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Abstract
Traditional resilient systems operate on fully-replicated fault-
tolerant clusters, which limits their scalability and perfor-
mance. One way to make the step towards resilient high-
performance systems that can deal with huge workloads is by
enabling independent fault-tolerant clusters to efficiently com-
municate and cooperate with each other, as this also enables
the usage of high-performance techniques such as sharding.
Recently, such inter-cluster communication was formalized as
the Byzantine cluster-sending problem. Unfortunately, exist-
ing worst-case optimal protocols for cluster-sending all have
linear complexity in the size of the clusters involved.

In this paper, we propose probabilistic cluster-sending tech-
niques as a solution for the cluster-sending problem with only
an expected constant message complexity, this independent
of the size of the clusters involved and this even in the pres-
ence of highly unreliable communication. Depending on the
robustness of the clusters involved, our techniques require
only two-to-four message round-trips (without communica-
tion failures). Furthermore, our protocols can support worst-
case linear communication between clusters. Finally, we have
put our techniques to the test in an in-depth experimental eval-
uation that further underlines the exceptional low expected
costs of our techniques in comparison with other protocols.
As such, our work provides a strong foundation for the further
development of resilient high-performance systems.

1 Introduction

The promises of resilient data processing, as provided by pri-
vate and public blockchains [15,23,29,30], has renewed inter-
est in traditional consensus-based Byzantine fault-tolerant re-
silient systems [5,6,26]. Unfortunately, blockchains and other
consensus-based systems typically rely on fully-replicated
designs, which limits their scalability and performance. Con-
sequently, these systems cannot deal with the ever-growing
requirements in data processing [32, 33].

One way to improve on these limitations is by building com-
plex system designs that consist of independently-operating
resilient clusters that can cooperate to provide certain services.
To illustrate this, one can consider a sharded resilient design.
In a traditional resilient systems, resilience is provided by
a fully-replicated consensus-based Byzantine fault-tolerant
cluster in which all replicas hold all data and process all re-
quests. This traditional design has only limited performance,

even with the best consensus protocols, and lacks scalability.
To improve on the design of traditional systems, one can em-
ploy the sharded design of Figure 1. In this sharded design,
each cluster only holds part of the data. Consequently, each
cluster only needs to process requests that affect data they
hold. In this way, this sharded design improves performance
by enabling parallel processing of requests by different clus-
ters, while also improving storage scalability. To support ar-
bitrary general-purpose workloads that can affect data in sev-
eral clusters in such a sharded design, the clusters need to be
able to coordinate their operations, however [1,7,16,19,21].1

Central to such complex system designs is the ability to
reliably and efficiently communicate between independently-
operating resilient clusters. Recently, this problem of commu-
nication between Byzantine fault-tolerant clusters has been
formalized as the cluster-sending problem [18, 20]. We be-
lieve that efficient solutions to this problem have a central
role towards bridging resilient and high-performance data
processing.
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Figure 1: A sharded design in which each resilient cluster of
four replicas holds only a part of the data. Local decisions
within a cluster are made via consensus ( ), whereas
multi-shard coordination to process multi-shard transactions
requires cluster-sending ( ).This illustration is based
on Hellings et al. [20, Figure 1].

Although the cluster-sending problem has received some at-
tention (e.g., as part of the design of AHL [7], BYSHARD [19,

1Strict ordering as provided by consensus is necessary to support arbitrary
general-purpose workloads. There are classes of operations for which strict
consensus-based ordering of (sharding) steps is unnecessary, however. Exam-
ples include balance changes and, more generally, operations on CRDTs [34].
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21], GEOBFT [16], and CHAINSPACE [1]), and cluster-
sending protocols that solve the cluster-sending problem with
worst-case optimal complexity are known [18,20], we believe
there is still much room for improvement.

In this paper, we introduce a new solution to the cluster-
sending problem: we introduce cluster-sending protocols
that use probabilistic cluster-sending techniques and are able
to provide low expected-case message complexity (at the
cost of higher communication latencies, a good trade-off in
systems where inter-cluster network bandwidth is limited).
To simplify presentation, we first show how probabilistic
cluster-sending works when communication is reliable and
synchronous. Then, we generalize these synchronous solu-
tions to practical environments in which communication can
be unreliable and asynchronous. Our main contributions are
as follows:

1. First, in Section 3, we introduce the cluster-sending step
CS-STEP that attempts to send a value from a replica in
the sending cluster to a replica in the receiving cluster
in a verifiable manner and with a constant amount of
inter-cluster communication. This step is guaranteed to
perform cluster-sending if communication is reliable and
the step is performed by non-faulty replicas.

2. Then, in Section 4, we illustrate the working of a ba-
sic probabilistic cluster-sending protocol by introducing
the Synchronous Probabilistic Cluster-Sending protocol
PCS. PCS uses CS-STEP with randomly selected sending
and receiving replicas to provide cluster-sending in ex-
pected constant steps. In addition, we show how pruned-
PCS (PPCS), a fine-tuned variant of PCS, can guarantee
cluster-sending in expected constant steps while also
guaranteeing termination.

3. Next, in Section 5, we propose the Synchronous Prob-
abilistic Linear Cluster-Sending protocol PLCS. PLCS
not only guarantees cluster-sending in expected constant
steps, but also guarantees a worst-case optimal linear
upper-bound on communication. To achieve this worst-
case optimal upper-bound, we introuce a specialized
randomized scheme via which PLCS selects replicas. To
prove the complexity bounds of PLCS, we provide an
in-depth analysis of the expected behavior of the ran-
domized scheme we introduce.

4. Next, in Section 6, we generalize PCS, PPCS, and PLCS
to practical environments in which communication can
be unreliable and asynchronous.

5. Finally, in Section 7, we evaluate the behavior of the
proposed probabilistic cluster-sending protocols via an
in-depth evaluation. In this evaluation, we show that
probabilistic cluster-sending protocols has exceptionally
low communication costs in comparison with existing

cluster-sending protocols, this even in the presence of
communication failures.

A summary of our findings in comparison with existing
techniques can be found in Figure 2. In Section 2, we intro-
duce the necessary terminology and notation, in Section 8,
we compare with related work, and in Section 9, we conclude
on our findings.

2 The Cluster-Sending Problem

Before we present our probabilistic cluster-sending tech-
niques, we first introduce all necessary terminology and no-
tation. The formal model we use is based on the formaliza-
tion of the cluster-sending problem provided by Hellings et
al. [18, 20]. If S is a set of replicas, then f(S) ⊆ S denotes
the faulty replicas in S, whereas nf(S) = S\ f(S) denotes the
non-faulty replicas in S. We write nS = |S|, fS = |f(S)|, and
nfS = |nf(S)|= nS−fS to denote the number of replicas, faulty
replicas, and non-faulty replicas in S, respectively. A cluster
C is a finite set of replicas. We consider clusters with Byzan-
tine replicas that behave in arbitrary manners. In specific,
if C is a cluster, then any malicious adversary can control
the replicas in f(C ) at any time, but adversaries cannot bring
non-faulty replicas under their control.

Definition 2.1. Let C1,C2 be disjoint clusters. The cluster-
sending problem is the problem of reliably sending a value
v from C1 to C2 in the presence of failures and malicious
behaviour: non-faulty replicas in C2 can only receive v if the
non-faulty replicas in C1 reached agreement on sending v, and
the non-faulty replicas in C1 receive a confirmation only if
the non-faulty replicas in C2 received v.

We formalize the cluster-sending problem of sending a
value v from C1 to C2 as a progression of replica states as
follows:

1. Cluster-sending is initiated when the non-faulty repli-
cas in C1 reach the state AGREE(v) indicating that the
replicas in C1 have internally decided upon sending v to
C2.

2. Only after all non-faulty replicas in C1 reach the state
AGREE(v), the non-faulty replicas in C2 can reach the
state RECEIVE(v).

3. Only after all non-faulty replicas in C2 reach the state
RECEIVE(v), the replicas in C1 can reach the state
CONFIRM(v).

Cluster-sending is succesfull if all non-faulty replicas in C1
reach the state CONFIRM(v).

We note that the value v sent by cluster C1 is a parameter of
the cluster-sending problem. Typically, the value v originates
from the resilient applications that are running on the clusters
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Figure 2: A comparison of cluster-sending protocols that send a value from cluster C1 with nC1 replicas, of which fC1 are faulty,
to cluster C2 with nC2 replicas, of which fC2 are faulty. For each protocol P, Protocol specifies its name; Robustness specifies the
conditions P puts on the clusters; Message Steps specifies the number of messages exchanges P performs; Optimal specifies
whether P is worst-case optimal; and Unreliable specifies whether P can deal with unreliable communication.

Protocol Robustnessa Message Steps Optimal Unreliable
(expected-case) (worst-case)

PBS-CS [18, 20] min(nC1 ,nC2)> fC1 + fC2 fC1 + fC2 +1 Ë é
PBS-CS [18, 20] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 ,nC2) Ë é

GEOBFT [16] nC1 = nC2 > 3max(fC1 , fC2) fC2 +1b Ω(fC1 nC2) é Ë

CHAINSPACE [1] nC1 > 3fC1 , nC2 > 3fC2 nC1 nC2 é é

T
hi

s
Pa

pe
r PPCS nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 +1)(fC2 +1) é Ë

PPCS nC1 > 3fC1 , nC2 > 3fC2
9
4 (= 2 1

4 ) (fC1 +1)(fC2 +1) é Ë

PLCS min(nC1 ,nC2)> fC1 + fC2 4 fC1 + fC2 +1 Ë Ë

PLCS min(nC1 ,nC2)> 2(fC1 + fC2)
9
4 (= 2 1

4 ) fC1 + fC2 +1 Ë Ë
PLCS nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 ,nC2) Ë Ë

aProtocols that have different message step complexities depending on the robustness assumptions have been included for each of the robustness assumptions.
bComplexity when the coordinating primary in C1 is non-faulty and communication is reliable.

C1, e.g., due to the application requiring communication with
other clusters and agree upon initiation such communication
via an internal consensus step.

We assume that there is no limitation on local communica-
tion within a cluster, while global communication between
clusters is costly. This model is supported by practice, where
communication between wide-area deployments of clusters
is up-to-two orders of magnitude more expensive than com-
munication within a cluster [7, 16].

We assume that each cluster can make local decisions
among all non-faulty replicas, e.g., via a consensus protocol
such as PBFT (when Byzantine fault tolerance is required) or
PAXOS [6, 26] (when crash-fault tolerance suffices). Further-
more, we assume that the replicas in each cluster can certify
such local decisions via a signature scheme. For example, a
cluster C can certify a consensus decision on some message
m by collecting a set of signatures for m of fC + 1 replicas
in C , guaranteeing one such signature is from a non-faulty
replica (which would only signs values on which consensus
is reached). We write ⟨m⟩C to denote a message m certified
by C . To minimize the size of certified messages, one can
utilize a threshold signature scheme [35]. To enable deci-
sion making and message certification, we assume, for every
cluster C , nC > 2fC , a minimal requirement [9, 27]. Lastly,
we assume that there is a common source of randomness for
all non-faulty replicas in the sending cluster C1, e.g., via a
distributed fault-tolerant random coin [3, 4].

3 The Cluster-Sending Step

As the first step toward a probabilistic cluster-sending proto-
col, we introduce the cluster-sending step that takes as input
a value v and a choice of replicas R1 ∈ C1 and R2 ∈ C2, and
tries to perform cluster-sending via communication between

the pair of replicas (R1,R2). The design of the cluster-sending
step will ensure that cluster-sending succeeds if both R1 and
R2 are non-faulty, but can detectably fail otherwise. In the
following sections, we introduce cluster-sending protocols
that instantiate this cluster-sending step via one-or-more pairs
of replicas (R1,R2) to ensure that eventually a cluster-sending
step succeeds.

If communication is reliable and one knows non-faulty
replicas R1 ∈ nf(C1) and R2 ∈ nf(C2), then cluster-sending
a value v from C1 to C2 can be done via a straightforward
cluster-sending step: one can simply instruct R1 to send v
to R2. When R2 receives v, it can disperse v locally in C2.
Unfortunately, we do not know which replicas are faulty and
which are non-faulty. Furthermore, it is practically impos-
sible to reliably determine which replicas are non-faulty, as
non-faulty replicas can appear faulty due to unreliable com-
munication, while faulty replicas can appear well-behaved to
most replicas, while interfering with the operations of only
some non-faulty replicas.

To deal with faulty replicas when utilizing the above cluster-
sending step, one needs a sufficient safeguards to detect fail-
ure of R1, of R2, or of the communication between them. To
do so, we add receive and confirmation phases to the sketched
cluster-sending step. During the receive phase, the receiv-
ing replica R2 must construct a proof P that it received and
dispersed v locally in C2 and then send this proof back to R1.
Finally, during the confirmation phase, R1 can utilize P to
prove to all other replicas in C1 that the cluster-sending step
was successful. The pseudo-code of this cluster-sending step
protocol CS-STEP can be found in Figure 3. We have the
following:

Proposition 3.1. Let C1,C2 be disjoint clusters with R1 ∈ C1
and R2 ∈ C2. If C1 satisfies the pre-conditions of CS-STEP(R1,
R2, v), then execution of CS-STEP(R1, R2, v) satisfies the post-
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Protocol CS-STEP(R1, R2, v), with R1 ∈ C1 and R2 ∈ C2:

Pre: Each replica in nf(C1) decided AGREE(v) (and can construct
⟨send : v, C2⟩C1 ).

Post: (i) If communication is reliable, R1 ∈ nf(C1), and R2 ∈ nf(C2),
then R2 decides RECEIVE(v). (ii) If a replica in nf(C2) decides
RECEIVE(w) for any value w, then that must have been preceded
by the non-faulty replicas in C1 deciding AGREE(w). (iii) If a
non-faulty replica in nf(C2) decides RECEIVE(v), then all repli-
cas in nf(C2) will decides RECEIVE(v) and all replicas in nf(C1)
will decide CONFIRM(v) (whenever communication becomes
reliable).

The cluster-sending step for R1 and R2:
1: Instruct R1 to send ⟨send : v, C2⟩C1 to R2.

The receive role for C2:
2: event R2 ∈ nf(C2) receives message m := ⟨send : v, C2⟩C1

from R1 ∈ C1 do
3: if R2 does not have consensus on m then
4: Use local consensus on m and construct ⟨proof : m⟩C2 .
5: {Each replica in nf(C2) decides RECEIVE(v).}
6: Send ⟨proof : m⟩C2 to R1.

The confirmation role for C1:
7: event R1 ∈ nf(C1) receives message mp := ⟨proof : m⟩C2

with m := ⟨send : v, C2⟩C1 from R2 ∈ C2 do
8: if R1 does not have consensus on mp then
9: Use local consensus on mp.

10: {Each replica in nf(C1) decides CONFIRM(v).}

Figure 3: The cluster-sending step protocol CS-STEP(R1, R2,
v). In this protocol, R1 tries to send v to R2, which will succeed
if both R1 and R2 are non-faulty.

conditions and will exchange at most two messages between
C1 and C2.

Proof. We prove the three post-conditions separately. (i)
We assume that communication is reliable, R1 ∈ nf(C1), and
R2 ∈ nf(C2). Hence, R1 sends message m := ⟨send : v, C2⟩C1
to R2 (Line 1 of Figure 3). In the receive phase (Lines 2–6 of
Figure 3), replica R2 receives message m from R1. Replica R2
uses local consensus on m to replicate m among all replicas
C2 and, along the way, to constructs a proof of receipt mp :=
⟨proof : m⟩C2 . As all replicas in nf(C2) participate in this
local consensus, all replicas in nf(C2) will decide RECEIVE
on v from C1. Finally, the proof mp is returned to R1. In
the confirmation phase (Lines 7–10 of Figure 3), replica R1
receives the proof of receipt mp. Next, R1 uses local consensus
on mp to replicate mp among all replicas in nf(C1), after which
all replicas in nf(C1) decide CONFIRM on sending v to C2

(ii) A replica in nf(C2) only decides RECEIVE on v after
consensus is reached on a message m := ⟨send : v, C2⟩C1
(Line 5 of Figure 3). This message m not only contains the
value v, but also the identity of the recipient cluster C2. Due

to the usage of certificates and the pre-condition, the message
m cannot be created without the replicas in nf(C1) deciding
AGREE on sending v to C2.

(iii) A replica in nf(C1) only decides CONFIRM on v after
consensus is reached on a proof of receipt message mp :=
⟨proof : m⟩C2 (Line 10 of Figure 3). This consensus step
will complete for all replicas in C1 whenever communication
becomes reliable. Hence, all replicas in nf(C1) will eventually
decide CONFIRM on v. Due to the usage of certificates, the
message mp cannot be created without cooperation of the
replicas in nf(C2). The replicas in nf(C2) only cooperate in
constructing mp as part of the consensus step of Line 4 of
Figure 3. Upon completion of this consensus step, all replicas
in nf(C2) will decide RECEIVE on v.

In the following sections, we show how to use the cluster-
sending step in the construction of cluster-sending protocols.
In Section 4, we introduce synchronous protocols that provide
expected constant message complexity. Then, in Section 5,
we introduce synchronous protocols that additionally provide
worst-case linear message complexity, which is optimal. Fi-
nally, in Section 6, we show how to extend the presented
techniques to asynchronous communication.

4 Probabilistic Cluster-Sending with
Random Replica Selection

In the previous section, we introduced CS-STEP, the cluster-
sending step protocol that succeeds whenever the participating
replicas are non-faulty and communication is reliable. In this
section, we introduce a basic probabilistic cluster-sending
protocol that utilizes CS-STEP to perform cluster-sending
with expected constant costs.

Using CS-STEP, we build a three-step protocol that cluster-
sends a value v from C1 to C2:

1. First, the replicas in nf(C1) reach agreement and decide
AGREE on sending v to C2.

2. Then, the replicas in nf(C1) perform a probabilistic
cluster-sending step by electing replicas R1 ∈ C1 and
R2 ∈ C2 fully at random, after which CS-STEP(R1, R2, v)
is executed.

3. Finally, each replica in nf(C1) waits for the completion
of CS-STEP(R1, R2, v). If the waiting replicas decided
CONFIRM on v during this wait, then cluster-sending is
successful. Otherwise, we repeat the previous step.

To simplify presentation, we first present the above proto-
col assuming synchronous inter-cluster communication: in
this sectiom, we assume that messages sent by non-faulty
replicas will be delivered within some known bounded delay.
Synchronous systems can be modeled by pulses [10, 11]:

4



Journal of Systems Research (JSys) 2023

Protocol PCS(C1, C2, v):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: repeat
4: Choose replicas (R1,R2) ∈ C1 ×C2, fully at random.
5: CS-STEP(R1, R2, v)
6: Wait three global pulses.
7: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 4: The Synchronous Probabilistic Cluster-Sending
protocol PCS(C1, C2, v) that cluster-sends a value v from C1
to C2.

Definition 4.1. A system is synchronous if all inter-cluster
communication happens in pulses such that every message
sent in a pulse will be received in the same pulse.

We refer to Section 6 on how to generalize the results of
this section to practical environments with asynchronous and
unreliable communication.

The pseudo-code of the resultant Synchronous Probabilistic
Cluster-Sending protocol PCS can be found in Figure 4. Next,
we prove that PCS is correct and has expected-case constant
message complexity:

Theorem 4.2. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then PCS(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local
consensus steps in C1, one local consensus step in C2, and is
expected to make (nC1 nC2)/(nfC1nfC2) cluster-sending steps.2

Proof. Due to Lines 1–2 of Figure 4, PCS(C1, C2, v) estab-
lishes the pre-conditions for any execution of CS-STEP(R1,
R2, v) with R1 ∈ C1 and R2 ∈ C2. Using the correctness of CS-
STEP (Proposition 3.1), we conclude that PCS(C1, C2, v) re-
sults in cluster-sending v from C1 to C2 whenever the replicas
(R1,R2)∈ C1×C2 chosen at Line 4 of Figure 4 are non-faulty.
As the replicas (R1,R2) ∈ C1 ×C2 are chosen fully at random,
we have probability pi = nfCi/nCi , i∈{1,2}, of choosing Ri ∈
nf(Ci). The probabilities p1 and p2 are independent of each
other. Consequently, the probability of choosing (R1,R2) ∈
nf(C1)×nf(C2) is p = p1 p2 = (nfC1nfC2)/(nC1 nC2). As such,
each iteration of the loop at Line 3 of Figure 4 can be mod-
eled as an independent Bernoulli trial with probability of
success p, and the expected number of iterations of the loop
is p−1 = (nC1nC2)/(nfC1nfC2).

Finally, we prove that each local consensus step needs to
be performed only once. To do so, we consider the local
consensus steps triggered by the loop at Line 3 of Figure 4.
These are the local consensus steps at Lines 4 and 9 of Fig-
ure 3. The local consensus step at Line 4 can be initiated

2Throughout this paper, the number of consensus steps in the presented
cluster-sending protocols refers to the single consensus step necessary to
reach agreement in the sending cluster on sending a value v and all consensus
steps performed in all invocations of CS-STEP by the protocol.

by a faulty replica R2. After this single local consensus step
reaches consensus on message m := ⟨send : v, C2⟩C1 , each
replica in nf(C2) reaches consensus on m, decides RECEIVE
on v, and can construct mp := ⟨proof : m⟩C2 , this independent
of the behavior of R2. Hence, a single local consensus step for
m in C2 suffices, and no replica in nf(C2) will participate in
future consensus steps for m. An analogous argument proves
that a single local consensus step for mp in C1, performed at
Line 9 of Figure 3, suffices.

Remark 4.3. Although Theorem 4.2 indicates local consen-
sus steps in clusters C1 and C2, these local consensus steps
typically come for free as part of the protocol that uses cluster-
sending as a building block. To see this, we consider a multi-
shard transaction τ processed by clusters C1 and C2.

The decision of cluster C1 to send a value v to cluster C2
is a consequence of the execution of τ in C1. Before the
replicas in C1 execute τ, they need to reach consensus on the
order in which τ is executed in C1. As part of this consensus
step, the replicas in C1 can also construct ⟨send : v, C2⟩C1
without additional consensus steps. Hence, no consensus
step is necessary in C1 to send value v. Likewise, if value
v is received by replicas in C2 as part of some multi-shard
transaction execution protocol, then the replicas in C2 need to
perform their portion of the necessary transaction execution
steps to execute τ as a consequence of receiving v. To do
so, the replicas in C2 need to reach consensus on the order
in which these transaction execution steps are performed.
As part of this consensus step, the replicas in C2 can also
constructing a proof of receipt for v.

In typical fault-tolerant clusters, more than half of the repli-
cas are non-faulty (e.g., in synchronous systems with Byzan-
tine failures that use digital signatures, or in systems that only
deal with crashes) or more than two-third of the replicas are
non-faulty (e.g., asynchronous systems). In these systems,
PCS is expected to only performs a few cluster-sending steps:

Corollary 4.4. Let C1,C2 be disjoint clusters. If communi-
cation is synchronous, then the expected number of cluster-
sending steps performed by PCS(C1, C2, v) is upper bounded
by 4 if nC1 > 2fC1 and nC2 > 2fC2; and by 9

4 (= 2 1
4 ) if

nC1 > 3fC1 and nC2 > 3fC2 .

In PCS, the replicas (R1,R2) ∈ C1 ×C2 are chosen fully
at random and with replacement, as PCS does not retain any
information on failed probabilistic steps. In the worst case,
this prevents termination, as the same pair of replicas can be
picked repeatedly. Furthermore, PCS does not prevent the
choice of faulty replicas whose failure could be detected. We
can easily improve on this, as the failure of a probabilistic
step provides some information on the chosen replicas. In
specific, we have the following technical properties:

Lemma 4.1. Let C1,C2 be disjoint clusters. We assume syn-
chronous communication and assume that each replica in
nf(C1) decided AGREE on sending v to C2.

5
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1. Let (R1,R2) ∈ C1 ×C2. If CS-STEP(R1, R2, v) fails to
cluster-send v, then either R1 ∈ f(C1), R2 ∈ C2, or both.

2. Let R1 ∈ C1. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC2 +1 distinct replicas R2 ∈ C2, then R1 ∈ f(C1).

3. Let R2 ∈ C2. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC1 +1 distinct replicas R1 ∈ C1, then R2 ∈ f(C2).

Proof. The statement of this Lemma assumes that the pre-
conditions for any execution of CS-STEP(R1, R2, v) with R1 ∈
C1 and R2 ∈ C2 are established. Hence, by Proposition 3.1,
CS-STEP(R1, R2, v) will cluster-send v if R1 ∈ nf(C1) and
R2 ∈ nf(C2). If the cluster-sending step fails to cluster-send
v, then one of the replicas involved must be faulty, proving
the first property. Next, let R1 ∈ C1 and consider a set S ⊆ C2
of nS = fC2 +1 replicas such that, for all R2 ∈ S, CS-STEP(R1,
R2, v) fails to cluster-send v. Let S′ = S \ f(C2) be the non-
faulty replicas in S. As nS > fC2 , we have nS′ ≥ 1 and there
exists a R′

2 ∈ S′. As R′
2 /∈ f(C2) and CS-STEP(R1, R′

2, v) fails to
cluster-send v, we must have R1 ∈ f(C1) by the first property,
proving the second property. An analogous argument proves
the third property.

We can apply the properties of Lemma 4.1 to actively prune
which replica pairs PCS considers (Line 4 of Figure 4). No-
tice that pruning via Lemma 4.1(1) simply replaces choosing
replica pairs with replacement, as done by PCS, by choosing
replica pairs without replacement, this without further reduc-
ing the possible search space. Pruning via Lemma 4.1(2) does
reduce the search space, however, as each replica in C1 will
only be paired with a subset of fC2 +1 replicas in C2. Likewise,
pruning via Lemma 4.1(3) also reduces the search space. We
obtain the Pruned Synchronous Probabilistic Cluster-Sending
protocol (PPCS) by applying all three prune steps to PCS. By
construction, Theorem 4.2, and Lemma 4.1, we conclude:

Corollary 4.5. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then PPCS(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local
consensus steps in C1, one local consensus step in C2, is ex-
pected to make less than (nC1 nC2)/(nfC1nfC2) cluster-sending
steps, and makes worst-case (fC1 +1)(fC2 +1) cluster-sending
steps.

5 Worst-Case Linear-Time
Probabilistic Cluster-Sending

In the previous section, we introduced PCS and PPCS, two
probabilistic cluster-sending protocols that can cluster-send a
value v from C1 to C2 with expected constant cost. Unfortu-
nately, PCS does not guarantee termination, while PPCS has a
worst-case quadratic complexity. In this section, we improve
on this by presenting a probabilistic cluster-sending protocol
that has expected constant cost and guarantees termination

with a worst-case optimal linear complexity [18,20]. We refer
to Table 1 for an overview of the notation used in this section.

Table 1: Overview of the notation used in Section 5.

Notation Description

P1, P2 Permutation of a list of replicas from C1 and
C2, respectively.

m1, m2 Given a pair of lists of replicas (P1,P2), the
number of faulty replicas in list P1 and P2, re-
spectively.

b1 The number 1-faulty pairs in a given pair of
lists of replicas (P1,P2).

b2 The number 2-faulty pairs in a given pair of
lists of replicas (P1,P2).

b1,2 The number of both-faulty pairs in a given pair
of lists of replicas (P1,P2).

list(R) A list-representation of the replica set R.
perms(S) Permutation of list of replicas S.
S:n The first n elements in the list obtained by

repeatedly concatenating list S.
L|M Tthe list obtained from L by only keeping the

values that also appear in list M.
M(v,w) The number of distinct ways in which two

lists of v and w elements, respectively, can be
merged together (without shuffling elements
from their respective lists).

Φ A list-pair function.

∥P1;P2∥f The number of faulty positions in (P1,P2).
F(n,m1,m2,k) The number of permutations (P1,P2) with k

faulty positions of two given lists of n replicas
of which m1 and m2 replicas are faulty, respec-
tively.

E(n,m1,m2) The non-faulty position trials problem with
two lists of n replicas of which m1 and m2
replicas are faulty, respectively.

To improve on PCS and PPCS, we need to improve the
scheme by which we select replica pairs (R1,R2) ∈ C1 ×C2
that we use in cluster-sending steps. The straightforward
manner to guarantee a worst-case linear complexity is by
using a scheme that can select only up-to-n = max(nC1 ,nC2)
distinct pairs (R1,R2) ∈ C1 × C2. To select n replica pairs
from C1 ×C2, we will proceed in two steps.

1. We generate list S1 of n replicas taken from C1 and list
S2 of n replicas taken from C2.

2. Then, we choose permutations P1 ∈ perms(S1) and
P2 ∈ perms(S2) fully at random, and interpret each pair
(P1[i],P2[i]). 0 ≤ i < n, as one of the chosen replica
pairs.

We use the first step to deal with any differences in the sizes
of C1 and C2, and we use the second step to introduce suffi-
cient randomness in our protocol to yield a low expected-case
message complexity.
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Next, we introduce some notations to simplify reasoning
about the above list-based scheme. If R is a set of replicas,
then list(R) is the list consisting of the replicas in R placed in
a predetermined order (e.g., on increasing replica identifier).
If S is a list of replicas, then we write f(S) to denote the
faulty replicas in S and nf(S) to denote the non-faulty replicas
in S, and we write nS = |S|, fS = |{i | (0 ≤ i < nS)∧ S[i] ∈
f(S)}|, and nfS = nS − fS to denote the number of positions
in S with replicas, faulty replicas, and non-faulty replicas,
respectively. If (P1,P2) is a pair of equal-length lists of n =
|P1| = |P2| replicas, then we say that the i-th position is a
faulty position if either P1[i] ∈ f(P1) or P2[i] ∈ f(P2). We write
∥P1;P2∥f to denote the number of faulty positions in (P1,P2).
As faulty positions can only be constructed out of the fP1

faulty replicas in P1 and the fP2 faulty replicas in P2, we must
have max(fP1 , fP2)≤ ∥P1;P2∥f ≤ min(n, fP1 + fP2).

Example 5.1. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,5], f(C1) = {R1,1,R1,2};
S2 = list(C2) = [R2,1, . . . ,R2,5], f(C2) = {R2,1,R2,2}.

The set perms(S1)× perms(S2) contains 5!2 = 14400 list
pairs. Now, consider the list pairs (P1,P2),(Q1,Q2),
(R1,R2) ∈ perms(S1)×perms(S2) with

P1[R1,1,R1,5,R1,2,R1,4,R1,3],

P2[R2,1,R2,3,R2,2,R2,5,R2,4];

Q1[R1,1,R1,3,R1,5,R1,4,R1,2],

Q2[R2,5,R2,4,R2,3,R2,2,R2,1];

R1[R1,5,R1,4,R1,3,R1,2,R1,1],

R2[R2,1,R2,2,R2,3,R2,4,R2,5].

We have underlined the faulty replicas in each list, and
we have ∥P1;P2∥f = 2 = fS1 = fS2 , ∥Q1;Q2∥f = 3, and
∥R1;R2∥f = 4 = fS1 + fS2 .

In the following, we will use a list-pair function Φ to com-
pute the initial list-pair (S1,S2) of n replicas taken from C1
and C2, respectively. We build a cluster-sending protocol
that uses Φ to compute S1 and S2, uses randomization to
choose n replica pairs from S1 × S2, and, finally, performs
cluster-sending steps using only these n replica pairs. The
pseudo-code of the resultant Synchronous Probabilistic Lin-
ear Cluster-Sending protocol PLCS can be found in Figure 5.
Next, we prove that PLCS is correct and has a worst-case
linear message complexity:

Proposition 5.1. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and n > fS1 + fS2 , then
PLCS(C1, C2, v, Φ) results in cluster-sending v from C1 to C2.
The execution performs two local consensus steps in C1, one
local consensus step in C2, and makes worst-case fS1 + fS2 +1
cluster-sending steps.

Protocol PLCS(C1, C2, v, Φ):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: Let (S1,S2) := Φ(C1,C2).
4: Choose (P1,P2) ∈ perms(S1)×perms(S2) fully at random.
5: i := 0.
6: repeat
7: CS-STEP(P1[i], P2[i], v)
8: Wait three global pulses.
9: i := i+1.

10: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 5: The Synchronous Probabilistic Linear Cluster-
Sending protocol PLCS(C1, C2, v, Φ) that cluster-sends a
value v from C1 to C2 using list-pair function Φ.

Proof. Due to Lines 1–2 of Figure 5, PLCS(C1, C2, v, Φ) es-
tablishes the pre-conditions for any execution of CS-STEP(R1,
R2, v) with R1 ∈ C1 and R2 ∈ C2. Now let (P1,P2) ∈
perms(S1)×perms(S2), as chosen at Line 4 of Figure 5. As
Pi, i ∈ {1,2}, is a permutation of Si, we have fPi = fSi . Hence,
we have ∥P1;P2∥f ≤ fS1 + fS2 and there must exist a position
j, 0 ≤ j < n, such that (P1[ j],P2[ j]) ∈ nf(C1)×nf(C2). Using
the correctness of CS-STEP (Proposition 3.1), we conclude
that PLCS(C1, C2, v, Φ) results in cluster-sending v from C1 to
C2 in at most fS1 + fS2 +1 cluster-sending steps. Finally, the
bounds on the number of consensus steps follow from an ar-
gument analogous to the one in the proof of Theorem 4.2.

Proposition 5.1 only shows that PLCS will perform cluster-
sending when specific conditions are met on the list-pair
function. Next, we proceed in two steps to arrive at practical
list-pair functions for PLCS that can be used in combination
with PLCS to guarantee an expected constant cost. First,
in Section 5.1, we study the probabilistic nature of PLCS.
Then, in Section 5.2, we propose practical list-pair functions
and show that these functions yield instances of PLCS with
expected constant message complexity.

5.1 The Expected-Case Complexity of PLCS

The expected-case analysis of PCS and PPCS was rather
straightforward, as the sending and receiving replicas used by
these protocols are chosen fully at random and independent
of each other. Hence, the random choices made by both proto-
cols can be modelled via well-known independent Bernoulli
trials (see the proof of Theorem 4.2). In PLCS, the choice of
sending and receiving replicas are dependent, as they are cho-
sen from a list of possible replica pairs. As such, the random
choices made by PLCS can no longer be modelled via inde-
pendent Bernoulli trials. Hence, the expected-case analysis
of PLCS requires a further analysis of the probabilistic nature
of the randomized scheme used by PLCS.

7
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As the first step toward this analysis, we solve the following
abstract problem that captures the probabilistic argument at
the core of the expected-case complexity of PLCS:

Problem 5.2 (non-faulty position trials). Let S1 and S2 be lists
of |S1| = |S2| = n replicas. Choose permutations (P1,P2) ∈
perms(S1)× perms(S2) fully at random. Next, we inspect
positions in P1 and P2 fully at random (with replacement). The
non-faulty position trials problem asks how many positions
one expects to inspect to find the first non-faulty position.

Let S1 and S2 be lists of |S1| = |S2| = n replicas. To an-
swer the non-faulty position trials problem, we first look
at the combinatorics of faulty positions in pairs (P1,P2) ∈
perms(S1)× perms(S2). Let m1 = fS1 and m2 = fS2 . By
F(n,m1,m2,k), we denote the number of distinct pairs (P1,P2)
one can construct that have exactly k faulty positions, hence,
with ∥P1;P2∥f = k. As observed, we have max(m1,m2) ≤
∥P1;P2∥f ≤ min(n,m1 + m2) for any pair (P1,P2). Hence,
we have F(n,m1,m2,k) = 0 for all k < max(m1,m2) and
k > min(n,m1 +m2).

Now consider the step-wise construction of any permuta-
tion (P1,P2)∈ perms(S1)×perms(S2) with k faulty positions.
First, we choose (P1[0],P2[0]), the pair at position 0, after
which we choose pairs for the remaining n−1 positions. For
Pi[0], i ∈ {1,2}, we can choose n distinct replicas, of which
mi are faulty. If we pick a non-faulty replica, then the re-
mainder of Pi is constructed out of n−1 replicas, of which
mi are faulty. Otherwise, the remainder of Pi is constructed
out of n− 1 replicas of which mi − 1 are faulty. If, due to
our choice of (P1[0],P2[0]), the first position is faulty, then
only k−1 out of the n−1 remaining positions must be faulty.
Otherwise, k out of the n− 1 remaining positions must be
faulty. Combining this analysis yields four types for the first
pair (P1[0],P2[0]):

1. A non-faulty pair (P1[0],P2[0]) ∈ nf(P1)× nf(P2). We
have (n−m1)(n−m2) such pairs, and we have F(n−
1,m1,m2,k) different ways to construct the remainder of
P1 and P2.

2. A 1-faulty pair (P1[0],P2[0]) ∈ f(P1)×nf(P2). We have
m1(n − m2) such pairs, and we have F(n − 1,m1 −
1,m2,k−1) different ways to construct the remainder of
P1 and P2.

3. A 2-faulty pair (P1[0],P2[0]) ∈ nf(P1)× f(P2). We have
(n−m1)m2 such pairs, and we have F(n− 1,m1,m2 −
2,k−1) different ways to construct the remainder of P1
and P2.

4. A both-faulty pair (P1[0],P2[0])∈ f(P1)× f(P2). We have
m1m2 such pairs, and we have F(n − 1,m1 − 1,m2 −
1,k−1) different ways to construct the remainder of P1
and P2.

Hence, for all k, max(m1,m2) ≤ k ≤ min(n,m1 + m2),
F(n,m1,m2,k) is recursively defined by:

F(n,m1,m2,k) = (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1),

(both-faulty pair)

and the base case for this recursion is F(0,0,0,0) = 1.
Example 5.3. Reconsider the list pairs (P1,P2), (Q1,Q2), and
(R1,R2) from Example 5.1. In (P1,P2), we have both-faulty
pairs at positions 0 and 2 and non-faulty pairs at positions 1,
3, and 4. In (Q1,Q2), we have a 1-faulty pair at position 0,
non-faulty pairs at positions 1 and 2, a 2-faulty pair at position
3, and a both-faulty pair at position 4. Finally, in (R1,R2), we
have 2-faulty pairs at positions 0 and 1, a non-faulty pair at
position 2, and 1-faulty pairs at positions 3 and 4.

Using the combinatorics of faulty positions, we formalize
an exact solution to the non-faulty position trials problem:

Lemma 5.1. Let S1 and S2 be lists of n = nS1 = nS2 replicas
with m1 = fS1 and m2 = fS2 . If m1 +m2 < n, then the non-
faulty position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

F(n,m1,m2,k)

)
.

Proof. We have |perms(S1)| = |perms(S2)| = n!. Conse-
quently, we have |perms(S1)×perms(S2)|= n!2 and we have
probability 1/(n!2) to choose any pair (P1,P2)∈ perms(S1)×
perms(S2). Now consider such a pair (P1,P2) ∈ perms(S1)×
perms(S2). As there are ∥P1;P2∥f faulty positions in (P1,P2),
we have probability p(P1,P2) = (n−∥P1;P2∥f)/n to inspect
a non-faulty position. Notice that max(m1,m2)≤ ∥P1;P2∥f ≤
m1 +m2 < n and, hence, 0 < p(P1,P2) ≤ 1. Each of the in-
spected positions in (P1,P2) is chosen fully at random. Hence,
each inspection is a Bernoulli trial with probability of success
p(P1,P2), and we expect to inspect a first non-faulty position
in the p(P1,P2)

−1 = n/(n−∥P1;P2∥f)-th attempt. We con-
clude that the non-faulty position trials problem E(n,m1,m2)
has solution

1
n!2

(
∑

(P1,P2)∈perms(S1)×perms(S2)

n
n−∥P1;P2∥f

)
.

Notice that there are F(n,m1,m2,k) distinct pairs (P1,P2) ∈
perms(S1) × perms(S2) with ∥P′

1;P′
2∥f = k for each k,

max(m1,m2)≤ k ≤ m1+m2 < n. Hence, in the above expres-
sion for E(n,m1,m2), we can group on these pairs (P′

1,P
′
2) to

obtain the searched-for solution.
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To further solve the non-faulty position trials problem, we
work towards a closed form for F(n,m1,m2,k). Consider
any pair (P1,P2) ∈ perms(S1)×perms(S2) with ∥P1;P2∥f =
k obtained via the outlined step-wise construction. Let b1
be the number of 1-faulty pairs, let b2 be the number of 2-
faulty pairs, and let b1,2 be the number of both-faulty pairs
in (P1,P2). By construction, we must have k = b1 +b2 +b1,2,
m1 = b1 +b1,2, and m2 = b2 +b1,2 and by rearranging terms,
we can derive

b1,2 = (m1 +m2)− k, b1 = k−m2, b2 = k−m1.

Example 5.4. Consider

S1 = [R1,1, . . . ,R1,5], f(S1) = {R1,1,R1,2,R1,3};
S2 = [R2,1, . . . ,R2,5], f(S2) = {R2,1}.

Hence, we have n = 5, m1 = fS1 = 3, and m2 = fS2 = 1. If we
want to create a pair (P1,P2) ∈ perms(S1)×perms(S2) with
k = ∥P1;P2∥f = 3 faulty positions, then (P1,P2) must have
two non-faulty pairs, two 1-faulty pairs, no 2-faulty pairs,
and one both-faulty pair. Hence, we have n− k = 2, b1 = 2,
b2 = 0, and b1,2 = 1.

The above analysis only depends on the choice of m1, m2,
and k, and not on our choice of (P1,P2). Next, we use this
analysis to express F(n,m1,m2,k) in terms of the number of
distinct ways in which one can construct

(A) lists of b1 1-faulty pairs out of faulty replicas from S1
and non-faulty replicas from S2,

(B) lists of b2 2-faulty pairs out of non-faulty replicas from
S1 and faulty replicas from S2,

(C) lists of b1,2 both-faulty pairs out of the remaining faulty
replicas in S1 and S2 that are not used in the previous
two cases, and

(D) lists of n− k non-faulty pairs out of the remaining (non-
faulty) replicas in S1 and S2 that are not used in the
previous three cases;

and in terms of the number of distinct ways one can merge
these lists. As the first step, we look at how many distinct
ways we can merge two lists together:

Lemma 5.2. For any two disjoint lists S and T with |S|= v
and |T | = w, there exist M(v,w) = (v+w)!/(v!w!) distinct
lists L with L|S = S and L|T = T , in which L|M , M ∈ {S,T},
is the list obtained from L by only keeping the values that also
appear in list M.

Next, we look at the number of distinct ways in which
one can construct lists of type A, B, C, and D. Consider
the construction of a list of type A. We can choose

(m1
b1

)
distinct sets of b1 faulty replicas from S1 and we can choose(n−m2

b1

)
distinct sets of b1 non-faulty replicas from S2. As we

can order the chosen values from S1 and S2 in b1! distinct
ways, we can construct b1!2

(m1
b1

)(n−m2
b1

)
distinct lists of type A.

Likewise, we can construct b2!2
(n−m1

b2

)(m2
b2

)
distinct lists of

type B.

Example 5.5. We continue from the setting of Example 5.4:
we want to create a pair (P1,P2) ∈ perms(S1)× perms(S2)
with k = ∥P1;P2∥f = 3 faulty positions. To create (P1,P2),
we need to create b1 = 2 pairs that are 1-faulty. We have(m1

b1

)
=
(3

2

)
= 3 sets of two faulty replicas in S1 that we

can choose, namely the sets {R1,1,R1,2}, {R1,1,R1,3}, and
{R1,2,R1,3}. Likewise, we have

(n−m2
b1

)
=
(4

2

)
= 6 sets of two

non-faulty replicas in S2 that we can choose. Assume we
choose T1 = {R1,1,R1,3} from S1 and T2 = {R2,4,R2,5} from
S2. The two replicas in T1 can be ordered in nT1 ! = 2! = 2
ways, namely [R1,1,R1,3] and [R1,3,R1,1]. Likewise, the two
replicas in T2 can be ordered in nT2 ! = 2! = 2 ways. Hence,
we can construct 2 ·2 = 4 distinct lists of type A out of this
single choice for T1 and T2, and the sequences S1 and S2 pro-
vide us with

(m1
b1

)(n−m2
b1

)
= 18 distinct choices for T1 and T2.

We conclude that we can construct 72 distinct lists of type A
from S1 and S2.

By construction, lists of type A and type B cannot utilize the
same replicas from S1 or S2. After choosing b1 +b2 replicas
in S1 and S2 for the construction of lists of type A and B, the
remaining b1,2 faulty replicas in S1 and S2 are all used for
constructing lists of type C. As we can order these remaining
values from S1 and S2 in b1,2! distinct ways, we can construct
b1,2!2 distinct lists of type C (per choice of lists of type A
and B). Likewise, the remaining n− k non-faulty replicas in
S1 and S2 are all used for constructing lists of type D, and we
can construct (n− k)!2 distinct lists of type D (per choice of
lists of type A and B).

As the final steps, we merge lists of type A and B into lists
of type AB. We can do so in M(b1,b2) ways and the resultant
lists have size b1 +b2. Next, we merge lists of type AB and C
into lists of type ABC. We can do so in M(b1+b2,b1,2) ways
and the resultant lists have size k. Finally, we merge list of
type ABC and D together, which we can do in M(k,n− k)
ways. From this construction, we derive that F(n,m1,m2,k)
is equivalent to

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

which can be simplified to the following (see Appendix B):

Lemma 5.3. Let max(m1,m2) ≤ k ≤ min(n,m1 +m2) and
let b1 = k−m2, b2 = k−m1, and b1,2 = (m1 +m2)− k. We
have

F(n,m1,m2,k) =
m1!m2!(n−m1)!(n−m2)n!

b1!b2!b1,2!(n− k)!
.

9
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Proof. We write f (n,m1,m2,k) for the closed form in the
statement of this lemma and we prove the statement of this
lemma by induction. First, the base case F(0,0,0,0). In this
case, we have n = m1 = m2 = k = 0 and, hence, b1 = b2 =
b1,2 = 0, and we conclude f (0,0,0,0) = 1 = F(0,0,0,0).

Now assume F(n′,m′
1,m

′
2,k

′) = f (n′,m′
1,m

′
2,k

′) for all
n′ < n and all k′ with max(m′

1,m
′
2) ≤ k′ ≤ min(n′,m′

1 +
m′

2). Next, we prove F(n,m1,m2,k) = f (n,m1,m2,k) with
max(m1,m2)≤ k ≤ min(n,m1 +m2). We use the shorthand
G= F(n,m1,m2,k) and we have

G= (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1).

(both-faulty pair)

Notice that if n = k, then the non-faulty pair case does not
apply, as F(n−1,m1,m2,k) = 0, and evaluates to zero. Like-
wise, if b1 = 0, then the 1-faulty pair case does not apply,
as F(n − 1,m1 − 1,m2,k − 1) = 0, and evaluates to zero;
if b2 = 0, then the 2-faulty pair case does not apply, as
F(n− 1,m1,m2 − 1,k − 1) = 0, and evaluates to zero; and,
finally, if b1,2 = 0, then the both-faulty pair case does not
apply, as F(n−1,m1 −1,m2 −1,k−1) = 0, and evaluates to
zero.

First, we consider the case in which n > k, b1 > 0, b2 >
0, and b1,2 > 0. Hence, each of the four cases apply and
evaluate to non-zero values. We directly apply the induction
hypothesis on F(n−1,m1,m2,k), F(n−1,m1 −1,m2,k−1),
F(n−1,m1,m2−1,k−1), and F(n−1,m1−1,m2−1,k−1),
and obtain

G= (n−m1)(n−m2) ·
m1!m2!(n−1−m1)!(n−1−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+m1(n−m2) ·
(m1 −1)!m2!(n−m1)!(n−1−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n−1− (k−1))!

+(n−m1)m2 ·
m1!(m2 −1)!(n−1−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n−1− (k−1))!

+m1m2 ·
(m1 −1)!(m2 −1)!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n−1− (k−1))!
.

We apply x! = x(x−1)! and further simplify and obtain

G=
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n− k)!

= (n− k)
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b2
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1,2
m−1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

We have k = b1+b2+b1,2 and, hence, n= (n−k)+b1+b2+
b1,2 and we conclude

G= ((n− k)+b1 +b2 +b1,2) ·
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

= n
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
.

Next, in all other cases, we can repeat the above derivation
while removing the terms corresponding to the cases that
evaluate to 0. By doing so, we end up with the expression

G=
((∑t∈T t)m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

in which T contains the term (n− k) if n > k (the non-faulty
pair case applies), the term b1 if b1 > 0 (the 1-faulty case
applies), the term b2 if b2 > 0 (the 2-faulty case applies), and
the term b1,2 if b1,2 > 0 (the both-faulty case applies). As
each term (n− k), b1, b2, and b1,2 is in T whenever the term
is non-zero, we have ∑t∈T t = (n− k)+ b1 + b2 + b1,2 = n.
Hence, we can repeat the steps of the above derivation in all
cases, and complete the proof.

We combine Lemma 5.1 and Lemma 5.3 to conclude

Proposition 5.2. Let S1 and S2 be lists of n = nS1 = nS2

replicas with m1 = fS1 , m2 = fS2 , b1 = k−m2, b2 = k−m1,
and b1,2 = (m1+m2)−k. If m1+m2 < n, then the non-faulty
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position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

m1!m2!(n−m1)!(n−m2)!n!
b1!b2!b1,2!(n− k)!

)
.

Finally, we use Proposition 5.2 to derive

Proposition 5.3. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and fS1 + fS2 < n, then
the expected number of cluster-sending steps performed by
PLCS(C1, C2, v, Φ) is less than E(n, fS1 , fS2).

Proof. Let (P1,P2)∈ perms(S1)×perms(S2). We notice that
PLCS inspects positions in P1 and P2 in a different way than
the non-faulty trials problem: at Line 7 of Figure 5, positions
are inspected one-by-one in a predetermined order and not
fully at random (with replacement). Next, we will argue that
E(n, fS1 , fS2) provides an upper bound on the expected num-
ber of cluster-sending steps regardless of these differences.
Without loss of generality, we assume that S1 and S2 each
have n distinct replicas. Consequently, the pair (P1,P2) rep-
resents a set R of n distinct replica pairs taken from C1 ×C2.
We notice that each of the n! permutations of R is represented
by a single pair (P′

1,P
′
2) ∈ perms(S1)×perms(S2).

Now consider the selection of positions in (P1,P2) fully
at random, but without replacement. This process will yield
a list [ j0, . . . , jn−1] ∈ perms([0, . . . ,n−1]) of positions fully
at random. Let Qi = [Pi[ j0], . . . ,Pi[ jn−1]], i ∈ {1,2}. We no-
tice that the pair (Q1,Q2) also represents R and we have
(Q1,Q2) ∈ perms(S1)× perms(S2). Hence, by choosing a
pair (P1,P2) ∈ perms(S1)×perms(S2), we choose set R fully
at random and, at the same time, we choose the order in which
replica pairs in R are inspected fully at random.

Finally, we note that PLCS inspects positions without re-
placement. As the number of expected positions inspected
in the non-faulty position trials problem decreases if we
choose positions without replacement, we have proven that
E(n, fS1 , fS2) is an upper bound on the expected number of
cluster-sending steps.

5.2 Practical Instances of PLCS

As the last step in providing practical instances of PLCS, we
need to provide practical list-pair functions to be used in con-
junction with PLCS. We provide two such functions that ad-
dress most practical environments. Let C1,C2 be disjoint clus-
ters, let nmin = min(nC1 ,nC2), and let nmax = max(nC1 ,nC2).
We provide list-pair functions

Φmin(C1,C2) 7→ (list(C1)
:nmin , list(C2)

:nmin),

Φmax(C1,C2) 7→ (list(C2)
:nmax , list(C2)

:nmax),

in which L:n denotes the first n values in the list obtained by
repeating list L. Next, we illustrate usage of these functions:

Example 5.6. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,9];
S2 = list(C2) = [R2,1, . . . ,R2,4].

We have

Φmin(C1,C2) = ([R1,1, . . . ,R1,4], list(C2));
Φmax(C1,C2) = (list(C1), [R2,1, . . . ,R2,4,R2,1, . . . ,R2,4,R2,1]).

Next, we combine Φmin and Φmax with PLCS, show that
in practical environments Φmin and Φmax satisfy the require-
ments put on list-pair functions in Proposition 5.1 to guarantee
termination and cluster-sending, and use these results to de-
termine the expected constant complexity of the resulting
instances of PLCS.

Theorem 5.7. Let C1,C2 be disjoint clusters with synchronous
communication.

1. If n = min(nC1 ,nC2)> 2max(fC1 , fC2), then the expected
number of cluster-sending steps performed by PLCS(C1,
C2, v, Φmin) is upper bounded by 4. For every (S1,S2) :=
Φmin(C1,C2), we have n = nS1 = nS2 , n > 2fS1 , n > 2fS2 ,
and n > fS1 + fS2

2. If n = min(nC1 ,nC2)> 3max(fC1 , fC2), then the expected
number of cluster-sending steps performed by PLCS(C1,
C2, v, Φmin) is upper bounded by 9

4 (= 2 1
4 ). For every

(S1,S2) := Φmin(C1,C2), we have n = nS1 = nS2 , n >
3fS1 , n > 3fS2 , and n > fS1 + fS2 .

3. If nC1 > 3fC1 and nC2 > 3fC2 , then the expected number
of cluster-sending steps performed by PLCS(C1, C2, v,
Φmax) is upper bounded by 3. For every (S1,S2) :=
Φmax(C1,C2), we have n= nS1 = nS2 =max(nC1 ,nC2)>
fS1 + fS2 and either we have nC1 ≥ nC2 , n > 3fS1 , and
n > 2fS2 ; or we have nC2 ≥ nC1 , n > 2fS1 , and n > 3fS2 .

Each of these instance of PLCS results in cluster-sending v
from C1 to C2.

Proof. First, we prove the properties of Φmin and Φmax
claimed in the three statements of the theorem. In the first and
second statement of the theorem, we have min(nC1 ,nC2) >
cmax(fC1 , fC2), c ∈ {2,3}. Let (S1,S2) := Φmin(C1,C2)
and n = nS1 = nS2 . By definition of Φmin, we have n =
min(nC1 ,nC2), in which case Si, i ∈ {1,2}, holds n dis-
tinct replicas from Ci. Hence, we have fCi ≥ fSi and, as
n > cmax(fC1 , fC2)≥ cfCi , also n > cfSi . Finally, as n > 2fS1

and n > 2fS2 , also 2n > 2fS1 +2fS2 and n > fS1 + fS2 holds.
In the last statement of the theorem, we have nC1 > 3fC1

and nC2 > 3fC2 . Without loss of generality, we assume nC1 ≥
nC2 . Let (S1,S2) := Φmax(C1,C2) and n = nS1 = nS2 . By
definition of Φmax, we have n = max(nC1 ,nC2) = nC1 . As
n = nC1 , we have S1 = list(C1). Consequently, we also have
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fS1 = fC1 and, hence, nS1 > 3fC1 . Next, we will show that
nS2 > 2fS2 . Let q = nC1 divnC2 and r = nC1 mod nC2 . We
note that list(C2)

:n contains q full copies of list(C2) and one
partial copy of list(C2). Let T ⊂ C2 be the set of replicas in
this partial copy. By construction, we have nS2 = qnC2 + r >
q3fC2 + fT + nfT and fS2 = qfC2 + fT with fT ≤ min(fC2 ,r).
As q > 1 and fC2 ≥ fT , we have qfC2 ≥ fC2 ≥ fT . Hence,
nS2 > 3qfC2 + fT +nfT > 2qfC2 + fC2 + fT +nfT ≥ 2(qfC2 +
fT ) + nfT ≥ 2fS2 . Finally, as n > 3fS1 and n > 2fS2 , also
2n > 3fS1 +2fS2 and n > fS1 + fS2 holds.

Now, we prove the upper bounds on the expected num-
ber of cluster-sending steps for PLCS(C1, C2, v, Φmin) with
min(nC1 ,nC2)> 2max(fC1 , fC2). By Proposition 5.3, the ex-
pected number of cluster-sending steps is upper bounded
by E(n, fS1 , fS2). In the worst case, we have n = 2 f + 1
with f = fS1 = fS2 . Hence, the expected number of cluster-
sending steps is upper bounded by E(2 f + 1, f , f ), f ≥ 0.
We claim that E(2 f +1, f , f ) simplifies to E(2 f +1, f , f ) =
4−2/( f +1)− f !2/(2 f )!. Hence, for all S1 and S2, we have
E(n, fS1 , fS2) < 4. An analogous argument can be used to
prove the other upper bounds.

Note that the third case of Theorem 5.7 corresponds to
cluster-sending between arbitrary-sized resilient clusters that
each operate using Byzantine fault-tolerant consensus proto-
cols.

Remark 5.8. The upper bounds on the expected-case com-
plexity of instances of PLCS presented in Theorem 5.7 match
the upper bounds for PCS presented in Corollary 4.4. This
does not imply that the expected-case complexity for these
protocols is the same, however, as the probability distributions
that yield these expected-case complexities are very different.
To see this, consider a system in which all clusters have n
replicas of which f , n = 2 f +1, are faulty. Next, we denote
the expected number of cluster-sending steps of protocol P
by EP, and we have

EPCS =
(2 f +1)2

( f +1)2 = 4− 4 f +3
( f +1)2 ;

EPLCS = E(2 f +1, f , f ) = 4− 2
( f +1)

− f !2

(2 f )!
.

In Figure 6, we have illustrated this difference by plotting the
expected-case complexity of PCS and PLCS for systems with
equal-sized clusters. In practice, we see that the expected-case
complexity for PCS is slightly lower than the expected-case
complexity for PLCS.

5.3 Practical Considerations
The results in this paper address the worst-case use-case of
cluster-sending: the exchange of a single value between clus-
ters in complete isolation without any knowledge on the like-
lihood of specific replicas to be faulty. Practical use-cases

typically provide additional knowledge that can be used to fur-
ther fine-tune the cluster-sending protocols. E.g., if multiple
values are to be exchanged in consecutive steps, then one can
start the cluster-sending of the next value by first attempting
to cluster-send via the previously-successful replica pair and
by skipping any replica pairs that have failed (in preceding
rounds). Likewise, if the likelihood of replicas to be faulty
is known to be skewed, then one can incorporate the skew in
the fully at random selection of replica pairs to maximize the
likelihood of selection non-faulty replica pairs.

The cluster-sending problem we consider here only con-
siders sending a value from one cluster to another cluster.
The cluster-sending problem can be generalized in two ways
toward a multi-cluster-sending protocol:

1. Cluster C1 sends a value v to multiple other clusters
C2,1, . . . ,C2,n, and the success of sending v to any of the
clusters C2,i is independent of the success of sending v to
any of the other clusters C2, j, 1 ≤ i ̸= j ≤ n. In this case,
the cluster-sending steps to each cluster are independent
of each other. Hence, the solutions we present in this
paper can be applied in a straightforward manner.

2. Cluster C1 sends a value v to multiple other clusters
C2,1, . . . ,C2,n and these clusters only successfully receive
v if all clusters do so. This problem is much more akin
the traditional commit problem as solved by two-phase
commit protocols and three-phase commit protocols in
the non-resilient setting [14,31,36]. One can use cluster-
sending as a fundamental resilient communication primi-
tive on top of which one can implement resilient versions
of these commit protocols (see, e.g., as is the focus of
BYSHARD [19, 21]).

6 Asynchronous Communication

In the previous sections, we introduced PCS, PPCS, and PLCS,
three probabilistic cluster-sending protocols with expected
constant message complexity. To simplify presentation, we
have presented their design with respect to a synchronous
environment. Next, we consider their usage in environments
with asynchronous inter-cluster communication due to which
messages can get arbitrary delayed, duplicated, or dropped.

We notice that the presented protocols only depend on syn-
chronous communication to minimize communication: at the
core of the correctness of PCS, PPCS, and PLCS is the cluster-
sending step performed by CS-STEP, which does not make
any assumptions on communication (Proposition 3.1). Conse-
quently, PCS, PPCS, and PLCS can easily be generalized to
operate in environments with asynchronous communication.

First, we observe that message duplication and out-of-order
delivery have no impact on the cluster-sending step performed
by CS-STEP. Hence, we do not need to take precautions
against such asynchronous behavior. Furthermore, if com-
munication is asynchronous, but reliable (messages do not
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Figure 6: Comparison of the expected-case complexity of PLCS and PCS as a function of the number of faulty replicas.

get lost, but can get duplicated, be delivered out-of-order, or
get arbitrarily delayed), both PPCS and PLCS will be able to
always perform cluster-sending in a finite number of steps.

If communication is asyncrhonous and unreliable (mes-
sages sent between non-faulty replicas can get lost and all
cluster-sending steps can fail), then the presented syncrhonous
protocols can fail and, hence, need to be adjusted to the asyn-
crhonous environment in which they are deployed. The best
way in which a probabilistic cluster-sending solution can deal
with unreliable asynchronous communication depends on the
model of asynchronous communication one is optimizing for.

As an example, we illustrate cluster-sending with a basic
model of unreliable communication in which each communi-
cation step can independently fail with a probability of pfail.
In this setting, replicas in C1 can simply continue cluster-
sending steps until a step succeeds, which will eventually
happen. Similar to the proof of Theorem 4.2, we can prove
the following:

Theorem 6.1. Let C1,C2 be disjoint clusters. If each com-
munication step can independently fail with a probability
of pfail, then PCS(C1, C2, v) is expected to result in cluster-
sending v from C1 to C2 in (nC1nC2)/(nfC1nfC2) ·

1
(1−pfail)2

cluster-sending steps.

Sketch. There are two communication steps between R1 ∈ C1
and R2 ∈ C2. With a message loss of pfail between the clus-
ters, the probability q that no communication failure happens
during a cluster-sending step between two non-faulty replicas
is (1− pfail)

2.

Not all models of asynchronous communication allow for
such a precise characterization of the expected-case complex-
ity for cluster-sending: often, communication steps are not
fully independent as the communication model allows for
periods in which no communication will succeed. This is the
case for the partial synchrony model, which is often employed
by primary-backup consensus protocols such as PBFT. In the

partial synchrony model, unreliable periods of communica-
tion are followed by sufficiently-long periods of reliable com-
munication, during which cluster-sending with the presented
algorithms will always succeed. During arbitrary-length peri-
ods of unreliable of communication, a cluster-sending attempt
can perform an arbitrary number of cluster-sending steps.

Although the partial synchrony model and many other asyn-
chronous communication models do not allow for a precise
characterization of the expected-case complexity, we can still
use our protocols to provide cluster-sending eventually: run-
ning the algorithms until successful cluster-sending is per-
formed, by simply continuing until a step succeeds (PCS)
or by rerunning the protocol until a step succeeds (PPCS,
and PLCS), will assure success as soon as communication
becomes reliable.

We note that if communication is asynchronous, then mes-
sages can get arbitrarily delayed. Fortunately, practical en-
vironments operate with large periods of reliable communi-
cation in which the majority of the messages arrive within
some bounded delay unknown to C1 and C2. Hence, repli-
cas in C1 can simply assume some delay δ. If this delay is
too short, then a cluster-sending step can appear to fail sim-
ply because the proof of receipt is still under way. In this
case, cluster-sending will still be achieved when the proof of
receipt arrives, but spurious cluster-sending steps can be initi-
ated in the meantime. To reduce the number of such spurious
cluster-sending steps, all non-faulty replicas in C1 can use
exponential backoff to increase the message delay δ toward
some reasonable upper bound (e.g., 100 s).

Finally, asynchronous environments often necessitate
rather high assumptions on the message delay δ. Conse-
quently, the duration of a single failed cluster-sending step
performed by CS-STEP will be high. Here, a trade-off can be
made between message complexity and duration by starting
several rounds of the cluster-sending step at once, which will
sharply reduce the duration of the protocol with only a con-
stant increase in expected message complexity. For example,
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if PCS is expected to perform four cluster-sending steps, then
one can reduce the expected-case duration of cluster-sending
from the duration of four cluster-sending steps to the duration
of one cluster-sending step by simply performing four cluster-
sending steps in parallel (of which one is expected to succeed).
In the presence of unreliable communication, one can increase
the number of parallel cluster-sending steps in accordance
with Theorem 6.1 to keep the duration of cluster-sending low.

7 Performance evaluation

In the previous sections, we introduced probabilistic cluster-
sending protocols with expected-case constant message com-
plexity. To gain further insight in the performance attainable
by these protocols, especially in environments with unreliable
communication, we implemented these protocols in a simu-
lated sharded resilient environment that allows us to control
the faulty replicas and the message loss rates.3 As a base-
line of comparison, we also evaluated three cluster-sending
protocols from the literature:

1. The worst-case optimal cluster-sending protocol PBS-
CS of Hellings et al. [18, 20] that can perform cluster-
sending using only fC1 + fC2 + 1 messages, which is
worst-case optimal. This protocol requires reliable com-
munication.

2. The broadcast-based cluster-sending protocol of
CHAINSPACE [1] that can perform cluster-sending us-
ing nC1nC2 messages. This protocol requires reliable
communication.

3. The global sharing protocol of GEOBFT [16], an opti-
mistic cluster-sending protocol that assumes that each
cluster uses a primary-backup consensus protocol (e.g.,
PBFT [6]) and optimizes for the case in which the coor-
dinating primary of C1 is non-faulty. In this optimistic
case, GEOBFT can perform cluster-sending using only
fC2 + 1 messages. To deal with faulty primaries and
unreliable communication, GEOBFT employs a costly
remote view-change protocol, however.

We refer to Figure 2 for an analytical comparison between
these three cluster-sending protocols and our three probabilis-
tic cluster-sending protocols.

In each experiment, we measured the number of messages
exchanged in 10000 runs of the cluster-sending protocol un-
der consideration. In specific, in each run we measure the
number of messages exchanged when sending a value v from a
cluster C1 to a cluster C2 with nC1 = nC2 = 3fC1 +1= 3fC2 +1,
and we aggregate this data over 10000 runs. The messages
exchanged is an objective measure of the performance of the

3The full implementation of this experiment is available at https://www.
jhellings.nl/projects/csp/.

cluster-sending protocols under consideration that is inde-
pendent of the environment (e.g., network bandwidth, mes-
sage delays) and the application use-case for which cluster-
sending is used. As we use equal-sized clusters, we have
Φmin(C1,C2) = Φmax(C1,C2) and, hence, we use a singe in-
stance of PLCS.

Next, we detail the two experiments we performed and
look at their results.

7.1 Performance of Cluster-Sending Protocols

In our first experiment, we measure the number of messages
exchanged as a function of the number of faulty replicas.
In this case, we assumed reliable communication, due to
which we could include all six protocols. The results of this
experiment can be found in Figure 7.

As is clear from the results, our probabilistic cluster-
sending protocols are able to perform cluster-sending with
only a constant number of messages exchanged. Furthermore,
we see that the performance of our cluster-sending protocols
matches the theoretical expected-case analysis in this paper
and closely follows the expected performance illustrated in
Figure 6 (note that Figure 6 plots cluster-sending steps and
each cluster-sending step involves the exchange of two mes-
sages between clusters).

As all other cluster-sending protocols have a linear (PBS-
CS and GEOBFT) or quadratic (CHAINSPACE) message com-
plexity, our probabilistic cluster-sending protocols outper-
form the other cluster-sending protocols. This is especially
the case when dealing with bigger clusters, in which case
the expected-case constant message complexity of our prob-
abilistic cluster-sending protocols shows the biggest advan-
tage. Only in the case of the smallest clusters can the other
cluster-sending protocols outperform our probabilistic cluster-
sending protocols, as PBS-CS, GEOBFT, and CHAINSPACE
use reliable communication to their advantage to eliminate
any acknowledgment messages send from the receiving clus-
ter to the sending cluster. We believe that the slightly higher
cost of our probabilistic cluster-sending protocols in these
cases is justified, as our protocols can effectively deal with
unreliable communication.

7.2 Message Loss

In our second experiment, we measure the number of mes-
sages exchanged as a function of the number of faulty replicas
and as a function of the message loss (in percent) between
the two clusters. We only focus on message loss between
clusters, and we assume that consensus steps within a cluster
always succeed. In this case, we only included our probabilis-
tic cluster-sending protocols, as PBS-CS and CHAINSPACE
both assume reliable communication and GEOBFT is only
able to perform recovery via remote view-changes in periods
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Figure 7: A comparison of the number of message exchange steps as a function of the number of faulty replicas in both clusters
by our probabilistic cluster-sending protocols PCS, PPCS, and PLCS, and by three protocols from the literature. For each protocol,
we measured the number of message exchange steps to send a value between two equally-sized clusters (average of 10000 runs),
each cluster having n = 3f+1 replicas. †The results for GEOBFT are a plot of the best-case optimistic phase of that protocol.

of reliable communication. The results of this experiment can
be found in Figure 8.

Theorem 6.1 can be used to derive the expected-case com-
plexity of PCS in each of the cases. For example, with a
message loss of pfail = 30%, the probability q that no com-
munication failure happens during a cluster-sending step is
q = 0.49. Hence, when compared to the case without mes-
sage loss, we expect an increase in the message complexity
by a factor 1/q ≈ 2. Our measurements on PCS show that
this expected increase also happens in practice. For PPCS
and PLCS, we did not provide a theoretical analysis of the
expected-case complexity. Still, in practice we see a similar
behavior as with PCS: we see an increase in the message
complexity by a factor 1/q ≈ 2 for all protocols.

This observation extends to other probabilities of message
loss. Although the probabilistic arguments underpinning the
expected-case cost of, on the one hand, PCS and PPCS and,
on the other hand, PLCS are vastly different, the results of
these experiments show that across the board, the practical
performance of the three protocols is similar.

These results further underline the practical benefits of
each of the probabilistic cluster-sending protocols, especially
for larger clusters: even in the case of high message loss
rates, each of our probabilistic cluster-sending protocols are
able to outperform the cluster-sending protocols PBS-CS,
CHAINSPACE, and GEOBFT, which can only operate with
reliable-communication.

8 Related Work

Although there is abundant literature on distributed systems
and on consensus-based resilient systems (e.g., [2, 5, 8, 15,
17, 31, 37]), there is only limited work on communication
between resilient systems [1, 16, 18, 20]. In the previous sec-

tion, we have already compared PCS, PPCS, and PLCS with
the worst-case optimal cluster-sending protocols of Hellings
et al. [18, 20], the optimistic cluster-sending protocol of
GEOBFT [16], and the broadcast-based cluster-sending pro-
tocols of CHAINSPACE [1]. Furthermore, we notice that
cluster-sending can be solved using well-known Byzantine
primitives such as consensus, interactive consistency, and
Byzantine broadcasts [6, 9, 27]. These primitives are much
more costly than cluster-sending protocols, however, and re-
quire huge amounts of communication between all involved
replicas.

In parallel to the development of traditional resilient sys-
tems and permissioned blockchains, there has been promis-
ing work on sharding in permissionless blockchains such
as BITCOIN [28] and ETHEREUM [38]. Examples include
techniques for enabling reliable cross-chain coordination via
sidechains, blockchain relays, atomic swaps, atomic com-
mitment, and cross-chain deals [12, 13, 22, 24, 25, 39, 40].
Unfortunately, these techniques are deeply intertwined with
the design goals of permissionless blockchains in mind (e.g.,
cryptocurrency-oriented), and are not readily applicable to
traditional consensus-based Byzantine clusters.

9 Conclusion

In this paper, we presented probabilistic cluster-sending proto-
cols that each provide highly-efficient solutions to the cluster-
sending problem. Our probabilistic cluster-sending proto-
cols can facilitate communication between Byzantine fault-
tolerant clusters with expected constant communication be-
tween clusters. For practical environments, our protocols can
support worst-case linear communication between clusters,
which is optimal, and deal with asynchronous and unreli-
able communication. The low practical cost of our cluster-

15



Journal of Systems Research (JSys) 2023

Message Performance of Probabilistic Cluster-Sending ( median, interquartile range, 1–99 percentile range)
Loss PCS PPCS PLCS
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Figure 8: A comparison of the number of message exchange steps as a function of the number of faulty replicas in both clusters
and of the message loss by our probabilistic cluster-sending protocols PCS, PPCS, and PLCS. For each protocol, we measured the
number of message exchange steps to send 10000 values between two equally-sized clusters, each cluster having n = 3f+1
replicas, after which we aggregated the measurements to obtain a summary of the distribution of messages exchanged.

sending protocols further enables the development and de-
ployment of high-performance systems that are constructed
out of Byzantine fault-tolerant clusters, e.g., fault-resilient
geo-aware sharded data processing systems.
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A The proof of Lemma 5.2

To get the intuition behind the closed form of Lemma 5.2, we
take a quick look at the combinatorics of list-merging. Notice
that we can merge lists S and T together by either first taking
an element from S or first taking an element from T . This
approach towards list-merging yields the following recursive
solution to the list-merge problem:

M(v,w)=

{
M(v−1,w)+M(v,w−1) if v > 0 and w > 0;
1 if v = 0 or w = 0.

Consider lists S and T with |S| = v and |T | = w distinct
values. We have |perms(S)| = v!, |perms(T )| = w!, and
|perms(S∪T )|= (v+w)!. We observe that every list-merge
of (PS,PT ) ∈ perms(S)× perms(T ) is a unique value in
perms(S ∪ T ). Furthermore, every value in perms(S ∪ T )
can be constructed by such a list-merge. As we have
|perms(S)×perms(T )|= v!w!, we derive the closed form

M(v,w) =
(v+w)!
(v!w!)

of Lemma 5.2. Next, we formally prove this closed form.

Proof. We prove this by induction. First, the base cases
M(0,w) and M(v,0). We have

M(0,w) =
(0+w)!

0!w!
=

w!
w!

= 1;

M(v,0) =
(v+0)!

v!0!
=

v!
v!

= 1.

Next, we assume that the statement of the lemma holds for
all non-negative integers v′,w′ with 0 ≤ v′ +w′ ≤ j. Now
consider non-negative integers v,w with v+w = j+ 1. We
assume that v > 0 and w > 0, as otherwise one of the base
cases applies. Hence, we have

M(v,w) =M(v−1,w)+M(v,w−1).

We apply the induction hypothesis on the terms M(v−1,w)
and M(v,w−1) and obtain

M(v,w) =
(
((v−1)+w)!
(v−1)!w!

)
+

(
(v+(w−1))!

v!(w−1)!

)
.
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Next, we apply x! = x(x−1)! and simplify the result to obtain

M(v,w) =
(

v(v+w−1)!
v!w!

)
+

(
w(v+w−1)!

v!w!

)
=

(
(v+w)(v+w−1)!

v!w!

)
=

(v+w)!
v!w!

,

which completes the proof.

B The simplification of F(n,m1,m2,k)

Let g be the expression

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

as stated right above Lemma 5.3. We will show that g is
equivalent to the closed form of F(n,m1,m2,k), as stated in
Lemma 5.3.

Proof. We use the shorthands T1 =
(m1

b1

)(n−m2
b1

)
and T2 =(n−m1

b2

)(m2
b2

)
, and we have

g = b1!2T1b2!2T2 ·
M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k).

We apply Lemma 5.2 on terms M(b1,b2), M(b1 + b2,b1,2),
and M(k,n− k), apply k = b1 + b2 + b1,2, and simplify to
derive

g = b1!2T1b2!2T2 ·
(b1 +b2)!

b1!b2!
b1,2!2 (b1 +b2 +b1,2)!

(b1 +b2)!b1,2!
(n− k)!2 (k+n− k)!

k!(n− k)!

= b1!T1b2!T2b1,2!(n− k)!n!.

Finally, we expand the binomial terms T1 and T2, apply b1,2 =
m1 −b1 = m2 −b2 and k = m1 +b2 = m2 +b1, and simplify
to derive

g = b1!
m1!

b1!(m1 −b1)!
(n−m2)!

b1!(n−m2 −b1)!
·

b2!
(n−m1)!

b2!(n−m1 −b2)!
m2!

b2!(m2 −b2)!
·

b1,2!(n− k)!n!

=
m1!
b1,2!

(n−m2)!
b1!(n− k)!

(n−m1)!
b2!(n− k)!

m2!
b1,2!

b1,2!(n− k)!n!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
,

which completes the proof.

C The Closed Form of E(2 f +1, f , f )

Here, we shall prove that

E(2 f +1, f , f ) = 4− 2
( f +1)

− f !2

(2 f )!
.

Proof. By Proposition 5.2 and some simplifications, we have

E(2 f +1, f , f ) =
1

(2 f +1)!2 ·(
2 f

∑
k= f

2 f +1
2 f +1− k

f !2( f +1)!2(2 f +1)!
(k− f )!2(2 f − k)!(2 f +1− k)!

)
.

First, we apply x! = x(x−1)!, simplify, and obtain

E(2 f +1, f , f ) =
f !2(2 f +1)
(2 f +1)!

·(
2 f

∑
k= f

( f +1)!2

(k− f )!2(2 f +1− k)!2

)

=
f !2

(2 f )!

(
f

∑
k=0

( f +1)!2

k!2( f +1− k)!2

)

=
f !2

(2 f )!

(
f

∑
k=0

(
f +1

k

)2
)
.

Next, we apply
(m

n

)
=
( m

m−n

)
, extend the sum by one term,

and obtain

E(2 f +1, f , f ) =
f !2

(2 f )!
·((

f+1

∑
k=0

(
f +1

k

)(
f +1

f +1− k

))
−
(

f +1
f +1

)(
f +1

0

))
.

Then, we apply Vandermonde’s Identity to eliminate the sum
and obtain

E(2 f +1, f , f ) =
f !2

(2 f )!

((
2 f +2
f +1

)
−1
)
.
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Finally, we apply straightforward simplifications and obtain

E(2 f +1, f , f ) =
f !2

(2 f )!
(2 f +2)!

( f +1)!( f +1)!
− f !2

(2 f )!

=
f !2

(2 f )!
(2 f )!(2 f +1)(2 f +2)

f !2( f +1)2 − f !2

(2 f )!

=
(2 f +1)(2 f +2)

( f +1)2 − f !2

(2 f )!

=
(2 f +2)2

( f +1)2 − 2 f +2
( f +1)2 − f !2

(2 f )!

=
4( f +1)2

( f +1)2 − 2( f +1)
( f +1)2 − f !2

(2 f )!

= 4− 2
f +1

− f !2

(2 f )!
,

which completes the proof.
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