
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CROSS-LINGUAL DATA SCALING FOR LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) achieve consistent performance gains through
data scaling, yet low-resource languages remain limited by small and stagnant
dataset sizes. To address this limitation, we introduce cross-lingual data scaling,
where performance in low-resource languages scales with the dataset size of high-
resource languages. We systematically investigate two potential approaches: (i)
transforming high-resource language data into synthetic data for low-resource lan-
guages via translation or code-switching, and (ii) transferring the learned knowl-
edge from high-resource languages to low-resource languages by adjusting lan-
guage order and proportion during pretraining. Experiments on English and
Chinese show that data transformation fails to sustain cross-lingual data scaling,
whereas knowledge transfer enables low-resource language performance to scale
with the growth of high-resource language data. Building on these findings, we
propose ScaleX, a two-stage pretraining framework designed for effective cross-
lingual data scaling. In the first stage, LLMs are pretrained on high-resource lan-
guage data under a constant learning rate schedule; in the second stage, training
continues on a mixture of high- and low-resource languages under a cosine learn-
ing rate schedule. ScaleX outperforms existing approaches with progressively
larger margins as high-resource data scales up, and further generalizes to both
multilingual and large-scale bilingual pretraining. Our analysis also reveals that
learning rate scheduling and shared tokens across languages are critical to sustain-
ing performance scaling in low-resource languages.

1 INTRODUCTION

Large language models (LLMs) have achieved significant advances through data scaling (Kaplan
et al., 2020; Hoffmann et al., 2022), as performance improves consistently with larger training
datasets. However, for many low-resource languages, the benefits of data scaling are constrained
by small and stagnant dataset sizes (Yu et al., 2022; Ranathunga & de Silva, 2022). This constraint
raises a fundamental challenge: how can LLMs sustain performance scaling in low-resource lan-
guages when their training data is limited?

In multilingual pretraining, data scaling is predominantly driven by high-resource language
data (Conneau et al., 2020; Xue et al., 2021; Li et al., 2025b). This dominance motivates us to
explore cross-lingual data scaling, where LLM performance in low-resource languages scales with
the dataset size of high-resource languages. Unlike conventional data scaling, cross-lingual data
scaling inherently entails a mismatch between training and evaluation languages. To address this
mismatch, it is necessary to adapt either the training or the evaluation language to the other. This
adaptation can be approached in two ways: (i) transforming high-resource language data into syn-
thetic training data for low-resource languages; and (ii) transferring the learned knowledge from
high-resource languages to low-resource languages.

In this paper, we take English and Chinese as illustrative examples of high- and low-resource lan-
guages, and pretrain LLMs from scratch to explore the feasibility of cross-lingual data scaling. To
explore the potential of data transformation, we examine two widely used approaches for generat-
ing synthetic data for Chinese: translation (Joshi et al., 2025; Wang et al., 2025a), which converts
English data into Chinese using open-source LLMs, and code-switching (Yoo et al., 2025; Wang
et al., 2025b), which mixes Chinese tokens or sentences into English samples. Experimental results
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show that while scaling such synthetic data mitigates performance degradation, its limited quality
prevents performance from scaling effectively.

To explore the potential of knowledge transfer, we analyze the effect of scaling raw English data on
Chinese performance and observe that Chinese performance consistently declines as English data
increases. This decline occurs because, under uniform mixing of bilingual data, the proportion of
limited Chinese data decreases as the English data increases. To overcome this negative transfer,
we adjust the language ordering (Zheng et al., 2024; Bari et al., 2025) and the proportion (Wei
et al., 2023; Yue et al., 2025) so that the limited Chinese data are concentrated in the later stage
of pretraining with a higher proportion. Experimental results show that in a two-stage pretraining
setup, expanding English data in the first stage enables Chinese performance to scale with English
data growth, while increasing the proportion of Chinese data in the second stage leads to further
performance improvements.

Building on these findings, we propose ScaleX, a pretraining framework that enables effective cross-
lingual data scaling. ScaleX adopts a two-stage paradigm. In the first stage, LLMs are pretrained
on high-resource language data under a constant learning rate schedule, which lays the foundation
for scalable transfer. In the second stage, training continues on a mixture of high- and low-resource
languages under a cosine learning rate schedule, further enhancing low-resource language perfor-
mance. Beyond this training setup, our further analysis reveals two key factors underlying ScaleX’s
effectiveness: the learning rate schedule, which ensures effective training on low-resource language
data in the second stage, and the presence of shared tokens across languages, such as code-switching
tokens, punctuation, and digits, which enable the scalability of low-resource performance as high-
resource data increases.

Our main contributions are as follows:

• We introduce cross-lingual data scaling and conduct a comprehensive analysis of potential
approaches.

• We propose ScaleX, a scalable cross-lingual pretraining framework that achieves sustained
gains for low-resource languages, outperforming existing approaches by progressively larger
margins as high-resource language data scales up.

• We validate ScaleX in both multilingual pretraining and large-scale bilingual pretraining,
demonstrating its practicality and generalization.

• We reveal the underlying mechanisms by which ScaleX sustains performance scaling in low-
resource languages, providing clear guidance for future research on low-resource language
modeling.

2 RELATED WORK

Cross-Lingual Transfer To address the data imbalance between high- and low-resource lan-
guages in LLM pretraining, previous studies on cross-lingual transfer can be broadly categorized
into three directions: (i) Data strategies primarily address the imbalance by upsampling low-resource
language data (Lin et al., 2024; Penedo et al., 2025; He et al., 2025) or generating synthetic data via
translation (Joshi et al., 2025; Wang et al., 2025a) or code-switching (Yoo et al., 2025; Wang et al.,
2025b). (ii) Training objectives focus on reweighting the loss function, placing greater weight on
losses from low-resource languages (Fan et al., 2025). (iii) Training strategies adjust the schedul-
ing of multilingual data during pretraining, for example, through changes in language order (Zheng
et al., 2024; Bari et al., 2025) or adjustments in the proportions of high- and low-resource language
data (Wei et al., 2023; Yue et al., 2025). In contrast to prior work that primarily focuses on the
magnitude of performance improvements in low-resource languages, our focus is on whether such
improvements scale with the increasing amount of high-resource language data.

Strategies for Data Exhaustion The data exhaustion challenge (Villalobos et al., 2022) in LLM
scaling has been primarily mitigated through two approaches: data repetition and data filtering. In
terms of data repetition, Muennighoff et al. (2023) demonstrate that repeating training data across
multiple epochs enables LLM scaling to continue under data-constrained conditions. Xue et al.
(2023) highlights the token-crisis problem and proposes regularization methods to alleviate overfit-
ting and performance decline when training data is scarce and reused repeatedly. Tirumala et al.
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(2023) introduces document de-duplication and diversification to enhance the effectiveness of pre-
training on repeated data. In terms of data filtering, Muennighoff et al. (2023); Nguyen et al. (2025)
propose enhanced strategies to better preserve useful data for LLM pretraining. However, filter-
ing methods provide only a marginal increase in pretraining data, and this often comes at the cost
of adding lower-quality content. Moreover, repeated use of data leads to diminishing returns and
can even degrade performance (Hernandez et al., 2022; Muennighoff et al., 2023). In contrast to
these limitations, our work introduces cross-lingual data scaling, which enables performance in
low-resource languages to scale with the dataset size of high-resource languages.

3 PRELIMINARY STUDY

In this section, we explore the feasibility of cross-lingual data scaling from two perspectives: data
transformation and knowledge transfer.

3.1 EXPERIMENTAL SETUP

Dataset LLMs are pretrained on Chinese and English corpora drawn from diverse publicly avail-
able sources, including webpages, code, Wikipedia, papers, books, question answering datasets,
examinations, mathematics, knowledge bases, translations, and other open sources. To simulate
cross-lingual data scaling, we fix the Chinese dataset size at 50B tokens and vary the English dataset
size across 150B, 250B, and 450B tokens. This setup results in total dataset sizes of 200B, 300B,
and 500B tokens.

Model and Optimization Experiments are conducted using LLaMA architecture (Touvron et al.,
2023a;b) with 1.3B parameters, randomly initialized and pretrained from scratch. All LLMs are
trained with the Megatron-LM framework (Shoeybi et al., 2019), which provides efficient paral-
lelism and scalability for large-scale pretraining. We adopt a cosine learning rate schedule, where
the learning rate follows a cosine decay from 3× 10−4 to 3× 10−5. Each LLM is optimized with a
maximum input sequence length of 4,096 tokens and a global batch size of 1,024.

Evaluation We evaluate LLM performance using both perplexity (PPL) and downstream task ac-
curacy. PPL is evaluated in both English and Chinese. For Chinese downstream evaluation, we em-
ploy widely used benchmarks, including CMMLU (Li et al., 2024), C-EVAL (Huang et al., 2023),
AGIEval (Zhong et al., 2024), and Math23K (Wang et al., 2017). For English evaluation, we em-
ploy GSM8K (Cobbe et al., 2021), BBH (Suzgun et al., 2023), MMLU (Hendrycks et al., 2021),
and HumanEval (Chen et al., 2021).

3.2 COMPARISON APPROACHES

To explore cross-lingual data scaling, we adopt several approaches and assess their behavior as the
amount of high-resource language data increases. The approaches are described below:

• Baseline directly scales up the pretraining dataset of high-resource languages. As the dataset size
of low-resource languages remains fixed, the proportion of low-resource language data diminishes
as high-resource language data grows.

• Translation converts high-resource language samples into low-resource language samples using
Qwen2.5-7B-Instruct (Yang et al., 2024). The translated data is incorporated into the pretraining
dataset, replacing an equal amount of high-resource samples to maintain a constant total dataset
size. Further details are provided in Appendix A.1.

• Code-switching injects low-resource language tokens or sentences into high-resource language
samples, producing mixed-language data for low-resource language training. Details are given in
Appendix A.2.

• Order Adjustment adopts a two-stage pretraining paradigm in which the model is first trained
on high-resource language data, followed by training on a balanced mixture of high- and low-
resource language data. Since the amount of low-resource language data is fixed, the number of
training steps in the second stage is determined by its availability
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• Data Repetition duplicates low-resource language data and replaces an equal amount of high-
resource data with the repeated samples to maintain language balance.

• Loss Weighting increases the loss weight of low-resource languages in proportion to the size
ratio between high- and low-resource datasets, which has been shown to yield effects similar to
data repetition (Li et al., 2025a).

3.3 DATA TRANSFORMATION FOR CROSS-LINGUAL DATA SCALING
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Figure 1: Comparison of translation and code-switching
with baseline on Chinese PPL (↓). showing mitigation of
degradation but fail to achieve cross-lingual data scaling.

Translation. We first investigate
translation, a widely used approach
for augmenting low-resource language
data. English samples are translated
into Chinese using an open-source
LLM, and the resulting synthetic data
replaces the original English samples in
the pretraining dataset to keep the total
size constant. As shown in Figure 1,
translation alleviates performance
degradation compared to baseline, but
Chinese performance still declines as
English data increases. This suggests
that translation alone is insufficient to
achieve cross-lingual data scaling. We
attribute this to the limited quality of
synthetic data for pretraining Unlike
standard translation tasks, the hetero-
geneity and long length of pretraining
text (up to 4,096 tokens in our setup) lead to translated outputs of considerably lower quality than
native Chinese data. While employing larger LLMs could yield modest improvements in translation
quality, the gains remain insufficient to close the gap with native data, and the sharply increased
computational cost further limits the scalability of this approach. Moreover, since Chinese is
relatively well resourced compared to many other languages, these limitations are expected to be
even more severe for truly low-resource languages, where open-source LLMs typically produce
translations of considerably lower quality. Additional experiments and analyses are provided in
Appendix A.1.

Code-Switching. We next consider code-switching as an alternative approach to generate syn-
thetic pretraining data for low-resource language. Following Wang et al. (2025b), we randomly
select 20% of the English samples and replace 30% of their content with Chinese, either at the
token or sentence level. In contrast to translation, code-switching modifies only partial tokens or
sentences, thereby lowering the generation difficulty, but simultaneously constraining the maximum
proportion of Chinese tokens present in the resulting pretraining data. As shown in Figure 1, code-
switching attenuates the decline in Chinese performance but still fails to realize cross-lingual data
scaling. Further experiments and analyses are provided in Appendix A.2.

Overall, the experiments demonstrate that existing data transformation techniques, including trans-
lation and code-switching, fail to produce synthetic data capable of sustaining cross-lingual data
scaling. Moreover, generating such data incurs substantial computational overhead, posing a major
obstacle to their use in large-scale pretraining. These limitations motivate us to explore knowledge
transfer mechanisms as a more scalable alternative for cross-lingual data scaling.

3.4 KNOWLEDGE TRANSFER FOR CROSS-LINGUAL DATA SCALING

Order Adjustment. When data transformation fails to support cross-lingual data scaling, we turn
to exploring how directly scaling high-resource language data can enhance LLM performance in
low-resource languages. As shown in Figure 2a, directly scaling English data (Basline) not only
fails to improve Chinese performance but actually leads to a consistent decline. We attribute this
phenomenon to the decreasing proportion of Chinese data in the pretraining dataset as the amount
of English data continues to increase. Inspired by previous work (Zheng et al., 2024; Bari et al.,
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Figure 2: Effect of order and proportion adjustment on cross-lingual data scaling. (a) Chinese PPL
(↓) as English data increases, showing that both adjustments enable cross-lingual data scaling. (b)
Impact of varying the Chinese data proportion in the second stage, illustrating the trade-off between
Chinese and English PPLs.

2025) that incorporates additional languages through continual pretraining, we investigate adjusting
the language order during pretraining as a potential solution. Specifically, we adopt a two-stage
pretraining paradigm, where the first stage consists solely of expanded English data, and the second
stage involves a balanced mixture of English and Chinese data. Remarkably, as shown in Figure 2a,
order adjustment enables Chinese performance to scale with the growth of English data. A key
factor in this success is the appropriate learning rate schedule, which we analyze in more detail in
Section 5.2.1.

Proportion Adjustment. Building on order adjustment, we further examine the effect of modi-
fying the proportion of low-resource language data in the second stage. Since the total amount of
low-resource language data is fixed, allocating a higher proportion necessarily shortens the duration
of the second stage. As shown in Figure 2b, increasing the proportion of Chinese data substantially
improves Chinese performance, but at the cost of a marked decline in English performance. From
a practical perspective, we set the proportion of Chinese data to 80% in the second stage. In ad-
dition, Figure 2a shows that adjusting the proportion of low-resource data enables more effective
cross-lingual data scaling.

Overall, the experiments demonstrate that adjusting the language order and proportion can efficiently
achieve cross-lingual data scaling. These findings highlight the potential of cross-lingual knowledge
transfer as a scalable solution to improve low-resource language performance, while simultaneously
maintaining the sustained improvement of high-resource language performance. Based on propor-
tion adjustment, we propose a new pretraining framework in the following section to further enhance
cross-lingual data scaling.

4 SCALEX: SCALABLE CROSS-LINGUAL PRETRAINING FRAMEWORK

We aim to design a pretraining framework that enables cross-lingual data scaling. To this end,
we propose ScaleX, which allows LLM performance in low-resource languages to scale with the
dataset size of high-resource languages. Figure 3 provides an overview of ScaleX, depicting the
data schedule and the corresponding learning rate schedule. The framework can be instantiated in
two variants: a standard configuration without data repetition and an extended configuration that
incorporates data repetition to further increase the exposure of low-resource language data.

ScaleX adopts a two-stage training paradigm, as illustrated in Figure 3a. In the first stage, the
model is pretrained exclusively on expanding high-resource language data under a constant learning
rate schedule. In the second stage, pretraining continues on a mixture of high- and low-resource
languages under a cosine learning rate schedule, with the proportion of low-resource language data
fixed at 80%. Because both the total amount of low-resource language data and the batch size are
fixed, the number of training steps in the second stage is determined by the proportion of low-
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Figure 3: Illustration of data and learning rate schedules in the two variants of ScaleX: (a) standard
ScaleX; (b) ScaleX with data repetition (ScaleX-DR). “HRL” denotes high-resource languages and
“LRL” denotes low-resource languages.
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(b) Downstream Task Accuracy

Figure 4: Comparison of ScaleX and ScaleX-DR with other approaches. (a) Chinese perplexity (↓)
as English data increases. (b) Average accuracy (↑) over four Chinese downstream tasks as English
data increases.

resource language data. Given this constraint, the number of steps in the first stage is naturally
determined by the remaining high-resource language data.

Beyond the standard configuration, we further introduce a variant that incorporates data repetition,
denoted as ScaleX-DR, as illustrated in Figure 3b. In this configuration, low-resource language
data is duplicated, and an equal amount of high-resource language data is replaced to preserve
dataset size. This adjustment shifts training steps from the first stage to the second stage, effectively
increasing the number of updates on low-resource language data. Although the repetition count
can be scaled to approximately 20 times (see Appendix A.3), in our experiments we adopt a single
repetition setting, which is sufficient to demonstrate the complementary effect of data repetition
within the ScaleX framework.
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5 EXPERIMENTS

5.1 PERFORMANCE AND GENERALIZATION

Main Results. We compare ScaleX with other approaches in terms of PPL and downstream task
accuracy. As shown in Figure 4, ScaleX and ScaleX-DR consistently achieve the best performance,
with their advantage over other approaches widening as the amount of English data increases. No-
tably, both loss weighting and data repetition appear to exhibit scalability in improving low-resource
language performance. However, their benefits are bounded: loss weighting yields largest gains with
scaling factors of 10–20, while data repetition is most effective at 16–24 repetitions. Beyond these
ranges, further scaling not only fails to improve performance but can even degrade it. Appendix A.3
provides detailed results on the scalability limits of these approaches

50 150 250
English Tokens (B)

9

10

11

12

13

14

15

Av
er

ag
e 

Pe
rp

le
xi

ty

12.94 13.11
13.43

10.37
9.91 9.72

Baseline
ScaleX-DR

Figure 5: Comparison between ScaleX-DR and basline
in multilingual pretraining.

Generalization in Multilingual Pre-
training. We evaluate the generalization
of ScaleX in multilingual pretraining. Fol-
lowing prior work (Zhang et al., 2025;
Wang et al., 2025b), we extend the bilin-
gual setup by incorporating three addi-
tional low-resource languages: Turkish,
Hungarian, and Bengali. In this setting,
English serves as the high-resource lan-
guage, while the other four are treated
as low-resource languages. To simu-
late cross-lingual data scaling, we fix the
dataset sizes of all low-resource languages
and vary English data across three scales:
50B, 150B, and 250B tokens. The lan-
guage statistics for these experiments are
provided in Appendix A.4.

As shown in Figure 5, ScaleX-DR consistently improves performance across all low-resource lan-
guages as the amount of English data increases, and its advantage over baseline becomes more
pronounced at larger scales. These results demonstrate the generalization of ScaleX in multilin-
gual pretraining. Moreover, the experiment shows that ScaleX continues to enable cross-lingual
data scaling even under extreme imbalance, where the ratio of high- to low-resource data reaches
1:300–1:1500 and some low-resource datasets contain as few as 0.17B tokens.

Table 1: Chinese performance of ScaleX-
DR in large-scale pretraining.

Language Metric Tokens

500B 1T

Chinese PPL 15.45 15.20
ACC 45.35 48.41

English PPL 10.18 9.89
ACC 37.47 42.39

Generalization in Large-scale Pretraining. We
further evaluate the generalization of ScaleX in large-
scale pretraining. Specifically, we train 2.5B LLMs on
bilingual datasets of 500B and 1T tokens. The Chi-
nese dataset is fixed at 200B tokens, constructed by
duplicating 100B unique Chinese tokens once, while
the English datasets contain 300B and 800B tokens,
respectively. Owing to the prohibitive cost of large-
scale pretraining, we do not provide comparisons with
other approaches at this scale.

As shown in Table 1, ScaleX delivers consistent im-
provements in both perplexity and downstream task performance across Chinese and English. These
results highlight not only the scalability of ScaleX but also its applicability to practical large-scale
pretraining.

5.2 ANALYSIS

5.2.1 EFFECT OF LEARNING RATE SCHEDULE

To examine the role of learning rate schedule in the scalability of ScaleX, we evaluate three con-
figurations within the two-stage pretraining paradigm: (i) Cos, a conventional cosine learning rate
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Figure 6: Effect of learning rate schedule on the scalability of ScaleX. (a) Chinese PPL as English
data increases. (b) The corresponding learning rate schedules. Results highlight that maintaining a
sufficiently large learning rate in the second stage is critical for preserving scalability of ScaleX.

schedule; (ii) Const-Cos, a constant learning rate schedule in the first stage, followed by a cosine
learning rate schedule in the second stage; (iii) Cos-Cos, a reset cosine learning rate schedule, with
the first stage following the initial part of the cosine learning rate schedule of (i) and the second
stage adopting the cosine learning rate schedule from (ii).

As shown in Figure 6, ScaleX under the second and third learning rate configurations maintains
cross-lingual scalability. We attribute this to the larger learning rate of the second stage, which
is crucial for enhancing low-resource language performance. Our experiments indicate that the
sustained improvements of ScaleX on low-resource languages are ultimately driven by the increasing
amount of data in the first stage. However, before high-resource language data reaches a sufficiently
large scale, the primary contributor to low-resource language performance remains the low-resource
language data in the second stage. In this setting, if the learning rate in the second stage is too
small, the contribution of low-resource language data diminishes significantly. When applying a
conventional cosine learning rate schedule, the learning rate in the second stage decreases as the
first-stage training lengthens, which in turn leads to a decline in low-resource language performance
as high-resource language data increases. Therefore, maintaining a sufficiently large learning rate in
the second stage is essential for preserving cross-lingual scalability of ScaleX.

5.2.2 EFFECT OF SHARED TOKENS

While the learning rate experiments clarify the complementary roles of the two pretraining stages, a
key question remains: why does scaling high-resource language data in the first stage consistently
improve performance on low-resource languages? Our statistical analysis shows that low-resource
language samples, such as Chinese, contain a substantial number of English tokens. Beyond code-
switching tokens, many samples share tokens across languages, including punctuation, numerals,
and other symbols. This observation motivates the hypothesis that the performance gains of low-
resource languages from the first stage stem from these shared tokens across languages.

To verify this hypothesis, we categorize the tokens in the bilingual dataset into three groups: Chi-
nese, English, and others. Based on these categories, we construct datasets with controlled token
types and design two-stage pretraining experiments, where the first stage uses only Chinese data and
the second stage uses only English data. In this setup, Chinese is treated as the high-resource lan-
guage and English as the low-resource language. This choice is motivated by the fact that fewer than
0.6% of Chinese samples are free of English tokens; if Chinese is designated as the low-resource
language, it will be difficult to construct controlled experiments without compromising the quality
of the low-resource language data.

We conduct four controlled experiments with different shared token configurations, as listed in Ta-
ble 2. The results show that ScaleX exhibits scalability whenever at least one token category is
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Table 2: Effect of different shared token settings on the scalability of ScaleX. In the Shared Token
columns, “✓” and “✗” indicate the presence or absence of each token category across pretraining
stages, while in the Scalable column they denote whether ScaleX exhibits scalability. English per-
plexities are reported for training data of 4B, 40B, and 80B tokens, highlighting the effect of scaling.

# Shared Token Scalable English Perplexity

Chinese English Other 4B 40B 80B

1 ✗ ✗ ✗ ✗ 12.54 12.63 13.02
2 ✗ ✓ ✗ ✓ 12.26 11.50 11.34
3 ✗ ✗ ✓ ✓ 12.42 11.74 11.49
4 ✗ ✓ ✓ ✓ 12.16 11.34 11.16

shared across stages. This finding suggests that shared tokens play a critical role in facilitating
knowledge transfer between languages, thereby enabling cross-lingual scalability. Further analyses
are provided in Appendix A.5.

6 CONCLUSION AND FUTURE WORK

To overcome the limitations of small and stagnant dataset sizes in low-resource languages, we in-
troduce cross-lingual data scaling, which leverages high-resource language data to sustain perfor-
mance gains for low-resource languages. Our experiments demonstrate that, while translation and
code-switching are insufficient to achieve cross-lingual data scaling, adjusting language order and
proportion can effectively realize it through knowledge transfer. Building on these findings, we
propose ScaleX, a two-stage pretraining framework that enables LLM performance in low-resource
languages to scale with the dataset size of high-resource languages. ScaleX consistently outper-
forms other approaches, with its advantage widening as high-resource language data increases, and
further generalizes to both multilingual and large-scale bilingual pretraining. Finally, our analyses
highlight learning rate schedule and shared tokens across languages are crucial for sustaining cross-
lingual data scaling, offering guidance for future research on low-resource language modeling.

Future work can advance along two complementary directions. The first is to deepen the understand-
ing of cross-lingual transfer mechanisms at a more fine-grained level, thereby establishing stronger
theoretical foundations and guiding more principled pretraining designs. The second is to extend
cross-lingual data scaling beyond text, for example to multimodal pretraining, thus broadening its
applicability to more diverse real-world scenarios.
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A APPENDIX

A.1 IMPLEMENTATION OF TRANSLATION

To balance translation difficulty and generation cost, we design a segmentation-based translation
pipeline, which splits long texts into shorter segments to reduce translation complexity and cost. The
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pipeline consists of three steps: (i) Segmentation. Training samples are segmented into sentences us-
ing BlingFire1. (ii) Translation. Segmented sentences are translated using Qwen2.5-Instruct series
models, executed with the vLLM framework (Kwon et al., 2023). (iii) Merging. Translated sen-
tences are concatenated in their original order to form synthetic low-resource language documents
used for pretraining.

Table 3: Data quality and computational cost of
different Qwen2.5-Instruct models. Data qual-
ity is measured by PPL, and cost is measured by
GPU hours required to generate 10B tokens.

Model Perplexity GPU Hours

Qwen2.5-1.5B 34.45 810
Qwen2.5-3B 35.76 979
Qwen2.5-7B 30.46 1,696
Qwen2.5-14B 28.31 2,640
Qwen2.5-32B 28.47 6,636

Native Chinese 11.58 -

On the other hand, an appropriate trade-off be-
tween translation quality and generation cost
requires selecting a suitably sized open-source
LLM for translation. We evaluate synthetic
data quality using PPL and measure cost by the
GPU hours required to generate 10B tokens. As
shown in Table 3, larger Qwen models yield
higher-quality translations but also incur sub-
stantially higher costs. When the model size
exceeds 7B parameters, the improvements in
data quality are marginal, whereas the computa-
tional overhead grows substantially. Therefore,
we adopt Qwen2.5-7B-Instruct as our translation
model.

It is worth noting that even with Qwen-32B, the quality of synthetic Chinese data generated via
translation remains substantially below that of native Chinese. Given that Chinese is relatively well
resourced compared to many other languages, this gap is likely to be even larger for truly low-
resource languages, where open-source LLMs tend to produce translations of lower quality.

A.2 IMPLEMENTATION OF CODE-SWITCHING

In our bilingual experiments, we adopt SynCS (Wang et al., 2025b) to introduce Chinese content
into English samples. Specifically, we randomly select 20% of the English samples and replace
30% of their content with Chinese, either at the token or sentence level. The 20% sampling ratio
follows the original SynCS setup, while the 30% replacement ratio is empirically selected as the
most effective configuration. Additionally, the code-switched data are generated using a fine-tuned
Qwen2.5-3B-Instruct model trained on the Chinese–English code-switching dataset released with
SynCS.

Table 4: LLM performance across
different code-switching replacement
ratios.

Ratio Perplexity Accuracy

10% 22.3 24.7
30% 22.1 25.8
50% 22.0 24.4
70% 22.1 23.7
90% 21.9 25.2

To study the effect of replacement ratios on code-switching,
we train 1.3B LLMs on 200B tokens, varying the ratio
across 10%, 30%, 50%, 70%, and 90%. As shown in
Table 4, simply increasing the proportion of Chinese to-
kens does not lead to consistent improvements in Chinese
performance, suggesting that there is no straightforward
benefit from further intensifying the code-switching ratio.
Moreover, compared to generating pretraining data for low-
resource languages via translation, code-switching entails
similarly high generation cost and adds the extra burden of
LLM fine-tuning.

A.3 SCALABILITY OF DATA REPETITION AND LOSS WEIGHTING

To further examine the scalability of loss weighting, we conduct supplementary experiments with
1.3B LLMs trained on 1T tokens. For loss weighting, as shown in Figure 7a, we observe that a model
trained on 500B tokens with a 10× weight outperforms a model trained on 1T tokens with a 20×
weight. This suggests the presence of a threshold in the 10–20× range, beyond which increasing the
loss weight no longer yields benefits and can even degrade performance.

On the other hand, even at the 1T-token scale, the LLMs trained with data repetition show no clear
performance plateau in Chinese. Due to the prohibitive cost of training at the trillion-token scale,
we instead examine the upper bound of data repetition at a smaller scale. Here, the Chinese dataset

1https://github.com/Microsoft/BlingFire
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Figure 8: The detailed performance of different low-resource languages in Figure 5.

is derived from 5B unique tokens and expanded through repetition, while the English dataset is en-
larged with new data to keep the two languages balanced. As shown in Figure 7b, repeating the
limited Chinese data 24× yields lower performance than that of 16×, suggesting that the benefits
peak between 16× and 24×. These findings indicate that, similar to loss weighting, data repeti-
tion enhances performance only up to a certain point, after which additional repetitions result in
degradation.

A.4 IMPLEMENTATION OF MULTILINGUAL PRETRAINING

Table 5: Language statistics in the multilingual pretraining setup. The column “LRL” specifies
whether the corresponding language is considered as low-resource language.

Language Language Family LRL Tokens (B) Proportion (%)

50B 250B

English Indo-European ✗ 50–250 89.23 97.64
Chinese Sino-Tibetan ✓ 3.99 7.12 1.56
Turkish Turkic ✓ 1.12 2.00 0.43
Hungarian Uralic ✓ 0.76 1.35 0.30
Bengali Indo-European ✓ 0.17 0.30 0.07

Table 5 reports the language statistics for the multilingual pretraining experiments. As English data
increases, the proportions of other languages scale accordingly, with the 50B English configuration
following the distribution in the CulturaX dataset (Nguyen et al., 2024). On the other hand, Figure 8
presents the performance of individual low-resource languages in Figure 5.

A.5 IMPLEMENTATION OF SHARE TOKEN

To examine the effect of shared tokens across languages on ScaleX, we first categorize tokens into
three groups. Using this categorization, we construct bilingual datasets with different token compo-
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Table 6: Proportion of bilingual samples containing different types of token.

Zh En Ot Proportion

Chinese English

✓ ✓ ✓ 98.20% 2.80%
✓ ✗ ✓ 1.80% 0.00%
✗ ✓ ✓ 0.00% 97.20%

Table 7: Effect of different shared token settings on the scalability of ScaleX. “✓” and “✗” respec-
tively indicate whether a token category is shared across stages or whether ScaleX is scalable.

# Shared Token Scalable English Perplexity

Zh En Ot 4B 40B 80B

1 ✗ ✗ ✗ ✗ 12.54 12.63 13.02
2 ✓ ✗ ✗ ✗ 12.59 12.55 13.01
3 ✗ ✓ ✗ ✓ 12.26 11.50 11.34
4 ✗ ✗ ✓ ✓ 12.42 11.74 11.49
5 ✗ ✓ ✓ ✓ 12.16 11.34 11.16
6 ✓ ✓ ✓ ✓ 12.18 11.36 11.17

sitions, which serve as the basis for evaluating the impact of shared tokens. Specifically, the tokens
are categorized into three groups as follows:

• Chinese tokens (Zh): consisting of characters in the CJK Unified Ideographs block, primarily
in the Unicode range U+4E00–U+9FFF.

• English tokens (En): consisting solely of the Latin alphabet in Unicode ranges U+0041–
U+005A and U+0061–U+007A.

• Other tokens (Ot): tokens excluding English and Chinese tokens, such as punctuation, digits,
special symbols, and other symbols.

Based on these definitions, we further classify bilingual samples according to the token types they
contain. As shown in Table 6, about 98.20% of Chinese samples contain all three token types,
whereas only 1.8% contain Chinese and other tokens without English. This imbalance poses a prac-
tical issue: to obtain sufficient samples containing only Chinese and other tokens (but no English),
one needs to strip English tokens from the majority of Chinese samples that contain all three token
types. Such token removal perturbs the Chinese data, thereby introducing preprocessing-induced
confounders and undermining the validity of any conclusions about the model’s performance on
Chinese. In contrast, applying analogous token removal to the high-resource language in the first
pretraining stage has a much smaller effect, since evaluation focuses on the low-resource language.
Therefore, without loss of generality, we designate Chinese as the high-resource language and En-
glish as the low-resource language in this experiment. Accordingly, the LLM is pretrained exclu-
sively on Chinese data in the first stage, followed by English data in the second stage.

To further investigate the role of shared tokens, we design six controlled experiments by varying
which token categories (Zh, En, Ot) are shared across the two pretraining stages. The detailed ex-
perimental settings are summarized in Table 7. We observe that ScaleX remains scalable when the
shared tokens correspond to those required by the low-resource language in the second stage (e.g.,
English or Other tokens). In contrast, scalability does not hold when the shared tokens belong to
categories unused by the low-resource language in the second stage (e.g., Chinese tokens). More-
over, the performance gains in #5 and #6 are substantially larger than in #3 and #4, suggesting that
a greater degree of token sharing tends to yield stronger improvements in low-resource language
performance.
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A.6 USE OF LLMS

We make limited use of LLMs only as an auxiliary tool for proofreading and minor language pol-
ishing, including grammar checking, wording refinements, and terminology consistency. LLMs do
not contribute to the conceptualization, experimental design, implementation, or analysis of this
research, and all scientific content and contributions are the work of the authors.
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