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Abstract

We introduce VBPI-Mixtures, an innovative algorithm aimed at improving the precision
of phylogenetic posterior distributions, with a focus on accurately approximating tree-
topologies and branch lengths. Although Variational Bayesian Phylogenetic Inference
(VBPI)—a state-of-the-art black-box variational inference (BBVI) framework—has achieved
significant success in approximating these distributions, it faces challenges in dealing with
the multimodal nature of tree-topology posteriors. While advanced deep learning techniques
like normalizing flows and graph neural networks have enhanced VBPI’s approximations of
branch-length posteriors, there has been a gap in improving its tree-topology posterior ap-
proximations. Our novel VBPI-Mixtures algorithm addresses this gap by leveraging recent
advancements in mixture learning within the BBVI domain. Consequently, VBPI-Mixtures
can capture distributions over tree-topologies that other VBPI algorithms cannot model.
We demonstrate superior performance on challenging density estimation tasks across vari-
ous real phylogenetic datasets.

1 Introduction

Phylogenetic inference has a wide range of applications in various fields, such as molecular evolution, epi-
demiology, ecology, and tumor progression, making it an essential tool for modern evolutionary research.
Bayesian phylogenetics allows researchers to reason about uncertainty in their findings about the evolution-
ary relationship between species.

The posterior distribution over phylogenetic trees given the species data is, however, challenging to infer,
since the latent space is a Cartesian product of the discrete tree-topology space and the continuous branch-
length space. Furthermore, the cardinality of the tree-topology space grows as a double factorial of the
number of species (taxa), making the marginal likelihood computationally intractable in most interesting
problem settings.

For over two decades, Markov Chain Monte Carlo (MCMC) approaches have been the go-to approaches
for Bayesian phylogenetic analysis, where the MrBayes software (Huelsenbeck & Ronquist, 2001) has been
particularly popular. However, random walk Metropolis-Hastings MCMC methods (Huelsenbeck & Ronquist,
2001; Höhna et al., 2016) rely on local operations to explore the tree-topology posterior, a limitation which is
known to require long MCMC runs in order to visit posterior regions which are separated by low-probability
tree topologies (Whidden & Matsen IV, 2015). Sequential Monte Carlo methods for Bayesian phylogeny
(Bouchard-Côté et al., 2012; Wang et al., 2015; 2020) have been proposed to avoid these local operations,
but the resampling mechanism can filter out important trees in early steps of the algorithm as well as cause
degeneracy, necessitating many particles.

More recently, variational inference (VI) has been applied to Bayesian phylogenetics. In general, VI is often
promoted over sampling-based approaches in high-dimensional problems as a variational approximation of the
posterior is obtained from optimization, making VI less vulnerable to the curse of dimensionality. However,
in practice, it can be challenging to do VI without utilizing sampling. For example, in Koptagel et al.
coordinate-ascent update equations are derived in the phylogenetic setting, but these are evaluated using
importance sampling.
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(a) (b) (c)

Figure 1: Visualization of samples from the tree-topology posterior using a 1,000,000,000 iterations long
MCMC run on (a) DS4, (b) DS7 and (c) DS8. Nodes represent unique tree-topologies and are colored based
on cluster assignments, illustrating the multimodality of the tree-topology posterior. More details in Sec. 2.

In black-box VI (Ranganath et al., 2014), the gradients are instead taken of Monte-Carlo integrated esti-
mates of the objective, typically the evidence lower bound (ELBO), using samples taken from the variational
approximation. This approach has been successfully applied in the Variational Phylogenetic Bayesian In-
ference (VBPI; Zhang & Matsen IV (2019)) framework, along with its extensions (Zhang, 2020; 2023). In
these extensions, more complicated branch-length approximations have been proposed using normalizing
flows (NFs; Rezende & Mohamed (2015)) and graph-neural nets (GNNs; Kipf & Welling (2017)).

BBVI allows the practitioner to learn posterior approximations without deriving update equations or closed-
form gradient formulations, the samples are taken from a distribution that is commonly known to concentrate
on high-probability regions of the posterior, resulting in a learning procedure that does not sufficiently explore
the posterior distribution. This was addressed for continuous distributions in Ruiz et al. (2016), where
samples were instead drawn from an overdispersed proposal distribution. In discrete hierarchical models,
similar to the targets approximated by VBPI, however, insufficient exploration may result in low-level states
not being properly modeled. As the tree-topology posterior is known to typically be multimodal with many
“subpeaks” (Whidden & Matsen IV, 2015) (visualized in Fig. 1), it is thus of significant importance to
encourage the tree-topology approximation to explore the posterior.

We propose VBPI-Mixtures, a novel combination of two recent advances, VBPI and mixture learning in
BBVI (Kviman et al., 2023). The mixture components cooperatively explore the tree-topology posterior
during learning, and the increased flexibility of the VBPI-Mixtures results in approximations that can model
posteriors intractable for the vanilla VBPI (see Sec. 3). Using a toy experiment where we design complicated
hierarchical categorical target distributions, we first show that the mixture components specialize in different
parts of the solution space and achieve smaller Kullback-Leibler divergences to the targets than a single-
component approximation which uses more samples. We then apply VBPI-Mixtures on eight popular real
datasets, outperforming the state-of-the-art algorithms. The learned tree-topology approximations are then
visualized and compared numerically with MCMC “golden runs”, illustrating the joint exploration of the
tree-topology space by the mixture components. Additionally, we derive the VIMCO estimator (Mnih &
Rezende, 2016) for mixture approximations. Our contributions can be summarized as follows:

• We propose VBPI-Mixtures, a novel algorithm for Bayesian phylogenetics.

• We show that mixtures of subsplit Bayesian nets (SBNs) can approximate distributions that a single
SBN cannot, making a persuasive case for VBPI-Mixtures.

• We derive the VIMCO estimator for mixtures.

• We visualize a two-component mixture of SBNs on real data, verifying that the components jointly
explore the tree-topology space.
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• Experimentally, we achieve state-of-the-art results on eight popular real phylogenetics datasets, and
show that mixtures of SBNs offer more accurate approximations of the tree-topology posterior.

2 Background

Let B = {b(e) : e ∈ E(τ)} denote the set of branch lengths for a topology, τ , and X is the data. The
posterior distribution over leaf-labeled phylogenetic trees,

p(B, τ |X) = p(X|τ,B)p(B|τ)p(τ)
p(X) , (1)

is intractable due to its normalizing constant, p(X), i.e., the marginal likelihood. Furthermore, the data,
X = {X1, ..., XN} ∈ ΩM×N , are observed sequences of length M on the N leaves of the phylogenetic tree.
Each entry in Xm,n is a character in the alphabet Ω, e.g., Xm,n ∈ {A,C,G, T} if DNA sequences are
considered.

Although p(X) is intractable, the three terms in the generative model in Eq. 1 can be computed efficiently.
Typically, p(τ) is a uniform distribution over the (rooted or unrooted) tree-topology space, and the branch-
length prior is an exponential distribution with rate λ, such that p(B|τ) =

∏
e∈E(τ) λe

−λb(e). The likelihood,
p(X|τ,B), can be evaluated in linear (in N) time using the standard dynamic programming algorithm
proposed by Felsenstein (2003).

Let a clade be a non-empty subset of the set of the N leaf labels, X . A subsplit is a partition of this clade
into two lexicographically ordered, disjoint clades, while a split is simply a root subsplit—a bipartition of
X . Furthermore, a primary subsplit pair (PSP) is a subsplit conditioned on a split—a tripartition of X . In
Appendix A we additionally give a brief introduction to Bayesian phylogenetic inference for machine learning
researchers.

Variational Inference in Bayesian Phylogenetics The VI-based approach to Bayesian phylogenetics
is to approximate p(B, τ |X) using a simpler distribution, qψ,ϕ(B, τ) = qψ(B|τ)qϕ(τ). Generally, in VI, the
approximations are learned by maximizing the evidence lower bound (ELBO),

L(X) = Eqψ,ϕ(B,τ)

[
log p(X|τ,B)p(B|τ)p(τ)

qψ(B|τ)qϕ(τ)

]
, (2)

implicitly minimizing the Kullback-Leibler (KL) divergence from p(B, τ |X) to qψ,ϕ(B, τ).

Subsplit Bayesian Networks Given a set of tree topologies, T ,1 it is straightforward to form a look-up
table of all subsplits in T . The SBN uses the look-up table to define support over possible tree topologies
and learns the probabilities of the subsplits in the table via, for example, stochastic optimization. As the
look-up table contains probabilities of subsplits, it is referred to as a conditional probability table (CPT).
When the CPT has been learned, the SBN provides a tractable probability distribution over tree topologies
from which it is possible to sample. See Zhang & Matsen IV (2018) or Zhang & Matsen IV (2022) for the
original, more in-depth accounts of SBNs.

VBPI In VBPI (Zhang & Matsen IV, 2019), the posterior approximations are learned by maximizing a
multi-sample (Burda et al., 2015) version of L(X),

L(X;K) = EBk,τk∼qψ,ϕ(B,τ)

[
log 1

K

K∑
k=1

p(X|τk,Bk)p(Bk|τk)p(τk)
qψ(Bk|τk)qϕ(τk)

]
, (3)

where qϕ(τ) is an SBN with a learnable CPT, ϕ, and qψ(B|τ) is a multivariate LogNormal distribution with
a diagonal covariance matrix, such that

qψ(B|τ) =
∏

e∈E(τ)

q(b(e)|µ(e, τ), σ2(e, τ)). (4)

1T is in practice obtained from some efficient tree-topology sampling algorithm, typically UFBoot (Minh et al., 2013).
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Two different parameterizations of µ(e, τ) and σ(e, τ) have previously been proposed. The simpler approach
is to let µ(e, τ) = ψµe/τ and σ(e, τ) = ψσe/τ , where e/τ denotes a split of τ in edge e. The parameters ψµe/τ
and ψσe/τ are shared among all tree topologies where e/τ exists, resulting in an amortized mapping from a
tree topology to the parameters of qψ(B|τ). Additional local information about the given τ can be added
into the parameterization of the approximation by using PSPs,

µ(e, τ) = ψµe/τ +
∑
i∈e�τ

γµi , σ(e, τ) = ψσe/τ +
∑
i∈e�τ

γσi , (5)

where e� τ denotes the set of PSPs neighboring to the split e/τ , and γµi is a learnable parameter associated
with the i-th pair.

Multimodality of the tree-topology posterior In Whidden & Matsen IV (2015), modes are referred
to as clusters of MCMC samples that are densely grouped in the tree-topology space and have high posterior
density compared to their neighbors. They proposed a method for detecting and quantifying peaks by
calculating the reversible subtree pruning and regrafting distance between topologies, combined with the
MrBayes MCMC posterior probability. By applying this method, it was identified that certain datasets had
a high number of modes (e.g., DS1, DS4, DS5, DS6, DS7), which shows the complexity of the tree-topology
space. In Fig. 1 we visualize the multimodality of the posterior on three datasets.

Mixtures in Black-Box VI Learning mixtures of approximations in (black-box; Ranganath et al. (2014))
VI (Nalisnick et al., 2016; Morningstar et al., 2021; Kviman et al., 2023) is a compelling off-the-shelf tech-
nique to increase the flexibility of a variational approximation. Mixtures can be applied to any variational
approximation, including an NF-based approximation or one for discrete latent variables, with little overhead.

The objective function, the ELBO for mixtures, is estimated by sampling from each mixture component in a
stratified manner (Morningstar et al., 2021), or via multiple importance sampling techniques (Kviman et al.,
2022), why the objective is often referred to as MISELBO. Maximizing MISELBO encourages the mixture
components to cooperatively cover the target distribution, which is thought to be the key ingredient for their
success in density estimation tasks (Kviman et al., 2023). In the next section, we formulate MISELBO for
VBPI and explain why mixtures of SBNs are beneficial for exploring the complex tree-topology space.

ARTree In Xie & Zhang (2023), the authors employ an autoregressive sampling where actions are sampled
of where a leaf should be inserted into a graph starting with three leaves. When all leaves in the taxa are
inserted they have sampled one topology. The model utilizes a fixed order of insertions such that the
topology can only be achieved with a single unique order of decisions of where the insertions of leaves
happen. Additionally, ARTree is an alternative to SBNs by leveraging GNNs to encode topological features,
thereby eliminating the constraint of pre-sampled topologies inherent to SBNs.

PhyloGFN PhyloGFN Zhou et al. (2024) employs deep generative flow networks Bengio et al. (2023) to
sample topologies based on a set of actions of joining leaves and subtrees. The generative flow network setup
makes it possible to handle the non-unique set of actions to sample the topology as opposed to the constraint
used in Xie & Zhang (2023). This model constructs phylogenetic trees using a bottom-up approach with
transformer networks and is not constrained by pre-sampled topologies.

3 Variational Bayesian Phylogenetic Inference using Mixtures

Here we present our proposed method, VBPI-Mixtures. We derive the VIMCO estimator for learning
mixtures of SBNs, and show how to combine mixtures of branch length models with an expressive NF
model. We start by providing the MISELBO formulation for VBPI with K importance samples,

L(X;K,S) = 1
S

S∑
s=1

EB1:K
s ,τ1:K

s ∼qψs,ϕs (B,τ)

[
log 1

K

K∑
k=1

p(X|τks ,Bks )p(Bks |τks )p(τks )
1
S

∑S
j=1 qψj (Bks |τks )qϕj (τks )

]
. (6)

To evaluate L(X;K,S), we approximate the s-th expectation by Monte-Carlo integration using simulations
from qψs,ϕs(B, τ).
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Figure 2: Mixtures of SBNs increase the flexibility of the tree-topology approximation. For instance, they
can exactly capture a target distribution that assigns its probability uniformly across τ1 and τ2, leaving zero
probability to τ3 and τ4. Meanwhile, this is not possible for a single SBN. See Example 3.1 for details.

Mixtures promote exploration Note that minimizing the denominator in Eq. (6) corresponds to diver-
sifying the mixture distribution, i.e., promoting the mixture components to jointly explore the latent space.
This exploratory behavior is crucial in black-box VI as the ELBO is only evaluated in sampled (visited)
latent variables (states).

More specifically, the samples are proposed from the same distribution that attempts to maximize the ELBO.
Consequently, for S = 1, there is a risk that, for a fixed K, less probable regions will not be sufficiently
explored during learning and thus will be poorly modeled. In fact, Zhang & Matsen IV (2019) showed
that the vanilla VBPI does not benefit from more importance samples during training. Fortunately, the
MISELBO objective offers a promising solution, as the mixture components are promoted to spread out and
efficiently explore the multimodal phylogenetic posterior.

Mixtures increase the flexibility of the approximations A mixture of LogNormal pdfs is clearly
more flexible than a single LogNormal pdf. For mixtures of SBNs, this is also true but may be less clear.
An SBN constructs a tree by stochastically partitioning the available clades. The partition of a clade is
sampled independently of the partitions sampled in the other clades. Mixtures of SBNs allow for modeling
correlations in the sampling of the partitions, and thus increase the flexibility of the approximation. We
explain this feature with a simple example, which trivially generalizes to larger trees and also applies to
unrooted trees.

Example 3.1 Consider the four rooted tree topologies in Fig. 2 where A,B,A′ and B′ are four different
subtrees for the two clades (in red), and a target density, such that p(τ1) = p(τ2) = 0.5. A uniformly
weighted mixture of two SBNs can easily approximate p exactly by letting q1(τ1) = 1 and q2(τ2) = 1, resulting
in 1

2q1(τ1)+0 = 0+ 1
2q2(τ2) = 0.5. However, as a single SBN, q, samples A or A′ and B or B′ independently,

and in order to achieve q(τ1), q(τ2) > 0, it will have to assign a non-zero probability to all four subtrees.
Specifically, say q(A) = α and, consequently, q(A′) = 1−α, while q(B) = β and, consequently, q(B′) = 1−β.
It follows that q(τ3) = α(1 − β) and q(τ4) = (1 − α)β. Finally, αβ = q(τ1) = q(τ2) = (1 − α)(1 − β) implies
1 = α + β, which, in turn, implies that q(τ3) = α2 and q(τ4) = β2. That is, all four trees will either have
probability 1/4 under q, or one of τ3 and τ4 will have a higher probability than τ1 and τ2. So, a single SBN
can only yield a distribution that is very different from p.

The above example exemplifies that there are tree-topology distributions that cannot be modeled using a
single SBN, but can be modeled by a mixture of SBNs. There is no converse example, as a mixture can
trivially model a single SBN by letting q1(τ) = q2(τ) for all τ . In Appendix B we construct an example that
shows that these conflicting tree-topology posteriors can indeed occur for real DNA data.

3.1 VIMCO for Mixtures of Tree-Topology Approximations

Here we derive the VIMCO estimator of Eq. (6). Although the notation in this section is specific to Bayesian
phylogenetics, our result is applicable to any mixture approximation. We purposefully follow the derivations
in Mnih & Rezende (2016) closely.
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3.1.1 Gradient Analysis

The gradients of Eq. (6) are studied first. Let

f(x,Bks , τks ) = p(Bks , τks , X)
1
S

∑S
j=1 qψj (Bks |τks )qϕj (τks )

, (7)

and L̂Ks = log 1
K

∑K
k=1 f(x,Bks , τks ), where Bks , τks are simulated from qψs,ϕs(B, τ). Note that f(x,Bks , τks ),

and so also L̂Ks , is a function of the SBN parameters for all mixture components, i.e., ϕ1, ..., ϕS . However,
we omit these as arguments to the function in order to avoid cluttered notation.

We are interested in the gradient of Eq. (6) with respect to the SBN parameters for one of the mixture
components, say i,

∇ϕiL(X;K,S) = ∇ϕi

1
S

S∑
s=1

Eqψs,ϕs (B,τ)

[
L̂Ks

]
. (8)

The full derivations are given in Appendix C and lead to the following expression

∇ϕiL(X;K,S) = 1
S
Eqψi,ϕi (B,τ)

[
L̂Ki

K∑
k=1

∇ϕi log qϕi(τki )
]
−

1
S

S∑
s=1

Eqψs,ϕs (B,τ)

[ K∑
k=1

w̃ks∇ϕi log 1
S

S∑
j=1

qψj (Bks |τks )qϕj (τks )
]
.

(9)

We make three important observations, (i) for S = 1, we retrieve the gradients used to train VBPI, (ii) as
the second term is negated, maximizing it corresponds to diversifying the mixture distribution w.r.t. ϕi,
and (iii) the first term is merely a scaled (by 1/S) version of the corresponding term in the S = 1 case.
Connecting to observation (iii), we conclude that extending the VIMCO estimator to S > 1 cannot be
trivially achieved without our derivation provided above.

Furthermore, the analysis of the gradients of the importance weighted lower bound in (Mnih & Rezende,
2016)—using our notation, L(X;K)—applies here, too. That is, the gradients in the second term in Eq.
(9) are multiplied by normalized weights, ensuring that the norm of the weighted sum over all K gradients
is not greater than the norm of the largest term in the sum. This means that ϕi will be updated mainly
according to gradients based on simulations scored highly by f , while mitigating the impact of gradients
from lower-scoring simulations.

In the first term, on the other hand, all gradients are multiplied by the same L̂Ki , indicating that the gradients
of high-scoring simulations will not receive more weight than low-scoring ones, causing high variance and
slow learning.

3.1.2 The VIMCO Estimator

As concluded above, the second term in Eq. (9) is well-behaved, and we do not need variance-reduction
techniques to use it for learning in practice. The first term, however, requires attention in order to facilitate
efficient learning.

Fortunately, as the first term is merely a scaled version of the corresponding term in the VIMCO estimator
when S = 1, we can directly apply the localized learning signal strategy from Mnih & Rezende (2016) to
obtain the VIMCO estimator for S ≥ 1,

∇ϕiL(X;K,S) ≃ 1
S

K∑
k=1

L̂Ki(k|−k)∇ϕi log qϕi(τki )−

1
S

S∑
s=1

K∑
k=1

w̃ks∇ϕi log 1
S

S∑
j=1

qψj (Bks |τks )qϕj (τks ),
(10)
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Figure 3: Approximations using (a) S = 1, (b) S = 3 and (c) S = 5 components of a two-level hierarchical
target distribution with n1 = 5 and n2 = 10. The target is plotted in black. Each bin in the lower plot,
delimited by the blue vertical lines, contains a CPD, conditioned on z1 in the upper plot. The colors of
the approximations represent the different mixture components, and their probabilities, scaled by 1/S, are
stacked. The approximations were trained using K = ⌊20/S⌋ importance samples, and S = 5 achieved
the smallest KL divergence from the target distribution, printed below the plots. The components clearly
cooperate in (b-c) as they explore complementary parts of the solution space.

where τki ,Bki ∼ qϕi,ψi(τ,B) and τks ,Bks ∼ qϕs,ψs(τ,B). Here, L̂Ki(k|−k) is the local learning signal for sample
k, defined as

L̂Ki(k|−k) = L̂Ki − log 1
K

 ∑
k′ ̸=k

f
(
x, τk

′

i ,Bk
′

i

)
+ f̂

(
x, τ−k

i ,B−k
i

) , (11)

with f̂
(
x, τ−k

i ,B−k
i

)
being an estimator of f

(
x, τki ,Bki

)
, typically the geometric mean Mnih & Rezende

(2016); Zhang & Matsen IV (2019); Zhang (2020), f̂
(
x, τ−k

i ,B−k
i

)
= exp

(
1

K−1
∑
k′ ̸=k log f

(
x, τk

′

i ,Bk
′

i

))
.

4 Experiments

In Sec. 3, we argued that a single-component approximation will struggle to properly model all parts of the
target distribution when learned with black-box VI. Below, in Sec. 4.1, we experimentally verify this claim,
and, furthermore, confirm that mixture components collaborate in order to jointly cover the target density,
resulting in more accurate approximations and efficient exploration.

We then, in Sec. 4.2, demonstrate that the increased model flexibility and promotion of exploration translates
into better marginal log-likelihood estimates and more accurate tree-topology posterior approximations.
We also visualize representations of VBPI-Mixtures on real data. Code for all experiments is provided at
github-url.

4.1 Exploring a Discrete Two-Level Hierarchical Model using Black-Box VI

SBNs are hierarchical models with categorical distributions at each level. Here, we examine how mixtures
explore discrete hierarchical target distribution when learned via black-box VI.

7

github-url


Under review as submission to TMLR

Using a two-leveled hierarchical model of categorical distributions as the target distribution, p(z1, z2) =
p(z2|z1)p(z1), we wish to minimize KL

(
1
S

∑S
s=1 qϕs(z1, z2)

∥∥p(z1, z2)
)

. The CPD p(z2|z1) is a categorical
distribution with n2 categories, conditioned on the sampled category in the previous level, z1, and p(z1) is
a categorical distribution with n1 categories. Similarly, the s-th component in the mixture approximation,
qϕs(z1, z2) = qϕs(z2|z1)qϕs(z1), is a two-level hierarchical model with learnable probabilities, ϕs. The pa-
rameters of p are drawn from a Dirichlet distribution with all concentration parameters equal to 0.5, the
approximations are trained using the VIMCO estimator derived in Sec. 3.1.2, and the learning rates are
chosen based on a grid search on a different target distribution. All ϕs are initialized uniformly over the
categories.

Figure 4: KL divergences from the
target visualized in Fig. 3 and the
approximations with S = 1, ..., 5 mix-
ture components. On the x-axis are
the number of training iterations.

In Fig. 3, three learned approximations are shown when n1 = 5
and n2 = 10, along with the corresponding KL divergences from
the target to the approximation. For S > 1, the components have
spread out, exploring complementary parts of the solution space.
Note that the p(z1 = 2) has a negligible probability, resulting in
approximations that do not capture p(z2|z1 = 2).

We include the curves of the KL divergences over the training itera-
tions when n1 = 5 and n2 = 10 in Fig. 4, and, in Appendix D.1, we
show the KL curves for other choices of K, n1 and n2. In all cases
where p(z1) has multiple categories with non-negligible probabilities,
(relating to multimodality in the tree-topology posterior) mixtures
converge with fewer iterations and to smaller KL divergences.

4.2 Posterior Approximations using Real Data

We performed experiments on eight datasets (Hedges et al., 1990;
Garey et al., 1996; Yang & Yoder, 2003; Henk et al., 2003; Lakner
et al., 2008; Zhang & Blackwell, 2001; Yoder & Yang, 2004; Rossman
et al., 2001) which we will refer to as DS1-8. These are popular
datasets for evaluating Bayesian phylogenetics methods, and, as in Zhang & Matsen IV (2019); Zhang
(2020); Moretti et al. (2021); Koptagel et al.; Zhang & Matsen IV (2022); Zhang (2023), we focus on learning
the approximations of branch-length and tree-topology distributions. Following the referenced works, we
assume the exponential branch-length prior has rate 10 and a uniform prior over all unrooted trees (see Sec.
2 for details about the generative model). The substitution model is the Jukes-Cantor 69 model (Jukes et al.,
1969), and the candidate trees, T , are gathered from ten replicates of 10000 ultrafast maximum likelihood
bootstrap trees (Minh et al., 2013). The implementation is based on the code provided by Zhang & Matsen IV
(2022), and we trained all VBPI models during 400,000 iterations, using the same hyperparameter settings
as Zhang & Matsen IV (2019); Zhang (2020). Based on the study in Zhang & Matsen (2022), we let K = 10
during training.

4.2.1 Visualizing the Explorative Behaviour of Mixtures of SBNs

To graphically confirm the power of employing mixtures of SBNs, we in Fig. 5 visualize representations of
the learned tree-topology posterior approximations for a subset of the different real datasets. The subset
was selected based on the datasets where the explorative behavior of the approximations is most clear. The
representations for the other datasets, along with more implementation details, are included in the Appendix
D.2. The SBNs correspond to VBPI-Mixtures without NFs. The components (upper vs. lower row) have
jointly explored the space, partly specializing on disjoint sets of tree-topologies, verifying that the MISELBO
objective promotes coordinated exploration of the discrete latent space, as discussed in Sec. 3.

4.2.2 Quantitative Evaluation of the Approximations

We quantitatively evaluate the approximations by, first, computing their KL divergences to the true posterior,
and by, secondly, benchmarking their marginal log-likelihood estimates. The results are averaged over
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(a) DS5 (b) DS6 (c) DS8

Figure 5: Visualization of a uniformly weighted S = 2-component mixture of SBNs on (a) DS5, (b) DS6 and
(c) DS8, where each node corresponds to a unique tree-topology. The upper row shows the distribution of five
million sampled tree topologies from the first component, where a node, τ , is colored blue if qϕ1(τ) > qϕ2(τ),
or orange otherwise. Vice versa for the lower row. The size of a node is determined by its sampling frequency,
which is why nodes with low frequency appear black. The components clearly spread out, exploring different
parts of the space.

Table 1: Illustrating the impact of VBPI-Mixtures in terms of KL(p(τ |X)∥qϕ(τ)). Lower is better.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
VBPI-NF 0.0726 0.0110 0.0540 0.2093 2.2117 1.2842 0.2544 0.6018
MixNF,S=2 0.0631 0.0059 0.0475 0.0965 2.0337 1.0883 0.1183 0.5199
MixNF,S=3 0.0598 0.0051 0.0377 0.0769 1.9526 1.0461 0.0847 0.4567

five independently trained models with different parameter initializations. All MrBayes (Huelsenbeck &
Ronquist, 2001) results were produced using ten million long MCMC runs with four chains, sampling every
100 iterations. Our methods are denoted MixS , MixNF,S , representing VBPI-Mixtures with PSPs or NFs,
respectively. Mixtures that employ NFs share flow models, as described in Kviman et al. (2023).

Statistical distances to the tree-topology posterior Here, we compare statistical distances to the
tree-topology posterior obtained from MrBayes as described above. In Table 1, the KL divergence from
the posterior to the approximations, i.e., KL(p(τ |X)∥qϕ(τ)), is computed, where qϕ represents a mixture of
SBNs, or a single SBN, from VBPI-NF. Lower is better, and, notably, VBPI-Mixtures consistently produce
KL divergences across all datasets that monotonically decrease with S.

Marginal log-likelihood estimates In terms of marginal log-likelihood estimates, we benchmark our
methods against the existing VBPI algorithms: VBPI with PSP parameterization (Zhang & Matsen IV,
2019), VBPI-NF (Zhang, 2020) with ten RealNVPs (Dinh et al., 2016), and VBPI-GNN (Zhang (2023);
EDGE and GGNN). Additionally, we compare our results with the stepping-stone (SS; Xie et al. (2011))
method applied to MrBayes as well as to PhyloGFN (Zhou et al., 2024) and ARTree (Xie & Zhang, 2023).
The results are given in Table 2. Following Zhang & Matsen IV (2019); Zhang (2020); Zhang & Matsen IV
(2022); Zhang (2023), we bold font the results with the lowest standard deviations. Rewarding low-variance
estimates is motivated, as they imply, for instance, more reliable Bayesian model selections for downstream

9
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Table 2: Negative marginal log-likelihood estimates on DS1-8. All VBPI methods use 1000 importance
samples, and the results are averaged over 100 runs and three independently trained models. Following
Zhang & Matsen IV (2019); Zhang (2020); Zhang & Matsen IV (2022); Zhang (2023), we bold font the results
with the lowest standard deviations (shown in parentheses). Details in Sec. 4.2.2. Mixtures monotonically
improve with S.

Data DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
# Taxa 27 29 36 41 50 50 59 64
# Sites 1949 2520 1812 1137 378 1133 1824 1008

VBPI with Mixtures
VBPI 7108.50(0.23) 26367.70(0.09) 33735.10(0.14) 13330.03(0.23) 8214.80(0.50) 6724.59(0.53) 37332.12(0.45) 8652.39(0.71)

MixS=2 7108.44(0.12) 26367.71(0.06) 33735.10(0.07) 13330.00(0.17) 8214.75(0.36) 6724.54(0.31) 37332.04(0.24) 8651.68(0.49)
MixS=3 7108.42(0.11) 26367.71(0.04) 33735.10(0.06) 13329.97(0.17) 8214.73(0.26) 6724.51(0.28) 37332.03(0.18) 8650.83(0.46)

VBPI with NFs and Mixtures
VBPI-NF 7108.42(0.15) 26367.72(0.06) 33735.10(0.07) 13330.00(0.23) 8214.70(0.47) 6724.50(0.45) 37332.01(0.27) 8650.68(0.46)
MixNF,S=2 7108.40(0.10) 26367.71(0.04) 33735.10(0.05) 13329.95(0.15) 8214.62(0.26) 6724.44(0.32) 37331.96(0.19) 8650.56(0.33)
MixNF,S=3 7108.40(0.06) 26367.70(0.03) 33735.09(0.04) 13329.94(0.11) 8214.56(0.22) 6724.40(0.23) 37331.96(0.15) 8650.54(0.30)

Scores from Zhang & Matsen IV (2019), Zhang (2023), Xie & Zhang (2023), Zhou et al. (2024)
MrBayesss 7108.42(0.18) 26367.57(0.48) 33735.44(0.50) 13330.06(0.54) 8214.51(0.28) 6724.07(0.86) 37332.76(2.42) 8649.88(1.75)

GGNN 7108.40(0.19) 26367.73(0.10) 33735.11(0.09) 13329.95(0.19) 8214.67(0.36) 6724.38(0.42) 37332.03(0.30) 8650.68(0.48)
EDGE 7108.41(0.14) 26367.73(0.07) 33735.12(0.09) 13329.94(0.19) 8214.64(0.38) 6724.37(0.40) 37332.04(0.26) 8650.65(0.45)
ARTree 7108.41(0.19) 26367.71(0.07) 33735.09(0.09) 13329.94(0.17) 8214.59(0.34) 6724.37(0.46) 37331.95(0.27) 8650.61(0.48)

PhyloGFN 7108.95(0.06) 26368.90(0.28) 33735.60(0.35) 13331.83(0.19) 8215.15(0.20) 6739.68(0.54) 37359.96(1.14) 8654.76(0.19)

tasks. We can see that the PhyloGFN has achieved good performance regarding standard deviation on three
of the datasets. However, PhyloGFN does seem to struggle with producing competitive mean log-likelihood.
For VBPI-Mixture, increasing the number of mixture components results in significant improvements in terms
of lower standard deviations (on all datasets) and higher mean log-likelihood scores (especially apparent on
the more complex datasets, e.g. DS5-8).

5 Conclusion

We introduced VBPI-Mixtures, a novel algorithm that increases the flexibility of the phylogenetic posterior
approximation by utilizing recent advances in mixtures for black-box VI. We showed that mixtures of SBNs
can approximate distributions that a single SBN cannot, making a persuasive case for VBPI-Mixtures. Ex-
perimentally, we achieved state-of-the-art results in terms of marginal log-likelihood estimation and produced
more accurate approximations of the tree-topology posterior.
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A A Brief Introduction to Bayesian Phylogenetic Inference for Machine Learning
Researchers

This introduction aims to briefly explain the basic concepts required to understand the generative model
provided in the main text.

Phylogenetic trees capture evolutionary relationships among species and provides valuable insights into
life’s evolutionary history. Within this domain, phylogenies are often depicted as bifurcating tree graphs,
where nodes represent common ancestors, and branches (edges) signify evolutionary events and genetic
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distances between species. This framework enables an understanding of species relatedness, ancestry, and
the evolutionary processes governing life’s diversity.

Bayesian phylogenetic inference builds upon this framework by applying Bayesian statistical methods to infer
the evolutionary history. It allows for a probabilistic approach to model uncertainty and variation, considering
prior beliefs about evolutionary parameters and updating these beliefs as new data is incorporated. It is
common to use DNA or protein sequences as data since it describes different attributes of the species, and the
edges represent a mutation between species. Through sampling from a posterior distribution and utilizing
tools like Markov Chain Monte Carlo (MCMC) methods or variational inference, Bayesian phylogenetics
offers a robust and nuanced view of evolutionary relationships, integrating multiple sources of information
and providing a rigorous statistical foundation for evolutionary hypotheses.

Mainly, two latent variables are regarded as important in Bayesian phylogenetic inference. First, the tree
topology, τ , a binary tree with the observations assigned to its leaves. The tree-topology space grows as
(2n− 3)!! for rooted and (2n− 5)!! for unrooted trees, where n is the number of leaves (observations/taxa).
Furthermore, each edge, e, of the topology is associated with a positive continuous variable, the branch
lengths, b(e). The Cartesian product of discrete and continuous spaces makes inference in phylogenetics a
challenging task.

B Conflicting Tree Topologies

Here we construct a realistic scenario where DNA sequences induce conflicting tree-topologies in the posterior
that cannot be modelled by the vanilla SBN. On the other hand, they can be captured by VBPI-Mixtures.

It is well-known that DNA data sometimes has conflicting signals. Here we construct a toy example to
demonstrate how τ1 and τ2 can have higher posterior support than τ3 and τ4. For simplicity, we use the
connection between a lower parsimony score and a higher likelihood when branch lengths are short (to appear
in the appendix). First, consider that the leaves in Fig. 2 have DNA sequences with nucleotides at sites i
and j specified in the table below (the first and second columns represent i and j, respectively).

Table 3: Nucleotide assignments to sites i and j in the observations.

Sites (1) (2) (3) (4) (5) (6)
i A C C A G G
j C C A G G A

We compute the parsimony scores for each clade (A, A’, B, B’) and the cost of joining two clades to form
τ1, ..., τ4. The cost of transitioning from one nucleotide (A, C, G, T) to another is 1.

In the first table below, we start by calculating all possible parsimony scores for each clade. Here X→Y
denotes the parsimony score, Y, if the nucleotide at site i or j in the ancestral sequence in the root is X.
Bolded is the best (lowest) score.

Table 4: Parsimony scores for the four different subtrees

MP A = ((1, 2), 3) B = ((4, 5), 6) A′ = (1, (2, 3)) B′ = (4, (5, 6))
i:th A→2,C→1,G→3,T→3 A→2,C→3,G→1,T→3 A→1,C→1,G→2,T→2 A→1,C→2,G→1,T→2
j:th A→1,C→1,G→2,T→2 A→1,C→3,G→1,T→3 A→2,C→1,G→3,T→3 A→2,C→3,G→1,T→3

Table 5: Parsimony scores for all possible tree topologies

MP τ1(A ∧ B) τ2(A′ ∧ B′) τ3(A ∧ B′) τ4(A′ ∧ B)
i:th A→4,C→3,G→3,T→4 A→2,C→3,G→3,T→4 A→3,C→3,G→3,T→4 A→3,C→3,G→3,T→4
j:th A→2,C→3,G→3,T→4 A→4,C→3,G→3,T→4 A→3,C→3,G→3,T→4 A→3,C→3,G→3,T→4

Now we can see that τ1 and τ2 give us a better parsimony score, demonstrating that the scenario exemplified
in Fig. 2 can occur in biological data when there are conflicting signals.

We direct readers who want to learn more about parsimony scores to Chapter 1 in Felsenstein (2003).
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C Gradient Derivation

Here we show the full derivations of the gradients w.r.t. ϕi. For completeness, recall that

f(x,Bks , τks ) = p(Bks , τks , X)
1
S

∑S
j=1 qψj (Bks |τks )qϕj (τks )

, (12)

and L̂Ks = log 1
K

∑K
k=1 f(x,Bks , τks ), where Bks , τks are simulated from qψs,ϕs(B, τ).

That is, we are interested in the gradient of Eq. (6) w.r.t. the SBN parameters for one of the mixture
components, say i,

∇ϕiL(X;K,S) = ∇ϕi

1
S

S∑
s=1

Eqψs,ϕs (B,τ)

[
L̂Ks

]
. (13)

There are two cases to take into account in the sum, either i = s or i ̸= s. Starting with i = s and using the
product rule,

∇ϕi

1
S
EB1:K

i
,τ1:K
i

∼qψi,ϕi (B,τ)

[
L̂Ki

]
= ∇ϕi

1
S

∑
τ1:K
i

qϕi(τ1:K
i )EB1:K

i
∼qψi (B|τ1:K

i
)

[
L̂Ki

]
(14)

= 1
S

∑
τ1:K
i

EB1:K
i

∼qψi (B|τ1:K
i

)

[
∇ϕiqϕi(τ1:K

i )L̂Ki
]

(15)

= 1
S

∑
τ1:K
i

Eqψi (B|τ1:K
i

)

[
L̂Ki ∇ϕiqϕi(τ1:K

i ) + qϕi(τ1:K
i )∇ϕiL̂

K
i

]
. (16)

Recalling the identity that ∇ϕgϕ(z) = gϕ(z)∇ϕ log gϕ(z), we start by rewriting the first term inside the
expectation in Eq. (16) as

L̂Ki ∇ϕiqϕi(τ1:K
i ) = qϕi(τ1:K

i )L̂Ki ∇ϕi log qϕi(τ1:K
i ) (17)

= qϕi(τ1:K
i )L̂Ki

K∑
k=1

∇ϕi log qϕi(τki ), (18)

and then the second term

qϕi(τ1:K
i )∇ϕiL̂

K
i = qϕi(τ1:K

i )∇ϕi log 1
K

K∑
k=1

f(x,Bki , τki ) (19)

= qϕi(τ1:K
i )

K∑
k=1

w̃ki ∇ϕi log f(x,Bki , τki ) (20)

= −qϕi(τ1:K
i )

K∑
k=1

w̃ki ∇ϕi log 1
S

S∑
j=1

qψj (Bki |τki )qϕj (τki ), (21)

where w̃ki = f(x,Bki ,τ
k
i )∑K

k′=1
f(x,Bk′

i
,τk

′
i

)
. Exchanging the two terms in Eq. (16) with Eq. (18) and (21), respectively,

we get

∇ϕi

1
S
Eqψi,ϕi (B,τ)

[
L̂Ki

]
= 1
S
Eqψi,ϕi (B,τ)

[
L̂Ki

K∑
k=1

∇ϕi log qϕi(τki )
]
− (22)

1
S
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[ K∑
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. (23)
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(a) (b)

(c) (d)

Figure 6: KL curves for the two-level hierarchical model using different configurations of K, n1 and n2.

For i ̸= s we may move the gradient operator into the expectation directly and reuse the derivation of Eq.
(21),

∇ϕi

1
S

∑
s ̸=i

Eqψs,ϕs (B,τ)

[
L̂Ks

]
= 1
S

∑
s̸=i
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[
∇ϕiL̂

K
s

]
(24)

= − 1
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[ K∑
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w̃ks∇ϕi log 1
S

S∑
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qψj (Bks |τks )qϕj (τks )
]
.

Considering both cases, we return to Eq. (13),

∇ϕiL(X;K,S) = 1
S
Eqψi,ϕi (B,τ)

[
L̂Ki

K∑
k=1

∇ϕi log qϕi(τki )
]
−

1
S

S∑
s=1

Eqψs,ϕs (B,τ)

[ K∑
k=1

w̃ks∇ϕi log 1
S

S∑
j=1

qψj (Bks |τks )qϕj (τks )
]
,

(25)

which is the expression for the gradient we need in order to apply the VIMCO estimator (see Sec. 3.1.2).

D Additional Experimental Results and Implementation Details

D.1 The Two-Level Hierarchical Model

Running a grid search for all five algorithms (S = 1, ..., 5), using n1 = 5 and n2 = 10, we found that the
learning rates 0.01, 0.1, 0.1, 0.2, and 0.25, respectively, were optimal. That is, these achieved the smallest
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KL divergences. For larger learning rates, S = 1 did not converge or converge to worse KL divergences. The
optimal learning rates found in the grid searches were used in all subsequent experiments.

In Fig. 6, we visualize the KL curves as functions of the number of training iterations. For all configurations
of K, n1 and n2, the S = 5 model performs best. The pattern—S = 1 converges slower and to worse KL
divergences than S > 2—holds also when all models use the same number of importance samples, K (shown
in Fig 6).

D.2 Visualization Details and More Plots

We employed the software as in Whidden & Matsen IV (2015), i.e. rSPR was used to determine the distances
between the topologies. Additionally, we adopted the same methodology for cluster creation. This involved
assigning the most probable peak to a cluster and subsequently assigning all unassigned trees to the same
cluster if their distance from the peak tree was within one standard deviation below the mean distance of all
unassigned trees. This iterative process continued until all topologies were assigned, or until eight clusters
were reached.

For graph creation, we employ the Graphviz layout known as Scalable Force-Directed Placement (SFDP),
in conjunction with the NetworkX library Hagberg et al. (2008). The clusters are represented by different
colors, and the size of each node is determined by the normalized sampling frequency in Fig 1, 7. Moreover,
edges between the topologies are only displayed if their distance is exactly one. It’s worth noting that the
rSPR distance measure is utilized, which counts the number of changes similar to the approach used in the
MCMC method.

To ensure that the visualization focused on the most credible information, we imposed a constraint by
limiting the nodes to the 95% most credible set. This ensured that only the most reliable nodes were
included. Additionally, to manage computational resources effectively, we set a maximum limit of 4096
nodes for the graphs.

A similar approach was used for Fig. 5, 8, with the main difference being that we sampled from the
components and displayed the joint set of topologies. The colors in this figure were based on which component
sampled the topology the most. This representation was considered an approximation of the posterior.

E Limitations

We use S SBNs and branch length models to form our mixture approximations. This introduces a larger
number of model parameters. In our current implementation, the training time was prolonged as we did
not parallelize the parameter updates of the parameters of the mixture components. This can, however, be
done, in order to heavily decrease training time.

Additionally, using shared parameters for the mixture components can also be utilized, if the practitioner is
running on a limited memory budget. However, with modern compute engines and laptop computers, this
is seldomly an issue. Nonetheless, devising clever modifications to reduce the number of parameters and
training times for mixtures in black-box VI is an exciting future research field, out of the scope of this work.

F Broader Impact

Bayesian phylogenetic inference algorithms are crucial for researchers to reason about uncertainty in their
evolutionary findings. Variational inference algorithms provide a compelling alternative to MCMC-based
algorithms as a parametric approximation is obtained. This implies that VI, and VBPI specifically, can be
used in settings where the application of MCMC is less straightforward, for instance in out-of-distribution
detection, or evaluation on held-out data. Also, as we have shown in our experiments in this paper, model
evaluation can be more robust when using VI over MCMC, resulting in a smaller variance of the estimator
of the marginal log-likelihood. This is an important feature for downstream tasks.
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(a) (b) (c)

(d) (e)

Figure 7: Visualization of samples from the tree-topology posterior using a 1,000,000,000 iterations long
MCMC run on (a) DS1, (b) DS1, (c) DS3, (d) DS5 and (e) DS6. Nodes represent unique tree-topologies
and are colored based on cluster assignments, illustrating the multimodality of the tree-topology posterior.
More details in Sec. 2.

G Compute Infrastructure

Most computations have been conducted on an AMD EPYC 7742 where two cores have been used per run.
Final runtimes are shown in Table 6. The table shows the joint run time for both training and testing. Also
worth noting is that multiple mixture components also multiply the number of particles, so the majority
of the time increase is due to the Felsenstein pruning algorithm for the likelihood model evaluation, which
grows linearly.

Finally, and crucially, the code used was not optimized for run time, and so a wall-clock time is not an apt
metric for comparisons.

Table 6: Compute time reported in minutes for fitting the model as well as evaluating the marginal likelihood
and continuous estimate of ELBO while training every 5000 iterations using 1000 samples with a single
particle

Data DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
VBPI 735.4 813.95 962.67 1087.98 1273.57 1299.55 1606.03 1660.18
MixS=2 1984.47 2172.18 2598.17 2888.58 3322.77 3389.5 4127.52 4234.98
MixS=3 3224.57 3425.35 4056.07 4493.87 5614.58 5604.43 6705.18 7004.28
VBPI-NF 900.32 953.8 1150.78 1278.27 1585.87 1523.02 1869.23 1974.17
MixNF,S=2 2385.38 2442.75 2893.15 3300.35 3800.88 3728.75 4647.48 4754.22
MixNF,S=3 3669.8 3939.73 4576.08 5180.75 6206.52 6220.4 7568.85 7776.37
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(a) DS1 (b) DS2 (c) DS3

(d) DS4 (e) DS7

Figure 8: Visualization of a uniformly weighted S = 2-component mixture of SBNs on (a) DS1, (b) DS2 and
(c) DS3, (d) DS4 and (e) DS7, where each node corresponds to a unique tree-topology. The upper row shows
the distribution of five million sampled tree topologies from the first component, where a node, τ , is colored
blue if qϕ1(τ) > qϕ2(τ), or orange otherwise. Vice versa for the lower row. The size of a node is determined
by its sampling frequency, which is why nodes with low frequency appear black. The components clearly
spread out, exploring different parts of the space.
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