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Abstract

Offline Reinforcement Learning (RL) has emerged as a promising approach to address
real-world challenges where online interactions with the environment are limited, risky,
or costly. Although, recent advancements produce high quality policies from offline data,
currently, there is no systematic methodology to continue to improve them without resorting
to online fine-tuning. This paper proposes to repurpose Offline RL to produce a sequence
of improving policies, namely, Iterative Offline Reinforcement Learning (IORL). To produce
such sequence, IORL has to cope with imbalanced offline datasets and to perform controlled
environment exploration. Specifically, we introduce “Return-based Sampling” as means
to selectively prioritize experience from high-return trajectories and active learning driven
“Dataset Uncertainty Sampling” to probe state-actions inversely proportional to density in
the dataset.We demonstrate that our proposed approach produces policies that achieve
monotonically increasing average returns, from 65.4 to 140.2, in the Atari environment.

Keywords: Offline Reinforcement Learning, Active Learning

1. Introduction

Tabula rasa policy learning has prevented Reinforcement Learning (RL) from being used in
many real-world applications - as starting with a random policy is prohibitive. In recent
years, offline RL has gained significant attention as means to learn policies from logged
data, and, therefore, became a promising approach to high-risk domains, such as healthcare,
finance, robotics, and autonomous driving - Tang and Wiens (2021); Liu et al. (2022).

Unlike online RL, offline RL does not interact with the environment, and thus faces unique
hurdles by exclusively relying on pre-collected data Levine et al. (2020); Yarats et al. (2022)
to learn robust policies. However, real-world datasets often consist of diverse experiences
from multiple suboptimal policies or human experts, leading to imbalanced datasets where
valuable and suboptimal experiences coexist. Even if the dataset includes optimal trajectories,
extracting valuable insights from a large, noisy dataset can be challenging for state-of-the-art
offline RL algorithms, potentially limiting generalization in practical applications.

A common solution to continuous policy improvement is to fine-tune the offline policy
using online algorithms. Not only offline RL algorithm performance degrades after fine-tuning
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Nair et al. (2020), but switching to off-policy learning is impractical in many applications
due to potential risks associated with policy shifts. Alternatively, the policy learned through
offline data can be held fix after deployment. This ensures that the policy behaves predictably
in high risk environments. However, a fixed policy will continue to make the same mistakes
even if actions have been observed to lead to bad returns Ghosh et al. (2022b).

Considering the trade-offs between policy stability and improvement, we proposed
Iterative Offline Reinforcement Learning (IORL). During policy learning, the agent doesn’t
interact with the environment, guaranteeing that no adverse effects will arise from the
learning process itself. The policy learned through offline data is held fix after deployment
to ensure that it behaves predictably in high risk environments. IORL attempts to continue
to improve policies by introducing active learning based controlled exploration to collect
novel experience. This process seeks to bridge the gap between off-policy and offline settings
by allowing the policy to improve iteratively without drifting.

This work addresses both (1) handling imbalanced experience in offline datasets and (2)
improving dataset coverage with controlled exploration. Section 3.1 covers the challenge of
transforming imbalanced datasets to facilitate offline RL learning. Through experiments, we
demonstrate the importance of selectively weighting high-return trajectories (Return-based
Sampling), resulting in a notable performance improvement - the average return increased
from 269.4 to 350.78 in the Atari Breakout environment with half the data. The section
3.2 delves into the active learning based exploration (Dataset Uncertainty Sampling) which
prioritizes state-action spaces that were unseen in the logged data. Our experimental findings
(Section 4) presents empirical evidence of the efficacy of the Iterative Offline Reinforcement
Learning (IORL) framework - doubling of the offline policy’s performance after 5 iterations.

2. Background

2.1 Offline Reinforcement Learning

Given states, s ∈ S, actions, a ∈ A, and rewards r ∈ R spaces, together with environment
transition dynamics, P : S × A × S × R → [0, 1], and a discounting factor, γ, we define
a Markov Decision Process, M = (S,A,R, P, γ). The sequence of interactions over the
MDP produces a trajectory, τ = (s0, a0, r0, s1, a1, r1, . . .). A transition or step, δτit =
(st, at, rt, st+1), is defined as the sub-trajectory between st and st+1 from τi. Let LTD(D) =
Eδ∼D

[
(ri + γmax

a
Qθ̂(st+1, a)−Qθ(st, at))

2
]
be the Temporal Difference (TD) error using

a target Qθ̂. The goal of Offline RL is to learn a parameterized policy, πθ, where θ =
argmin

θ
LTD(Dπβ

), over a fixed dataset of episodic experience, Dτi∼πβ
= (τ1, τ2, . . . , τN ),

collected according to a behavioral policy, πβ(a|s). Note that πβ is possibly unknown and it
can represent a single policy or the result of a set of policies acting over the environment.

The learning agent, πθ, is expected to extract knowledge from the offline dataset to
performs well across a wide range of scenarios. However, if Dπβ

does not adequately cover
the full distribution of possible states and actions, the trained policy may struggle to
generalize effectively to unseen or out-of-distribution (OOD) states and actions Fujimoto
et al. (2018, 2019); Kumar et al. (2020). Offline RL algorithms are carefully designed
to prevent policies from choosing OOD actions. For instance, Batch-Constrained Deep
Q-learning (BCQ), Fujimoto et al. (2019, 2018), tackles the OOD issue by constraining
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Figure 1: General comparison of (a) IORL with other RL algorithms: (b) off-policy RL and
(c) offline RL. For detailed comparison see sub-sections 3.1 to 3.3, and Levine et al. (2020).

next action in the Q-learning backup combining a behavioral cloning model Gw and a
perturbation model ξϕ. On the other hand, Critic Regularized Regression (CRR) Wang et al.
(2020) discourages the Q-value estimates from taking actions that lie outside the training
distribution by filtering unpromising actions during training where Q(st, at) ≤ Q(st, π(st)).
Conversely, Conservative Q-learning(CQL) Kumar et al. (2020) introduces a loss term,
Es∼D

[
log

∑
a exp(Q(s, a))− Ea∼πβ

[Q(s, a)]
]
, to penalize Q-values for unseen state-actions.

2.2 Exploration in Offline RL

All the aforementioned algorithms effectively learn to avoid regions of the state-action
space unexplored by πβ , which also makes these algorithms in general anti-exploratory once
deployed in test environments. Taking CQL as an example, the Q-values for unseen state-
actions are distorted by the pessimistic term and even fine-tuning it with new experience
may take time to produce optimistic Q-values that promote policy-driven exploration. In the
limit, offline policies solely coupled with ϵ-greedy exploration have an exponential sample
complexity to find promising state-actions. Here, some research work has to be done to
either construct naturally adaptive offline RL algorithm Ghosh et al. (2022a) or exploration
incentives in them in test environment Rezaeifar et al. (2022).

3. Iterative Offline Reinforcement Learning

The primary goal of IORL is to produce a progressive sequence of policies, denoted as
(π0, π1, . . . , πk), where each subsequent policy πt+1 is an enhancement over its predecessor
πt, (πt ≤ πt+1). The iterative process unfolds as follows:

1. Initial Policy Learning: Train the first policy π1 over the pre-collected data D1
a∼πβ

.

2. Policy Deployment: Policy πt is held fix after deployed in the environment and
exploratory actions are taken on a fraction of trajectories, collecting a new dataset
Dt+1

a∼πt,πt−1,...,πβ
= Dt ∪ {τk+1, τk+2, . . .}, τj ∼ πE

t .

3. Policy Improvement: Whenever the agent reaches a predefined policy update criteria
the next iteration of the offline policy, πt+1, is trained using offline RL algorithms and
the augmented dataset Dt+1 and, subsequently, deployed.

By construction, the next policy πt+1 is learned on a super set of the previous dataset
Dt used to trained πt. Therefore, we guarantee the next policy have access to data to be, at
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least, as good as the existing policy. However, policy improvement will only happen if we
overcome the absence of built-in exploration mechanisms in Offline RL. This demands to
enrich the offline dataset Dt with uncharted state-action spaces.

3.1 Offline Learning on Imbalanced Data

Offline RL is particularly sensitive to the composition of the offline dataset. We argue that
training an effective policy offline is challenging when datasets encompasses (1) experiences
from a broad range of performance levels or (2) incomplete trajectories. In practice, CQL
have been reported to struggle to learn when sub-optimal trajectories are added to an expert
dataset (c.f. D4RL’s mixture vs expert) Kumar et al. (2020). Moreover, we have observed
the importance of keeping complete trajectories in the experience buffer for the agent to
learn how to reach intermediate states - further explored in section 4.1.

We propose to use a trajectory-level buffer (τ -buffer) and employ a weighted sampling
mechanism that trajectory returns, wτi ∝

∑∞
t=0 γ

trτit , to prioritize trajectories according to
their overall return - where the probability of sampling a trajectory is p(τi) = wτi/

∑
j wτj .

This approach concentrates learning on the trajectories exhibiting the highest returns. It’s
worth noting that omitting a specific experience from the dataset instructs the policy not
to follow that particular action, as pessimistic penalties are added. This mechanism allows
the policy to learn from experiences which are not included in the training dataset and to
reduce the training size through removing under-performing experiences.

3.2 Active Learning Environment Exploration

We introduce a novel method for exploring and sampling new experiences from the en-
vironment, termed ”Dataset Uncertainty” exploration. As outlined in Algorithm 1, we
initiate by training the offline policy πt using the dataset Dt and the uncertainty model
Eωt(a|s) : S × A → [0, 1], such that

∑
aEω(a|si) = 1,∀si ∈ S. For MDPs with long tra-

jectories (i.e. 1000+ transitions), traditional ϵ-greedy will, very likely, take at least one
exploratory action in every trajectory. Therefore, during deployment, we first determine
whether to engage exploration in a certain trajectory. Then, we use the parameter ϵ to
determine when to explore within a given episode. The new experiences are then appended
to the existing offline dataset weighted by their return.

The action probability model is trained minimizing the expected Negative Log-Likelihood
together with a L2-regularization component - weighted by the scalar: α. Exploratory action,
aE , is draw from the probability model:

LtE(ω) = E(ai,si)∼Dt [− log(Eω(ai|si)] + α∥ω∥2

aE(si) = argmin
a

Eω(a|si)

The Dataset Uncertainty exploration method aims to uncover unexplored areas in the
state-action space. The uncertainty model is trained minimizing the loss Lt

E over Dt,
predicting the probability of each action, a, been seen on the dataset Dt, given a state s. The
objective is to select the action that is least likely to have been encountered in the dataset
Dt - aE = argmin

a
Eω(s). This process ensures that the action selected for exploration is the

one associated with the highest uncertainty value under the prevailing offline policy.
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3.3 Off-Policy RL Comparison

Off-Policy RL is intrinsically optimistic, meaning, it promotes policy-driven exploration via
overestimation of unseen state-action value function. In contrast, IORL relies on offline RL
algorithms to learn, by construction, anti-exploratory policies. Thus, it requires additional
mechanism such as active learning, as proposed in this paper, to explore unseen state-actions.

4. Evaluation

4.1 Return-based Sampling

To evaluate the effectiveness of the Return-based Sampling technique, we conducted exper-
iments using intentionally imbalanced datasets that captures various levels of experience.
At certain epochs of training Rainbow, Hessel et al. (2017), we would stop training and
use the current policy to collect environment experience. The datasets were constructed by
concatenating data obtained from distinct epochs . This compilation is consistent to the
”mixed” dataset found in the D4RL dataset Fu et al. (2021). This deliberate imbalance
simulates real-world complexities where experience comes from different policies.

In our experimental evaluation, we scrutinized the performance of offline RL methods
on both the accumulated dataset and the sampled datasets within the Breakout and Pong
environments (refer to Table 1). A comparative analysis was conducted between the Return-
based sampling method and uniform sampling, a technique involving the uniform selection
of complete trajectories from the accumulated dataset.

Our findings, illustrated in Table 1, underscore that the proposed sampling strategy
consistently produces better policies in imbalanced datasets. Particularly noteworthy is
the performance enhancement in the Breakout environment, where the CRR algorithm
exhibited a remarkable 300% increase, followed by BCQ with a 40% increase, and CQL with
a 30% increase. A parallel trend was observed in the Pong environment. In Off-Policy RL,
transition weighting and sampling is a common approach to extract information from the
experience replay buffer. Nevertheless, we have observed the importance of maintaining
complete trajectories, as all transition-based sampling methods failed to improve performance
- including Prioritized Experience Replay. Schaul et al. (2016) and reward-based sampling.
Intuitively, incomplete trajectories may prevent the agent to learn to reach critical states.

Table 1: Trajectory based Data Sampling

Environment Dataset Transformation CRR BCQ CQL

Breakout
Accumulated Dataset 66.9 222.14 269.4

Trajectory based Uniform Sampling 28.21 254.4 165.59

Return-based Sampling 295.23 311.3 350.78

Pong
Accumulated Dataset -0.09 10.92 11.27

Trajectory based Uniform Sampling -0.62 11.92 15.35

Return-based Sampling 12.73 16.56 20.21

4.2 Environment Exploration

To gauge the effectiveness of IORL, we initiate the process by utilizing a sub-optimal dataset
generated by Rainbow in the early stages of learning, D1

πon
β
. Then, we ran IORL for five
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iterations, following the 2-step process of: Policy Deployment and Policy Improvement (3).
Based on the size of our initial training dataset of 100 trajectories, we came with a policy
update rule of 20 new trajectories (c.f. collectExperience in algorithm 1) that exhibit higher
returns than the preceding dataset.

Figure 2a depicts the average return of Dataset Uncertainty based exploration and its
comparison with other exploration methods (Random and Thompson sampling) in the Break-
out environment, where each experiment is repeated five times. Random (at ∼ uniform(A))
and Dataset Uncertainty based exploration exhibited good performance increase compared
to the initial 65.4 points, averaging a return around 140.2 points. Thompson sampling
increase was not as expressive, achieving only 120 points in average. Better prior distribution
selection could improve the performance of Thompson sampling, however, determining the
appropriate prior reward distribution can be challenging in real-world applications and, thus,
we used the default beta distribution.

In Figure 2b, we quantitatively assessed the sample complexity, a crucial metric that
measures the number of transitions needed to discover enhanced trajectories within each
iteration. Random exploration displays exponential sample complexity, requiring 100
million data samples. We limited our experimentation to five iterations, since searching for
optimal trajectories would demand a substantial time investment. The Dataset Uncertainty
approaches require only around 5 to 7 million data samples, significantly fewer than Random
exploration and Thompson sampling.

(a) IORL performance (b) Sample Complexity (

Figure 2: Left is the performance improvement experienced by applying five iterations of
IORL over a initial policy in the Breakout environment. Right is the sample complexity
required by each exploration method.

5. Conclusion

In this paper, we introduced the concept of Iterative Offline Reinforcement Learning (IORL),
a methodology that combines learning from evolving datasets and controlled environment
exploration through active learning to continue to improve policies after environment
deployment. The conducted empirical experiments underscore the efficacy of IORL in
the Atari environment - summarized in figures 2a and 2b. In conclusion, IORL offers a
well-defined route for policy enhancement - even in high risk domains.
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Appendix A. - Iterative Offline Reinforcement Algorithm

Below we present the outline of the algorithm used during our experiementation:

Algorithm 1 Iterative Offline RL

Require: D0, ϵ, env
while do
Dt+1 ← TrajectorySampling(Dt)
θt+1 ← θt −∇θLCQL(Dt+1)
ωt+1 ← ωt −∇ωLE(Dt+1)
while collectExperience(Dt+1) do

for st in env.notDone() do
if explore(τi) and Rand() < ϵ then

at ← argminaEω(a|st)
else

at ∼ π(a|st)
end if
rt ← env.act(at)
τi ← τi ∪ (st, at, rt)

end for
Dt+1 ← Dt+1 ∪ τi

end while
end while

Note that in our experiments we have updated the uncertainty model at every iteration,
however Ew can be updated online in order to provide better uncertainty estimates. Also,
the explore is basically an indicator enabling exploration to happen in that episode.
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