0.042) (0.024) (0.162) (0.037) (0.069) (0.161) (0.015) (0.077)
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Figure 3: Sensitivity Anal-
ysis on β.

600 K. In Table 1, we have following observations: 1) Looking at the general model performance
on ESTM datasets and ZT̄ , we find that performing well on ESTM datasets does not necessarily
indicate the predictions are physically valid. 2) In contrast, models that incorporate structural infor-
mation tend to produce physically valid predictions in both ESTM datasets, underscoring the impor-
tance of the crystal structural information. 3) Moreover, PolySRL consistently outperforms baseline
methods, demonstrating that PolySRL not only learns accurate representations of stoichiometry but
also ensures the physical validity of the predictions. We provide further analysis on the predicted
ZT̄ , and high throughput screening results of thermoelectrical materials in Appendix F.3.

Transfer Learning. In this section, we compare the models’ performance in transfer learning sce-
narios in Table 2, where the encoder parameters are fine-tuned along with the MLP head. We have
the following observations: 1) Although the overall performance enhancement is observed due to the
additional training of the encoder when compared with the results reported in Table 1, we sometimes
observe that negative transfer occurs when comparing the Rand init. model and baseline methods in
Table 2. This indicates that without an elaborate design of the tasks, pre-training may incur negative
knowledge transfer to the downstream tasks (Zhang et al., 2022). 2) However, by comparing to
Rand init. in Table 2, we observe that PolySRL consistently leads to positive transfer to the model.
We attribute this to the probabilistic representation, which maintains a high variance for uncertain
materials, thereby preventing the representations of the materials from overfitting to the pretraining
task. Since this task utilizes label information during the transfer learning stage, we also provide a
comparison to recent supervised learning methods on stoichiometry in Appendix F.5.

Model Analysis. In this section, we verify the empirical effect of the hyperparameter β, which
controls the weight of the KL divergence loss computed between the learned distributions and the
standard normal distribution, in Equation 6. We have the following observations from Figure 3: 1)
As the hyperparameter β increases, the average variance of the learned distributions (i.e., uncer-
tainty) also increases, and the dimension of the variance vectors that collapse to zero (i.e., collapsed
ratio) decreases. This indicates that the KL divergence loss effectively prevents the distributions
from collapsing. 2) On the other hand, the performance of PolySRL deteriorates as β increases, in-
dicating that emphasizing the KL divergence loss too much causes PolySRL to struggle in learning
high-quality stoichiometry representations. However, reducing β does not always result in improved
performance, as collapsed distribution may not effectively capture information from polymorphic
structures. Hence, selecting an appropriate value of β is vital for learning high-quality stoichiome-
try representations while maintaining a suitable level of uncertainty. This selection process could be
a potential limitation, as it may require a trial-and-error approach to determine the optimal value.
We provide ablation study results and further analysis on various hyperparameters in Appendix F.4.

5.3 UNCERTAINTY ANALYSIS

Number of Structures. In this section, we examine how uncertainties vary according to
the number of possible structures. To do so, we first collect all possible structures of stoi-
chiometry in Band Gap dataset from MP database1 and Open Quantum Materials Database
(OQMD)3. Subsequently, we compute the average uncertainties for stoichiometry groups with
the same number of possible structures. In Figure 4 (a), we have the following observations: 1)
In general, the uncertainty of stoichiometry that has polymorphic structures (# possible struc-
tures ≥ 2) was higher than that of the stoichiometry with a single structure (# possible struc-
tures = 1), demonstrating that PolySRL learns uncertainties regarding polymorphic structures.

3https://oqmd.org/
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Figure 4: Uncertainty analysis.

2) On the other hand, an increase in the number of possible struc-
tures in OQMD leads to an increase in the uncertainty, demon-
strating that PolySRL learns uncertainties related to the diverse
polymorphic structures. Note that this trend is mainly shown in
the OQMD dataset due to the fact that OQMD encompasses not
only realistic but also theoretically possible structures, indicating
that PolySRL acquires knowledge of theoretical uncertainties in
materials science 4. 3) Furthermore, we notice high uncertain-
ties when there are no potential structures available (i.e., when
# possible structures = 0) in comparison to stoichiometry with
a single possible structure, suggesting that uncertainty contains
information about the computational feasibility of the structure.

Impurity of Materials. Next, we investigate how impurities in materials influence the uncertainty
in stoichiometry. Specifically, we compare the average stoichiometry uncertainty between groups of
doped or alloyed materials (i.e., Impure) and their counterparts (i.e., Pure) in thermoelectric materi-
als datasets, i.e., ESTM 300K and ESTM 600K, where doping and alloying are commonly employed
to enhance their performance. In Figure 4 (b), we notice a substantial increase in the uncertainty
within impure materials compared with their pure counterparts. This observation is in line with com-
mon knowledge in materials science that doping or alloying can lead to chaotic transformations in a
conventional structure (Kawai et al., 1992; Jin & Nobusada, 2014), demonstrating that PolySRL also
captures the complexity of structure as the uncertainty. In conclusion, uncertainty analysis highlights
that PolySRL effectively captures the uncertainty related to the presence of polymorphic structures
within a single stoichiometry and the computational challenges associated with crystal structures,
which are also common interests in materials science.

𝐇𝐠𝐂𝐥 𝐒𝐜𝐍

CaS 𝐀𝐠𝐒𝐎𝟒
(b)(a)
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Possible
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Stoichiometry

Figure 5: Case studies.

Case Studies. While our previous analysis on un-
certainties generally aligns with our expectations, we
do observe some instances where PolySRL exhibits
high uncertainty in non-polymorphic stoichiometries
and minimal uncertainty in polymorphic stoichiome-
tries. First, we observe the stoichiometry of HgCl and
CaS exhibit high uncertainty, even though they only
have one possible structure (Figure 5 (a)). We attribute
this phenomenon to the limited availability of element
combinations in the MP dataset, which occurred due to several factors, including the rarity of certain
elements and the difficulty in synthesizing substances with specific combinations of elements (Cas-
tor et al., 2006; Jang et al., 2020). On the other hand, we observe the learned distribution of ScN
and AgSO4 collapsed to zero even though each of them has three possible polymorphic structures
(Figure 5 (b)). This behavior arises from the structural similarity among the polymorphic structures,
where all three polymorphic structures of each stoichiometry fall within the same cubic and mono-
clinic structural system, respectively. In conclusion, PolySRL acquires detailed insights concerning
polymorphic structures beyond mere quantitative counts. Additionally, further analysis on the corre-
lation between uncertainty and model performance, along with supplementary case studies that are
in line with our anticipated results, are in Appendix F.6.

6 CONCLUSION

This paper focuses on learning a probabilistic representation of stoichiometry that incorporates poly-
morphic structural information of crystalline materials. Given stoichiometry and its corresponding
polymorphic structures, PolySRL learns parameterized Gaussian distribution for each stoichiom-
etry, whose mean becomes the representation of stoichiometry and variance indicates the level
of uncertainty stemming from the polymorphic structures. Extensive empirical studies on sixteen
datasets, including wet-lab experimental data and DFT-calculated data, have been conducted to val-
idate the effectiveness of PolySRL in learning stoichiometry representations. Moreover, a compre-
hensive analysis of uncertainties reveals that the model learns diverse complexities encountered in
materials science, highlighting the practicality of PolySRL in real-world material discovery process.

4Compared to OQMD, MP primarily consists of crystals whose synthesizability is widely-known.
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Ethical Statement. In line with the ICLR Code of Ethics, we affirm that our research aligns with
its recommended guidelines. Our method, PolySRL, pioneers the exploration of stoichiometry rep-
resentation learning with structural information, demonstrating its potential for real-world applica-
tions. While it is an automation process for materials science without wet-lab experiments, it is
important to actively collaborate with skilled professionals of industry for successful real-world ap-
plication. All components of our work, including models and datasets, are made publicly available,
and we can confirm that there are no associated ethical concerns.

Reproducibility Statement. For clarity and reproducibility, we provide detailed explanations of
our PolySRL in the paper. Our implementation details for all models and experimental settings can
be accessed at https://anonymous.4open.science/r/PolySRL-8889.
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This is an Appendix for our Submission 4333, which is organized as follows: Section A provides
details on constructing structural graph representation of crystalline materials. Section B elaborates
on the implementation details of our method. Section C details all the datasets we use. Section D
reveals the implementation details and experimental setup of all the baseline methods. Section E
describes evaluation protocol. Section F provides additional experimental results. Section I lists
important notations used during the main manuscript.

A STRUCTURAL GRAPH CONSTRUCTION

In this section, we provide the detailed structural graph construction process with a figure. Overall,
this structural graph is the same as previous works (Xie & Grossman, 2018; Yan et al., 2022). Given
a crystal structure (P,L), suppose the unit cell has ns atoms, we have P = [p1,p2, . . . ,pns

]
⊺ ∈

Rns×3 indicating the atom position matrix and L = [l1, l2, l3]
⊺ ∈ R3×3 representing the lattice

parameter describing how a unit cell repeats itself in three directions. Since the crystal usually
possesses irregular shapes in practice, l1, l2, l3 are not always orthogonal in 3D space (Yan et al.,
2022). For clear visualization, we provide examples of periodic patterns in 2D space in Figure 6 (a).

Based on the crystal parameters (P,L), we construct a multi-edge graph Gb = (V,Ab) that captures
atom interactions across cell boundaries (Xie & Grossman, 2018). Specifically, vi ∈ V denotes
an atom i and all its duplicates in the infinite 3D space whose positions are included in the set
{p̂i|p̂i = pi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, where Z denotes the set of all the integers.
Moreover, Ab ∈ {0, 1}ns×ns denotes an adjacency matrix, where Ab

i,j = 1 if two atoms i and
j are within the predefined radius r and Ab

ij = 0 otherwise. Specifically, nodes vi and vj are
connected if there exists any combination k1, k2, k3 ∈ Z such that the euclidean distance dij satisfies
dij = ∥pi + k1l1 + k2l2 + k3l3 − pj∥2 ≤ r (see Figure 6 (b)). For the initial feature for edges, we
expand the distance dij between atom vi and vj by Gaussian basis following previous works (Xie &
Grossman, 2018). Moreover, each node in Gb is associated with a learnable feature xb ∈ RF , which
is shared across all crystals, to make sure we utilize only structural information.

l!

l"

𝒓

(b) Multi-edge graph(a) Periodic pattern in 2D

𝑛! = 3
Unit cell

Figure 6: Structural graph construction.

B IMPLEMENTATION DETAILS

In this section, we provide implementation details of PolySRL.

B.1 STRUCTURAL GRAPH ENCODER

Our structural graph encoder comprises two components: the encoder and the processor. The en-
coder acquires the initial representation of atoms and bonds, while the processor is responsible for
learning how to pass messages throughout the crystal structure. More formally, given an atom vi
and the bond eij between atom vi and vj in crystal structure, node encoder ϕnode and edge encoder
ϕedge outputs initial representations of atom vi and bond eij as follows:

h0,b
i = ϕnode(X

b), b0,b
ij = ϕedge(B

b
ij), (7)
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where Xb ∈ Rns×F is the atom feature matrix whose i-th row indicates the input feature of atom
vi, Bb ∈ Rns×ns×F is the bond feature tensor. As previously explained in Section 3.2, we employ
a common xb for all atoms across all crystals, resulting in every row in Xb being identical to xb.
With the initial representations of atoms and bonds, the processor learns to pass messages across the
crystal structure and update atom and bond representations as follows:

bl+1,b
ij = ψl

edge(h
l,b
i ,h

l,b
j ,b

l,b
ij ), hl+1,b

i = ψl
node(h

l,b
i ,

∑
j∈N (i)

bl+1,b
ij ), (8)

where N (i) is the neighboring atoms of atom vi, ψ is a two-layer MLP with non-linearity, and
l = 0, . . . , L′. Note that hL′,b

i is equivalent to the i-th row of the atom embedding matrix Zb in
Equation 1. In this paper, we use a 3-layered structural graph encoder, i.e., L′ = 3.

B.2 PROBABILISTIC STOICHIOMETRY ENCODER

Stoichiometry Graph Encoder fa. For the stoichiometry graph encoder fa, we utilize the ar-
chitecture of GCNs (Kipf & Welling, 2016) and Jumping Knowledge Network (Xu et al., 2018).
Specifically, given elemental feature matrix Xa and adjacency Aa, GCN layers pass the messages
to obtain latent elemental feature matrix as follows:

hl+1,a
i = GCNl(hl,a

i ,Aa), (9)

where h0,a
i indicates i-th row of elemental feature matrix Xa, and l = 0, . . . , L′. After L′ step

message passing steps, we obtain a final representation of stoichiometry as follows:

Za
i = W(Concat[h0,a

i , · · · ,hL′,a
i ]), (10)

where W ∈ RF×L′F is a learnable weight matrix that reduces the dimension of concatenated
representations. Note that Za

i is equivalent to the i-th row of the element embedding matrix Za

in Equation 2. We also use L′ = 3 for stoichiometry encoder fa. After obtaining the elemental
representation matrix Za, we obtain stoichiometry representation za by employing weighted sum
pooling, which takes into account the compositional ratio.

Mean faµ and Variance faσ Module. After obtaining the elemental representation matrix Za, we
utilize set2set (Vinyals et al., 2015) pooling function to obtain the mean vector and diagonal entries
of the covariance vector. More specifically, given Za, we obtain mean vector zaµ and diagonal
covariance vector zaσ as follows:

zaµ = ẑaµ + za, ẑaµ = Set2setµ(Za), (11)

zaσ = ẑaσ + za, ẑaσ = Set2setσ(Za). (12)

By obtaining mean and diagonal covariance vectors with separate pooling functions, i.e., Set2setµ
and Set2setσ , the model learns different attentive aspects involved for each module.

B.3 TRAINING DETAILS

We also describe the implementation details to enhance the reproducibility. Our method is imple-
mented on Python 3.7.1, PyTorch 1.8.1, and Torch-geometric 1.7.0. All experiments are conducted
using a 24GB NVIDIA GeForce RTX 3090. Model hyperparameters are given in Table 3. During
training, we clip the gradient to the maximum value of 2 for stability (Zhang et al., 2019).

Table 3: Hyperparameter specifications of PolySRL.

# Layers Hidden Learning Batch Epochs Number of
β

Initial

fa f b dim (F ) Rate (η) Size Samples (J) c d

3 3 200 5e-05 256 100 8 1e-08 20 20
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C DATASETS

In this section, we provide further details on the dataset used for experiments. We first introduce the
datasets utilized for the main manuscript, which is mainly based on wet-lab experiments.

• Materials Project (Jain et al., 2013) is an openly accessible database that provides material prop-
erties calculated using density functional theory (DFT). We have gathered 80,162 distinct stoi-
chiometries along with their corresponding 112,183 crystal structures computed using DFT, with
up to 32,021 stoichiometries having multiple potential structures.

• Band Gap (Zhuo et al., 2018) dataset comprises experimentally determined band gap properties
for non-metallic materials. It encompasses 2,482 distinct stoichiometries and a total of 3,895
experimental band gap values. Within this dataset, 1,413 instances of duplicate experimental band
gap measurements for stoichiometries were identified. Consequently, our task involves predicting
the band gap properties for these 2,482 stoichiometries, with the average value being computed in
cases where duplicate experimental results exist for a given stoichiometry.

• Formation Enthalpies (Kim et al., 2017) dataset consists of experimentally determined formation
enthalpy values for intermetallic phases and other inorganic compounds. It includes 1,141 unique
stoichiometries and a total of 1,276 experimental formation enthalpy values. Within this dataset,
135 cases of duplicate experimental formation enthalpy measurements for stoichiometries were
identified. Therefore, our objective is to predict the formation enthalpy properties for these 1,141
stoichiometries, calculating the average value when duplicate experimental results are present for a
particular stoichiometry. We report MAE values multiplied by a factor of 10 for clear interpretation
during all experiments.

• Metallic (Morgan, 2018) dataset contains reduced glass transition temperature (Trg) for 584
unique metallic alloys. We report MAE values multiplied by a factor of 10 for clear interpretation
during all experiments.

• ESTM 300 K (Na & Chang, 2022) dataset contains various properties of 368 thermoelectric mate-
rials that are measured in the temperature range of 295 K to 305 K, which is widely recognized as
room temperature in chemistry. Among the properties, we mainly target electrical conductivity
(S/m), thermal conductivity (W/mK), and Seebeck coefficient (µV/K). Regarding electrical
conductivity and thermal conductivity, we apply a logarithmic scaling to the target values because
they exhibit significant skewness. Additionally, for the Seebeck coefficient, we use min-max scal-
ing on the target values due to their wide range and report MAE values multiplied by a factor of
10 for clear interpretation during all experiments. When calculating the figure of merit (ZT̄ ) with
predicted properties, we reverse the scaling to return the original scale and then compute it.

• ESTM 600 K (Na & Chang, 2022) dataset contains various properties of 188 thermoelectric mate-
rials that are measured in the temperature range of 593 K to 608 K, which is widely recognized as
high temperature in chemistry. The properties we are targeting and the preprocessing steps applied
are identical to those used for the ESTM 300 K dataset.

In addition to the wet-lab experimental datasets, we use the following seven Matbench datasets that
contain properties from DFT calculation.

• Castelli Perovskites (Castelli et al., 2012) dataset contains formation energy of Perovskite cell of
18,928 materials.

• Refractive Index (Jain et al., 2013) dataset contains a refractive index of 4,764 materials, provided
in MP database.

• Shear Modulus (Jain et al., 2013) dataset contains shear modulus of 10,987 materials, provided
in MP database.

• Bulk Modulus (Jain et al., 2013) dataset contains bulk modulus of 10,987 materials, provided in
MP database.

• Exfoliation Energy (Choudhary et al., 2017) dataset contains exfoliation energy 636 materials.
• MP Band gap (Jain et al., 2013) dataset contains band gap of 106,113 materials, provided in MP

database.
• MP Formation Energy (Jain et al., 2013) dataset contains formation energy per atom in 132,752

materials, provided in MP database.
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Following previous work (Wang et al., 2021; Goodall & Lee, 2020), we choose the target value
associated with the lowest formation enthalpy for duplicate stoichiometries found in both the MP
datasets, while we use the mean of the target values for other datasets.

D BASELINE METHODS

In this section, we elaborate on baseline methods. For a fair comparison, all these baseline methods
leverage the same neural network architecture and only differ in training objective function.

• Rand init. refers to the randomly initialized stoichiometry encoder without any training process.
• GraphCL (You et al., 2020) is a general graph-level contrastive learning strategy that uses random

augmentation to construct positive and negative samples. In this paper, it learns the stoichiometry
representation based on the random augmentation on the stoichiometry graph Ga, without utilizing
structural information. For the n-th data in the minibatch (N data points), the loss function is
defined as follows follows:

ln = − log
exp{sim(zn, zn)/τ}∑N

n′=1,n′ ̸=n exp{sim(zn, zn′)/τ}
, (13)

where sim(·, ·) indicates cosine similarity between two latent vectors. τ > 0 denotes temperature
and is a hyperparameter. zi is the representation of the i-th data.

• MP Band G. and MP Form. E. learn the stoichiometry representation by predicting the DFT-
calculated properties, i.e., band gap and formation energy per atom, respectively. More formally,
model is trained with MAE loss for n-th data point in the minibatch (N data points) as follows:

ln = |Yn − Ŷn|, (14)

where Yn and Ŷn denote DFT-calculated property and model prediction, respectively.
• 3D Infomax (Stärk et al., 2022) proposes to enhance model prediction on 3D molecular graphs by

integrating 3D information of the molecules in its latent representations. Instead of 2D molecular
graphs, we learn the representation of stoichiometry graph Ga by maximizing the mutual infor-
mation with structural graph Gb. More specifically, we train the model with NTXent (Normalized
Temperature-scaled Cross Entropy) loss (Chen et al., 2020), which is defined for n-th data point
in minibatch of size N as follows:

ln = − log
exp{sim(zan, z

b
n)}∑N

n′=1,n′ ̸=n exp{sim(zan, z
b
n′)}

, (15)

where sim(·, ·) indicates cosine similarity between two latent vectors.

Even though the primary focus of this paper is to introduce training strategies for stoichiometry
encoders without any label information, we also conduct a comparative analysis of our proposed
approach with previous supervised stoichiometry representation learning methods (Goodall & Lee,
2020; Wang et al., 2021). Note that these works propose sophisticated model architectures for
stoichiometry representation learning, not training strategy.

• Roost (Goodall & Lee, 2020) first proposes to utilize GNNs for stoichiometry representation learn-
ing by presenting stoichiometry as a fully connected graph, whose nodes are unique elements in
stoichiometry. This approach allows the model to acquire distinct and material-specific represen-
tations for each element, enabling it to capture physically meaningful properties and interactions.

• CrabNet (Wang et al., 2021) designs a Transformer self-attention mechanism (Vaswani et al.,
2017) to adaptively learn the representation of individual elements based on their chemical envi-
ronment.

E EVALUATION PROTOCOL

Evaluation Metrics. We mainly compare the methods in terms of Mean Absolute Error (MAE)
following previous work (Goodall & Lee, 2020). Moreover, we provide the model performance
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in terms of R2 in Appendix F, which provides an intuitive measure of the fraction of the overall
variance in the data that the model can account for.

During evaluation, we evaluate models in two different settings, i.e., representation learning and
transfer learning. In both scenarios, we evaluate the model under a 5-fold cross-validation scheme,
i.e., the dataset is randomly split into 5 subsets, and one of the subsets is used as the test set while
the remaining subsets are used to train the model.

Representation Learning. For representation learning scenarios, we fix the model parameters (i.e.,
fa, faµ , and faσ ) and train a three-layer MLP head with LeakyReLU non-linearity to evaluate the
stoichiometry obtained by various models. Following previous works (Veličković et al., 2018; You
et al., 2020), we train the MLP head with Adam optimizer with a fixed learning rate of 0.001 for 300
epochs.

Transfer Learning. For transfer learning scenarios, we allow the model parameters (i.e., fa,
faµ , and faσ ) to be trained with labels in downstream tasks, jointly with a three-layer MLP head
with LeakyReLU non-linearity. During the transfer learning stage, we train the model parame-
ters and head with the Adam optimizer for 500 epochs. We tune the learning rate in the range of
{0.005, 0.001, 0.0005, 0.0001} with a validation set which is a subset (20%) of the training set. Due
to the lack of data, we select the learning rate that yields the optimal performance on the validation
set. Subsequently, we retrain the model using both the training set and the validation set, with the
corresponding learning rate.

F ADDITIONAL EXPERIMENTS

F.1 MODEL PERFORMANCE IN R2 SCORE

In this section, we provide the model performance in terms of R2 score, which provides an intuitive
measure of the regression performance. R2 score measures the correlation between prediction and
ground truth. Table 4 and Table 5 represent the R2 performance, which corresponds to the tables
presented in the main manuscript as Table 1 and Table 2, respectively. A higher R2 score indicates
better performance.

Table 4: Representation learning performance (R2).

Model
DFT

Poly. Band G. Form. E. Metallic
ESTM 300K ESTM 600K

Prop. Str. E.C. T.C. Seebeck E.C. T.C. Seebeck

Rand init. ✗ ✗ ✗
0.801 0.873 0.515 0.590 0.880 0.711 0.429 0.838 0.819
(0.017) (0.018) (0.105) (0.174) (0.027) (0.076) (0.340) (0.075) (0.092)

GraphCL ✗ ✗ ✗
0.796 0.864 0.532 0.567 0.866 0.705 0.459 0.851 0.821
(0.032) (0.011) (0.079) (0.101) (0.040) (0.064) (0.259) (0.081) (0.081)

MP Band G. ✓ ✗ ✗
0.816 0.867 0.534 0.589 0.870 0.724 0.485 0.826 0.833
(0.018) (0.021) (0.078) (0.123) (0.023) (0.084) (0.375) (0.088) (0.089)

MP Form. E. ✓ ✗ ✗
0.809 0.888 0.551 0.534 0.871 0.735 0.391 0.813 0.821
(0.016) (0.022) (0.075) (0.146) (0.031) (0.072) (0.229) (0.086) (0.119)

3D Infomax ✓ ✓ ✗
0.801 0.868 0.567 0.609 0.878 0.743 0.483 0.843 0.852
(0.022) (0.025) (0.118) (0.167) (0.042) (0.078) (0.228) (0.074) (0.087)

PolySRL ✓ ✓ ✓
0.818 0.890 0.585 0.626 0.880 0.766 0.483 0.851 0.821
(0.012) (0.013) (0.073) (0.184) (0.015) (0.071) (0.346) (0.046) (0.089)

F.2 EXPERIMENTS ON DFT-CALCULATED DATASETS

Although DFT-calculated properties frequently differ from actual wet-lab experimental properties
(Jha et al., 2019), we have included experimental outcomes for seven DFT-calculated properties
from the Matbench dataset (Dunn et al., 2020). These Matbench datasets were assessed using a
five-fold cross-validation approach with train/validation/test splits set at a ratio of 72/8/20, as given
in previous work (Wang et al., 2021). In Table 6, we have following observations: 1) In the DFT-
based dataset, we observed significant disparities in trends compared to the experimental datasets in
Table 1, demonstrating the inherent difference between the experimental data and DFT-calculated
data. For instance, we noticed that the MP Form. E. model consistently outperforms the MP Band
G. and 3D Infomax models. 2) Furthermore, given that the datasets are designed to pick the target
value linked to the lowest formation enthalpy among different polymorphic structures for a single

20



Under review as a conference paper at ICLR 2024

Table 5: Transfer learning performance (R2).

Model Band G. Form. E. Metallic
ESTM 300 K ESTM 600 K

E.C. T.C. Seebeck E.C. T.C. Seebeck

Rand init. 0.822 0.894 0.544 0.673 0.896 0.736 0.478 0.815 0.855
(0.019) (0.018) (0.051) (0.160) (0.030) (0.060) (0.291) (0.101) (0.076)

GraphCL 0.826 0.882 0.562 0.676 0.896 0.735 0.439 0.807 0.823
(0.009) (0.024) (0.091) (0.178) (0.039) (0.062) (0.287) (0.131) (0.084)

MP Band G. 0.835 0.885 0.575 0.677 0.886 0.745 0.492 0.829 0.851
(0.011) (0.013) (0.047) (0.162) (0.042) (0.055) (0.309) (0.133) (0.070)

MP Form. E. 0.822 0.900 0.560 0.680 0.893 0.731 0.405 0.802 0.823
(0.012) (0.011) (0.056) (0.190) (0.039) (0.058) (0.311) (0.135) (0.078)

3D Infomax 0.817 0.888 0.586 0.703 0.882 0.743 0.496 0.817 0.851
(0.015) (0.016) (0.081) (0.155) (0.035) (0.065) (0.317) (0.104) (0.078)

PolySRL 0.834 0.897 0.602 0.693 0.904 0.754 0.541 0.847 0.855
(0.016) (0.012) (0.087) (0.172) (0.036) (0.072) (0.288) (0.097) (0.078)

stoichiometry, we find that models trained with specific DFT-calculated values (i.e., Prop. ✓) do
not outperform models trained on corresponding datasets. This discrepancy is attributed to prop-
erties derived from non-lowest formation enthalpy polymorphic structures, which can introduce
confusion to the model. 3) However, we observe PolySRL generally outperforms baseline models,
demonstrating its effectiveness in not only wet-lab experimental datasets but also in DFT-calculated
datasets.

Table 6: Representation learning performance on DFT-calculated datasets (MAE).

Model
DFT

Poly.
Castelli Refractive Shear Bulk Exfoliation MP

Prop. Str. Perovskites Index Modulus Modulus Energy Band G. Form. E.

Rand init. ✗ ✗ ✗
0.140 0.394 0.115 0.850 0.393 0.354 0.119
(0.004) (0.091) (0.003) (0.030) (0.044) (0.005) (0.002)

GraphCL ✗ ✗ ✗
0.145 0.386 0.117 0.844 0.411 0.351 0.121
(0.006) (0.094) (0.002) (0.021) (0.060) (0.004) (0.001)

MP Band G. ✓ ✗ ✗
0.141 0.399 0.116 0.851 0.397 0.354 0.119
(0.004) (0.085) (0.002) (0.042) (0.041) (0.007) (0.002)

MP Form. E. ✓ ✗ ✗
0.134 0.379 0.108 0.801 0.382 0.338 0.115
(0.004) (0.093) (0.002) (0.029) (0.037) (0.002) (0.001)

3D Infomax ✓ ✓ ✗
0.147 0.388 0.117 0.880 0.408 0.354 0.116
(0.004) (0.094) (0.003) (0.040) (0.043) (0.005) (0.002)

PolySRL ✓ ✓ ✓
0.132 0.394 0.107 0.837 0.378 0.328 0.112
(0.007) (0.092) (0.002) (0.033) (0.021) (0.005) (0.003)

F.3 PHYSICAL VALIDITY

Further Analysis. In this section, we delve deeper into the physical validity of predicted properties
for thermoelectrical materials by observing scatter plots that compare the actual ground truth val-
ues of ZT̄ with the values obtained by the model predictions. For clearer visualization, we select
one baseline model from models that consider DFT-calculated properties (i.e., MP Band G.) and
structures (i.e., 3D Infomax). In Figure 7, we notice that the predictions produced by PolySRL con-
sistently yield accurate calculations of ZT̄ without any outliers. This observation underscores the
model’s ability to predict physically valid properties for thermoelectrical materials. Additionally, we
observe that the model, specifically MP Band G., which lacks consideration of the structural infor-
mation within stoichiometry, tends to produce outliers more frequently when contrasted with models
that incorporate structural information. More specifically, three outliers made by MP Band G. in Fig-
ure 7 (a) are Co9S8, Cu5Sn2S6.65Cl0.35, and Cu5.133Sn1.866S6.65Cl0.35. In case of Co9S8, there exist
only one possible structure in MP dataset, and there was no existing structure for Cu5Sn2S6.65Cl0.35,
and Cu5.133Sn1.866S6.65Cl0.35. This suggests that MP Band G. encounters difficulty in acquiring
accurate physical properties for materials where obtaining structural information is computationally
challenging. On the other hand, in Figure 7 (b), two outliers made by MP Band G. are GeTe and
SnTe, each of which has three possible structures in MP dataset. This indicates that MP Band G.
suffers from obtaining valid physical properties from polymorphic structures. In conclusion, we ar-
gue that this finding underscores the significance of incorporating structural information for accurate
predictions.
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Figure 7: Scatter plot between true and predicted ZT̄ .

High Throughput Screening. As described in the main manuscript, the figure of merit ZT̄ deter-
mines how effectively power can be generated and energy can be harvested across various real-world
applications. To discover novel materials of high ZT̄ , we perform high-throughput screening based
on the predicted ZT̄ in Figure 8. In particular, for thermoelectrical materials at room temperature
(300 K), we establish a threshold of ZT̄ = 0.8, and for high-temperature scenarios (600 K), we use a
threshold of ZT̄ = 1.1. We observe that PolySRL outperforms all other baseline methods in ESTM
300K datasets while performing competitively with 3D Infomax in ESTM 600K. This again demon-
strates the importance of structural information in stoichiometry representation learning, which has
been overlooked in previous works (Goodall & Lee, 2020; Wang et al., 2021).
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Figure 8: High throughput screening results.

F.4 MODEL ANALYSIS

Ablation Studies. In this section, we conduct ablation studies on our model by removing the sam-
pling process described in Equation 3, which is denoted as ”w/o Sampling” in Table 7. To clarify,
rather than utilizing the sampled representations ẑaj in Equation 4, we directly employ the mean vec-
tor of stoichiometry, denoted as zaµ, for the soft contrastive loss. By doing so, the model transitions
from learning a probabilistic representation of stoichiometry to learning a deterministic represen-
tation of stoichiometry. To compare with methods that don’t incorporate polymorphic structural
information, such as 3D Infomax, we also present the performance of 3D Infomax in Table 7. We
have the following observations: 1) Considering polymorphic structure is crucial in stoichiometry
representation learning by comparing 3D Infomax and w/o Sampling. 2) Additionally, the sampling
process typically leads to improved performance, underscoring the advantage of learning a proba-
bilistic representation of stoichiometry. While w/o Sampling outperforms PolySRL in two datasets,
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the absence of the sampling process means the model can no longer estimate uncertainty in stoi-
chiometry, thereby losing its practicality in real-world materials discovery. In summary, we argue
that PolySRL learns a probabilistic stoichiometry representation, which not only enables accurate
uncertainty estimation but also enhances model performance.

Table 7: Ablation studies in representation learning scenarios (MAE).

Model
DFT

Poly. Band G. Form. E. Metallic
ESTM 300K ESTM 600K

Prop. Str. E.C. T.C. Seebeck E.C. T.C. Seebeck

3D Infomax ✓ ✓ ✗
0.428 0.654 0.201 0.969 0.217 0.432 0.692 0.212 0.428
(0.015) (0.032) (0.032) (0.110) (0.040) (0.070) (0.102) (0.013) (0.076)

w/o Sampling ✓ ✓ ✓
0.410 0.618 0.198 0.864 0.208 0.407 0.679 0.198 0.396
(0.006) (0.060) (0.030) (0.192) (0.027) (0.054) (0.084) (0.011) (0.033)

PolySRL ✓ ✓ ✓
0.407 0.592 0.194 0.912 0.197 0.388 0.665 0.189 0.412
(0.013) (0.039) (0.017) (0.121) (0.020) (0.059) (0.126) (0.017) (0.043)

Sensitivity Analysis. In addition to model analysis in Section 5.2, we provide an analysis on various
hyperparameters in PolySRL, i.e., initial values of c, d and number of samples J in Equation 5. We
have the following observations: 1) While we made c and d learnable parameters to allow the model
to adjust them adaptively to an optimal point, we’ve also found that setting the initial values for
c and d is crucial in model training. This indicates that initial value plays a significant role in
guiding the model correctly from the outset of the training process, ultimately contributing to good
performance. 2) On the other hand, we observe PolySRL shows robustness in various numbers of
samples, suggesting that it can be trained effectively without a large number of samples, which will
demand an extensive amount of computational resources.
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Figure 9: Additional sensitivity analysis results.

F.5 COMPARING TO PREVIOUS SUPERVISED LEARNING APPROACHES

Given that the primary objective of this paper is to propose a training approach for stoichiome-
try representation learning rather than introducing a new model architecture, previous supervised
learning methods, i.e., Roost (Goodall & Lee, 2020) and CrabNet (Wang et al., 2021), are not di-
rectly relevant to our research. Nevertheless, we include a comparison with these previous works in
this section to offer additional insights into our model’s performance. For the experiment, we used
publicly available codes provided by the authors 5 6. In Table 8, we observe that our simple stoi-
chiometry encoder composed of GCNs and Jumping Knowledge Network (i.e., Rand init.) exhibits
comparable or superior performance compared to the previous works that are elaborately designed
for supervised stoichiometry learning. While previous works are elaborately designed for predict-
ing properties of stoichiometry using large amounts of parameters, they rely on extensive datasets
computed via DFT for model training. However, in real-world scenarios, large-scale wet-lab exper-
imental data is seldom available, which restricts their utility in the materials discovery process.

F.6 ADDITIONAL UNCERTAINTY ANALYSIS

Uncertainty and Model Performance. In this section, we analyze how the model performance
varies regarding the uncertainties of the stoichiometry. To achieve this, we initially categorize sto-

5Roost: https://zenodo.org/record/4133793
6CrabNet: https://github.com/anthony-wang/CrabNet
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Table 8: Transfer learning performance including supervised learning baselines (MAE).

Model Band G. Form. E. Metallic
ESTM 300K ESTM 600K

E.C. T.C. Seebeck E.C. T.C. Seebeck

Supervised Learning

Rand init. 0.390 0.599 0.204 0.849 0.202 0.425 0.659 0.209 0.402
(0.012) (0.053) (0.014) (0.174) (0.027) (0.048) (0.098) (0.019) (0.082)

Roost 0.384 0.743 0.199 0.851 0.216 0.406 0.684 0.240 0.402
(0.008) (0.069) (0.023) (0.126) (0.037) (0.046) (0.180) (0.048) (0.054)

CrabNet 0.403 0.759 0.220 1.016 0.285 0.491 0.816 0.309 0.691
(0.008) (0.052) (0.017) (0.153) (0.049) (0.088) (0.167) (0.023) (0.057)

Transfer Learning

GraphCL 0.391 0.607 0.193 0.862 0.198 0.412 0.643 0.205 0.412
(0.011) (0.026) (0.018) (0.236) (0.031) (0.006) (0.098) (0.021) (0.077)

MP Band G. 0.382 0.604 0.193 0.829 0.210 0.405 0.632 0.197 0.402
(0.012) (0.036) (0.025) (0.187) (0.038) (0.006) (0.095) (0.028) (0.081)

MP Form. E. 0.391 0.582 0.197 0.822 0.195 0.410 0.641 0.209 0.428
(0.013) (0.015) (0.019) (0.167) (0.031) (0.041) (0.102) (0.043) (0.086)

3D Infomax 0.391 0.606 0.194 0.844 0.210 0.402 0.633 0.207 0.391
(0.006) (0.027) (0.019) (0.195) (0.032) (0.005) (0.133) (0.018) (0.077)

PolySRL 0.386 0.576 0.191 0.822 0.189 0.386 0.626 0.195 0.390
(0.021) (0.042) (0.024) (0.162) (0.037) (0.069) (0.161) (0.015) (0.077)

ichiometry based on MAE into intervals such as 0.0 to 1.0, 1.0 to 2.0, · · · , and 4.0 to 5.0. For
example, Group 1 in Figure 10 (a) contains the group of MAE in the range 0.0 to 1.0. We then
calculate the average uncertainties of the model for each group. As observed in Figure 10 (a), as the
MAE values increase, the level of uncertainty also increases, demonstrating that the model effec-
tively estimates uncertainties associated with MAE values.

Additional Case Studies: Low Uncertainty with Multiple Structures. In addition to the case
studies in Section 5.3, we further provide cases where the stoichiometry with multiple possible
structures exhibits low uncertainty. In Figure 10 (b), we observe two stoichiometries with collapsed
uncertainty, even though they possess four distinct possible structures. This phenomenon occurs be-
cause these structures share highly similar polymorphic arrangements, with only one unique struc-
ture in each stoichiometry. For instance, ZrC and NdF2 predominantly adopt cubic and hexagonal
structures, respectively, with only one distinct possible structure for each stoichiometry.

Additional Case Studies: High Uncertainty with Multiple Structures. In this section, we present
additional case studies that align with our expectations. Figure 10 (c) illustrates two stoichiometries
with the highest uncertainty among those possessing three polymorphic structures. For example,
NaI can exist in three distinct structures (i.e., cubic, orthorhombic, and tetragonal), and AlP also
exhibits three different structures (i.e., cubic, hexagonal, and tetragonal). Given that varying atomic
arrangements within materials lead to entirely distinct physical and chemical properties, it becomes
crucial to convey the extent of structural diversity that stoichiometry can exhibit during the material
discovery process. Therefore, these additional case studies highlight the practicality of PolySRL in
real-world material discovery.
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Figure 10: Additional uncertainty analysis.
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G ADDITIONAL RELATED WORKS

G.1 CRYSTAL STRUCTURE PREDICTION

Crystal structure prediction (CSP) is the process of determining the stable three-dimensional struc-
ture of a compound from its chemical composition alone. Conventional CSP methods often combine
density functional theory (DFT) with optimization algorithms. These algorithms carry out an itera-
tive process searching for stable states that align with the local energy minima, while DFT is utilized
to assess the energy at each step of the iteration (Pickard & Needs, 2011; Yamashita et al., 2018;
Oganov et al., 2019). A recent development in the field is DiffCSP (Jiao et al., 2023), which employs
a deep generative model within a diffusion framework to simultaneously optimize lattice matrices
and atomic coordinates, offering a novel approach to the CSP problem.

It’s important to highlight the growing interest among researchers in generating crystal structures
without predefined stoichiometry, a direction distinct from CSP. The groundbreaking CDVAE (Xie
et al., 2021) integrates a variational autoencoder (VAE) architecture with a diffusion-based decoder
to produce the types of atoms, their coordinates, and lattice parameters. Unlike CSP-focused meth-
ods, CDVAE’s primary goal is the generation of random crystal structures, providing a different
avenue in the field of crystallography research.

H DISCUSSION

Appropriateness of Gaussian Assumption. In fact, the particles that make up a material are dis-
tributed discretely (Kohn et al., 1996), and the material itself manifests following a distinct proba-
bility distribution, which is a composite of the discrete distributions attributed to its constituent par-
ticles (Cousin et al., 2023). However, parameterizing such discrete distributions for each material is
impossible, and therefore, an alternative distribution that can approximate the actual distribution is
required.

Therefore, we choose the Gaussian distribution as an approximate, which has multiple advantages
when incorporated with deep neural networks as follows:

• Efficient gradient computation is available with a reparameterization trick.

• Analytical computation of KL divergence is available and theoretically guaranteed.

Furthermore, we note in Section 5.3 that the uncertainty, which is represented as the variance of
the Gaussian distribution, is consistent with established materials science expertise. Given that our
approach involves a probabilistic representation of stoichiometry to offer both precise representation
and model uncertainty, we believe that the Gaussian distribution effectively fulfills its intended role.

Why does only compositional information exist in real-world wet lab experiments? While
most of the machine learning approaches for crystal property prediction utilize crystal structure in-
formation as an input, which is obtained through Density Functional Theory (DFT) calculations, it
is worth noting that most of the real-world wet lab experimental scenarios lack suitable structural
information on the crystal due to the uncertainty of atomic arrangements (Goodall & Lee, 2020;
Zhuo et al., 2018). More specifically, during the synthesis process of materials, atomic-level rear-
rangement of the material occurs through the mixing of raw materials, heat treatment, and solvent
reactions. Therefore, even if the crystal structure of the raw material is known, the synthesized mate-
rial may have a new crystal structure due to thermodynamic uncertainty introduced by the synthesis
operation, making it impossible to determine the crystal structure precisely. Various chemical anal-
ysis techniques, such as X-ray diffraction (XRD) (Epp, 2016), have been developed to identify the
crystal structure of synthesized materials, but due to cost and limitations in analytical accuracy, the
crystal structure of synthesized materials is not typically the focus of analysis in actual chemical ex-
periments. Therefore, we argue that predicting properties solely based on compositional information
is more practical in the real-world material discovery process.

One-to-many relationship between stoichiometry and its structure. Since we excluded the
atom species information in the structural graph in Section 3.2, it is possible that more than one
stoichiometry can have the same structural graphs. In other words, in our framework, a many-to-
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many relationship exists between stoichiometry and their corresponding structures. However, we
believe this is due to the design choice of structural graph, not due to the knowledge in materials
science. Theoretically, a structural graph that assigns atom species to each node for machine learning
should correspond to a unique stoichiometry.

I NOTATIONS

In Table 9, we provide mathematical notations that are used in the main manuscript.

Table 9: Mathematical notations.

Notations Explanations

ns Number of atoms in crystal structure
Xb An elemental feature matrix of structural graph
Ab An adjacency matrix of structural graph

Gb = (Xb,Ab) A crystal structural graph
zb A latent representation of a crystal structural graph
f b A GNN-based crystal structural encoder

ne Number of unique elements in a stoichiometry
E = {e1, . . . , ene} A unique set of elements in a stoichiometry
R = {r1, . . . , rne} A compositional ratio of each element in a stoichiometry
Ga = (E ,R,Aa) A fully-connected stoichiometry graph

Xa A elemental feature matrix of stoichiometry graph
Aa An adjacency matrix of stoichiometry graph
z̃a A sampled representation from latent distribution of stoichiometry
fa A GNN-based stoichiometry graph encoder
faµ A mean module for stoichiometry graph
faσ A variance module for stoichiometry graph

J Number of samples from latent distribution of stoichiometry (Equation 4)
c Learnable parameters for scaling the Euclidean distance (Equation 4)
d Learnable parameters for shifting the Euclidean distance (Equation 4)

Lcon Soft contrastive loss (Equation 5)
LKL KL divergence loss
β Hyperparameter that controls the weight of KL divergence loss

Ltotal Total loss function (Equation 6)
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