Abstract

Traditional resilient systems operate on fully-replicated fault-tolerant clusters, which limits their scalability and performance. One way to make the step towards resilient high-performance systems that can deal with huge workloads is by enabling independent fault-tolerant clusters to efficiently communicate and cooperate with each other, as this also enables the usage of high-performance techniques such as sharding. Recently, such inter-cluster communication was formalized as the Byzantine cluster-sending problem. Unfortunately, existing worst-case optimal protocols for cluster-sending all have linear complexity in the size of the clusters involved.

In this paper, we propose probabilistic cluster-sending techniques as a solution for the cluster-sending problem with only an expected constant message complexity, this independent of the size of the clusters involved and this even in the presence of highly unreliable communication. Depending on the robustness of the clusters involved, our techniques require only two-to-four message round-trips (without communication failures). Furthermore, our protocols can support worst-case linear communication between clusters. Finally, we have put our techniques to the test in an in-depth experimental evaluation that further underlines the exceptional low expected costs of our techniques in comparison with other protocols. As such, our work provides a strong foundation for the further development of resilient high-performance systems.

1 Introduction

The promises of resilient data processing, as provided by private and public blockchains [15,23,29,30], has renewed interest in traditional consensus-based Byzantine fault-tolerant resilient systems [5,6,26]. Unfortunately, blockchains and other consensus-based systems typically rely on fully-replicated designs, which limits their scalability and performance. Consequently, these systems cannot deal with the ever-growing requirements in data processing [32,33].

One way to improve on these limitations is by building complex system designs that consist of independently-operating resilient clusters that can cooperate to provide certain services. To illustrate this, one can consider a sharded resilient design. In a traditional resilient systems, resilience is provided by a fully-replicated consensus-based Byzantine fault-tolerant cluster in which all replicas hold all data and process all requests. This traditional design has only limited performance, even with the best consensus protocols, and lacks scalability. To improve on the design of traditional systems, one can employ the sharded design of Figure 1. In this sharded design, each cluster only holds part of the data. Consequently, each cluster only needs to process requests that affect data they hold. In this way, this sharded design improves performance by enabling parallel processing of requests by different clusters, while also improving storage scalability. To support arbitrary general-purpose workloads that can affect data in several clusters in such a sharded design, the clusters need to be able to coordinate their operations, however [1,7,16,19,21].

Central to such complex system designs is the ability to reliably and efficiently communicate between independently-operating resilient clusters. Recently, this problem of communication between Byzantine fault-tolerant clusters has been formalized as the cluster-sending problem [18,20]. We believe that efficient solutions to this problem have a central role towards bridging resilient and high-performance data processing.

Figure 1: A sharded design in which each resilient cluster of four replicas holds only a part of the data. Local decisions within a cluster are made via consensus (\(→\)), whereas multi-shard coordination to process multi-shard transactions requires cluster-sending (\(←\)). This illustration is based on Hellings et al. [20, Figure 1].

Although the cluster-sending problem has received some attention (e.g., as part of the design of AHL [7], BYSHARD [19],

3Strict ordering as provided by consensus is necessary to support arbitrary general-purpose workloads. There are classes of operations for which strict consensus-based ordering of (sharding) steps is unnecessary, however. Examples include balance changes and, more generally, operations on CRDTs [34].
In this paper, we introduce a new solution to the cluster-sending problem: we introduce cluster-sending protocols that use probabilistic cluster-sending techniques and are able to provide low expected-case message complexity (at the cost of higher communication latencies, a good trade-off in systems where inter-cluster network bandwidth is limited). To simplify presentation, we first show how probabilistic cluster-sending works when communication is reliable and synchronous. Then, we generalize these synchronous solutions to practical environments in which communication can be unreliable and asynchronous. Our main contributions are as follows:

1. First, in Section 3, we introduce the cluster-sending step CS-STEP that attempts to send a value from a replica in the sending cluster to a replica in the receiving cluster in a verifiable manner and with a constant amount of inter-cluster communication. This step is guaranteed to perform cluster-sending if communication is reliable and the step is performed by non-faulty replicas.

2. Then, in Section 4, we illustrate the working of a basic probabilistic cluster-sending protocol by introducing the Synchronous Probabilistic Cluster-Sending protocol PCS. PCS uses CS-STEP with randomly selected sending and receiving replicas to provide cluster-sending in expected constant steps. In addition, we show how pruned-PCS (PPCS), a fine-tuned variant of PCS, can guarantee cluster-sending in expected constant steps while also guaranteeing termination.

3. Next, in Section 5, we propose the Synchronous Probabilistic Linear Cluster-Sending protocol PLCS. PLCS not only guarantees cluster-sending in expected constant steps, but also guarantees a worst-case optimal linear upper-bound on communication. To achieve this worst-case optimal upper-bound, we introduce a specialized randomized scheme via which PLCS selects replicas. To prove the complexity bounds of PLCS, we provide an in-depth analysis of the expected behavior of the randomized scheme we introduce.

4. Next, in Section 6, we generalize PCS, PPCS, and PLCS to practical environments in which communication can be unreliable and asynchronous.

5. Finally, in Section 7, we evaluate the behavior of the proposed probabilistic cluster-sending protocols via an in-depth evaluation. In this evaluation, we show that probabilistic cluster-sending protocols have exceptionally low communication costs in comparison with existing cluster-sending protocols, this even in the presence of communication failures.

A summary of our findings in comparison with existing techniques can be found in Figure 2. In Section 2, we introduce the necessary terminology and notation. In Section 3, we compare with related work, and in Section 9, we conclude on our findings.

2 The Cluster-Sending Problem

Before we present our probabilistic cluster-sending techniques, we first introduce all necessary terminology and notation. The formal model we use is based on the formalization of the cluster-sending problem provided by Hellsings et al. [18, 20]. If S is a set of replicas, then $t(S) \subseteq S$ denotes the faulty replicas in S, whereas $nf(S) = S \setminus t(S)$ denotes the non-faulty replicas in S. We write $n_S = |S|$, $f_S = |t(S)|$, and $nf_S = |nf(S)| = n_S - f_S$ to denote the number of replicas, faulty replicas, and non-faulty replicas in S, respectively. A cluster C is a finite set of replicas. We consider clusters with Byzantine replicas that behave in arbitrary manners. In specific, if C is a cluster, then any malicious adversary can control the replicas in $t(C)$ at any time, but adversaries cannot bring non-faulty replicas under their control.

Definition 2.1. Let C_1, C_2 be disjoint clusters. The cluster-sending problem is the problem of reliably sending a value v from C_1 to C_2 in the presence of failures and malicious behaviour: non-faulty replicas in C_2 can only receive v if the non-faulty replicas in C_1 reached agreement on sending v, and the non-faulty replicas in C_1 receive a confirmation only if the non-faulty replicas in C_2 received v.

We formalize the cluster-sending problem of sending a value v from C_1 to C_2 as a progression of replica states as follows:

1. Cluster-sending is initiated when the non-faulty replicas in C_1 reach the state $AGREE(v)$ indicating that the replicas in C_1 have internally decided upon sending v to C_2.

2. Only after all non-faulty replicas in C_1 reach the state $AGREE(v)$, the non-faulty replicas in C_2 can reach the state $RECEIVE(v)$.

3. Only after all non-faulty replicas in C_2 reach the state $RECEIVE(v)$, the replicas in C_1 reach the state $CONFIRM(v)$.

Cluster-sending is successful if all non-faulty replicas in C_1 reach the state $CONFIRM(v)$.

We note that the value v sent by cluster C_1 is a parameter of the cluster-sending problem. Typically, the value v originates from the resilient applications that are running on the clusters.
Figure 2: A comparison of cluster-sending protocols that send a value from cluster C_1 with n_{C_1} replicas, of which f_{C_1} are faulty, to cluster C_2 with n_{C_2} replicas, of which f_{C_2} are faulty. For each protocol P, Protocol specifies its name; Robustness specifies the conditions P puts on the clusters; Message Steps specifies the number of messages exchanges P performs; Optimal specifies whether P is worst-case optimal; and Unreliable specifies whether P can deal with unreliable communication.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Robustness a</th>
<th>Message Steps (expected-case)</th>
<th>Optimal</th>
<th>Unreliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS-CS [18, 20]</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$f_{C_1} + f_{C_2} + 1$</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>PBS-CS [18, 20]</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$\max(n_{C_1}, n_{C_2})$</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
<tr>
<td>GeoBFT [16]</td>
<td>$n_{C_1} = n_{C_2} > 3f_{C_1} + f_{C_2}$</td>
<td>$f_{C_1} + 1$</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td>CHAINSPACE [1]</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$n_{C_1} + n_{C_2}$</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>This Paper</td>
<td>$n_{C_1} > 2f_{C_1}, n_{C_2} > 2f_{C_2}$</td>
<td>$\frac{9}{4} = 2\frac{1}{2}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>PPSCS</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$\frac{9}{4} = 2\frac{1}{2}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>PLCS</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$\frac{9}{4} = 2\frac{1}{2}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>PLCS</td>
<td>$\min(n_{C_1}, n_{C_2}) > 2(f_{C_1} + f_{C_2})$</td>
<td>$\frac{9}{4}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>PLCS</td>
<td>$n_{C_1} > 3f_{C_1}, n_{C_2} > 3f_{C_2}$</td>
<td>$\max(n_{C_1}, n_{C_2})$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

aProtocols that have different message step complexities depending on the robustness assumptions have been included for each of the robustness assumptions.

bComplexity when the coordinating primary in C_1 is non-faulty and communication is reliable.

C_1, e.g., due to the application requiring communication with other clusters and agree upon initiation such communication via an internal consensus step.

We assume that there is no limitation on local communication within a cluster, while global communication between clusters is costly. This model is supported by practice, where communication between wide-area deployments of clusters is up-to-two orders of magnitude more expensive than communication within a cluster [7, 16].

We assume that each cluster can make local decisions among all non-faulty replicas, e.g., via a consensus protocol such as PBFT (when Byzantine fault tolerance is required) or Paxos [6, 26] (when crash-fault tolerance suffices). Furthermore, we assume that the replicas in each cluster can certify such local decisions via a signature scheme. For example, a cluster C can certify a consensus decision on some message m by collecting a set of signatures for m of $f_C + 1$ replicas in C, guaranteeing one such signature is from a non-faulty replica (which would only signs values on which consensus is reached). We write $(m)_C$ to denote a message m certified by C. To minimize the size of certified messages, one can utilize a threshold signature scheme [35]. To enable decision making and message certification, we assume, for every cluster C, $n_C > 2f_C$, a minimal requirement [9, 27]. Lastly, we assume that there is a common source of randomness for all non-faulty replicas in the sending cluster C_1, e.g., via a distributed fault-tolerant random coin [3, 4].

3 The Cluster-Sending Step

As the first step toward a probabilistic cluster-sending protocol, we introduce the cluster-sending step that takes as input a value v and a choice of replicas $R_1 \in C_1$ and $R_2 \in C_2$, and tries to perform cluster-sending via communication between the pair of replicas (R_1, R_2). The design of the cluster-sending step will ensure that cluster-sending succeeds if both R_1 and R_2 are non-faulty, but can detectably fail otherwise. In the following sections, we introduce cluster-sending protocols that instantiate this cluster-sending step via one-or-more pairs of replicas (R_1, R_2) to ensure that eventually a cluster-sending step succeeds.

If communication is reliable and one knows non-faulty replicas $R_1 \in nf(C_1)$ and $R_2 \in nf(C_2)$, then cluster-sending a value v from C_1 to C_2 can be done via a straightforward cluster-sending step: one can simply instruct R_1 to send v to R_2. When R_2 receives v, it can disperse v locally in C_2. Unfortunately, we do not know which replicas are faulty and which are non-faulty. Furthermore, it is practically impossible to reliably determine which replicas are non-faulty, as non-faulty replicas can appear faulty due to unreliable communication, while faulty replicas can appear well-behaved to most replicas, while interfering with the operations of only some non-faulty replicas.

To deal with faulty replicas when utilizing the above cluster-sending step, one needs a sufficient safeguards to detect failure of R_1, of R_2, or of the communication between them. To do so, we add receive and confirmation phases to the sketched cluster-sending step. During the receive phase, the receiving replica R_2 must construct a proof P that it received and dispersed v locally in C_2 and then send this proof back to R_1. Finally, during the confirmation phase, R_1 can utilize P to prove to all other replicas in C_1 that the cluster-sending step was successful. The pseudo-code of this cluster-sending step protocol CS-Step can be found in Figure 3. We have the following:

Proposition 3.1. Let C_1, C_2 be disjoint clusters with $R_1 \in C_1$ and $R_2 \in C_2$. If C_1 satisfies the pre-conditions of CS-Step(R_1, R_2, v), then execution of CS-Step(R_1, R_2, v) satisfies the post-
We assume that communication is reliable, \(R \) (Line 5 of Figure 3). This message value will exchange at most two messages between all replicas in \(C_1 \) deciding \(\text{AGREE}(v) \) (and can construct \(\langle \text{send}: v, C_2 \rangle \)).

Post: (i) If communication is reliable, \(R_1 \in \text{nf}(C_1) \), and \(R_2 \in \text{nf}(C_2) \), then \(R_2 \) decides \(\text{RECEIVE}(v) \). (ii) If a replica in \(\text{nf}(C_2) \) decides \(\text{RECEIVE}(w) \) for any value \(w \), then that must have been preceded by the non-faulty replicas in \(C_1 \) deciding \(\text{AGREE}(w) \). (iii) If a non-faulty replica in \(\text{nf}(C_2) \) decides \(\text{RECEIVE}(v) \), then all replicas in \(\text{nf}(C_2) \) will decides \(\text{RECEIVE}(v) \) and all replicas in \(\text{nf}(C_1) \) will decide \(\text{CONFIRM}(v) \) (whenever communication becomes reliable).

The cluster-sending step for \(R_1 \) and \(R_2 \):

1. Instruct \(R_1 \) to send \(\langle \text{send}: v, C_2 \rangle \) to \(R_2 \).

The receive role for \(C_2 \):

2. \(\text{event} \ R_2 \in \text{nf}(C_2) \) receives message \(m := \langle \text{send}: v, C_2 \rangle \) from \(R_1 \in C_1 \) do
3. \(\text{if} \ R_2 \) does not have consensus on \(m \) then
4. \(\quad \text{Use local consensus on } m \) and construct \(\langle \text{proof}: m \rangle \).
5. \(\quad \{ \text{Each replica in } \text{nf}(C_2) \text{ decides } \text{RECEIVE}(v). \} \)
6. \(\text{Send } \langle \text{proof}: m \rangle \) to \(R_1 \).

The confirmation role for \(C_1 \):

7. \(\text{event} \ R_1 \in \text{nf}(C_1) \) receives message \(m_p := \langle \text{proof}: m \rangle \) with \(m := \langle \text{send}: v, C_2 \rangle \) from \(R_2 \in C_2 \) do
8. \(\text{if} \ R_1 \) does not have consensus on \(m_p \) then
9. \(\quad \text{Use local consensus on } m_p \).
10. \(\{ \text{Each replica in } \text{nf}(C_1) \text{ decides } \text{CONFIRM}(v). \} \)

Figure 3: The cluster-sending step protocol CS-STEP\((R_1, R_2, v)\). In this protocol, \(R_1 \) tries to send \(v \) to \(R_2 \), which will succeed if both \(R_1 \) and \(R_2 \) are non-faulty.

Proof. We prove the three post-conditions separately. (i) We assume that communication is reliable, \(R_1 \in \text{nf}(C_1) \), and \(R_2 \in \text{nf}(C_2) \). Hence, \(R_1 \) sends message \(m := \langle \text{send}: v, C_2 \rangle \) to \(R_2 \) (Line 1 of Figure 3). In the receive phase (Lines 2–6 of Figure 3), replica \(R_2 \) receives message \(m \) from \(R_1 \). Replica \(R_2 \) uses local consensus on \(m \) to replicate \(m \) among all replicas \(C_2 \) and, along the way, to constructs a proof of receipt \(m_p := \langle \text{proof}: m \rangle \). As all replicas in \(\text{nf}(C_2) \) participate in this local consensus, all replicas in \(\text{nf}(C_2) \) will decide \(\text{RECEIVE} \) on \(v \) from \(C_1 \). Finally, the proof \(m_p \) is returned to \(R_1 \). In the confirmation phase (Lines 7–10 of Figure 3), replica \(R_1 \) receives the proof of receipt \(m_p \). Next, \(R_1 \) uses local consensus on \(m_p \) to replicate \(m_p \) among all replicas in \(\text{nf}(C_1) \), after which all replicas in \(\text{nf}(C_1) \) decide \(\text{CONFIRM} \) on sending \(v \) to \(C_2 \).

(ii) A replica in \(\text{nf}(C_2) \) only decides \(\text{RECEIVE} \) on \(v \) after consensus is reached on a message \(m := \langle \text{send}: v, C_2 \rangle \) (Line 5 of Figure 3). This message \(m \) not only contains the value \(v \), but also the identity of the recipient cluster \(C_2 \). Due to the usage of certificates and the pre-condition, the message \(m \) cannot be created without the replicas in \(\text{nf}(C_1) \) deciding \(\text{AGREE} \) on sending \(v \) to \(C_2 \).

(iii) A replica in \(\text{nf}(C_1) \) only decides \(\text{CONFIRM} \) on \(v \) after consensus is reached on a proof of receipt message \(m_p := \langle \text{proof}: m \rangle \) (Line 10 of Figure 3). This consensus step will complete for all replicas in \(C_1 \) whenever communication becomes reliable. Hence, all replicas in \(\text{nf}(C_1) \) will eventually decide \(\text{CONFIRM} \) on \(v \). Due to the usage of certificates, the message \(m_p \) cannot be created without cooperation of the replicas in \(\text{nf}(C_2) \). The replicas in \(\text{nf}(C_2) \) only cooperate in constructing \(m_p \) as part of the consensus step of Line 4 of Figure 3. Upon completion of this consensus step, all replicas in \(\text{nf}(C_2) \) will decide \(\text{RECEIVE} \) on \(v \).

In the following sections, we show how to use the cluster-sending step in the construction of cluster-sending protocols. In Section 4, we introduce synchronous protocols that provide expected constant message complexity. Then, in Section 5, we introduce synchronous protocols that additionally provide worst-case linear message complexity, which is optimal. Finally, in Section 6, we show how to extend the presented techniques to asynchronous communication.

4 Probabilistic Cluster-Sending with Random Replica Selection

In the previous section, we introduced CS-STEP, the cluster-sending step protocol that succeeds whenever the participating replicas are non-faulty and communication is reliable. In this section, we introduce a basic probabilistic cluster-sending protocol that utilizes CS-STEP to perform cluster-sending with expected constant costs.

Using CS-STEP, we build a three-step protocol that clusters a value \(v \) from \(C_1 \) to \(C_2 \):

1. First, the replicas in \(\text{nf}(C_1) \) reach agreement and decide \(\text{AGREE} \) on sending \(v \) to \(C_2 \).
2. Then, the replicas in \(\text{nf}(C_1) \) perform a probabilistic cluster-sending step by electing replicas \(R_1 \in C_1 \) and \(R_2 \in C_2 \) fully at random, after which CS-STEP\((R_1, R_2, v)\) is executed.
3. Finally, each replica in \(\text{nf}(C_1) \) waits for the completion of CS-STEP\((R_1, R_2, v)\). If the waiting replicas decided \(\text{CONFIRM} \) on \(v \) during this wait, then cluster-sending is successful. Otherwise, we repeat the previous step.

To simplify presentation, we first present the above protocol assuming synchronous inter-cluster communication: in this section, we assume that messages sent by non-faulty replicas will be delivered within some known bounded delay. Synchronous systems can be modeled by pulses \([10, 11]\):
Protocol PCS(C_1, C_2, v):

1: Use local consensus on v and construct $\langle \text{send} : v, C_2, C_1 \rangle$.
2: Each replica in \(n(f(C_1)) \) decides agree on v.}
3: repeat
4: Choose replicas $(R_1, R_2) \in C_1 \times C_2$, fully at random.
5: CS-STEP(R_1, R_2, v)
6: Wait three global pulses.
7: until C_1 reaches consensus on $\langle \text{proof} : (\text{send} : v, C_2, C_1) \rangle$.

Figure 4: The Synchronous Probabilistic Cluster-Sending protocol PCS(C_1, C_2, v) that cluster-sends a value v from C_1 to C_2.

Definition 4.1. A system is synchronous if all inter-cluster communication happens in pulses such that every message sent in a pulse will be received in the same pulse.

We refer to Section 6 on how to generalize the results of this section to practical environments with asynchronous and unreliable communication.

The pseudo-code of the resultant Synchronous Probabilistic Cluster-Sending protocol PCS can be found in Figure 4. Next, we prove that PCS is correct and has expected-case constant message complexity:

Theorem 4.2. Let C_1, C_2 be disjoint clusters. If communication is synchronous, then PCS(C_1, C_2, v) results in cluster-sending v from C_1 to C_2. The execution performs two local consensus steps in C_1, one local consensus step in C_2, and is expected to make $n_{C_1} n_{C_2} / (n_{C_1} n_{C_2})$ cluster-sending steps.\(^2\)

Proof. Due to Lines 1–2 of Figure 4, PCS(C_1, C_2, v) establishes the pre-conditions for any execution of CS-STEP(R_1, R_2, v) with $R_1 \in C_1$ and $R_2 \in C_2$. Using the correctness of CS-STEP (Proposition 3.1), we conclude that PCS(C_1, C_2, v) results in cluster-sending v from C_1 to C_2 whenever the replicas $(R_1, R_2) \in C_1 \times C_2$ chosen at Line 4 of Figure 4 are non-faulty. As the replicas $(R_1, R_2) \in C_1 \times C_2$ are chosen fully at random, we have probability $p_1 = n_{C_1} n_{C_2} / n_{C_1} n_{C_2}$, $i \in \{1, 2\}$, of choosing $R_i \in n(f(C_i))$. The probabilities p_1 and p_2 are independent of each other. Consequently, the probability of choosing $(R_1, R_2) \in n(f(C_1)) \times n(f(C_2))$ is $p = p_1 p_2 = (n_{C_1} n_{C_2}) / (n_{C_1} n_{C_2})$. As such, each iteration of the loop at Line 3 of Figure 4 can be modeled as an independent Bernoulli trial with probability of success p, and the expected number of iterations of the loop is $p^{-1} = (n_{C_1} n_{C_2}) / (n_{C_1} n_{C_2})$.

Finally, we prove that each local consensus step needs to be performed only once. To do so, we consider the local consensus steps triggered by the loop at Line 3 of Figure 4. These are the local consensus steps at Lines 4 and 9 of Figure 3. The local consensus step at Line 4 can be initiated by a faulty replica R_2. After this single local consensus step reaches consensus on message $m := (\text{send} : v, C_2, C_1)$, each replica in $n(f(C_1))$ decides agree on v, and can construct $m_p := (\text{proof} : m, C_2)$, this independent of the behavior of R_2. Hence, a single local consensus step for m in C_2 suffices, and no replica in $n(f(C_1))$ will participate in future consensus steps for m. An analogous argument proves that a single local consensus step for m_p in C_1, performed at Line 9 of Figure 3, suffices.

Remark 4.3. Although Theorem 4.2 indicates local consensus steps in C_1 and C_2, these local consensus steps typically come for free as part of the protocol that uses cluster-sending as a building block. To see this, we consider a multi-shard transaction τ processed by clusters C_1 and C_2.

The decision of cluster C_1 to send a value v to cluster C_2 is a consequence of the execution of τ in C_1. Before the replicas in C_1 execute τ, they need to reach consensus on the order in which τ is executed in C_1. As part of this consensus step, the replicas in C_1 can also construct $(\text{send} : v, C_2, C_1)$ without additional consensus steps. Hence, no consensus step is necessary in C_1 to send value v. Likewise, if value v is received by replicas in C_2 as part of some multi-shard transaction execution protocol, then the replicas in C_2 need to perform their portion of the necessary transaction execution steps to execute τ as a consequence of receiving v. To do so, the replicas in C_2 need to reach consensus on the order in which these transaction execution steps are performed. As part of this consensus step, the replicas in C_2 can also constructing a proof of receipt for v.

In typical fault-tolerant clusters, more than half of the replicas are non-faulty (e.g., in synchronous systems with Byzantine failures that use digital signatures, or in systems that only deal with crashes) or more than two-thirds of the replicas are non-faulty (e.g., asynchronous systems). In these systems, PCs is expected to only performs a few cluster-sending steps:

Corollary 4.4. Let C_1, C_2 be disjoint clusters. If communication is synchronous, then the expected number of cluster-sending steps performed by PCS(C_1, C_2, v) is upper bounded by 4 if $n_{C_1} > 2f_{C_1}$ and $n_{C_2} > 2f_{C_2}$; and by $\frac{9}{4} \cdot \frac{1}{2} \cdot \frac{1}{2}$ if $n_{C_1} > 3f_{C_1}$ and $n_{C_2} > 3f_{C_2}$.

In PCs, the replicas $(R_1, R_2) \in C_1 \times C_2$ are chosen fully at random and with replacement, as PCS does not retain any information on failed probabilistic steps. In the worst case, this prevents termination, as the same pair of replicas can be picked repeatedly. Furthermore, PCS does not prevent the choice of faulty replicas whose failure could be detected. We can easily improve on this, as the failure of a probabilistic step provides some information on the chosen replicas. In specific, we have the following technical properties:

Lemma 4.1. Let C_1, C_2 be disjoint clusters. We assume synchronous communication and assume that each replica in $n(f(C_1))$ decided agree on sending v to C_2.\(^3\)
1. Let \((R_1, R_2) \in C_1 \times C_2\). If CS-STEP\((R_1, R_2, v)\) fails to cluster-send \(v\), then either \(R_1 \in f(C_1)\), \(R_2 \in C_2\), or both.

2. Let \(R_1 \in C_1\). If CS-STEP\((R_1, R_2, v)\) fails to cluster-send \(v\) for \(f_{C_2} + 1\) distinct replicas \(R_2 \in C_2\), then \(R_1 \in f(C_1)\).

3. Let \(R_2 \in C_2\). If CS-STEP\((R_1, R_2, v)\) fails to cluster-send \(v\) for \(f_{C_1} + 1\) distinct replicas \(R_1 \in C_1\), then \(R_2 \in f(C_2)\).

Proof. The statement of this Lemma assumes that the preconditions for any execution of CS-STEP\((R_1, R_2, v)\) with \(R_1 \in C_1\) and \(R_2 \in C_2\) are established. Hence, by Proposition 3.1, CS-STEP\((R_1, R_2, v)\) will cluster-send \(v\) if \(R_1 \in f(C_1)\) and \(R_2 \in f(C_2)\). If the cluster-sending step fails to cluster-send \(v\), then one of the replicas involved must be faulty, proving the first property. Next, let \(R_1 \in C_1\) and consider a set \(S \subseteq C_2\) of \(n_S = f_{C_2} + 1\) replicas such that, for all \(R_2 \in S\), CS-STEP\((R_1, R_2, v)\) fails to cluster-send \(v\). Let \(S' = S \setminus f(C_2)\) be the non-faulty replicas in \(S\). As \(n_S > f_{C_2}\), we have \(n_S' \geq 1\) and there exists a \(R'_2 \in S'\). As \(R'_2 \notin f(C_2)\) and CS-STEP\((R_1, R'_2, v)\) fails to cluster-send \(v\), we must have \(R_1 \notin f(C_1)\) by the first property, proving the second property. An analogous argument proves the third property.

We can apply the properties of Lemma 4.1 to actively prune which replica pairs PCS considers (Line 4 of Figure 4). Notice that pruning via Lemma 4.1(1) simply replaces choosing replica pairs with replacement, as done by PCS, by choosing replica pairs without replacement, this without further reducing the possible search space. Pruning via Lemma 4.1(2) does reduce the search space, however, as each replica in \(C_1\) will only be paired with a subset of \(f_{C_2} + 1\) replicas in \(C_2\). Likewise, pruning via Lemma 4.1(3) also reduces the search space. We obtain the Pruned Synchronous Probabilistic Cluster-Sending protocol (PPCS) by applying all three prune steps to PCS. By construction, Theorem 4.2, and Lemma 4.1, we conclude:

Corollary 4.5. Let \(C_1, C_2\) be disjoint clusters. If communication is synchronous, then PPCS\((C_1, C_2, v)\) results in cluster-sending \(v\) from \(C_1\) to \(C_2\). The execution performs two local consensus steps in \(C_1\), one local consensus step in \(C_2\), is expected to make less than \((n_{C_1} n_{C_2})/(n_f n_{C_2})\) cluster-sending steps, and makes worst-case \((f_{C_1} + 1)(f_{C_2} + 1)\) cluster-sending steps.

5 Worst-Case Linear-Time Probabilistic Cluster-Sending

In the previous section, we introduced PCS and PPCS, two probabilistic cluster-sending protocols that can cluster-send a value \(v\) from \(C_1\) to \(C_2\) with expected constant cost. Unfortunately, PCS does not guarantee termination, while PPCS has a worst-case quadratic complexity. In this section, we improve on this by presenting a probabilistic cluster-sending protocol that has expected constant cost and guarantees termination with a worst-case optimal linear complexity [18, 20]. We refer to Table 1 for an overview of the notation used in this section.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1, P_2)</td>
<td>Permutation of a list of replicas from (C_1) and (C_2), respectively.</td>
</tr>
<tr>
<td>(m_1, m_2)</td>
<td>Given a pair of lists of replicas ((P_1, P_2)), the number of faulty replicas in list (P_1) and (P_2), respectively.</td>
</tr>
<tr>
<td>(b_1)</td>
<td>The number 1-faulty pairs in a given pair of lists of replicas ((P_1, P_2)).</td>
</tr>
<tr>
<td>(b_2)</td>
<td>The number 2-faulty pairs in a given pair of lists of replicas ((P_1, P_2)).</td>
</tr>
<tr>
<td>(b_{1,2})</td>
<td>The number of both-faulty pairs in a given pair of lists of replicas ((P_1, P_2)).</td>
</tr>
<tr>
<td>(\text{list}(R))</td>
<td>A list-representation of the replica set (R).</td>
</tr>
<tr>
<td>(\text{perms}(S))</td>
<td>Permutation of list of replicas (S).</td>
</tr>
<tr>
<td>(S^n)</td>
<td>The first (n) elements in the list obtained by repeatedly concatenating list (S).</td>
</tr>
<tr>
<td>(L</td>
<td>M)</td>
</tr>
<tr>
<td>(\mathbb{M}(v, w))</td>
<td>The number of distinct ways in which two lists of (v) and (w) elements, respectively, can be merged together (without shuffling elements from their respective lists).</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>A list-pair function.</td>
</tr>
<tr>
<td>(|P_1; P_2|_f)</td>
<td>The number of faulty positions in ((P_1, P_2)).</td>
</tr>
<tr>
<td>(F(n, m_1, m_2, k))</td>
<td>The number of permutations ((P_1, P_2)) with (k) faulty positions of two given lists of (n) replicas of which (m_1) and (m_2) replicas are faulty, respectively.</td>
</tr>
<tr>
<td>(E(n, m_1, m_2))</td>
<td>The non-faulty position trials problem with two lists of (n) replicas of which (m_1) and (m_2) replicas are faulty, respectively.</td>
</tr>
</tbody>
</table>

To improve on PCS and PPCS, we need to improve the scheme by which we select replica pairs \((R_1, R_2) \in C_1 \times C_2\) that we use in cluster-sending steps. The straightforward manner to guarantee a worst-case linear complexity is by using a scheme that can select only up-to-\(n = \max(n_{C_1}, n_{C_2})\) distinct pairs \((R_1, R_2) \in C_1 \times C_2\). To select \(n\) replica pairs from \(C_1 \times C_2\), we will proceed in two steps.

1. We generate list \(S_1\) of \(n\) replicas taken from \(C_1\) and list \(S_2\) of \(n\) replicas taken from \(C_2\).

2. Then, we choose permutations \(P_1 \in \text{perms}(S_1)\) and \(P_2 \in \text{perms}(S_2)\) fully at random, and interpret each pair \((P_1[i], P_2[i])\), \(0 \leq i < n\), as one of the chosen replica pairs.

We use the first step to deal with any differences in the sizes of \(C_1\) and \(C_2\), and we use the second step to introduce sufficient randomness in our protocol to yield a low expected-case message complexity.
Next, we introduce some notations to simplify reasoning about the above list-based scheme. If \(R \) is a set of replicas, then list(\(R \)) is the list consisting of the replicas in \(R \) placed in a predetermined order (e.g., on increasing replica identifier). If \(S \) is a list of replicas, then we write \(f(S) \) to denote the faulty replicas in \(S \) and \(n(S) \) to denote the non-faulty replicas in \(S \), and we write \(n_5 = |S|, f_5 = \{i \mid (0 \leq i < n_5) \land S[i] \in f(S)\}, \) and \(n_5 = n_5 - f_5 \) to denote the number of positions in \(S \) with replicas, faulty replicas, and non-faulty replicas, respectively. If \((P_1, P_2) \) is a pair of equal-length lists of \(n = |P_1| = |P_2| \) replicas, then we say that the \(i \)-th position is a faulty position if either \(P_1[i] \in f(P_1) \) or \(P_2[i] \in f(P_2) \). We write \(|P_1; P_2| \) to denote the number of faulty positions in \((P_1, P_2) \).

As faulty positions can only be constructed out of the \(f_1 \) faulty replicas in \(P_1 \) and the \(f_2 \) faulty replicas in \(P_2 \), we must have \(\max(f_1, f_2) \leq |P_1; P_2| \leq \min(n, f_1 + f_2) \).

Example 5.1. Consider clusters \(C_1, C_2 \) with

\[
S_1 = \text{list}(C_1) = \{R_{1,1}, \ldots, R_{1,5}\}, \quad f_1(C_1) = \{R_{1,1}, R_{1,2}\};
\]

\[
S_2 = \text{list}(C_2) = \{R_{2,1}, \ldots, R_{2,5}\}, \quad f_2(C_2) = \{R_{2,1}, R_{2,2}\}.
\]

The set \(\text{perms}(S_1) \times \text{perms}(S_2) \) contains \(5^2 = 14400 \) list pairs. Now, consider the list pairs \((P_1, P_2), (Q_1, Q_2), (R_1, R_2) \in \text{perms}(S_1) \times \text{perms}(S_2) \) with

\[
P_1[R_{1,1}, R_{1,5}, R_{1,2}, R_{1,4}, R_{1,3}], \\
P_2[R_{2,1}, R_{2,3}, R_{2,2}, R_{2,5}, R_{2,4}], \\
Q_1[R_{1,1}, R_{1,3}, R_{1,5}, R_{1,4}, R_{1,2}], \\
Q_2[R_{2,5}, R_{2,4}, R_{2,3}, R_{2,2}, R_{2,1}], \\
R_1[R_{1,5}, R_{1,4}, R_{1,3}, R_{1,2}, R_{1,1}], \\
R_2[R_{2,1}, R_{2,3}, R_{2,2}, R_{2,5}, R_{2,4}].
\]

We have underlined the faulty replicas in each list, and we have \(|P_1; P_2| = 2 = f_1 + f_2 \). \(|Q_1; Q_2| = 3 \), and \(|R_1; R_2| = 4 = f_1 + f_2 \).

In the following, we will use a list-pair function \(\Phi \) to compute the initial list-pair \((S_1, S_2)\) of \(n \) replicas taken from \(C_1 \) and \(C_2 \), respectively. We build a cluster-sending protocol that uses \(\Phi \) to compute \(S_1 \) and \(S_2 \), uses randomization to choose \(n \) replica pairs from \(S_1 \times S_2 \), and, finally, performs cluster-sending steps using only these \(n \) replica pairs. The pseudo-code of the resultant Synchronous Probabilistic Linear Cluster-Sending protocol \(\text{PLCS}(C_1, C_2, \Phi) \) can be found in Figure 5.

Next, we prove that \(\text{PLCS} \) is correct and has a worst-case linear message complexity:

Proposition 5.1. Let \(C_1, C_2 \) be disjoint clusters and let \(\Phi \) be a list-pair function with \((S_1, S_2) := \Phi(C_1, C_2) \) and \(n = n_{S_1} = n_{S_2} \). If communication is synchronous and \(n > f_{S_1} + f_{S_2} \), then \(\text{PLCS}(C_1, C_2, \Phi) \) results in cluster-sending \(v \) from \(C_1 \) to \(C_2 \). The execution performs two local consensus steps in \(C_1 \), one local consensus step in \(C_2 \), and makes worst-case \(f_{S_1} + f_{S_2} + 1 \) cluster-sending steps.

Protocol PLCS(C1, C2, v, Φ):

1. Use local consensus on \(v \) and construct \(\langle \text{send} : v, C_2 \rangle \).
2. (Each replica in \(n(f(C_1)) \) decides AGREE on \(v \).)
3. Let \((S_1, S_2) := \Phi(C_1, C_2)\).
4. Choose \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2) \) fully at random.
5. \(i := 0 \).
6. repeat
7. \(\text{CS-STEP}(P_1[i], P_2[i], v) \)
8. Wait three global pulses.
9. \(i := i + 1 \).
10. until \(C_1 \) reaches consensus on \(\langle \text{proof} : \langle \text{send} : v, C_2 \rangle \rangle \).

Figure 5: The Synchronous Probabilistic Linear Cluster-Sending protocol \(\text{PLCS}(C_1, C_2, v, \Phi) \) that cluster-sends a value \(v \) from \(C_1 \) to \(C_2 \) using list-pair function \(\Phi \).

Proof. Due to Lines 1–2 of Figure 5, \(\text{PLCS}(C_1, C_2, v, \Phi) \) establishes the pre-conditions for any execution of \(\text{CS-STEP}(R_1, R_2, v) \) with \(R_1 \in C_1 \) and \(R_2 \in C_2 \). Now let \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2) \), as chosen at Line 4 of Figure 5. As \(P_i, i \in \{1, 2\} \), is a permutation of \(S_i \) we have \(f_1 = f_2 \). Moreover, we have \(|P_1|; |P_2| \leq f_1 + f_2 \). Therefore, there must exist a position \(j, 0 \leq j < n \), such that \(P_1[j], P_2[j] \in n(f(S_1)) \times n(f(S_2)) \). Using the correctness of \(\text{CS-STEP} \) (Proposition 3.1), we conclude that \(\text{PLCS}(C_1, C_2, v, \Phi) \) results in cluster-sending \(v \) from \(C_1 \) to \(C_2 \) in at most \(f_{S_1} + f_{S_2} + 1 \) cluster-sending steps. Finally, the bounds on the number of consensus steps follow from an argument analogous to the one in the proof of Theorem 4.2.

5.1 The Expected-Case Complexity of PLCS

The expected-case analysis of PCS and PPcs was rather straightforward, as the sending and receiving replicas used by these protocols are chosen fully at random and independent of each other. Hence, the random choices made by both protocols can be modelled via well-known independent Bernoulli trials (see the proof of Theorem 4.2). In PLCS, the choice of sending and receiving replicas are dependent, as they are chosen from a list of possible replica pairs. As such, the random choices made by PLCS can no longer be modelled via independent Bernoulli trials. Hence, the expected-case analysis of PLCS requires a further analysis of the probabilistic nature of the randomized scheme used by PLCS.
As the first step toward this analysis, we solve the following abstract problem that captures the probabilistic argument at the core of the expected-case complexity of PLCS:

Problem 5.2 (non-faulty position trials). Let \(S_1\) and \(S_2\) be lists of \(|S_1| = |S_2| = n\) replicas. Choose permutations \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\) fully at random. Next, we inspect positions in \(P_1\) and \(P_2\) fully at random (with replacement). The non-faulty position trials problem asks how many positions one expects to inspect to find the first non-faulty position.

Let \(S_1\) and \(S_2\) be lists of \(|S_1| = |S_2| = n\) replicas. To answer the non-faulty position trials problem, we first look at the combinatorics of fault positions in pairs \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\) with \(k\) faulty positions, hence, with \(|P_1; P_2| = k\). As observed, we have \(\max(m_1, m_2) \leq |P_1; P_2| \leq \min(n, m_1 + m_2)\) for any pair \((P_1, P_2)\). Hence, we have \(\mathbb{E}(n, m_1, m_2, k) = 0\) for all \(k < \max(m_1, m_2)\) and \(k > \min(n, m_1 + m_2)\).

Now consider the step-wise construction of any permutation \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\) with \(k\) faulty positions. First, we choose \((P_1[0], P_2[0])\), the pair at position 0, after which we choose pairs for the remaining \(n-1\) positions. For \(P_1[0], i \in \{1, 2\}\), we can choose \(n\) distinct replicas, of which \(m_i\) are faulty. If we pick a non-faulty replica, then the remainder of \(P_1\) is constructed out of \(n-1\) replicas, of which \(m_i\) are faulty. Otherwise, the remainder of \(P_1\) is constructed out of \(n-1\) replicas of which \(m_i-1\) are faulty. If, due to our choice of \((P_1[0], P_2[0])\), the first position is faulty, then only \(k-1\) out of the \(n-1\) remaining positions must be faulty. Otherwise, \(k\) out of the \(n-1\) remaining positions must be faulty. Combining this analysis yields four types for the first pair \((P_1[0], P_2[0])\):

1. A non-faulty pair \((P_1[0], P_2[0]) \in \text{nf}(P_1) \times \text{nf}(P_2)\). We have \((n-m_1)(n-m_2)\) such pairs, and we have \(\mathbb{E}(n-1, m_1, m_2, k)\) different ways to construct the remainder of \(P_1\) and \(P_2\).

2. A 1-faulty pair \((P_1[0], P_2[0]) \in \text{f}(P_1) \times \text{f}(P_2)\). We have \(m_1(n-m_2)\) such pairs, and we have \(\mathbb{E}(n-1, m_1-1, m_2, k-1)\) different ways to construct the remainder of \(P_1\) and \(P_2\).

3. A 2-faulty pair \((P_1[0], P_2[0]) \in \text{nf}(P_1) \times \text{f}(P_2)\). We have \((n-m_1)m_2\) such pairs, and we have \(\mathbb{E}(n-1, m_1-1, m_2-1, k-1)\) different ways to construct the remainder of \(P_1\) and \(P_2\).

4. A both-faulty pair \((P_1[0], P_2[0]) \in \text{f}(P_1) \times \text{f}(P_2)\). We have \(m_1m_2\) such pairs, and we have \(\mathbb{E}(n-1, m_1-1, m_2-1, k-1)\) different ways to construct the remainder of \(P_1\) and \(P_2\).

Hence, for all \(k, \max(m_1, m_2) \leq k \leq \min(n, m_1 + m_2)\), \(\mathbb{E}(n, m_1, m_2, k)\) is recursively defined by:

\[
\mathbb{E}(n, m_1, m_2, k) = (n-m_1)(n-m_2)\mathbb{E}(n-1, m_1, m_2, k) + m_1(n-m_2)\mathbb{E}(n-1, m_1-1, m_2, k-1) + (n-m_1)m_2\mathbb{E}(n-1, m_1-1, m_2-1, k-1) + m_1m_2\mathbb{E}(n-1, m_1-1, m_2-1, k-1),
\]

and the base case for this recursion is \(\mathbb{E}(0, 0, 0, 0) = 1\).

Example 5.3. Reconsider the list pairs \((P_1, P_2), (Q_1, Q_2),\) and \((R_1, R_2)\) from Example 5.1. In \((P_1, P_2)\), we have both-faulty pairs at positions 0 and 2 and non-faulty pairs at positions 1, 3, and 4. In \((Q_1, Q_2)\), we have a 1-faulty pair at position 0, non-faulty pairs at positions 1 and 2, a 2-faulty pair at position 3, and a both-faulty pair at position 4. Finally, in \((R_1, R_2)\), we have 2-faulty pairs at positions 0 and 1, a non-faulty pair at position 2, and 1-faulty pairs at positions 3 and 4.

Using the combinatorics of faulty positions, we formalize an exact solution to the non-faulty position trials problem:

Lemma 5.1. Let \(S_1\) and \(S_2\) be lists of \(n = n_{S_1} = n_{S_2}\) replicas with \(m_1 = \mathbb{E}_{S_1}\) and \(m_2 = \mathbb{E}_{S_2}\). If \(m_1 + m_2 < n\), then the non-faulty position trials problem \(\mathbb{E}(n, m_1, m_2)\) has solution

\[
\mathbb{E}(n, m_1, m_2) = \frac{1}{n^2} \left(\sum_{k=0}^{m_1+m_2} \binom{n}{k} - \sum_{k=0}^{m_1} \binom{n}{k} \right).
\]

Proof. We have \(|\text{perms}(S_1)| = |\text{perms}(S_2)| = n!\). Consequently, we have \(|\text{perms}(S_1) \times \text{perms}(S_2)| = n!^2\) and we have probability \(1/(n!)^2\) to choose any pair \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\). Now consider such a pair \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\). As there are \(|P_1; P_2|\) \(t\) faulty positions in \((P_1, P_2)\), we have probability \(p(P_1, P_2) = (n-|P_1; P_2|)/n\) to inspect a non-faulty position. Notice that max \((m_1, m_2) \leq |P_1; P_2| < m_1 + m_2 < n\) and, hence, \(0 < p(P_1, P_2) \leq 1\). Each of the inspected positions in \((P_1, P_2)\) is chosen fully at random. Hence, each inspection is a Bernoulli trial with probability of success \(p(P_1, P_2)\), and we expect to inspect a first non-faulty position in the \(p(P_1, P_2)^{-1} = n/(n-|P_1; P_2|)\)-th attempt. We conclude that the non-faulty position trials problem \(\mathbb{E}(n, m_1, m_2)\) has solution

\[
\mathbb{E}(n, m_1, m_2) = \frac{1}{n^2} \left(\sum_{(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)} \binom{n}{|P_1; P_2|} - \sum_{(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)} \binom{n}{m_1} \right).
\]

Notice that there are \(\mathbb{E}(n, m_1, m_2, k)\) distinct pairs \((P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)\) with \(|P_1; P_2| = k\) for each \(k\), max \((m_1, m_2) \leq k \leq m_1 + m_2 < n\). Hence, in the above expression for \(\mathbb{E}(n, m_1, m_2)\), we can group these pairs \((P_1, P_2)\) to obtain the searched-for solution. \(\square\)
To further solve the non-faulty position trials problem, we work towards a closed form for $\mathbb{F}(n, m_1, m_2, k)$. Consider any pair $(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)$ with $\|P_1; P_2\| = k$ obtained via the outlined step-wise construction. Let b_1 be the number of 1-faulty pairs, let b_2 be the number of 2-faulty pairs, and let $b_{1,2}$ be the number of both-faulty pairs in (P_1, P_2). By construction, we must have $k = b_1 + b_2 + b_{1,2}$, $m_1 = b_1 + b_{1,2}$, and $m_2 = b_2 + b_{1,2}$ and by rearranging terms, we can derive

$$b_{1,2} = (m_1 + m_2) - k, \quad b_1 = k - m_2, \quad b_2 = k - m_1.$$

Example 5.4. Consider

\[
S_1 = [R_{1,1}, \ldots, R_{1,5}], \quad t(S_1) = \{R_{1,1}, R_{1,2}, R_{1,3}\}; \\
S_2 = [R_{2,1}, \ldots, R_{2,5}], \quad t(S_2) = \{R_{2,1}\}.
\]

Hence, we have $n = 5$, $m_1 = 5$, $m_2 = 3$, and $m_2 = 1$. If we want to create a pair $(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)$ with $k = \|P_1; P_2\| = 3$ faulty positions, then (P_1, P_2) must have two non-faulty pairs, two 1-faulty pairs, no 2-faulty pairs, and one both-faulty pair. Hence, we have $n - k = 2$, $b_1 = 2$, $b_2 = 0$, and $b_{1,2} = 1$.

The above analysis only depends on the choice of m_1, m_2, and k, and not on our choice of (P_1, P_2). Next, we use this analysis to express $\mathbb{F}(n, m_1, m_2, k)$ in terms of the number of distinct ways in which one can construct

(A) lists of b_1 1-faulty pairs out of faulty replicas from S_1 and non-faulty replicas from S_2,

(B) lists of b_2 2-faulty pairs out of non-faulty replicas from S_1 and faulty replicas from S_2,

(C) lists of $b_{1,2}$ both-faulty pairs out of the remaining faulty replicas in S_1 and S_2 that are not used in the previous two cases, and

(D) lists of $n - k$ non-faulty pairs out of the remaining (non-faulty) replicas in S_1 and S_2 that are not used in the previous three cases;

and in terms of the number of distinct ways one can merge these lists. As the first step, we look at how many distinct ways we can merge two lists together:

Lemma 5.2. For any two disjoint lists S and T with $|S| = v$ and $|T| = w$, there exist $\mathbb{M}(v, w) = (v + w)!/(v!\cdot w!)$ distinct lists L with $L|_S = S$ and $L|_T = T$, in which $L|_M, M \subseteq \{S, T\}$, is the list obtained from L by only keeping the values that also appear in list M.

Next, we look at the number of distinct ways in which one can construct lists of type A, B, C, and D. Consider the construction of a list of type A. We can choose $\binom{m_1}{b_1}$ distinct sets of b_1 faulty replicas from S_1 and we can choose $\binom{n - m_2}{b_2}$ distinct sets of b_2 non-faulty replicas from S_2. As we can order the chosen values from S_1 and S_2 in $b_1!$ distinct ways, we can construct $b_1!\binom{m_1}{b_1}\binom{n - m_2}{b_2}$ distinct lists of type A. Likewise, we can construct $b_2!\binom{n - m_2}{b_2}$ distinct lists of type B.

Example 5.5. We continue from the setting of Example 5.4: we want to create a pair $(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)$ with $k = 3$ faulty positions. To create (P_1, P_2), we need to create $b_1 = 2$ pairs that are 1-faulty. We have $\binom{m_1}{b_1} = \binom{5}{2} = 3$ sets of two faulty replicas in S_1 that we can choose, namely the sets $\{R_{1,1}, R_{1,2}\}$, $\{R_{1,1}, R_{1,3}\}$, and $\{R_{1,2}, R_{1,3}\}$. Likewise, we have $\binom{n - m_2}{b_2} = \binom{3}{2} = 3$ sets of two non-faulty replicas in S_2 that we can choose. Assume we choose $T_1 = \{R_{1,1}, R_{1,3}\}$ from S_1 and $T_2 = \{R_{2,4}, R_{2,5}\}$ from S_2. The two replicas in T_1 can be ordered in $b_1! = 2! = 2$ ways, namely $\{R_{1,1}, R_{1,3}\}$ and $\{R_{1,3}, R_{1,1}\}$. Likewise, the two replicas in T_2 can be ordered in $b_2! = 2! = 2$ ways. Hence, we can construct $2 \cdot 2 = 4$ distinct lists of type A out of this single choice for T_1 and T_2, and the sequences S_1 and S_2 provide us with $\binom{m_1}{b_1} \binom{n - m_2}{b_2} = 18$ distinct choices for T_1 and T_2. We conclude that we can construct 72 distinct lists of type A from S_1 and S_2.

By construction, lists of type A and type B cannot utilize the same replicas from S_1 or S_2. After choosing $b_1 + b_2$ replicas in S_1 and S_2 for the construction of lists of type A and B, the remaining $b_{1,2}$ faulty replicas in S_1 and S_2 are all used for constructing lists of type C. As we can order these remaining values from S_1 and S_2 in $b_{1,2}!$ distinct ways, we can construct $b_{1,2}!$ distinct lists of type C (per choice of lists of type A and B). Likewise, the remaining $n - k$ non-faulty replicas in S_1 and S_2 are all used for constructing lists of type D, and we can construct $(n - k)!^2$ distinct lists of type D (per choice of lists of type A and B).

As the final steps, we merge lists of type A and B into lists of type AB. We can do so in $\mathbb{M}(b_1, b_2)$ ways and the resultant lists have size $b_1 + b_2$. Next, we merge lists of type AB and C into lists of type ABC. We can do so in $\mathbb{M}(b_1 + b_2, b_{1,2})$ ways and the resultant lists have size k. Finally, we merge list of type ABC and D together, which we can do in $\mathbb{M}(k, n - k)$ ways. From this construction, we derive that $\mathbb{F}(n, m_1, m_2, k)$ is equivalent to

$$b_1!^2 \binom{m_1}{b_1} \binom{n - m_2}{b_2} b_{1,2}!^2 \binom{n - m_1}{b_1} \binom{m_2}{b_2} \cdot$$

$$\mathbb{M}(b_1, b_2) b_{1,2}!^2 \mathbb{M}(b_1 + b_2, b_{1,2}) (n - k)!^2 \mathbb{M}(k, n - k),$$

which can be simplified to the following (see Appendix B):

Lemma 5.3. Let $\max(m_1, m_2) \leq k \leq \min(n, m_1 + m_2)$ and let $b_1 = k - m_2$, $b_2 = k - m_1$, and $b_{1,2} = (m_1 + m_2) - k$. We have

$$\mathbb{F}(n, m_1, m_2, k) = \frac{m_1! m_2! (n - m_1)! (n - m_2)! n!}{b_1! b_2! b_{1,2}! (n - k)!}.$$
Proof. We write \(f(n, m_1, m_2, k) \) for the closed form in the statement of this lemma and we prove the statement of this lemma by induction. First, the base case \(F(0, 0, 0, 0) \). In this case, we have \(n = m_1 = m_2 = k = 0 \) and, hence, \(b_1 = b_2 = b_{1,2} = 0 \), and we conclude \(f(0, 0, 0, 0) = 1 = F(0, 0, 0, 0) \).

Now assume \(F(n', m_1', m_2', k') = f(n', m_1', m_2', k') \) for all \(n' < n \) and all \(k' \) with \(\max(m_1', m_2') \leq k' \leq \min(n', m_1' + m_2') \). Next, we prove \(F(n, m_1, m_2, k) = f(n, m_1, m_2, k) \) with \(\max(m_1, m_2) \leq k \leq \min(n_1 + m_2) \). We use the shorthand \(G = F(n, m_1, m_2, k) \) and we have

\[
\begin{align*}
G &= (n - m_1)(n - m_2)F(n - 1, m_1, m_2, k) \\
&\quad + m_1(n - m_2)F(n - 1, m_1 - 1, m_2, k - 1) \\
&\quad + (n - 1)m_2F(n - 1, m_1, m_2 - 1, k - 1) \\
&\quad + m_1m_2F(n - 1, m_1 - 1, m_2 - 1, k - 1).
\end{align*}
\]

(both-faulty pair)

Notice that if \(n = k \), then the non-faulty pair case does not apply, as \(F(n - 1, m_1, m_2, k) = 0 \), and evaluates to zero. Likewise, if \(b_1 = 0 \), then the 1-faulty pair case does not apply, as \(F(n - 1, m_1 - 1, m_2, k - 1) = 0 \), and evaluates to zero; if \(b_2 = 0 \), then the 2-faulty pair case does not apply, as \(F(n - 1, 1, m_2 - 1, k - 1) = 0 \), and evaluates to zero; and, finally, if \(b_{1,2} = 0 \), then the both-faulty pair case does not apply, as \(F(n - 1, m_1 - 1, m_2 - 1, k - 1) = 0 \), and evaluates to zero.

First, we consider the case in which \(n > k, b_1 > 0, b_2 > 0 \), and \(b_{1,2} > 0 \). Hence, each of the four cases apply and evaluate to non-zero values. We directly apply the induction hypothesis on \(F(n - 1, m_1, m_2, k), F(n - 1, m_1 - 1, m_2, k - 1), F(n - 1, m_1, m_2 - 1, k - 1) \), and \(F(n - 1, m_1 - 1, m_2 - 1, k - 1) \), and obtain

\[
\begin{align*}
G &= (n - m_1)(n - m_2) \cdot \frac{m_1!m_2!(n - 1 - m_1)!(n - 1 - m_2)!(n - 1)!}{b_1!b_2!b_{1,2}!(n - 1 - k)!} \\
&\quad + m_1(n - m_2) \cdot \frac{(m_1 - 1)!m_2!(n - m_1)!(n - 1 - m_2)!(n - 1)!}{(b_1 - 1)!b_2!b_{1,2}!(n - 1 - (k - 1))!} \\
&\quad + (n - 1)m_2 \cdot \frac{m_1!(m_2 - 1)!(n - 1 - m_1)!(n - m_2)!n!(n - 1)!}{b_1!(b_2 - 1)!b_{1,2}!(n - 1 - (k - 1))!} \\
&\quad + m_1m_2 \cdot \frac{(m_1 - 1)!(m_2 - 1)!(n - m_1)!n!(n - m_2)!(n - 1)!}{b_1!b_2!(b_{1,2} - 1)!(n - 1 - (k - 1))!}.
\end{align*}
\]

We apply \(x = x(x - 1)! \) and further simplify and obtain

\[
\begin{align*}
G &= \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{b_1!b_2!b_{1,2}!(n - 1 - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{(b_1 - 1)!b_2!b_{1,2}!(n - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{b_1!(b_2 - 1)!b_{1,2}!(n - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{b_1!b_2!(b_{1,2} - 1)!(n - k)!}.
\end{align*}
\]

We have \(k = b_1 + b_2 + b_{1,2} \) and, hence, \(n = (n - k) + b_1 + b_2 + b_{1,2} \) and we conclude

\[
\begin{align*}
G &= (n - k) \cdot \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{b_1!b_2!b_{1,2}!(n - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)!}{b_1!b_2!b_{1,2}!(n - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!n!(n - 1)!}{b_1!b_2!b_{1,2}!(n - k)!} \\
&\quad + \frac{m_1!m_2!(n - m_1)!(n - m_2)!n!(n - 1)!}{b_1!b_2!b_{1,2}!(n - k)!}.
\end{align*}
\]

Next, in all other cases, we can repeat the above derivation while removing the terms corresponding to the cases that evaluate to zero. By doing so, we end up with the expression

\[
G = \frac{\left(\sum_{t \in T} m_1!m_2!(n - m_1)!(n - m_2)!(n - 1)! \right)}{b_1!b_2!b_{1,2}!(n - k)!},
\]

in which \(T \) contains the term \((n - k) \) if \(n > k \) (the non-faulty pair case applies), the term \(b_1 \) if \(b_1 > 0 \) (the 1-faulty pair case applies), the term \(b_2 \) if \(b_2 > 0 \) (the 2-faulty pair case applies), and the term \(b_{1,2} \) if \(b_{1,2} > 0 \) (the both-faulty pair case applies). As each term \((n - k), b_1, b_2, \) and \(b_{1,2} \) is in \(T \) whenever the term is non-zero, we have \(\sum_{t \in T} t = (n - k) + b_1 + b_2 + b_{1,2} = n \).

Hence, we can repeat the steps of the above derivation in all cases, and complete the proof. \(\square \)

We combine Lemma 5.1 and Lemma 5.3 to conclude

Proposition 5.2. Let \(S_1 \) and \(S_2 \) be lists of \(n = n_{S_1} = n_{S_2} \) replicas with \(m_1 = m_{S_1}, m_2 = m_{S_2}, b_1 = k - m_2, b_2 = k - m_1, \) and \(b_{1,2} = (m_1 + m_2) - k \). If \(m_1 + m_2 < n \), then the non-faulty
position trials problem $\mathbb{E}(n, m_1, m_2)$ has solution

$$\frac{1}{n^2} \left(\sum_{k=\max(m_1,m_2)}^{m_1 m_2} \frac{n m_1 m_2!(n-m_1)!(n-m_2)!n!}{b_1 b_2 b_1,2!(n-k)!} \right).$$

Finally, we use Proposition 5.2 to derive

Proposition 5.3. Let C_1, C_2 be disjoint clusters and let Φ be a list-pair function with $(S_1, S_2) = \Phi(C_1, C_2)$ and $n = n_{S_1} = n_{S_2}$. If communication is synchronous and $f_{S_1} + f_{S_2} < n$, then the expected number of cluster-sending steps performed by PLCS(C_1, C_2, v, Φ) is less than $\mathbb{E}(n, f_{S_1}, f_{S_2})$.

Proof. Let $(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)$. We notice that PLCS inspects positions in P_1 and P_2 in a different way than the non-faulty trials problem: at Line 7 of Figure 5, positions are inspected one-by-one in a predetermined order and not fully at random (with replacement). Next, we will argue that $\mathbb{E}(n, f_{S_1}, f_{S_2})$ provides an upper bound on the expected number of cluster-sending steps regardless of these differences. Without loss of generality, we assume that S_1 and S_2 each have n distinct replicas. Consequently, the pair (P_1, P_2) represents a set R of n distinct replica pairs taken from $C_1 \times C_2$. We notice that each of the $n!$ permutations of R is represented by a single pair $(P^{'1}, P^{'2}) \in \text{perms}(S_1) \times \text{perms}(S_2)$.

Now consider the selection of positions in (P_1, P_2) fully at random, but without replacement. This process will yield a list $[j_0, \ldots, j_{n-1}] \in \text{perms}(\{0, \ldots, n-1\})$ of positions fully at random. Let $Q_i = [P[j_i], \ldots, P[j_{i-1}]]$, $i \in \{1, 2\}$. We notice that the pair (Q_1, Q_2) also represents R and we have $Q_i \in \text{perms}(S_i) \times \text{perms}(S_i)$. Hence, by choosing a pair $(P_1, P_2) \in \text{perms}(S_1) \times \text{perms}(S_2)$, we choose set R fully at random and, at the same time, we choose the order in which replica pairs in R are inspected fully at random.

Finally, we note that PLCS inspects positions without replacement. As the number of expected positions inspected in the non-faulty position trials problem decreases if we choose positions without replacement, we have proven that $\mathbb{E}(n, f_{S_1}, f_{S_2})$ is an upper bound on the expected number of cluster-sending steps. \hfill \square

5.2 Practical Instances of PLCS

As the last step in providing practical instances of PLCS, we need to prove practical list-pair functions to be used in conjunction with PLCS. We provide two such functions that address most practical environments. Let C_1, C_2 be disjoint clusters, let $n_{\text{min}} = \min(n_{C_1}, n_{C_2})$, and let $n_{\text{max}} = \max(n_{C_1}, n_{C_2})$. We provide list-pair functions

$$\Phi_{\text{min}}(C_1, C_2) \mapsto (\text{list}(C_1))^{n_{\text{min}}}, \text{list}(C_2)^{n_{\text{min}}}),$$

$$\Phi_{\text{max}}(C_1, C_2) \mapsto (\text{list}(C_2))^{n_{\text{max}}}, \text{list}(C_2)^{n_{\text{max}}}),$$

in which L^n denotes the first n values in the list obtained by repeating list L. Next, we illustrate usage of these functions:

Example 5.6. Consider clusters C_1, C_2 with

$$S_1 = \text{list}(C_1) = [R_{1,1}, \ldots, R_{1,9}];$$

$$S_2 = \text{list}(C_2) = [R_{2,1}, \ldots, R_{2,4}].$$

We have

$$\Phi_{\text{min}}(C_1, C_2) = ([R_{1,1}, \ldots, R_{1,4}], \text{list}(C_2));$$

$$\Phi_{\text{max}}(C_1, C_2) = (\text{list}(C_1), [R_{2,1}, \ldots, R_{2,4}, R_{2,4}, R_{2,1}]).$$

Next, we combine Φ_{min} and Φ_{max} with PLCS, show that in practical environments Φ_{min} and Φ_{max} satisfy the requirements put on list-pair functions in Proposition 5.1 to guarantee termination and cluster-sending, and use these results to determine the expected constant complexity of the resulting instances of PLCS.

Theorem 5.7. Let C_1, C_2 be disjoint clusters with synchronous communication.

1. If $n = \min(n_{C_1}, n_{C_2}) > 2 \max(f_{C_1}, f_{C_2})$, then the expected number of cluster-sending steps performed by PLCS$(C_1, C_2, v, \Phi_{\text{min}})$ is upper bounded by 4. For every $(S_1, S_2) := \Phi_{\text{min}}(C_1, C_2)$, we have $n = n_{S_1} = n_{S_2}$, $n > 2f_{S_1}$, $n > 2f_{S_2}$, and $n > f_{S_1} + f_{S_2}$.

2. If $n = \min(n_{C_1}, n_{C_2}) > 3 \max(f_{C_1}, f_{C_2})$, then the expected number of cluster-sending steps performed by PLCS$(C_1, C_2, v, \Phi_{\text{min}})$ is upper bounded by $\frac{n}{4} (= 2.5)$. For every $(S_1, S_2) := \Phi_{\text{min}}(C_1, C_2)$, we have $n = n_{S_1} = n_{S_2}$, $n > 3f_{S_1}$, $n > 3f_{S_2}$, and $n > f_{S_1} + f_{S_2}$.

3. If $n_{C_1} > 3f_{C_1}$ and $n_{C_2} > 3f_{C_2}$, then the expected number of cluster-sending steps performed by PLCS$(C_1, C_2, v, \Phi_{\text{max}})$ is upper bounded by 3. For every $(S_1, S_2) := \Phi_{\text{max}}(C_1, C_2)$, we have $n = n_{S_1} = n_{S_2} = \max(n_{C_1}, n_{C_2}) > f_{S_1} + f_{S_2}$ and either we have $n_{C_1} \geq n_{C_2}$, $n > 3f_{S_1}$, and $n > 2f_{S_2}$; or we have $n_{C_2} \geq n_{C_1}$, $n > 2f_{S_1}$, and $n > 3f_{S_2}$.

Each of these instances of PLCS results in cluster-sending v from C_1 to C_2.

Proof. First, we prove the properties of Φ_{min} and Φ_{max} claimed in the three statements of the theorem. In the first and second statement of the theorem, we have $\min(n_{C_1}, n_{C_2}) > c \max(f_{C_1}, f_{C_2})$, $c \in \{2, 3\}$. Let $(S_1, S_2) := \Phi_{\text{min}}(C_1, C_2)$ and $n = n_{S_1} = n_{S_2}$. By definition of Φ_{min}, we have $n = \min(n_{C_1}, n_{C_2})$, in which case S_i, $i \in \{1, 2\}$, holds n distinct replicas from C_i. Hence, we have $f_{S_i} \geq f_{c} \geq f_{c}$ and, as $n > c \max(f_{C_1}, f_{C_2}) \geq c f_{S_i}$, also $n > c f_{S_i}$. Finally, as $n > 2f_{S_1}$ and $n > 2f_{S_2}$, also $2n > 2f_{S_1} + 2f_{S_2}$, and $n > f_{S_1} + f_{S_2}$ holds.

In the last statement of the theorem, we have $n_{C_1} > 3f_{C_1}$ and $n_{C_2} > 3f_{C_2}$. Without loss of generality, we assume $n_{C_1} \geq n_{C_2}$. Let $(S_1, S_2) := \Phi_{\text{max}}(C_1, C_2)$ and $n = n_{S_1} = n_{S_2}$. By definition of Φ_{max}, we have $n = \max(n_{C_1}, n_{C_2}) = n_{C_1}$. As $n = n_{C_1}$, we have $S_1 = \text{list}(C_1)$. Consequently, we also have
We claim that E_f with q As 5.8

Remark 4

−

Journal of Systems Research (JSys) 2023

q ters in complete isolation without cluster-sending: the exchange of a complexity for P_{CS} equal-sized clusters. In practice, we see that the expected-case complexity of P_{CS} protocols is the same, however, as the probability distributions that yield these expected-case complexities are very different.

The cluster-sending problem we consider here only considers sending a value from one cluster to another cluster. The cluster-sending problem can be generalized in two ways toward a multi-cluster-sending protocol:

1. Cluster C_1 sends a value v to multiple other clusters $C_{2,1}, \ldots, C_{2,n}$, and the success of sending v to any of the clusters $C_{2,i}$ is independent of the success of sending v to any of the other clusters $C_{2,j}, 1 \leq i \neq j \leq n$. In this case, the cluster-sending steps to each cluster are independent of each other. Hence, the solutions we present in this paper can be applied in a straightforward manner.

2. Cluster C_1 sends a value v to multiple other clusters $C_{2,1}, \ldots, C_{2,n}$ and these clusters only successfully receive v if all clusters do so. This problem is much more akin the traditional commit problem as solved by two-phase commit protocols and three-phase commit protocols in the non-resilient setting [14,31,36]. One can use cluster-sending as a fundamental resilient communication primitive on top of which one can implement resilient versions of these commit protocols (see, e.g., as is the focus of BYSHARD [19,21]).

6 Asynchronous Communication

In the previous sections, we introduced PCS, $PPCS$, and $PLCS$, three probabilistic cluster-sending protocols with expected constant message complexity. To simplify presentation, we have presented their design with respect to a synchronous environment. Next, we consider their usage in environments with asynchronous inter-cluster communication due to which messages can get arbitrary delayed, duplicated, or dropped.

We notice that the presented protocols only depend on synchronous communication to minimize communication: at the core of the correctness of PCS, $PPCS$, and $PLCS$ is the cluster-sending step performed by CS-STEP, which does not make any assumptions on communication (Proposition 3.1). Consequently, PCS, $PPCS$, and $PLCS$ can easily be generalized to operate in environments with asynchronous communication.

First, we observe that message duplication and out-of-order delivery have no impact on the cluster-sending step performed by CS-STEP. Hence, we do not need to take precautions against such asynchronous behavior. Furthermore, if communication is asynchronous, but reliable (messages do not

Note that the third case of Theorem 5.7 corresponds to cluster-sending between arbitrary-sized resilient clusters that each operate using Byzantine fault-tolerant consensus protocols.

Remark 5.8. The upper bounds on the expected-case complexity of instances of $PLCS$ presented in Theorem 5.7 match the upper bounds for PCS presented in Corollary 4.4. This does not imply that the expected-case complexity for these protocols is the same, however, as the probability distributions that yield these expected-case complexities are very different. To see this, consider a system in which all clusters have n replicas of which $f, n = 2f + 1$, are faulty. Next, we denote the expected number of cluster-sending steps of protocol P by E_P, and we have

\[
E_{PCS} = \frac{(2f + 1)^2}{(f + 1)^2} = 4 - \frac{4f + 3}{(f + 1)^2} ; \\
E_{PLCS} = E(2f + 1, f, f) = 4 - \frac{2}{(f + 1)^2} \frac{f^2}{(2f)!} .
\]

In Figure 6, we have illustrated this difference by plotting the expected-case complexity of PCS and $PLCS$ for systems with equal-sized clusters. In practice, we see that the expected-case complexity for PCS is slightly lower than the expected-case complexity for $PLCS$.

5.3 Practical Considerations

The results in this paper address the worst-case use-case of cluster-sending: the exchange of a single value between clusters in complete isolation without any knowledge on the likelihood of specific replicas to be faulty. Practical use-cases typically provide additional knowledge that can be used to further fine-tune the cluster-sending protocols. E.g., if multiple values are to be exchanged in consecutive steps, then one can start the cluster-sending of the next value by first attempting to cluster-send via the previously-successful replica pair and by skipping any replica pairs that have failed (in preceding rounds). Likewise, if the likelihood of replicas to be faulty is known to be skewed, then one can incorporate the skew in the fully at random selection of replica pairs to maximize the likelihood of selection non-faulty replica pairs.

Now, we prove the upper bounds on the expected number of cluster-sending steps for $PLCS(C_1, C_2, v, \Phi_{min})$ with $\min(n_{C_1}, n_{C_2}) > 2 \max(f_{C_1}, f_{C_2})$. By Proposition 5.3, the expected number of cluster-sending steps is upper bounded by $\mathbb{E}(n, f_{S_1}, f_{S_2})$. In the worst case, we have $n = 2f + 1$ with $f = f_{S_1} = f_{S_2}$. Hence, the expected number of cluster-sending steps is upper bounded by $\mathbb{E}(2f + 1, f, f), f \geq 0$. We claim that $\mathbb{E}(2f + 1, f, f)$ simplifies to $\mathbb{E}(2f + 1, f, f) = 4 - \frac{4f + 3}{(f + 1)^2} \frac{f^2}{(2f)!}$. Hence, for all S_1 and S_2, we have $\mathbb{E}(n, f_{S_1}, f_{S_2}) < 4$. An analogous argument can be used to prove the other upper bounds.

In Figure 6, we have illustrated this difference by plotting the expected-case complexity of PCS and $PLCS$ for systems with equal-sized clusters. In practice, we see that the expected-case complexity for PCS is slightly lower than the expected-case complexity for $PLCS$.
get lost, but can get duplicated, be delivered out-of-order, or get arbitrarily delayed), both PPCS and PLCS will be able to always perform cluster-sending in a finite number of steps.

If communication is asynchronous and unreliable (messages sent between non-faulty replicas can get lost and all cluster-sending steps can fail), then the presented synchronous protocols can fail and, hence, need to be adjusted to the asynchronous environment in which they are deployed. The best way in which a probabilistic cluster-sending solution can deal with unreliable asynchronous communication depends on the model of asynchronous communication one is optimizing for.

As an example, we illustrate cluster-sending with a basic model of unreliable communication in which each communication step can independently fail with a probability of p_{fail}. In this setting, replicas in C_1 can simply continue cluster-sending steps until a step succeeds, which will eventually happen. Similar to the proof of Theorem 4.2, we can prove the following:

Theorem 6.1. Let C_1, C_2 be disjoint clusters. If each communication step can independently fail with a probability of p_{fail}, then PCS(C_1, C_2, v) is expected to result in cluster-sending v from C_1 to C_2 in $(n_{\text{C}_1} n_{\text{C}_2})/(n_{\text{fC}_1} n_{\text{fC}_2}) \cdot (1-p_{\text{fail}})^2$ cluster-sending steps.

Sketch. There are two communication steps between $R_1 \in C_1$ and $R_2 \in C_2$. With a message loss of p_{fail} between the clusters, the probability q that no communication failure happens during a cluster-sending step between two non-faulty replicas is $(1 - p_{\text{fail}})^2$.

Not all models of asynchronous communication allow for such a precise characterization of the expected-case complexity for cluster-sending: often, communication steps are not fully independent as the communication model allows for periods in which no communication will succeed. This is the case for the partial synchrony model, which is often employed by primary-backup consensus protocols such as PBFT. In the partial synchrony model, unreliable periods of communication are followed by sufficiently-long periods of reliable communication, during which cluster-sending with the presented algorithms will always succeed. During arbitrary-length periods of unreliable of communication, a cluster-sending attempt can perform an arbitrary number of cluster-sending steps.

Although the partial synchrony model and many other asynchronous communication models do not allow for a precise characterization of the expected-case complexity, we can still use our protocols to provide cluster-sending eventually: running the algorithms until successful cluster-sending is performed, by simply continuing until a step succeeds (PCS) or by rerunning the protocol until a step succeeds (PPCS, and PLCS), will assure success as soon as communication becomes reliable.

We note that if communication is asynchronous, then messages can get arbitrarily delayed. Fortunately, practical environments operate with large periods of reliable communication in which the majority of the messages arrive within some bounded delay unknown to C_1 and C_2. Hence, replicas in C_1 can simply assume some delay δ. If this delay is too short, then a cluster-sending step can appear to fail simply because the proof of receipt is still under way. In this case, cluster-sending will still be achieved when the proof of receipt arrives, but spurious cluster-sending steps can be initiated in the meantime. To reduce the number of such spurious cluster-sending steps, all non-faulty replicas in C_1 can use exponential backoff to increase the message delay δ toward some reasonable upper bound (e.g., 100 s).

Finally, asynchronous environments often necessitate rather high assumptions on the message delay δ. Consequently, the duration of a single failed cluster-sending step performed by CS-STEP will be high. Here, a trade-off can be made between message complexity and duration by starting several rounds of the cluster-sending step at once, which will sharply reduce the duration of the protocol with only a constant increase in expected message complexity. For example,
if PCS is expected to perform four cluster-sending steps, then one can reduce the expected-case duration of cluster-sending from the duration of four cluster-sending steps to the duration of one cluster-sending step by simply performing four cluster-sending steps in parallel (of which one is expected to succeed). In the presence of unreliable communication, one can increase the number of parallel cluster-sending steps in accordance with Theorem 6.1 to keep the duration of cluster-sending low.

7 Performance evaluation

In the previous sections, we introduced probabilistic cluster-sending protocols with expected-case constant message complexity. To gain further insight in the performance attainable by these protocols, especially in environments with unreliable communication, we implemented these protocols in a simulated shared resilient environment that allows us to control the faulty replicas and the message loss rates. As a baseline of comparison, we also evaluated three cluster-sending protocols from the literature:

1. The worst-case optimal cluster-sending protocol PBS-CS of Hellings et al. [18, 20] that can perform cluster-sending using only \(f_1 + f_2 + 1 \) messages, which is worst-case optimal. This protocol requires reliable communication.

2. The broadcast-based cluster-sending protocol of CHAINSPACE [1] that can perform cluster-sending using \(n_1 n_2 \) messages. This protocol requires reliable communication.

3. The global sharing protocol of GEOBFT [16], an optimistic cluster-sending protocol that assumes that each cluster uses a primary-backup consensus protocol (e.g., PBFT [6]) and optimizes for the case in which the coordinating primary of \(C_1 \) is non-faulty. In this optimistic case, GEOBFT can perform cluster-sending using only \(f_2 + 1 \) messages. To deal with faulty primaries and unreliable communication, GEOBFT employs a costly remote view-change protocol, however.

We refer to Figure 2 for an analytical comparison between these three cluster-sending protocols and our three probabilistic cluster-sending protocols.

In each experiment, we measured the number of messages exchanged in 10000 runs of the cluster-sending protocol under consideration. In specific, in each run we measure the number of messages exchanged when sending a value \(v \) from a cluster \(C_1 \) to a cluster \(C_2 \) with \(n_1 = n_2 = 3f_1 + 1 = 3f_2 + 1 \), and we aggregate this data over 10000 runs. The messages exchanged is an objective measure of the performance of the cluster-sending protocols under consideration that is independent of the environment (e.g., network bandwidth, message delays) and the application use-case for which cluster-sending is used. As we use equal-sized clusters, we have \(\Phi_{\min}(C_1, C_2) = \Phi_{\max}(C_1, C_2) \) and, hence, we use a single instance of PLCS.

Next, we detail the two experiments we performed and look at their results.

7.1 Performance of Cluster-Sending Protocols

In our first experiment, we measure the number of messages exchanged as a function of the number of faulty replicas. In this case, we assumed reliable communication, due to which we could include all six protocols. The results of this experiment can be found in Figure 7.

As is clear from the results, our probabilistic cluster-sending protocols are able to perform cluster-sending with only a constant number of messages exchanged. Furthermore, we see that the performance of our cluster-sending protocols matches the theoretical expected-case analysis in this paper and closely follows the expected performance illustrated in Figure 6 (note that Figure 6 plots cluster-sending steps and each cluster-sending step involves the exchange of two messages between clusters).

As all other cluster-sending protocols have a linear (PBS-CS and GEOBFT) or quadratic (CHAINSPACE) message complexity, our probabilistic cluster-sending protocols outperform the other cluster-sending protocols. This is especially the case when dealing with bigger clusters, in which case the expected-case constant message complexity of our probabilistic cluster-sending protocols shows the biggest advantage. Only in the case of the smallest clusters can the other cluster-sending protocols outperform our probabilistic cluster-sending protocols, as PBS-CS, GEOBFT, and CHAINSPACE use reliable communication to their advantage to eliminate any acknowledgment messages send from the receiving cluster to the sending cluster. We believe that the slightly higher cost of our probabilistic cluster-sending protocols in these cases is justified, as our protocols can effectively deal with unreliable communication.

7.2 Message Loss

In our second experiment, we measure the number of messages exchanged as a function of the number of faulty replicas and as a function of the message loss (in percent) between the two clusters. We only focus on message loss between clusters, and we assume that consensus steps within a cluster always succeed. In this case, we only included our probabilistic cluster-sending protocols, as PBS-CS and CHAINSPACE both assume reliable communication and GEOBFT is only able to perform recovery via remote view-changes in periods.

The full implementation of this experiment is available at https://www.jhellings.nl/projects/csp/.
5, 25, 9, 33, 21, 17, 13, 29, 17, 31, 37]), there is only limited work on communication
Although there is abundant literature on distributed systems
we measured the number of message exchange steps to send a value between two equally-sized clusters (average of 10000 runs),
each cluster having \(n = 3f + 1 \) replicas. The results for GEOBFT are a plot of the best-case optimistic phase of that protocol.

Theorem 6.1 can be used to derive the expected-case complexity of PCS in each of the cases. For example, with a
message loss of \(p_{fail} = 30\% \), the probability \(q \) that no communication failure happens during a cluster-sending step is
\(q \approx 0.49 \). Hence, when compared to the case without message loss, we expect an increase in the message complexity by a factor \(1/q \approx 2 \). Our measurements on PCS show that
this expected increase also happens in practice. For PPCS and PLCS, we did not provide a theoretical analysis of the
expected-case complexity. Still, in practice we see a similar behavior as with PCS: we see an increase in the message complexity by a factor \(1/q \approx 2 \) for all protocols.

This observation extends to other probabilities of message loss. Although the probabilistic arguments underpinning the expected-case cost of, on the one hand, PCS and PPCS and, on the other hand, PLCS are vastly different, the results of these experiments show that across the board, the practical performance of the three protocols is similar.

These results further underline the practical benefits of each of the probabilistic cluster-sending protocols, especially for larger clusters: even in the case of high message loss rates, each of our probabilistic cluster-sending protocols are able to outperform the cluster-sending protocols PBS-CS, CHAINSPACE, and GEOBFT, which can only operate with reliable-communication.

8 Related Work

Although there is abundant literature on distributed systems and on consensus-based resilient systems (e.g., [2, 5, 8, 15, 17, 31, 37]), there is only limited work on communication between resilient systems [1, 16, 18, 20]. In the previous sec-
tion, we have already compared PCS, PPCS, and PLCS with the worst-case optimal cluster-sending protocols of Hellings et al. [18, 20], the optimistic cluster-sending protocol of GEOBFT [16], and the broadcast-based cluster-sending protocols of CHAINSPACE [1]. Furthermore, we notice that cluster-sending can be solved using well-known Byzantine primitives such as consensus, interactive consistency, and Byzantine broadcasts [6, 9, 27]. These primitives are much more costly than cluster-sending protocols, however, and require huge amounts of communication between all involved replicas.

In parallel to the development of traditional resilient systems and permissioned blockchains, there has been promising work on sharding in permissionless blockchains such as BITCOIN [28] and ETHEREUM [38]. Examples include techniques for enabling reliable cross-chain coordination via sidechains, blockchain relays, atomic swaps, atomic commitment, and cross-chain deals [12, 13, 22, 24, 25, 39, 40]. Unfortunately, these techniques are deeply intertwined with the design goals of permissionless blockchains in mind (e.g., cryptocurrency-oriented), and are not readily applicable to traditional consensus-based Byzantine clusters.

9 Conclusion

In this paper, we presented probabilistic cluster-sending protocols that each provide highly-efficient solutions to the cluster-sending problem. Our probabilistic cluster-sending protocols can facilitate communication between Byzantine fault-tolerant clusters with expected constant communication between clusters. For practical environments, our protocols can support worst-case linear communication between clusters, which is optimal, and deal with asynchronous and unreliable communication. The low practical cost of our cluster-
sending protocols further enables the development and deployment of high-performance systems that are constructed out of Byzantine fault-tolerant clusters, e.g., fault-resilient geo-aware sharded data processing systems.

References

To get the intuition behind the closed form of Lemma 5.2, we take a quick look at the combinatorics of list-merging. Notice that we can merge lists S and T together by either first taking an element from S or first taking an element from T. This approach towards list-merging yields the following recursive solution to the list-merge problem:

$$M(v, w) = \begin{cases} M(v-1, w) + M(v, w-1) & \text{if } v > 0 \text{ and } w > 0; \\ 1 & \text{if } v = 0 \text{ or } w = 0. \end{cases}$$

Consider lists S and T with $|S| = v$ and $|T| = w$ distinct values. We have $\left| \text{perms}(S) \right| = v!$, $\left| \text{perms}(T) \right| = w!$, and $\left| \text{perms}(S \cup T) \right| = (v+w)!$. We observe that every list-merge of $(S, T) \in \text{perms}(S) \times \text{perms}(T)$ is a unique value in $\text{perms}(S \cup T)$. Furthermore, every value in $\text{perms}(S \cup T)$ can be constructed by such a list-merge. As we have $\left| \text{perms}(S) \times \text{perms}(T) \right| = v!w!$, we derive the closed form

$$M(v, w) = \frac{(v+w)!}{(v!w!)}$$

of Lemma 5.2. Next, we formally prove this closed form.

Proof. We prove this by induction. First, the base cases $M(0, w)$ and $M(v, 0)$. We have

$$M(0, w) = \frac{(0+w)!}{0!w!} = \frac{w!}{w!} = 1;$$

$$M(v, 0) = \frac{(v+0)!}{v!0!} = \frac{v!}{v!} = 1.$$

Next, we assume that the statement of the lemma holds for all non-negative integers v', w' with $0 \leq v' + w' \leq j$. Now consider non-negative integers v, w with $v + w = j + 1$. We assume that $v > 0$ and $w > 0$, as otherwise one of the base cases applies. Hence, we have

$$M(v, w) = M(v-1, w) + M(v, w-1).$$

We apply the induction hypothesis on the terms $M(v-1, w)$ and $M(v, w-1)$ and obtain

$$M(v, w) = \left(\frac{(v-1)!+(v+w)!}{(v-1)!w!} \right) + \left(\frac{(v+(w-1))!}{v!(w-1)!} \right).$$

A The proof of Lemma 5.2
Next, we apply $x! = x(x-1)!$ and simplify the result to obtain
\[
M(v, w) = \left(\frac{(v+w)(v+w-1)!}{v!w!} \right) + \left(\frac{w(v+w-1)!}{v!w!} \right)
\]
which completes the proof.

B The simplification of $\mathbb{F}(n, m_1, m_2, k)$

Let g be the expression
\[
b_1!^2 \left(\begin{array}{c} m_1 \\ b_1 \end{array} \right) \left(\begin{array}{c} n-m_2 \\ b_1 \end{array} \right) b_2!^2 \left(\begin{array}{c} m_2 \\ b_2 \end{array} \right) \left(\begin{array}{c} n-m_2 \\ b_2 \end{array} \right).
\]

We apply Lemma 5.2 on terms $M(b_1, b_2)$, $M(b_1 + b_2, b_1, 2)$, and $M(k, n-k)$, apply $k = b_1 + b_2 + b_1, 2$, and simplify to derive
\[
g = b_1!^2 T_1 b_2!^2 T_2.
\]

Finally, we expand the binomial terms T_1 and T_2, apply $b_1, 2 = m_1 - b_1 = m_2 - b_2$ and $k = m_1 + b_2 = m_2 + b_1$, and simplify to derive
\[
g = b_1! \left(\begin{array}{c} m_1 \\ b_1 \end{array} \right) \left(\begin{array}{c} n-m_2 \\ b_1 \end{array} \right) \left(\begin{array}{c} m_2 \\ b_2 \end{array} \right) \left(\begin{array}{c} n-m_2 \\ b_2 \end{array} \right) \frac{(n-k)!}{k! (n-k)!}.
\]

which completes the proof.

C The Closed Form of $\mathbb{E}(2f + 1, f, f)$

Here, we shall prove that
\[
\mathbb{E}(2f + 1, f, f) = 4 - \frac{2}{(f+1)} - \frac{f!^2}{(2f)!}.
\]

Proof. By Proposition 5.2 and some simplifications, we obtain
\[
\mathbb{E}(2f + 1, f, f) = \frac{1}{(2f+1)!^2} \cdot \left(\sum_{k=f}^{2f} \frac{(f+1)!^2}{(k-f)!^2 (2f+1-k)!^2} \right)
\]

First, we apply $x! = x(x-1)!$, simplify, and obtain
\[
\mathbb{E}(2f + 1, f, f) = \frac{f!^2 (2f+1)}{(2f+1)!} \cdot \left(\sum_{k=f}^{2f} \frac{(f+1)!^2}{(k-f)!^2 (f+1-k)!^2} \right)
\]

Next, we apply ${(m) \choose n} = {(m-n) \choose n}$, extend the sum by one term, and obtain
\[
\mathbb{E}(2f + 1, f, f) = \frac{f!^2}{(2f)!} \cdot \left(\sum_{k=0}^{f} \frac{(f+1)!^2}{(f+1-k)!^2} \right)
\]

Then, we apply Vandermonde’s Identity to eliminate the sum and obtain
\[
\mathbb{E}(2f + 1, f, f) = \frac{f!^2}{(2f)!} \left(\left(\frac{2f+2}{f+1} \right) - 1 \right).
\]
Finally, we apply straightforward simplifications and obtain

\[
\mathbb{E}(2f + 1, f, f) = \frac{f!^2}{(2f)!} \frac{(2f + 2)!}{(f + 1)! (f + 1)!} - \frac{f!^2}{(2f)!}
\]

\[
= \frac{f!^2}{(2f)!} \frac{(2f)!}{f!^2 (f + 1)^2} - \frac{f!^2}{(2f)!}
\]

\[
= \frac{(2f + 1)(2f + 2)}{(f + 1)^2} \frac{f!^2}{(2f)!} - \frac{f!^2}{(2f)!}
\]

\[
= \frac{4(f + 1)^2}{(f + 1)^2} - \frac{2(f + 1)}{(f + 1)^2} \frac{f!^2}{(2f)!}
\]

\[
= 4 - \frac{2}{f + 1} \frac{f!^2}{(2f)!},
\]

which completes the proof. \(\square\)