
Under review as a conference paper at ICLR 2021

TOWARDS POWERFUL GRAPH NEURAL NETWORKS:
DIVERSITY MATTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) offer us an effective framework for graph repre-
sentation learning via layer-wise neighborhood aggregation. Their success is at-
tributed to their expressive power at learning representation of nodes and graphs.
To achieve GNNs with high expressive power, existing methods mainly resort to
complex neighborhood aggregation functions, e.g., designing injective aggrega-
tion function or using multiple aggregation functions. Consequently, their expres-
sive power is limited by the capability of aggregation function, which is tricky to
determine in practice. To combat this problem, we propose a novel framework,
namely diverse sampling, to improve the expressive power of GNNs. For a target
node, diverse sampling offers it diverse neighborhoods, i.e., rooted sub-graphs,
and the representation of target node is finally obtained via aggregating the rep-
resentation of diverse neighborhoods obtained using any GNN model. High ex-
pressive power is guaranteed by the diversity of different neighborhoods. We use
classical GNNs (i.e., GCN and GAT) as base models to evaluate the effective-
ness of the proposed framework. Experiments are conducted at multi-class node
classification task on three benchmark datasets and multi-label node classifica-
tion task on a dataset collected in this paper. Extensive experiments demonstrate
the proposed method consistently improve the performance of base GNN models.
The proposed framework is applicable to any GNN models and thus is general for
improving the expressive power of GNNs.

1 INTRODUCTION

Graph neural networks (GNNs) have been shown to be effective at graph representation learning
and many predictive tasks on graph-structured data, e.g., node classification and graph classifica-
tion (Kipf & Welling, 2016; Xu et al., 2018a). GNNs follow a neighborhood aggregation scheme,
where the representation of a node is obtained by recursively aggregating and transforming repre-
sentation of its neighboring nodes (Gilmer et al., 2017). The success of GNNs is believed to be
attributed to their high expressive power at learning representation of nodes and graphs (Xu et al.,
2018a). Therefore, it is an important research problem to analyze and improve the expressive power
of existing GNN models and design new GNNs with high expressive power.

Several recent works focus on the expressive power of GNNs. Xu et al. pointed out that the expres-
sive power of GNNs depends on the neighborhood aggregation function (Xu et al., 2018a). They
develop a simple architecture, i.e., leveraging multi-layer perceptron (MLP) and a sum pooling as a
universal approximator defined on multi-set, to achieve injective neighborhood aggregation function.
With injective aggregation function in each layer, the proposed graph isomorphism network (GIN)
has the expressive power as high as the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler
& Lehman, 1968). Similarly, Sato et al. implement a powerful GNN via consistent port numbering,
i.e., mapping edges to port numbering and neighbors are ordered by the port numbering (Sato et al.,
2019). However, port ordering of CPNGNNs is not unique, and not all orderings can distinguish the
same set of graphs (Garg et al., 2020). Principal neighborhood aggregation (PNA) defines multiple
aggregation functions to improve the expressive power of GNNs (Corso et al., 2020). However, the
number of required aggregation functions to discriminate multi-sets depends on the size of multi-set,
which is prohibitive for real world networks with skewed degree distribution. In sum, existing meth-
ods focus on designing an injective, often complex, aggregation function in each layer to achieve
GNNs with high expressive power. However, injective functions are difficult to obtain and tricky to

1

Under review as a conference paper at ICLR 2021

determine in practice. Indeed, layer-wise injective function is not always required and what we need
is an injective function defined over rooted sub-graphs or graphs as a whole.

In this paper, we propose a novel framework, namely diverse sampling, to improve the expressive
power of GNNs. For a target node, diverse sampling offers it diverse neighborhoods, i.e., rooted sub-
graphs, and the representation of target node is finally obtained via aggregating the representation
of diverse neighborhoods obtained using any GNN model. High expressive power is guaranteed
by the diversity of different neighborhoods. For convenience, we denote with DS-GNN the GNN
implemented under the proposed diverse sampling framework.

5

4

1

2

3

MLP

Injective

Layer
5

4
1

2
3

Aggregation 1

Aggregation M

Concat FC

!

4
1

2 6

9

5

8

4
1

7

3

9

5
8

4
1

2

7

3

GNN

GNN

GNN

One Injective LayerSample

5

8

4
1

2

7

3

6

9

Aggregation 2

MLP

MLP

MLP

MLP
PNA LayerGIN Layer

Input

Injective

Layer

!

!

Ouput

5

4
1

2
3

(a)

(b) (c)

!

! !

Figure 1: The motivation of DS-GNN: constructing multiple sampled graphs rather than complex
layer-wise aggregation functions (the node with red circle is the central node and “FC” represents
fully connected layer).

Fig. 1 illustrates the main idea of the proposed DS-GNN, and compare it with two representative
methods, i.e., GIN and PNA. Fig. 1 (a) depicts the injective layer implemented via MLP or multi-
ple aggregation functions, aggregating first-order neighboring nodes to obtain the representation of
central node. Injective layer are stacked to achieve an overall injective function defined on rooted
sub-graphs. On the contrary, DS-GNN does not follow the line of designing complicated aggrega-
tion functions in each layer. Instead, DS-GNN improve the expressive power of GNNs via obtaining
diverse rooted sub-graphs for each node. Specifically, we sample nodes multiple times on the entire
input graph based on diverse sampling, and obtain multiple sampled sub-graphs for each node. After
diverse sampling, we leverage the shared GNN model to get the representation for the central node,
including its high-order neighbors. In this way, each node is represented by a multi-set, consisting
of the representations obtained from different sampled rooted sub-graphs. The final representation
of central node is finally obtained via aggregating the representation of diverse neighborhoods.

Finally, we use classical GNNs (i.e., GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2017))
as base models to evaluate the effectiveness of the proposed framework. Experiments are conducted
at node-based multi-class classification task on three benchmark datasets and node-based multi-
label classification task on a dataset collected in this paper. Extensive experiments demonstrate
the proposed method consistently improve the performance of base GNN models. The proposed
framework is applicable to any GNN models and thus is general for improving the expressive power
of GNNs.

2 NOTATIONS AND PRELIMINARIES

We first introduce the general framework of GNNs.

2

Under review as a conference paper at ICLR 2021

G = {V,A} denotes an undirected graph, where V is the set of nodes with |V | = n, and A is the
adjacency matrix with Ai,j = Aj,i to define the connection between node i and node j. X ∈ Rn×p

denotes the feature matrix and the i-th row in X represent the attributes of i-th node. DS-GNN
Modern GNNs follow a neighborhood aggregation scheme, which iteratively update each node’s
representation via aggregating the representation of its neighboring nodes. Formally, the k-th layer
of GNN is

a(k)v = AGGREGATE(k)(h(k−1)u : u ∈ N(v)), h(k)v = COMBINE(k)(h(k−1)v , a(k)v), (1)

whereN(v) represents the neighbors of node v, h(k)v is the representation of node v in the k-th layer,
and h(0)v = Xv . Additionally, we introduce two representative base models: Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) and Graph Attention Networks (GAT) (Veličković et al.,
2017) in Appendix A.

3 DIVERSE SAMPLING BASED POWERFUL GRAPH NEURAL NETWORK

Considering that the injectivity of each node with its neighbors making GNNs be possessed with
the most powerful ability for node-level task, i.e., representations can be distinguishable for two
nodes when they have dissimilar attributes or different neighbors, we devote to designing a powerful
GNN to reach such injectivity, thus increase its expressive power. Specifically, we propose a novel
framework, i.e., Diverse Sampling (DS-GNN), to increase the expressive power via constructing
diverse rooted sub-graphs for each node. In this section, we first give the framework of our DS-
GNN. Then we will introduce the important parts of DS-GNN, including diverse sampling strategy
that ensure the diversity among each sampling, as well as the part of model learning. We also
theoretically analyze how the proposed DS-GNN can improve the expressive abilities when added
to generic GNNs.

3.1 METHOD

8 9
7

4 5
1

6

32

9
7

41

3

8
7

4 5

6

2

8
9

5
1

6

2

10 11
12

10
11

11

12

12

10

LossSample

Base

GNN

Base

GNN

Base

GNN

MLP

MLP

MLP

! ! ! ! !

Figure 2: Architecture of DS-GNN.

The framework of DS-GNN is illustrated in Fig. 2. For the input graph, instead of running GNN
on the entire graph, we first do node sampling with K-times and then obtain K sampled graphs.
During sampling, we calculate the sampling probability for each node and randomly retain the node
based on the probability. If one node is not sampled, it means that the node and all edges connected
with it will be removed from the graph. The updated adjacency matrix and feature matrix of each
sampling are fed into the base GNN model, and the GNN is shared over all samplings. Then we
obtain one representation for each sampled node corresponded with one input sampled graph. Thus,
if one node is sampled more than one time, we will obtain multiple representations.

To get the final representation of each node, we need to integrate these representations. To hold the
injectivity when integrating representations, we adopt a multi-layer perceptrons (MLP) followed by
the sum aggregation to achieve the injective multi-set aggregation function. Once getting the final
representation for each node, we calculate the loss function and optimize the model.

Sampling Strategy

3

Under review as a conference paper at ICLR 2021

Intuitively, with a large number of sampling numbers, the sampling results are expected to retain
the information of entire graph. Thus previous methods, e.g., Dropedge (Rong et al., 2019) which
samples in each training epoch, do not need to carefully design the sampling strategy and they keep
all edges when testing and validation. Meanwhile, they fail to achieve diverse sampled graphs in
testing. Different from previous methods, we need to hold the K sampled graphs in testing and
keep training and testing consistently. To solve this, we only sample the entire graph K-times, and
leverage these sampled K graphs in all training epochs, as well as the validation and testing. To
guarantee the performance of the proposed DS-GNN when even small K is chosen, we carefully
design the important diverse sampling strategy.

To ensure the reuse of sampling results, we propose node sampling to obtain K sampled graphs.
In one sampling, the neighbors of each node are obtained from the same sampled graph. For the
sampling probability of nodes, the most intuitive way is to set the same initial probability for each
node, which is pinit. However, this method may require a large number of sampling numbers K. In
order to further speed up or get an effective sampling plan, we also propose three intuitive guidelines
for sampling strategy: 1) to ensure the coverage of samples, each node should appears at least in one
sampled graph; 2) to achieve the diversity among samples, we assume that the sampling probability
of each node should decrease when its sampled times in previous is already large; 3) to retain the
important node in the original network and adopting the node degree as the importance indicator,
we assume that the sampling probability of each node should increase when its degree in original
network is large. Meanwhile, we also considering the previous sampled results, discounting the
sampling probability of each node when the its degree in previous sampled graphs is already large.
That’s to say, the sampling probability of each node increase with the increase of node degree in
original network, and decrease with the increase of node degree in previous sampled graphs. To
achieve the above three guidelines, we need to relate the sampling probability of each node to the
historical sampling results. Next, we will introduce in detail how we do.

Let K represent the total number of samples, pv,i represent the probability of node v in the i-th
sampling, and Hv,i represent the number of times that the node v has been sampled before the i-
th sampling. To achieve guideline 1), we should guarantee that the probability for a node, which
has never been sampled in history K-1 samples, equals to 1 at the K-th sampling. In other words,
pv,K = 1 when Hv,K = 0. Additionally, to achieve the diversity guideline of 2), the sampling
probability pv,i should decrease with the increase of historical sampled numbers Hv,i. Together, the
sampling probability of node v for the i-th sampling is defined as:

pv,i = pinit + (1− pinit)×
i−Hv,i

K
. (2)

To achieve guideline of 3), a new sampling strategy is designed. Specifically, we define Dsample
v,j as

the degree of node v in the j-th sampled graph, and Dv as the degree of node v in the original graph.
To make the sampling probability increase with Dv , as well as decrease with Dsample

v,j as mentioned
in guideline 3), we define the coefficient Dgap

v,i as:

Dgap
v,i =

∑i−1
j=1(Dv −Dsample

v,j)∑i−1
j=1Dv

(3)

To achieve our three guidelines in total, we integrate the Eq 2 and Eq 3, and define the sampling
probability for node v in the i-th sampling as:

pv,i = pinit + (1− pinit)×
i−Hv,i

K
×Dgap

v,i . (4)

Note that our sampling strategy is different from previous methods, i.e., dropping features and drop-
ping edges. The Dropout (Srivastava et al., 2014) is proposed to prevent over-fitting by randomly
dropping features. Dropping edges can be regarded as a generation of Dropout from dropping fea-
tures to dropping edges. However, dropping edges may cause that two nodes who are the same
with identical neighbors obtain different representations, since dropping edges may cause these two
nodes result in different neighbors after edge sampling. In contrast, we propose node sampling
strategy, ensuring that the nodes with the same input features and neighbors will still have the same

4

Under review as a conference paper at ICLR 2021

representation. We give the detailed introduction of some previous methods, included in dropping
edges in Appendix B.

Model Learning

In the following, we describe in detail how DS-GNN can be applied to any base GNN to achieve a
more powerful GNN model. Specifically, we first doK samplings on the input graphA via the above
introduced diverse sampling, getting the sampled graphs [A1, A2, · · · , AK] in a pre-processing step.
Then we applied a base GNN model to obtain the representations of nodes in sampled graphs re-
spectively, each layer is formulated as.

h(k,l)v = COMBINE(l)(h(k,l−1)v ,AGGREGATE(l)(h(k,l−1)u : u ∈ Nk(v))), (5)

where hk,lv is the representation of node v at the l-th layer in the k-th sampled graphs, and Nk(v)
denotes the neighbors of node v in the k-th sampled graphs Ak. For each node, we obtain K repre-
sentations {h(1,L)

v , h
(2,L)
v , · · · , h(K,L)

v } from the L-th layer of base GNN based on the K sampled
graphs. Note that if a node is not sampled in one sampling, we fill its representation with 0 to ensure
that each node has K representations. In order to integrate them into one representation, we fed
them into a MLP with two fully connected layers, and then sum the transferred representations after
MLP. Note that the MLP is shared over all samplings. Let Ov denote the output representation of
node v, Ov is calculated as

Ov =

K∑
i=1

MLP(h(i,L)
v). (6)

To verify the ability of DS-GNN model, we adopt node-level tasks, i.e., node based multi-class
classification and node-based multi-label classification, as the target task. Note that in multi-label
classification, each node has multiple labels. Let V Label denote the set of labeled nodes andm is the
number of total labels, Yvc equals 1 if node v has label c, otherwise 0. For node-based multi-class
classification, the output probability vector Ẑv is calculated by applying “Softmax” funtion to the
output representations Ov:

Ẑv = Softmax(Ov). (7)

For node-based multi-label classification, Ẑv is calculated by applied “Sigmoid” funtion instead:

Ẑv = Sigmoid(Ov). (8)

For these two tasks, the loss function is defined as the cross-entropy over all labeled nodes as

L = −
∑

v∈V Label

m∑
c=1

Yvc ln Ẑvc, (9)

3.2 TOWARDS HIGH EXPRESSIVE POWER

Recall that, in this work we devote to achieving injectivity on nodes to increase the expressive power
of GNN, i.e., for any two nodes with different attributes or different neighbors, the model can output
different representations for them. In this section, we theoretically analyze whether our proposed
DS-GNN method can achieve this goal. Note that the MLP applied to the K representations in Fig. 2
followed by the sum operator can achieve injectivity when integrating the multi-sets (Hornik et al.,
1989; Xu et al., 2018a). As a result, to prove the injectivity on nodes of the proposed DS-GNN,
we only need to prove that two nodes with different neighbors have different multi-sets of the K
representations.

For simplicity, we denote the representation of node u on the i-th sampled graph under L layers
base GNN model, i.e., h(i,L)

u , as ui. Formally, for two nodes, i.e., node u and node v, with different
attributes or different neighbors on the original graph, the multi-sets of their representations based
on the K sampled graphs under L layers base GNN model are:

Multi− set(u) = {u1, u2, · · · , uK}, Multi− set(v) = {v1, v2, · · · , vK}. (10)

We provide the following theorem and prove it in Appendix C to demonstrate that we can obtain
different multi-sets for these two nodes with high probability.

5

Under review as a conference paper at ICLR 2021

Theorem As the number of samples increases, the probability that the multi-sets for two nodes with
different attributes or different neighbors are different can be close to 1.

On the basis of the high probability of obtaining different multi-sets and the proven injective multi-
set function, i.e., MLP followed by “Sum”, the injectivity can be achieved among nodes.

Note that for the two nodes who are the same, i.e., they have the same attributes and neighbors, our
DS-GNN also ensure that they have the same representation. This is because that we adopt node
sampling instead of edge sampling. Under node sampling, the two identical nodes will lose this
neighbor at the same time, otherwise, keeping the neighbor, as well as the representations obtained
by base GNN model stay the same.

4 EXPERIMENTS

We use GCN and GAT as our base models and implement them under our proposed DS-GNN
framework respectively, referred as DS-GCN and DS-GAT. The effectiveness of DS-GCN and DS-
GAT is evaluated on three benchmark datasets via multi-class classification. Detailed analysis of
sampling times and sampling strategy are also provided. In addition, to enrich the type of node-level
tasks, we also offer an multi-label classification task on a newly collected dataset from DouBan
website1, namely DBMovie.

4.1 EXPERIMENTAL SETTINGS

We use Tensorflow to implement the proposed model and take Adam with an initial learning rate of
0.01 as optimizer. For the three benchmark datasets, we set a weight decay of 0.0005. For DBMovie,
we do not use weight decay. Note that for the i-th sampling, we sample 10 times and take the average
of these 10 sampled garphs as the result of the i-th sampling, preventing the instability of a single
sampling. All GNN models has two layers and leverage Relu as the activation function of hidden
layers. We add a ResNet (He et al., 2016) between the second GNN layer and the output layer. We
run 1000 epochs and choose the model that performs the best on validation.

4.2 BASELINES

For the three benchmark datasets, GNNs have achieved large improvements than traditional meth-
ods. As a result, we choose the the representative GNN models, i.e., GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), as the base GNN models and apply our DS-GNN to these two models.
Additionally, we compare against the SOTA GNNs, including GraphSAGE (Hamilton et al., 2017),
GIN (Xu et al., 2018a) and DropEdge (Rong et al., 2019). For the newly collected DBMovie dataset,
we first consider traditional node classification methods as our baselines, including Multi-Layer Per-
ceptrons (MLP), which only use node features, and graph embeddings (DeepWalk) (Perozzi et al.,
2014), which only use graph structures. Since GNNs are proved to be effective in graph-based
learning, we also compare against GCN and GAT.

Table 1: The Statistics of Datasets

Datasets Nodes Edges Classes Features Train/Validation/Test Node-level Task
Cora 2,708 5,429 7 1,433 1,208/500/1,000 Multi-class
CiteSeer 3,327 4,732 6 3,703 1,812/500/1,000 Multi-class
PubMed 19,717 44,338 3 500 18,217/500/1,000 Multi-class
DBMovie 21,659 221,138 28 3,000 20,159/500/1,000 Multi-label

4.3 NODE-BASED MULTI-CLASS CLASSIFICATION

To evaluate the proposed method on node-based multi-class classification, we conduct experiments
on the three benchmark datasets, namely, Cora, CiteSeer, PubMed. The first three rows in Table 1
show an overview of these three multi-class datasets. To better verify the ability of each model and

1https://movie.douban.com/

6

Under review as a conference paper at ICLR 2021

eliminate the effect of other factors such as data insufficiency, we follow the data split in DropE-
dge (Rong et al., 2019).

Performance on Node-based Multi-class Classification

Method Cora CiteSeer PubMed
GIN 85.7% 76.4% 89.7%
GraphSAGE 87.8% 78.4% 90.1%
DropEdge-GCN 86.5% 78.7% 91.2%
GCN 86.1% 75.9% 90.2%
DS-GCN 88.0% 79.9% 90.5%
GAT 87.4% 77.8% 87.9%
DS-GAT 88.2% 80.0% 91.0%

Table 2: Results of Node-based Multi-class Classifica-
tion Figure 3: The impact of sampling time K

Experimental results are reported in Table 2. Additionally, we provide the corresponding standard
deviation in Appendix D. Similar to previous research, we report the mean classification accuracy
over nodes in test set for quantitative evaluation. DS-GNN methods all achieve improvements over
base models (indicated by the bold numbers), e.g., in CiteSeer, DS-GCN (79.9%) achieves large
improvement over GCN (75.9%). Furthermore, applying our proposed method to the base GNN
models can achieve the better performance, outperforming the state-of-the-art models. Compared
with DropEdge which takes GCN as base model, our DiverseSample (DS) mechanism achieves
better or comparable results.

Analysis of Sampling Numbers K

To analyze the impact of sampling timesK, we show the accuracy of Cora with differentK in Fig. 3.
It is observed that the accuracy increases as K becomes larger at the beginning. This is owing to
the increasing probability of achieving injectivity. When K continues to increase, the injective
probability becomes stable and close to 1, resulting in the accuracy also showing a stability. The
results show that we can achieve better experimental results with a small K, e.g., K = 5 in Fig. 3),
which proves the practicability of our method.

Analysis of Sampling Strategy

Figure 4: Diverse sampling VS Random sampling

To evaluate the effectiveness of the proposed diverse sampling strategy, we compare it with random
sampling strategy. Fig. 4 show the accuracy of Cora and CiteSeer with different initial node sampling
probability pinit respectively when sampling times K = 5. The results demonstrate that: 1) the
performance of random sampling will be significantly affected by pinit. The model performs poor
with a relatively small pinit, while the model effect is significantly improved when pinit increases.
Thus, random sampling requires a relatively large pinit to maintain the sampling effect and model

7

Under review as a conference paper at ICLR 2021

performance. 2) The performance of Diverse sampling is relatively stable, obtaining comparable
performance even with a small pinit. This is owing to diverse sampling considers the three guidelines
mentioned earlier, which proves the effectiveness of the diverse sampling strategy we proposed.

Furthermore, under diverse sampling, we observe that the best pinit are different among datasets. If
better results achieved under a smaller pinit, our diverse sampling can achieve improvements over
random sampling. Also, it is observed that Cora performs well with a larger pinit, while CiteSeer
achieves better performance when pinit is smaller, i.e., Cora tends to keep more edges in sampled
graphs. Similarly, PubMed also performs better when pinit is smaller. The reason may be related
to the property of label smoothness “λ” proposed in CS-GNN (Hou et al., 2019), which measures
the quality of surrounding informations. A larger λ implies that nodes with different labels are
connected in the graph. In CS-GNN, Cora has a smaller λ = 0.19, while Citeseer with a larger
λ = 0.26 as well as PubMeb with λ = 0.5. These values indicate that the surrounding informations
are of higher quality in Cora, which explain why Cora prefers to keep more edges.

4.4 NODE-BASED MULTI-LABEL CLASSIFICATION

To enrich the type of node-level tasks, we collect a new dataset from the DouBan website and
offer an multi-label classification task. Each sample in this dataset has its descriptions (features),
genres (labels), and similar movies (edges), as illustrated in Fig. 5. These similar movies (edges) are
directly provided by DouBan website based on user co-preference. This dataset has 28 labels and
each movie may have more than one label. We define the task as tagging the movie with its own
labels. The last row in Table 1 shows an overview of the newly collected DBMovie dataset.

Figure 5: One Sample of DBMovie

Method MAP F1@3 NDCG@3
MLP 54.9% 39.4% 50.6%
DeepWalk 61.6% 44.7% 59.1%
GCN 83.2% 60.2% 82.1%
DS-GCN 83.6% 60.5% 82.6%
GAT 83.3% 60.5% 82.6%
DS-GAT 84.0% 61.0% 83.0%

Table 3: Results of Node-based Multi-label Clas-
sification

Performance on Node-based Multi-label Classification

We now validate the effectiveness of DS-GCN and DS-GAT. For node-based multi-label classifica-
tion, we leverage the widely used ranking metrics to evaluate our method, including Mean Average
Precision (MAP), F1, and Normalized Discounted Cumulative Gain (NDCG). These metrics en-
courage the correct label to be placed ahead of irrelevant labels, and a larger value indicates better
performance. Experimental results on DBMovie are reported in Table 3. In the multi-label clas-
sification task, GNN models, i.e., both GCN and GAT, also perform much better than traditional
methods, including MLP (only using attributes) and DeepWalk (only using only). GAT performs
better than GCN, owing to its attention mechanism to learn edge weight. Under all evaluation met-
rics, our proposed method achieves consistently an improvement over GCN and GAT, showing an
increased expressive power of model.

5 CONCLUSION

We proposed DS-GNN to improve the expressive power of graph neural networks. Different from
previous methods that aim to implement injectivity via designing complicated layer-wise aggrega-
tion functions, we focus on designing the diverse rooted sub-graphs for each node. To enhance the
diversity of rooted sub-graphs, we design the diverse sampling strategy. As the number of sam-
ples increases, we can achieve injectivity with higher probability. Extensive experiments on node-
based multi-class classification and node-based multi-label classification prove that our method can
achieve improvements over the baselines. In the future, we consider to extend our method to graph
classification scenarios.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. arXiv preprint arXiv:2006.04064, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In
International Conference on Learning Representations, 2019.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in neural information processing systems, pp. 4558–4567,
2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. In Advances in Neural Information Processing Systems, pp. 4081–
4090, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018b.

9

Under review as a conference paper at ICLR 2021

A DESCRIPTION OF BASE MODELS

The two basic models Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT)
output the probability distributions Z over labels for all the nodes. Formally, the probability distri-
butions are calculated as follows

Z = f(X,A) = softmax(ÂReLU(ÂXW (0))W (1)), (11)

where W (0) ∈ Rp×d and W (1) ∈ Rd×m are weight matrices with d as the dimension of the hidden
layer. The first layer leverages rectified linear unit (ReLU), and the second layer leverages softmax
to obtain a probability distribution Z ∈ Rn×m. Z is a row-normalized matrix, where each row
represents the probability that the node belongs to corresponding labels.

In GCN, Â = D−
1
2 ÃD−

1
2 is the symmetric normalized adjacency matrix with Ã = A+ I , and I is

the identity matrix. D ∈ Zn×n is the diagonal degree matrix with Dii =
∑

j Ãij .

While, GAT modifies Â by introducing the attention mechanism:

Âij =
exp(LeakyReLU(aT [hi||hj]))∑

k∈N(vi)
exp(LeakyReLU(aT [hi||hk]))

, (12)

where N(vi) is the set of neighboring nodes of node vi, a ∈ R2d is the attention vector, hi ∈ Rd is
the representation of the i-th node, and || is the concatenation operator.

B THE DIFFERENCES BETWEEN NODE SAMPLING AND OTHER RELATED
CONCEPTS

We contrast the differences between node sampling and other related concepts including dropping
features and dropping edges. The Dropout (Srivastava et al., 2014) is proposed to prevent over-
fitting by randomly dropping features. Dropping edges can be regarded as a generation of dropout
from dropping features to dropping edges. DropEdge (Rong et al., 2019) proposed randomly setting
the elements in the adjacency matrix to be zeros. Also, some recent methods, including Graph-
SAGE (Hamilton et al., 2017), ASGCN (Huang et al., 2018), can be seen as dropping edges. These
methods extend GNN to large graphs by sampling neighbors for each node, i.e., sampling a neighbor
is equivalent to sampling an edge. Hasanzadeh (Hasanzadeh et al., 2020) propose a general frame-
work for these methods. However, for our method, dropping edges may cause that two nodes who
are the same with identical neighbors obtain different representations, since dropping edge cannot
guarantee that these two nodes still have identical neighbors after edge sampling. Thus we leverage
node sampling, ensuring that the nodes with the same input features and identical neighbors will
still have the same representation.

C PROOF OF THEOREM

Theorem As the number of samples increases, the probability that the multi-sets for two nodes with
different attributes or different neighbors are different can be close to 1.

Proof: Let p denote the probability that representations of node u and node v are same on the i-th
sampled graph, i.e.,

p = Probability(ui = vi). (13)
Let q denote the the probability that representations of node u and node v are same on two different
sampled graphs, i.e.,

q = Probability(ui = vj) for i 6= j. (14)
It’s reasonable to assume that such a probability based on different sampled graphs is smaller than
base on the same sampled graph, i.e., q <= p.

For the two multi-sets, without losing generality, we can sort the element in each multi-set by de-
scending order based on a specified uniform ordering rules. After sorting, the two multi-sets can be
written as

Multi− set(û) = {ui1 , ui2 , · · · , uiK}, Multi− set(v̂) = {vj1 , vj2 , · · · , vjK}, (15)

10

Under review as a conference paper at ICLR 2021

where ik represent the original index of uik in Multi− set(u), so as jk. For these two sorted multi-
sets, if and only if their elements be equal at each position, these two sorted multi-sets can be the
same, otherwise they are different.

As we defined, the probability of “uik = vjk” is smaller than p, thus the probability that two multi-
sets are the same can be defined as following based on Bayesian Equation:

probability(Multi− set(û) = Multi− set(v̂)) ≤
p× p(ui2 = vj2 |ui1 = vj1)× · · · × p(uiK = vjK |ui1 = vj1 , · · · , uiK−1

= vjK−1
).

(16)

Therefore, the probability that the injectivity can be achieved between the two multi-sets is larger
than 1− probability(Multi− set(û) = Multi− set(v̂)). Since u and v have different attributes or
neighbors, each item in Eq. 16 can be smaller than 1. Thus, with large number of samplings, we can
achieve injectivity with a high probability.

D STANDARD DEVIATION OF NODE-BASED MULTI-CLASS CLASSIFICATION

Table 4: Results with Standard Deviation of Node-based Multi-class Classification

Method Cora CiteSeer PubMed
DS-GCN 88.0%±0.36% 79.9%±0.23% 90.5%±0.19%
DS-GAT 88.2%±0.31% 80.0%±0.26% 91.0%±0.29%

11

	Introduction
	Notations and Preliminaries
	Diverse sampling based powerful graph neural network
	Method
	Towards high expressive power

	Experiments
	Experimental Settings
	Baselines
	Node-based Multi-class Classification
	Node-based Multi-label Classification

	Conclusion
	Description of base models
	 The differences between node sampling and other related concepts
	Proof of Theorem
	Standard deviation of Node-based Multi-class Classification

