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Abstract
Autonomous systems are increasingly being de-
ployed in stochastic real-world environments. Of-
ten, these agents are trying to find the shortest path
to a commanded goal. But what does it mean to
find the shortest path in stochastic environments,
where every strategy has a non-zero probability of
failing? At the core of this question is a conflict
between two seemingly-natural notions of plan-
ning: maximizing the probability of reaching a
goal state, and minimizing the expected number of
steps to reach that goal state. Reinforcement learn-
ing (RL) methods based on minimizing the steps
to a goal make an implicit assumption: that the
goal is always reached, at least within some finite
horizon. This assumption is violated in practical
settings and can lead to very suboptimal strategies.
In this paper, we bridge the gap between these two
notions of planning by estimating the probability
of reaching the goal at different future timesteps.
This is not the same as estimating the distance to
the goal – rather, probabilities convey uncertainty
in ever reaching the goal at all. Our value func-
tion will resemble that used in distribution RL, but
will be used to solve (reward-free) goal-reaching
tasks rather than (single) reward-maximization
tasks. Taken together, we believe that our results
provide a cogent framework for thinking about
probabilities and distances in stochastic settings,
along with a practical and effective algorithm for
goal-conditioned RL.

1. Introduction
The reinforcement learning (RL) community has seen grow-
ing excitement in goal-conditioned methods in recent years.
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These methods promise a way of making RL self-supervised:
RL agents can learn meaningful (goal-reaching) behaviors
from data or interactions without reward labels. This excite-
ment is reinforced by the fact that goal-conditioned RL also
seems to suggest effective ways of learning representations
that are directly aligned with the RL objective (Eysenbach
et al., 2022). However, for a long time, there has been a
sticking point in both discussion and algorithmic develop-
ment of goal-conditioned RL: what is the objective?

Perhaps the most natural objective is to minimize the hitting
time, the expected number of steps required to reach a goal.
Indeed, this is the basis for much of the classical work in this
area (often under the guise of stochastic shortest-path prob-
lems (Bertsekas & Tsitsiklis, 1991)), as well as more recent
work based on dynamical distance learning (Hartikainen
et al., 2019; Venkattaramanujam et al., 2019). However,
these methods implicitly assume that the goal state is al-
ways reached; without this assumption, the expected hitting
time can be infinite. Nonetheless, RL researchers have pro-
posed a number of methods to optimize this “natural” notion
of distance, often with methods that first estimate this dis-
tance and then select actions that minimize this distance,
methods that often achieve excellent results.

In this paper, we attempt to reconcile this tension with the
steps-to-goal objective. We first lay out a few subtle issues
with this objective. We show that it can lead to suboptimal
behavior, both on analytic examples and on continuous-
control benchmarks. What, then, is the right way to think
about hitting times for goal-conditioned tasks? We advocate
for taking a probabilistic approach: estimate the probability
of reaching the goal after exactly t steps. We extend prior
work that estimates the discounted stationary distribution
of future goals via contrastive learning. We do this by
learning a classifier that explicitly predicts the probability
of reaching the goal at specific timesteps. By estimating the
probability at different values of t, we are able to capture the
local temporal structure and thereby reason about when the
goal will be reached. But, importantly, these probabilities do
not assume that the goal will always be reached, i.e., these
probabilities remain well-defined in settings with stochastic
policies and dynamics. Our analysis shows that, in determin-
istic environments, these two objectives are closely related.
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Based on this analysis, we propose a new algorithm for
goal-conditioned RL, which estimates the probability of
reaching the goal for varying values of t. Our method can
be viewed as a distributional extension to recent work on
contrastive RL. Our experiments show that this framing of
“distances as probabilities” yields substantially higher per-
formance than simply regressing to distances. Compared to
prior contrastive RL methods, our distributional approach
achieves higher performance on both low-dimensional and
image-based goal-reaching tasks. Finally, based on our
analysis, we propose an auxiliary objective based on a self-
consistency identity that these probabilities should satisfy.
Augmenting our goal-conditioned methods with this aux-
iliary objective can further boost performance. Taken to-
gether, our analysis not only provides a better algorithm for
goal-conditioned RL, but also provides a mental model to
reason about “distances” in settings with uncertainty.

2. Related Work
Goal-Conditioned RL. Goal-conditioned RL is one of
the long-standing problems in RL, with roots back to the
early days of AI (Newell et al., 1959). In the recent decade,
researchers have proposed a wide array of successful ap-
proaches for goal-conditioned RL, including those based
on conditional imitation learning (Sun et al., 2019; Ghosh
et al., 2019; Lynch et al., 2020), temporal difference learn-
ing (Durugkar et al., 2021), contrastive learning (Eysenbach
et al., 2020; 2022) and planning (Tian et al., 2021; Ma et al.,
2022). Many of these approaches employ a form of hind-
sight relabeling (Andrychowicz et al., 2017) to improve
sample efficiency, or even as a basis for the entire algo-
rithm (Eysenbach et al., 2022). Our work builds directly on
prior contrastive RL methods, which are heavily inspired by
noise contrastive estimation (Gutmann & Hyvärinen, 2010).
Our key contribution will be to show how such methods can
be extended to give finer-grain predictions: predicting the
probability of arriving at a goal state at specific times.

Distances in RL. Shortest path planning algorithms are
the workhorse behind many successful robotic applications,
such as transportation and logistics (Kim et al., 2005; Fu
& Rilett, 1998; Pattanamekar et al., 2003; Cheung, 1998).
Many reinforcement learning methods have built upon these
ideas, such as devising methods for estimating the distances
between two states (Eysenbach et al., 2019; Hartikainen
et al., 2019; Venkattaramanujam et al., 2019; Alakuijala
et al., 2022). The key point of our analysis is to highlight
some subtle but important details in how these distances are
learned and what they represent, showing that distances can
be ill-defined and that using distances for selecting actions
can yield poor performance.

Probabilistic approaches. One way to look at our method
is that we are learning a distributional critic to represent the
likelihood of reaching the goal at each future timestep, as
opposed to learning a single scalar unnormalized density
over future goals (Eysenbach et al., 2020; Rudner et al.,
2021). Adding this temporal dimension to the contrastive
RL algorithm enables the critic network to break down a
complex future density distribution into hopefully simpler
per-timestep probabilities. This framework also allows one
to (i) enforce structural consistency for probabilities across
timesteps (closely related to n-step Bellman backup), (ii)
make the critic more interpretable, and (iii) reason over
future probabilities as distances.

Distributional Approaches. Our proposed method will
be reminiscent of distributional approaches to RL (Dabney
et al., 2018; Bellemare et al., 2017; Sobel, 1982): rather
than estimating a single scalar value, they estimate a full dis-
tribution over possible future returns. In the goal-reaching
setting, it is natural to think about this distribution over
future values as a distribution over distances (Eysenbach
et al., 2019). However, as we will show, distances are not
well defined in many stochastic settings, yet a probabilistic
analogue does make theoretical sense and achieves superior
empirical performance. While our proposed method does
not employ temporal difference updates, Sec. 5.2 will intro-
duce an auxiliary objective that resembles TD updates. This
auxiliary objective boost performance, perhaps in a similar
way that the distributional RL loss enjoys stable gradients
and smoothness characteristics (Sun et al., 2022).

3. Preliminaries
We consider the reward-free goal-conditioned RL frame-
work, which is defined by a state-space S, action-space A,
a transition dynamics function p(st+1 | st, at), an initial
state distribution ρ0 and a goal distribution p(g). Unlike the
classical RL framework, the reward function is implicitly
defined by the transition dynamics and a discount factor γ ∈
[0, 1) : rg(st, at) = (1 − γ)p(st+1 = g | st, at). For this
reward function, the corresponding action-value function of
a goal-conditioned policy πg(a|s) = π(a | s, g) takes the
form of the discounted future density pπg (s+ = g | s, a)
over the goal states:

Qπg (st, at) = (1− γ)Eπ

[
∞∑

∆=0

γ∆p(st+∆+1 = g | st+∆, at+∆)

]
= pπg (s+ = g | st, at).

By using this Q-function to score actions, the policy directly
maximizes the chance of reaching the goal in the future. To
estimate the Q-function, we will use contrastive RL (Eysen-
bach et al., 2022; 2020), which trains a binary classifier with
cross-entropy objective to represent this Q function:

argmin
C

Eg∼pπ(g|s,a)[logC(s, a, g)] + Eg∼p(g)[log(1− C(s, a, g))]
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The resulting Bayes’ optimal classifier Cπ for a policy π is
proportional to its Q function:

Cπ(s, a, g)

1− Cπ(s, a, g)
=

pπg (s+ = g | s, a)
p(g)

Since the noise distribution p(g) is independent of the ac-
tions, we can then optimize a policy with respect to the
classifier by argmaxa C

π(s, a, g).

4. The Perils of Monte Carlo Distance
Functions

A common strategy in prior work is to predict the number of
steps that elapse between one observation and another (Tian
et al., 2021; Shah et al., 2021). This estimate is then used as
a distance function, either for greedy action selection (Shah
et al., 2021), planning (Tian et al., 2021), or reward shap-
ing (Hartikainen et al., 2019). We will call this approach
“Monte Carlo distance regression.”

Intuitively, it seems like such an approach is performing
reinforcement learning with the reward function that is −1
at every step until the goal is reached. Prior work thus
interprets the distances as a Q function. However, it turns
out that this distance function is not a Q function. In this
section, we show that these distance functions do not (in
general) correspond to a Q function, and their predictions
can be misleading.

4.1. Toy example illustrating pathological behavior

Consider the toy MDP example in Fig. 1(a) with a goal state
4 and an absorbing state 3. From state 1, the agent can
choose an action a1 to directly reach the goal state 4 in a
single step with a probability of p, but risks getting trapped
in state 3 with 1− p odds. On the other hand, the agent can
choose an action a2 to deterministically reach the goal 4 in
2 steps. The agent receives a reward of −1 at every timestep
it is not at the goal.
Proposition 4.1. Relative to the reward-maximizing policy,
MC regression can incur regret that is arbitrarily large.

Assuming a discount factor γ, we can compute the opti-
mal Q function analytically: Q(1, a1,4) = − (1−γp)

(1−γ) and
Q(1, a2,4) = −(1 + γ). This suggests that for transition
probability p < γ, choosing the action a1 is suboptimal with
a linear regret of Q(1, a∗ = a2,4)−Q(1, a1,4) =

γ(γ−p)
(1−γ) .

In the limit γ → 1, this regret becomes unboundedly large
for any p ∈ [0, 1), suggesting that even a slight risk of get-
ting indefinitely stuck in a trap state is much more costly
than the reward of reaching the goal a few steps early.

Now, imagine if we regressed a distance function
d(s1, s2, a) to the Monte-Carlo rollouts from state 1. The
distance function suggests that the d(1, 4, a1) = 1, since all

the trajectories that start from 1 and end up in 4 after taking
an action of a1 are of unit length. Similarly, d(1, 4, a2) = 2.
Notice that the optimal MC distances do not depend on the
transition probability p, suggesting that MC distances offer
an optimistic distance estimate by ignoring the stochasticity
in dynamics. Acting greedily with an MC distance function
results in a policy that takes the shortest path on the graph
by treating stochastic edges as being deterministic, which
can be very suboptimal in stochastic settings. For instance,
Fig. 2 shows that if the transition probability p = 0.1 for
1 → 4, MC distance suggests the suboptimal action a1
which incurs a significantly higher regret that the optimal
action a2, as suggested by the optimal Q-function. This
demonstrates a fundamental disconnect between shortest-
path solutions and reasoning about the likelihood of reach-
ing a goal state in the future.

Proposition 4.2. Monte-Carlo distance functions are gener-
ally not a valid distance under any metric (or quasimetric).

To show this, consider the MDP in Fig. 1b, where the agent
has no control over state transitions through actions. The
MC distance function d(s, g) answers the following ques-
tion: if the agent traveled from s to g, how many steps would
elapse (on average)?. For example, d(3, 4) = 1 because
this state 4 always occurs one step after state 3. But, per-
haps strangely, d(1, 2) = 1: even though it may be unlikely
that state 2 occurs after state 1, if state 2 occurs, it would
occur after a single step. Similarly, d(2, 6) = 1. However,
these distances violate the triangle inequality. Even though
d(1, 2)+d(2, 6) = 2, the estimated distance directly from 1
to 6 is d(1,6) = 2p2+3(1−p)

p2+(1−p) , which is greater than 2 for all
p ∈ [0, 1). Thus, these MC distances are not a valid distance
metric (nor quasimetric).

Proposition 4.3. Monte-Carlo distance functions do not
obey the quasimetric property and hence do not represent
the optimal goal-conditioned value function for any reward
function.

An optimal goal-conditioned value function is a quasimetric:
it always has to obey the triangle inequality (Wang et al.,
2023). This is enforced because of the optimality and
Markov property in MDPs: the optimal reward going from
s1 to s3 should be atleast as high as the sum of optimal sub-
paths from s1 to an intermediate state s2, followed by s2 to
s3, i.e., V ⋆(s1, s2) + V ⋆(s2, s3) ≤ V ⋆(s1, s3) ∀ s1, s2, s3.
Proposition 4.3 directly follows from Proposition 4.2, since
MC distance functions violate the triangle inequality.

What is the cause for MC distance functions to exhibit these
pathological behaviors? In the examples from Fig. 1, the
MC distance estimates do not account for the transitions
that could result in getting stuck in a trap state (3 and 5 in
Fig. 1(a) and (b) respectively). More generally, the patho-
logical behaviors of MC distances can be attributed to their
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(a) (b)
Figure 1: Toy MDPs to illustrate the pathological behaviors exhibited by MC distance regression. Solid lines and dashed lines denote
deterministic and stochastic state transitions, respectively.

Figure 2: MC distances and optimal negative Q-values at dis-
agreement for 1 → 4 on the toy MDP in Fig. 1a with γ = 0.99
and p = 0.1. The y-axis has a logarithmic scale.

optimism bias, wherein they are computed assuming the
agent will inevitably reach the goal without considering the
associated risks.

4.2. Connection between Maximizing Likelihood and
Stochastic Shortest Path Methods

Imagine an MDP where the episode does not terminate upon
reaching the goal. Then, the reward-free goal-conditioned
RL agent that is incentivized to maximize its time at the
goal is closely related to an agent that is trying to minimize
the expected time to the goal (proof in Appendix A):

max
π

log

(
(1− γ)Eπ

[
∞∑
t=0

γtr(st, at, g)

])

≥ max
π

−E∆∼π[∆] log

(
1

γ

)
,

where ∆ ∼ π denotes the length of a trajectory drawn out
of the policy π to reach the goal.

If both maximizing likelihood and shortest-path planning
seem closely related in theory, why do shortest-path meth-
ods suffer from pathological behaviors? The answer lies
in the logarithmic transformation that gets applied to the
likelihood. In simple words, the likelihood of success while
failing to reach the goal is 0, which is a well-defined number,

whereas the corresponding expected distance to the goal is
unboundedly large (the negative logarithm of 0).

4.3. Interpreting Distance Regression as a Classification
Problem

Monte-Carlo distance regression is equivalent in the limit to
learning a normalized distance classifier over the observed
horizon, followed by using the bin probabilities to obtain the
mean distance. More precisely, let H ∈ {0, 1, · · ·B − 1}
be a random variable denoting how far ahead to look to
sample the future states (a.k.a goals). The distance classifier
represented by C(s, a, g) ∈ PB can then be learned using a
categorical cross-entropy loss:

Ep(H),st,at∼p(s,a),g∼pπ(st+H |st,at) [logC(st, at, g)[H]] .

Obtaining distances from this classifier is straightforward:
d(s, a, g) =

∑
H H C(s, a, g)[H]. Using Bayes’ Rule, we

can express the Bayes optimal classifier as

Cπ(st, at, g)[H] = Pπg (H | st, at, g)

=
pπg (st+H = g | st, at)p(H)

pπg (s+ = g | s, a)
.

This expression reveals a subtle nuance with distance
regression. The distance classifier predicts normalized
probabilities, which implicitly assume that the goal can
be reached within a finite horizon. Consider this ex-
ample: say that action a1 has pπg (g | s, a1, H =
1, 2, 3, ...) = [0.01, 0, 0, · · · ] while a2 has pπg (g |
s, a2, H = 1, 2, 3, ...) = [1, 1, 1, · · · ]. Then, distance clas-
sifier prefers action a1 over a2 since d(s, a1, g) = 1 and
d(s, a2, g) > 1, despite it succeeding in reaching the goal
with 100× lower probability.

5. The Fix: Estimate Probabilities, not
Distances

In this section, we propose a method that directly estimates
the probabilities of reaching goals at different horizons. We
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describe our method and provide analysis in Sec. 5.1. As
we will show in our experiments, this method can already
achieve excellent results in its own right. Sec. 5.2 proposes
a regularization term based on an identity that our proba-
bilities should satisfy. Our experiments will demonstrate
that adding this regularization term can further boost perfor-
mance.

5.1. Our Method: Distributional NCE

The underlying issue with distance classifiers (discussed in
Sec. 4.3) is that they are normalized across the horizon; they
have a softmax activation. Replacing that softmax activation
with a sigmoid activation resolves this issue and opens the
door to new algorithms that resemble distributional RL.

The connection with distributional RL is interesting because
it motivates distributional RL in a different way than before.
Usually, distributional RL is motivated as capturing aleatoric
uncertainty, providing information that can disambiguate be-
tween a strategy that always gets +50 returns and a strategy
that gets +100 returns 50% of the time. Here, we instead
show that distributional RL emerges as a computationally
efficient way of learning distances, not because it gives us
any particular notion of uncertainty. This is also interesting
in light of prior work that distributional RL does not nec-
essarily produce more accurate value estimates (Bellemare
et al., 2017).

We start by introducing an MC method to learn a distance
classifier C(s, a, g) ∈ [0, 1]B ; note that each element of this
vector is a probability, but they need not sum up 1. This
distance classifier can be learned via binary classification:

max
C

Ep(H)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[H]]

+ Ep(g)[log(1− C(st, at, g)[H])]

]
. (1)

The Bayes’ optimal classifier satisfies

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
=

pπg (st+H = g | st, at)
p(g)

. (2)

On the RHS, note that actions only appear in the numera-
tor. This means that selecting the actions using the LHS is
equivalent to selecting the actions that maximize the proba-
bility of getting to the goal in exactly H steps. While this
notion of success is non-Markovian, this same classifier can
be used to maximize the (Markovian) RL objective with
r(s, a, g) = 1(s = g) using the following:
∞∑

∆=1

γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]
(3)

=

∞∑
∆=1

γ∆−1 p
πg (st+∆ = g | st, at)

p(g)
=

pπg (s+ = g | st, at)
(1− γ)p(g)

.

Algorithm 1 DISTRIBUTIONAL NCE: h is the number of
bins in the classifier output, which may be less than the task
horizon. Comments denote the shapes of tensors.

def critic_loss(s, a, g, dt):
# logits: (batch_size, batch_size, h)
logits = classifier(s, a, g)
probs = sigmoid(logits)
labels = one_hot(dt, num_classes=h)
loss = BinaryCrossEntropy(logits, labels)
return loss.mean()

def actor_loss(s, g):
# a: (batch_size, action_dim)
a = policy.sample(s, g)
# logits: (batch_size, batch_size, h)
logits = classifier(s, a, g)
# p(g|s,a,h)/p(g) = C(s,a,g)[h]/(1-C(s,a,g)[h])
prob_ratio = exp(logits)
# Q: (batch_size, batch_size)
Q = sum(discount ** range(h) * prob_ratio, -1)
return -1.0 * Q.mean()

The expression on the RHS is the same as the objective in C-
learning, which corresponds to maximizing the likelihood of
the goal state under the discounted state occupancy measure.

In practice, we use the last bin of the distributional NCE clas-
sifier as a catch-all bin. This modification avoids ill-defined
Q-values due to a finite number of bins, by accounting for
the future states from the trajectory that are at least h steps
away, where h is the number of classifier bins in the distri-
butional NCE algorithm. See the Appendix B.1 for more
details about using the catch-all bin. Implementing the dis-
tributional NCE fix is easy: (1) change the final activation
of the distance classifier from a softmax to a sigmoid; (2)
change the loss for the distance classifier from a categorical
cross-entropy to an (elementwise) binary cross entropy.

Analysis. The Bayes optimal MC distance classifier can
be obtained from normalizing the Bayes optimal distribu-
tional NCE classifier across the horizon:

Pπg (H = h | st, at, g) =
pπg (st+h = g | st, at)P (h)

pπg (s+ = g | st, at)

=
wπ(st, at, g)[h]P (h)∑
h′ wπ(st, at, g)[h′]P (h′)

. (4)

where wπ(s, a, g)[h] = Cπ(s,a,g)[h]
1−Cπ(s,a,g)[h] . The Q-function we

obtain from aggregating the bins of the distributional NCE
classifier with geometric weights (Eq. 3) is the same as the
contrastive NCE method (Eysenbach et al., 2022). Under
mild assumptions (invoking the results from Sec. 4.5 and
Appendix B in (Eysenbach et al., 2022)), we prove that
distributional NCE is performing approximate policy im-
provement and is a convergent contrastive RL algorithm
(more details in Appendix B.2).
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5.2. Self-Supervised Temporal Consistency Objective

The problem of learning goal-directed behavior exhibits
a certain structure: if you can predict the probability of
reaching a goal in 10 days starting today, then you can
predict the probability of reaching that same goal in 9 days
starting tomorrow. This idea highlights a simple identity
that the distributional probabilities must satisfy to remain
temporally consistent:

pπg (g | st, at, H)

= E(st+1,at+1)∼(st,at) [p
πg (g | st+1, at+1, H − 1)] .

This identity can be used to derive a temporal consistency
identity for distributional NCE, which is satisfied by the
Bayes’ optimal classifier (the solution to Eq. 2):

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]

= E(st+1,at+1)∼(st,at)

[
Cπ(st+1, at+1, g)[H − 1]

1− Cπ(st+1, at+1, g)[H − 1]

]
.

(5)

We now turn this identity into a penalty for the distributional
NCE classifier as follows:

LTC = E(st,at,g,st+1,at+1)

[
⌊w⌋ logC(st, at, g)[H]

+ ⌊(1− w)⌋ log (1− C(st, at, g)[H])
]
, (6)

where w = C(st+1, at+1, g)[H − 1] and ⌊.⌋ denotes the
stop-gradient operator. Because the identity in Eq. 5 is
satisfied by the Bayes’ optimal classifier, adding the cor-
responding penalty (Eq. 6) to the distributional NCE loss
(Eq. 1) does not change the solution. In on-policy settings,
we can generalize 1-step consistency to k−step consistency
(more details in Appendix B.3):

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊wk⌋ logC(st, at, g)[H]

+ ⌊(1− wk)⌋ log (1− C(st, at, g)[H])
]
, (7)

where wk = C(st+k, at+k, g)[H − k]. We will empirically
study this k-step consistency in our experiments. We hy-
pothesize that the temporal consistency objective enables
information to flow back in time, accelerating the Monte-
Carlo classifier training. We will test this hypothesis in the
next section (Fig. 4).

6. Experiments
In this section, we provide empirical evidence to answer the
following questions:

1. Does the distributional NCE algorithm offer any bene-
fits over the MC distance regression and distance classi-
fier in deterministic goal-reaching environments, with
function approximation and a stochastic policy?

2. Can distributional NCE accurately estimate the prob-
ability of reaching the goal at a specific future time
step?

3. Are there any benefits to using the distributional archi-
tecture for classifier learning?

4. Does the temporal consistency term accelerate the dis-
tributional NCE training?

Environments. We selected seven standard goal-
conditioned environments (Plappert et al., 2018; Yu
et al., 2020) to test these hypotheses: fetch_reach,
fetch_push, sawyer_push, sawyer_bin, fech_reach_image,
fetch_push_image, and sawyer_push_image. The lat-
ter three environments have image-based observations.
fetch_reach is the simplest task; The fetch_push and
sawyer_push environments are more challenging, and re-
quire the robot to use its gripper to push an object to the spec-
ified goal position. Lastly, the pick-and-place in sawyer_bin
presents a hard exploration challenge. See Appendix D.2
for more details about the tasks.

Comparison with distance regression. In the earlier sec-
tion, we showed that using the MC distance metric can be
very suboptimal for stochastic MDPs with a countable state
space, where the optimal policy was known beforehand.
Our first experiment is designed to test if distance functions
learned via MC regression and distance classifier can be
used in the place of a Q-function to greedily optimize a
stochastic policy. We hypothesize that the stochasticity in
action sampling from the policy, along with the associated
risk of choosing the shortest path are ignored by MC dis-
tance functions, which will result in suboptimal behavior.
We test out the MC distance regression and distance classi-
fier algorithms on the three following tasks with increasing
difficulty: fech_reach, fetch_push, and sawyer_push. We
also included a comparison with distributional NCE to check
if the proposed algorithm fills in the shortcomings of us-
ing MC distance functions. We use the same number of
classifier bins for distance classifier and distributional NCE.

Our results from Fig. 3 suggest that MC distance regression
only succeeds at fetch_reach, the simplest of the selected
tasks, which only requires greedily moving to a target goal
position. Surprisingly, MC distance classifier fails at all the
tasks. In every other setting, MC distance functions are not
able to do considerably better than a randomly initialized
policy. On the other hand, the distributional NCE algorithm
is able to learn a policy that solves all the tasks.

Comparing to prior goal-conditioned RL algorithms.
We now compare the performance of distributional NCE
against two high-performance goal-conditioned RL algo-
rithms: Contrastive NCE and C-learning algorithms. Com-
paring against Contrastive NCE directly allows us to study
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Figure 3: Distributional NCE solves all the goal-reaching tasks with a good success rate, whereas the MC distance functions fail at almost
all the tasks. This result supports our hypothesis that MC distances are not a good choice for the Q-function of goal-conditioned RL tasks.

Figure 4: Comparison with baselines. Distributional NCE outperforms the Contrastive NCE (Eysenbach et al., 2022) and C-Learning
(Eysenbach et al., 2020) in all but the easiest tasks (fetch_reach, fetch_reach_image). Applying temporal consistency on top of
Distributional NCE accelerates learning and boosts asymptotic performance.

whether our distributional architecture boosts performance,
relative to a contrastive method (contrastive NCE) that pre-
dicts a single scalar value. Distributional NCE is an on-
policy algorithm, so the comparison with C-learning (an
off-policy algorithm) lets us study whether this design deci-
sion decreases performance.

The results, shown in Fig. 4, demonstrate that distributional
NCE is roughly on par with the prior methods on the easiest
tasks (fetch_reach and fetch_reach_image), but can perform
notably better on some of the more challenging tasks; rel-
ative to the strongest baseline, distributional NCE realizes
a +24% improvement on fetch_push and a +20% improve-
ment on sawyer_bin.

As discussed in Sec. 5.2, the predictions from distributional
NCE should obey a certain consistency property: the proba-
bility of getting to a goal after t time steps from the current
state should be similar to the probability of getting to that
same goal after t−1 steps starting at the next state. We equip
distributional NCE with the auxiliary objective proposed in

Eq. 7 based on this property.

We show the results from this variant of distributional NCE
(“distributional NCE with consistency”) in green in Fig. 4.
While we see no effect on the easiest tasks (fetch_reach,
fetch_reach_image), the auxiliary term improves the sample
efficiency of the fetch_push task (2.8× 105 fewer samples
to get to 60% success rate) and improves the asymptotic
performance on the sawyer_push and sawyer_bin tasks by
+16% and +13% respectively.

Analyzing distributional NCE’s predictions. To better
understand the success of distributional NCE, we visualize
its predictions. We do this by taking two observations from
the fetch_reach task that take 5 steps to transit between
under a well-trained policy. We show the predictions from
distributional NCE in Fig. 5 (left). Note that distributional
NCE outputs a probability for each time step t. The highest
probability is for reaching the goal after exactly 5 steps, but
the method still predicts that there is a non-zero probability
of reaching the goal after 4 steps or after 6 steps. We also
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Figure 5: Visualizing the probabilistic distance predictions for
future goals that are 5 (Top) and 10 (Bottom) steps away, on the
fetch_push task. These results confirm that the distance predictions
offered by distributional NCE correlate well with the true distance
and are well-calibrated in uncertainty.

compare to the predictions of the “MC Distance” baseline
from Fig. 3. We see that this baseline makes an accurate
estimate for when the goal will be reached.

We include another visualization of the distributional NCE
predictions in Fig. 5 (right), this time for two observations
that occur 10 steps apart. Again, the predictions from dis-
tributional NCE appear accurate: the goal has the highest
probability of being reached after 10 – 12 steps. These pre-
dictions highlight an important property of the distributional
NCE predictions: they do not sum to one. Rather, it may
be likely that the agent reaches the goal after 9 steps and
remain at that goal, so the probability of being in that goal
after 11 steps is also high.

Our final visualization draws a connection between distri-
butional NCE and the “Distance Classifier” baseline from
Fig. 3. We can recover the Bayes’ optimal distance classifier
from the distributional NCE predictions by normalizing the
predicted probabilities (Eq. 4). We visualize a confusion
matrix of these predictions in Fig. 6 by averaging over 1000
states sampled from a trained policy. We observe that there
is a clear trend along the diagonal, indicating that the distri-
butional NCE predictions (after normalization) can be used
to estimate “distances.” This visualization not only provides
a further sanity check that distributional NCE makes reason-
able predictions, but also highlights that (by normalization)
distributional NCE retains all the capabilities of distance
prediction.

7. Conclusion
This paper takes aim at the tension between two conflicting
objectives for goal-reaching: maximizing the probability

Figure 6: Distributional NCE predictions can be converted into a
distance classifier by normalization. See text for details.

of reaching a goal, and minimizing the distance (number
of steps) to reach a goal. Our analysis shows that distance-
based objectives can cause poor performance on both di-
dactic and benchmark tasks. Based on our analysis, we
propose a new method that predicts the probability of ar-
riving at the goal at many different time steps; this method
outperforms prior goal-conditioned RL methods, most no-
tably those based on regressing to distances. Our analysis
also suggests a temporal-consistency regularizer, which can
be added to boost performance. Together, we believe that
these results may prove hopeful both to new researchers
attempting to build a mental model for goal-conditioned RL,
as well as veteran researchers aiming to develop ever more
performant goal-conditioned RL algorithms.

Limitations. One limitation of our method, compared
with prior contrastive approaches, is that the classifier is
now tasked with predicting many values (one per time step)
rather than a single value. We use the same architecture
as the contrastive NCE (Eysenbach et al., 2022) baseline
while changing the output dimension of the last linear layer
in the critic network. While this increases the number of
parameters (+6.5%), we found it had a negligible effect on
training speed. A second limitation is that our method is on-
policy: it estimates the probabilities of reaching goals under
the behavioral policy. We derived a variant of Distributional
NCE that performs temporal different learning, with updates
somewhat resembling distributional RL (Bellemare et al.,
2017). However, the results were mixed. Figuring out
how to build performant goal-conditioned algorithms that
can perform off-policy, distributional reasoning remains an
important problem for future work.
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A. Connection between Maximizing Likelihood and Stochastic Shortest Path Methods
In this section, we provide proof for the statements in Sec. 4.2. Let’s consider a policy π for reaching a goal and define ∆ as
the number of timesteps required to reach the goal from the start state. Note that ∆ is a discrete random variable that takes
integer values. Formally, we define π(∆) as the distribution over the number of timesteps required to reach the goal under
the policy. Then, a policy that tries to reach the goal as soon as possible is trying to optimize the following objective:

max
π

−E∆∼π[∆] (8)

Alternatively, consider an MDP where the episode does not terminate upon reaching the goal. In this setting, the reward-free
goal-conditioned RL agent is incentivized to maximize its time at the goal:

max
π

(1− γ)Eπ

[ ∞∑
t=0

γtr(st, at, g)

]
= max

π
(1− γ)Eπ

[ ∞∑
t=0

γtδ(st == g)

]

= max
π

(1− γ)E∆∼π

[ ∞∑
t=0

γt+∆

]

= max
π

(1− γ)E∆∼π

[
γ∆

1− γ

]
= max

π
E∆∼π

[
γ∆
]
.

By applying a log transformation on both sides of the equation, followed by Jensen’s inequality, we get:

max
π

log

(
(1− γ)Eπ

[ ∞∑
t=0

γtr(st, at, g)

])
= max

π
log
(
E∆∼π

[
γ∆
])

≥ max
π

E∆∼π

[
log
(
γ∆
)]

= max
π

−E∆∼π [∆] log

(
1

γ

)
. (9)

The final RHS expression can be interpreted as minimizing the expected time to the goal under the policy (Eq. 8), which
corresponds to the shortest-path planning objective. Thus, optimizing the shortest-path planning objective is a lower bound
of the max likelihood objective. If the policy always takes the same number of steps to reach the goal, i.e. π(∆) is a
Dirac distribution, then the lower bound becomes an equality and maximizing the probability of reaching the goal (LHS) is
equivalent to minimizing the expected steps to reach the goal (RHS). One setting where this always happens is deterministic
MDPs with deterministic policies.

If both maximizing likelihood and shortest-path planning seem closely related in theory, why do shortest-path methods
suffer from pathological behaviors? The answer lies in the logarithmic transformation that gets applied to the likelihood. In
simple words, the likelihood of success while failing to reach the goal is 0, which is a well-defined number, whereas the
corresponding expected distance to the goal is unboundedly large (the negative logarithm of 0). More formally, the problem
with optimizing the shortest-path objective in RHS is that it remains unclear how to correctly train a distance function in
stochastic settings, when every strategy has a non-zero chance of failing to reach the goal. For instance, training a distance
function via MC regression (Hartikainen et al., 2019; Tian et al., 2021) provides optimistic distance estimates because the
training goals are always reached within some finite horizon, which can result in very sub-optimal behaviors as shown
in Sec. 4.1. A naive approach to fixing this optimism bias is to train the distance function on unreachable goals as well.
However, this poses two practical problems:

1. Sampling from the distribution of unreachable goals under a policy is non-trivial: One can sample from the set of easily
reachable goals (positive examples) under the policy by simply rolling it out in the environment for a short duration.
However, sampling far-away goals (hard to reach under the current policy) requires one to run long policy rollouts,
making such far-away goals sparser than easily reachable goals in the collected dataset. Extending this idea to the
limit, one can simply never know if a state is unreachable from the policy even after a large number of steps through
Monte-Carlo policy rollouts alone. But even if one could sample these negative goals,
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2. optimal distance functions become ill-defined when the regression targets are unboundedly large: An unreachable
state has an unboundedly large target distance (infinity). This makes it numerically unstable to perform direct
MC regression since a part of the dataset involves regressing to infinite target distances. Alternatively, one can
learn a normalized distance classifier (Sec. 4.3) with a catch-all bin to handle hard-to-reach and unreachable goals.
However, converting such a distance classifier into an MC distance function by computing the expected distance
d(s, a, g) =

∑
H H C(s, a, g)[H] is again ill-defined since the upper-bound of the catch-all bin is unboundedly large

(infinity).

Prior works in contrastive RL (Eysenbach et al., 2022; 2020) are closely related to the former idea of sampling negative goal
examples with subtle modifications: (1) instead of sampling from the distribution of unreachable goal states, we simply
sample from a noise distribution, and (2) replace regression objective with the NCE classification objective (Gutmann
& Hyvärinen, 2010) to differentiate between samples drawn from the positive and negative goal distributions. However,
these methods directly estimate the likelihood of reaching the goal without providing any information about the dynamical
distance, i.e., the expected timesteps to reach the goal. Our work proposes a distributional variant of contrastive NCE
algorithm (Eysenbach et al., 2022), which can: (1) estimate the likelihood of reaching the goal, and (2) reason about the
dynamical distance via normalization using Bayes rule (Eq. 4).

B. Analysis of the Distributional NCE Algorithm
In this section, we introduce the modifications to the Distributional NCE framework from Sec. 5.1 to turn it into a practical
algorithm. We start by introducing a catch-all bin in B.1 to avoid truncation errors and optimize for the true (Markovian) RL
objective. Next, we provide convergence guarantees for the Distributional NCE Algorithm in B.2, by drawing equivalence to
a prior convergent contrastive RL algorithm. Lastly, we provide the derivation for 1-step and Multi-step temporal consistency
regularization in B.3, highlighting their connections to temporal difference (TD) learning approaches.

B.1. Necessity of a catch-all bin

In Sec. 5.1, we introduced the Distributional NCE algorithm (Alg. 1) that estimates the likelihood of reaching the goal
at specific future timesteps (up to proportionality, Eq. 2). We then showed that these estimates can be aggregated using
geometrically-decaying weights to optimize for the (Markovian) RL objective with r(s, a, g) = 1(s = g) in Eq. 3. However,
implementing this naively would require a large number of bins to prevent temporal truncation errors and could lead to
ill-defined Q-values.

The contrastive learning framework (Gutmann & Hyvärinen, 2010) used in Distributional NCE and prior works (Eysenbach
et al., 2022; 2020) can estimate any arbitrary positive goal distribution upto a proportionality, as long as one can draw
samples from it. In the Distributional NCE implementation with h classifier bins, we repurpose the last bin to predict if the
goal was sampled for t ≥ h rather than t == h event, referring to it as the “catch-all” bin in the rest of the paper. More
precisely, the objective for the catch-all bin is as follows:

max
C

Ep(H≥h)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[h]] + Ep(g)[log(1− C(st, at, g)[h])]

]
, (10)

where p(H ≥ h) = (1 − γ)γH−h = GEOM(γ)[H − h] is a Geometric distribution shifted by h units. Then, the Bayes’
optimal catch-all classifier for a policy π satisfies:

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
= Ep(H≥h)

[
pπg (st+H = g | st, at)

p(g)

]
. (11)
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This classifier can be used to maximize the (Markovian) RL objective with r = 1(s = g) as follows:

h−1∑
∆=1

(
(1− γ)γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]

)
+ γh−1 Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]

=

h−1∑
∆=1

(
(1− γ)γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
+ γh−1Ep(H≥h)

[
pπg (st+H = g | st, at)

p(g)

]

=

h−1∑
∆=1

(
(1− γ)γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
+ γh−1

∞∑
∆=h

(
(1− γ)γ∆−h p

πg (st+∆ = g|st, at)
p(g)

)

= (1− γ)

∞∑
∆=1

(
γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
=

pπg (s+ = g|st, at)
p(g)

(12)

The expression on the RHS is the same as the objective in C-learning, which corresponds to maximizing the likelihood of
the goal state under the discounted state occupancy measure.

In Distributional NCE, each classifier bin is crucial for estimating the corresponding component in the discounted future
state density. An interesting future direction can be to employ redundancy in classifier bins, i.e., use multiple catch-all bins
and exploit the relation between them as additional temporal consistency. Such a temporal ensembling procedure can be
very similar to consistency training approaches (Xie et al., 2020) from semi-supervised learning literature.

B.2. Convergence Proof

To prove convergence of the Distributional NCE algorithm, we make the same assumptions as the Contrastive NCE
(Eysenbach et al., 2022) work:

1. Bayes-optimality of the Critic: We assume that the distributional critic is Bayes-optimal for the current policy.

2. Training Data Filtering: We only consider (st, at, st+h) tuples for the policy improvement step, whose probability
of the trajectory τt:t+h = (st, at, st+1, at+1, ..., st+h) when sampled from π(.|., sg) under the commanded goal sg is
close to the probability of the same trajectory when sampled from π(.|., st+h), under the relabelled goal st+h.

Proposition B.1. When the above-mentioned assumptions hold, the Distributional NCE update corresponds to approximate
policy improvement in tabular settings.

Proof. We first point out that the Bayes optimal Distribuitional NCE critic can be used to obtain the Bayes optimal
Contrastive NCE (Eysenbach et al., 2022) critic, by geometrically averaging the classifier bins according to Eq. 12. Using
this result, Proposition B.1 is validated by the proof for the Contrastive NCE update corresponding to approximate policy
improvement in tabular settings (Sec 4.5 and Appendix B in (Eysenbach et al., 2022)). This result still holds when we apply
the consistency objective, since the Bayes optimal distributional critics are temporally consistent (Eq. 15).

B.3. Generalizing 1-step to Multi-step Temporal Consistency

In Sec. 5.2, we detailed the temporal consistency identity in Eq. 5 and proposed a 1-step temporal consistency regularization
objective in Eq. 6 to enforce it. We also briefly introduced a k-step extension of this objective in Eq. 7. In this section, we
formally derive the k-step consistency objective.

Deriving the multi-step consistency regularization. Let pπ(τ)(st, at, g,H) be the distribution over H-length state-action
trajectories generated by the goal-conditioned policy πg = π(.|., g) with st as the start state and at as the first action. Then,
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the future state probabilities under πg satisfy the following identity:

pπg (g | st, at, H) = E(st+1,at+1,st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st,at,g,H−1) [p(g | st+H−1, at+H−1)]

= Est+1∼p(.|st,at),at+1∼π(.|st+1,g)

[
E(st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st+1,at+1,g,H−2)

[p(g | st+H−1, at+H−1)]
]

= Est+1∼p(.|st,at),at+1∼πg(.|st+1) [p
πg (g | st+1, at+1, H − 1)] . (13)

This identity can be enforced over the distributional classifier using the 1-step temporal consistency regularization objective
in Eq. 6. However, this property also holds for k > 1 steps:

pπg (g | st, at, H) = E(...,st+k,at+k)∼pπ(τ)(st,at,g,k) [p
πg (g | st+k, at+k, H − k)] . (14)

We use the identity in Eq. 14 to derive a temporal consistency identity for distributional NCE. This identity is satisfied by
the Bayes’ optimal classifier (the solution to Eq. 2)1:

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
= E(...,st+k,at+k)∼pπ(τ)(st,at,g,k)

[
Cπ(st+k, at+k, g)[H − k]

1− Cπ(st+k, at+k, g)[H − k]

]
, (15)

and then turn this identity into an auxiliary, consistency objective:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊C(st+k, at+k, g)[H − k]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+k, at+k, g)[H − k])⌋ log (1− C(st, at, g)[H])
]
. (16)

The consistency objective above is valid for any goal-conditioned policy π(.|., g), as long as (st+k, at+k) is the kth

intermediate step on the Markov chain generated by the policy that connects st and g. In our practical implementation, we
sample (st, at, st+k, at+k, st+H), k < H , from the replay buffer, and relabel the goal g = st+H to train the critic via direct
contrastive loss (Eq. 1) and k-step temporal consistency regularization (Eq. 16). As a result, the critic estimates the future
state density of the average hindsight-relabeled policy over the replay buffer rather than the current policy, just like prior
MC contrastive RL algorithms (Eysenbach et al., 2022). In our implementation, the future goal distance H is a random
variable sampled from a Geometric distribution H ∼ GEOM(γ), and the intermediate state distance k is sampled from a
truncated distribution to enforce that k < H . We call this method “Distributional NCE with Multi-step temporal consistency
regularization.” Like temporal difference methods (Eysenbach et al., 2020), the temporal consistency regularization enables
information and uncertainty over future states to flow back in time, thereby accelerating the Monte-Carlo classifier training.

Handling the edge-case: Consistency update for the catch-all bin. When applying the k-step temporal consistency loss,
the catch-all bin gets mapped to k+ 1 bins from the future state, unlike regular classifier bins that have a 1 : 1 mapping with
a corresponding future classifier bin. This is an artifact of using a finite number of bins to represent the infinite-horizon
discounted probabilities. More precisely, the equivalent temporal consistency identity (Eq. 15) for the catch-all bin, which is
satisfied by the Bayes’ optimal classifier (the solution to Eq. 2):

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
=

E(st+k,at+k)

[
h−1∑
i=1

(
(1− γ)γi−1 Cπ(st+k, at+k, g)[i− k]

1− Cπ(st+k, at+k, g)[i− k]

)
+ γh−1 Cπ(st+k, at+k, g)[h− k]

1− Cπ(st+k, at+k, g)[h− k]

]
,

where h is the total number of classifier bins and also the index of the catch-all bin. This identity can then be turned into a
penalty as follows:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊w(st+k, at+k, g)⌋ logC(st, at, g)[H]

+ ⌊(1− w(st+k, at+k, g))⌋ log (1− C(st, at, g)[H])
]
,

where w(s, a, g) =
∑h−1

i=1

(
(1− γ)γi−1 C(s,a,g)[i−k]

1−C(s,a,g)[i−k]

)
+ γh−1 C(s,a,g)[h−k]

1−C(s,a,g)[h−k] .

1We use Cπ(s, a, g) to denote the Bayes’ optimal classifier for a policy π(a|s, g).
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C. Additional Experiments
C.1. How well does consistency regularization work in practice?

We empirically found that 1-step temporal consistency regularization does not improve the performance of Distributional
NCE; occasionally it decreases performance. On the other hand, we found that the multi-step temporal consistency
regularization significantly boosts the performance of Distributional NCE in Fig. 7.

Figure 7: Multi-step temporal consistency regularization is significantly more effective than 1-step consistency regularization.
In some cases, 1-step consistency regularization actually hurts the performance of the Distributional NCE algorithm, but
Multi-step consistency almost always improves the performance.

C.2. Performance of Distributional NCE with different number of bins

Figure 8: Varying the number of classifier bins has little effect on the performance of Distributional NCE for sawyer_push
task.

In this section, we study if the choice of the number of classifier bins has an impact on the performance of the Distributional
NCE algorithm. In theory, this hyperparameter should have no effect on the final policy since any Bayes-optimal distributional
classifier can be mapped to the Bayes optimal contrastive NCE classifier (num_bins=1) as shown in Eq. 12. We verify this
empirically on the sawyer_push task in Fig. 8, wherein we see very little difference in performance for four distinct choices
for the number of classifier bins: 11, 21, 51, and 101. For all the rest of the experiments in the paper, we fix the number of
classifier bins to 21.
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Figure 9: Distributional Critic trained with Contrastive NCE (last layer ensemble baseline) does not match Distributional
NCE, highlighting the importance of the training algorithm over architectural choice.

C.3. Comparison with the last-layer ensemble baseline

The Distributional NCE algorithm uses a distributional critic with h classifier bins, while the Contrastive NCE (Eysenbach
et al., 2022) uses a regular critic with 1 output bin to directly denote the probability of reaching the goal in the future (up to
proportionality). For the distributional critic, we simply modified the last linear layer in the regular critic network to have h
outputs in all our experiments. In this section, we examine the importance of the distributional critic architecture by training
a distributional critic with the Contrastive NCE algorithm. We do this by treating the distributional critic as an ensemble of
critic networks, with all but the last-layer parameters shared.

We report the performance of the last-layer ensemble baseline in comparison to Contrastive NCE and Distributional NCE
algorithms on the fetch_push task in Fig. 9. We observe that the last-layer ensemble baseline outperforms the Contrastive
NCE algorithm by +10% higher success. It can also be seen that the Distributional NCE algorithm outperforms this
ensemble baseline by +7%. Further, Distributional NCE with consistency loss offers a +15% improvement over the
ensemble baseline. This experiment confirms that the algorithm used to train the distributional critic has a huge impact on
the overall performance: Distributional NCE with Consistency > Distributional NCE > Contrastive NCE.

C.4. Exploring the loss landscape of Distributional Classifiers

Prior works (Bellemare et al., 2017; Sun et al., 2022) have identified that distributional RL methods enjoy stable optimization
and better learning signal compared to their counterpart RL methods. In particular, Sun et al. (2022) demonstrates
that distributional value function approximations have a desirable smoothness property during optimization, which is
characterized by small gradient norms. In this section, we try to examine if using the proposed distributional NCE algorithm
enjoys some of these benefits. Note that prior works use the distributional critic to estimate the continuous return distribution
with discretized bins (Bellemare et al., 2017; Dabney et al., 2018), which is different from our work that estimates the
distributional probabilities of reaching the goal at discrete future timesteps.

In Fig. 10, we visualize the training loss and the gradient norm for the actor and critic networks over the course of training
when optimized with the contrastive NCE and Distributional NCE algorithms. We note that the training loss for the critic
network remains nearly unchanged, and the gradient norm is slightly smaller when switching from contrastive NCE to
the Distributional NCE objective. On the other hand, we observe that actors trained with distributional critics receive
gradients with smaller norms and achieve an overall lower loss. Note that plots in Fig. 10 are not a fair comparison since the
Distributional NCE and Contrastive NCE agents were trained on different data, one that was collected by their respective
actors interacting with the environment. However, we find the consistently low actor loss and smaller actor gradient norms
with Distributional critics as compelling evidence to inspire future research works to study these optimization advantages
more rigorously.
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Table 1: A list of important hyperparameters used in our method and the baselines.

Hyperparameter Value

number of classifier bins (h) 21
batch_size 256
EMA target network (τ ) 0.005
discount (γ) 0.99
hidden dims (policy and critic representations) (256, 256)
critic representation dimension 64
learning rate 3e-4
policy and critic optimizers Adam (Kingma & Ba, 2014) (β1 = 0.9, β2 = 0.999)
goal relabelling ratio for actor loss 0.5
maximum replay buffer size 1,000,000
minimum replay buffer size (initial data from random policy) 10,000

D. Implementation Details
We used the official contrastive RL codebase2 (Eysenbach et al., 2022) in the JAX framework (Bradbury et al., 2018) to run
the contrastive RL baselines: Contrastive NCE (Eysenbach et al., 2022) and C-Learning (Eysenbach et al., 2020). Moreover,
we implemented the distributional NCE algorithms by modifying this codebase as follows:

1. Change the last layer in the critic’s architecture to output h bins (Alg. 2).

2. Change the Contrastive NCE objective to the Distributional NCE objective (Alg. 1).

3. Add the consistency loss (Eq. 7,16) to the classifier training module.

The actor is trained using the actor loss from soft actor-critic (Haarnoja et al., 2018), while the critic is optimized for the
contrastive classification objective in Eq. 1. In all our experiments, we report the mean performance and the 95% confidence
interval computed across 5 random seeds. We ran all our experiments on a single RTX 2080 Ti GPU with 11GB memory.

Network Architecture: We use the same architecture as the Contrastive NCE baseline while modifying the last layer in the
critic. The policy is a standard 2-layer MLP with ReLU activations and 256 hidden units. The critic network comprises of
a state-action encoder and a goal encoder (Alg. 2), which are each 2-layer MLP with ReLU activations and 256 hidden
units, and a final dimension of repr_dim× h (repr_dim = 64 and h = 21 in all our experiments). For image-based tasks,
we use the standard Atari CNN encoder (Mnih et al., 2013; Eysenbach et al., 2022) to project the state and goal image
observations into the latent space before passing them into the policy and critic networks.

Hyperparameters: We keep the default hyperparameters of Contrastive NCE (Eysenbach et al., 2022) for all our experiments
(Table 1). The proposed Distributional NCE algorithm only introduces one extra hyperparameter - the number of classifier
bins, which is set to 21 in all the experiments.

D.1. Distributional Critic Implementation

In this section, we go over the pseudo-code to implement a distributional critic network with h classifier bins in Alg. 2. The
output of the distributional critic is a ternary tensor with the first two axes corresponding to the state-action and goal indices,
and the last axis h is the classifier bin index. The main diagonal along the first two axes corresponds to positive examples,
i.e., state-action representations paired with their corresponding future states (reachable goals). Every other off-diagonal
term corresponds to a negative example, i.e., a state-action representation paired with a randomly sampled goal.

D.2. Task Descriptions

We conduct our experiments on four standard simulated robot manipulation tasks (Plappert et al., 2018; Yu et al., 2020) with
increasing complexity: fetch_reach, fetch_push, sawyer_push, and sawyer_bin. All our tasks are framed as reward-free

2https://github.com/google-research/google-research/tree/master/contrastive_rl
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Table 2: Environment details for the selected goal-reaching tasks.

Task Observation Space (state and goal) Action Space Max Episode Length

fetch_reach 20 4 50
fetch_push 50 4 50

sawyer_push 14 4 150
sawyer_bin 14 4 150

fetch_reach_image 64× 64× 6 4 50
fetch_push_image 64× 64× 6 4 50

sawyer_push_image 64× 64× 6 4 150

goal-reaching problems where the performance of the agent is tracked by the fraction of times it successfully reaches the
goal.

fetch_reach: This task involves controlling a simulated fetch robotic arm to move the gripper to a specified 3D goal position.
This is the simplest of all four tasks, where greedily moving the gripper toward the target position solves the task.

fetch_push: In this task, the same simulated fetch robotic arm needs to push a block placed on the table to a specified
position. This is a harder task since the agent needs to reason about the dynamics of precisely pushing a block to a specified
location. The agent needs to be careful as it can enter unrecoverable states, such as the block falling off the table if pushed
incorrectly. Note that the gripper fingers are disabled, in order to force the agent to push the block to the goal rather than
pick-and-place it at the goal.

sawyer_push: This task is similar to fetch_push but involves controlling a simulated sawyer robotic arm. A key difference
is that this is a longer horizon task with 3× as many steps as fetch_push in each episode before termination.

sawyer_bin: In this task, the same simulated sawyer robotic arm needs to pick a block from a randomized position in one
bin and put it in a goal location in another bin. This is a hard exploration problem since the agent must learn the skills
associated with (i) picking and dropping an object and (ii) moving the gripper to a desired location, and learn to coordinate
these skills in the pick-move-drop sequence to solve the task. Failing to do even one of these skills/sub-tasks correctly will
result in an unsuccessful outcome.

We also conduct our experiments on the following image-based variants of the above-mentioned tasks: fetch_reach_image,
fetch_push_image, and sawyer_push_image. In these tasks, the low-dimensional observation space is replaced with a
64× 64 image. We chose these tasks to demonstrate that the Distributional NCE algorithm is able to estimate the probability
of reaching the goal over future timesteps directly from image observations. To get a better idea of the tasks, we visualized a
random start state and the corresponding goal state for each of these tasks in Fig. 11. Moreover, the dimensionality of the
observation and action space is described in Table 2.

E. Ethics and Broader Impact Statement
Our work is algorithmic in nature, aiming to improve upon prior methods for goal-conditioned reinforcement learning. Like
many tools, effective algorithms for goal-conditioned RL might be used for both beneficial or harmful purposes (e.g., for
synthesizing new medicines, or for steering voters’ beliefs).
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Figure 10: Visualization of the training losses and gradient norms for the actor and critic networks over the course of training.
We do not see a huge difference in critic loss or gradients but observe that the actor loss is consistently lower and has a
smaller gradient norm for Distributional NCE relative to Contrastive NCE.

Algorithm 2 DISTRIBUTIONAL CLASSIFIER: The contrastive classifier block, where the main diagonal corresponds to
positive examples and off-diagonal entries correspond to negative examples. h is the number of bins in the classifier output,
which may be less than the task horizon. Comments denote the shapes of tensors.

def classifier(states, actions, goals):
sa_repr = sa_encoder(states, actions) # (batch_size, h, repr_dim)
g_repr = g_encoder(goals) # (batch_size, h, repr_dim)
logits = einsum('ikl, jkl->ijk') # (batch_size, batch_size, h)
# logits[i, j, k] is the probability of going from s[i] to s[j] in k steps.
return logits
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(a) fetch_reach (b) fetch_push (c) sawyer_push (d) sawyer_bin

Figure 11: Illustration of the goal-reaching tasks used in this paper. The top row is a sample state at the time of initialization,
and the bottom row is the corresponding goal state.


