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Abstract

Protein fitness optimization involves finding an ideal protein sequence sat-
isfying desired quantitative properties in an astronomically large design
space of possible sequences, where it is often only possible to measure real-
world fitness for few (hundreds of) sequences. Existing machine learning
approaches for efficiently navigating the protein design space broadly fall
into two categories–discriminative (often supervised) modeling and gener-
ative modeling–each with their own strengths and weaknesses. Supervised
models can be used to identify promising variants, but require predicting
fitness values for all possible sequences in a design space. Generative mod-
els, on the contrary, are not hampered by the size of a design space, but
historically it has been difficult to direct these models toward specific fit-
ness goals. To address these limitations, we propose a framework for protein
sequence optimization in which generative priors on natural sequences are
steered with assay-labeled fitness data, taking advantage of both unlabeled
and labeled data. Specifically, we evaluate discrete diffusion and language
models in combination with various steering techniques such as guidance
and reinforcement learning. Our computational studies on the TrpB and
CreiLOV protein fitness datasets show that various methods, particularly
guidance with discrete diffusion models, are effective strategies for protein
fitness optimization.

1 Introduction

Proteins, sequences of amino acids, can be optimized for useful properties such as binding
affinity, catalytic activity, or stability, numerically quantified as “fitness.” However, the
protein optimization problem is challenging: the design space of proteins is vast, as a protein
of length M can be constructed in 20M different ways; only a negligible fraction of possible
protein sequences are functional (Romero & Arnold, 2009); and most experimental wet-lab
assays can only provide 102 − 103 fitness labels per round. As a result, researchers often
rely on directed evolution, an iterative process that incrementally improves protein fitness
(Packer & Liu, 2015). In each round of directed evolution, a protein is mutated, the fitness of
the variants is measured, and the most beneficial mutation is retained for the next iteration.
However, this approach can be slow (often only one mutation is accumulated in each round),
and it may be ineffective–as it is limited to a local search of very similar protein sequences.

Thus, in recent years, there has been strong interest in developing adaptive machine learn-
ing (ML)-assisted methods to more efficiently optimize protein fitness (Yang et al., 2019;
Wittmann et al., 2021a; Yang et al., 2024b; Hie & Yang, 2022). For example, in machine
learning-assisted directed evolution (MLDE) approaches (Wu et al., 2019; Wittmann et al.,
2021b; Yang et al., 2025; Li et al., 2024), unlabeled data (zero-shot likelihoods based on
natural sequences) and labeled fitness data are used to find a sequence with optimal fitness
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Figure 1: Our approach offers advantages compared to existing approaches for
ML-assisted protein fitness optimization. Optimization is difficult because the the
design space is massive and the throughput of wet-lab fitness assays is low. (A) Supervised
approaches involve enumerating to calculate fitness predictions for all variants design space,
limiting them to optimizing on constrained number of residues. (B) Generative approaches
for finding variants with high fitness do not take advantage of the likelihood of sequences
given the natural distribution of proteins (prior); by contrast, (C) fully zero-shot methods
that sample highly natural sequences do not utilize labeled fitness data. (D) Our approach
involves initializing a generative model to sample sequences with high likelihoods and iter-
atively refining or guiding that model with assay labeled fitness data.

by introducing mutations at N residues (Supervised, Fig. 1A). While MLDE and related
methods (Jiang et al., 2024; Hsu et al., 2022; Ding et al., 2024; Hawkins-Hooker et al., 2024;
Zhao et al., 2024) work well in practice for relatively small design spaces (N ≤ 5), a major
limitation of supervised approaches is that they require enumerating predictions of the su-
pervised model and zero-shot likelihoods across the design space of 20N variants (Table 1),
thus becoming computationally intractable as N increases beyond ∼ 9.

In contrast, generative methods do not face this limitation; rather than predicting fitness
values in silico, they learn to sample from a distribution of sequences with high fitness (Wu
et al., 2021; Hsu et al., 2024). However, many generative models used in adaptive protein
fitness optimization do not use unlabeled data on natural proteins (Brookes et al., 2019;
Brookes & Listgarten, 2020; Song & Li, 2024; Stanton et al., 2022; Gupta & Zou, 2019;
Hie & Yang, 2022) (Generative: Adaptive, Fig. 1B). Alternatively, protein language models
(PLMs) trained on the natural distribution of unlabeled sequences can be used as priors
to sample sequences with high evolutionary likelihoods (Generative: Zero-Shot, Fig. 1C).
Although sampling from these priors can yield sequences with generally higher fitness (e.g.
for antibody binding, Hie et al. 2023), these models do not incorporate any assay-labeled
fitness data, which means that the prior may be less informative if fitness deviates from
natural function–e.g. enzymes being engineered for non-native activities (Arnold, 2018;
Yang et al., 2025).

Recent works have aimed to address the need for a generative method utilizing both un-
labeled and labeled data (Fig. 1D, Table 1), but applicability to real-world protein fitness
optimization is still limited. Broadly, these methods aim to guide or align generative priors
of protein sequences, such as discrete diffusion models (Alamdari et al., 2023; Wang et al.,
2024b) and PLMs (Ruffolo & Madani, 2024), with fitness data. Reinforcement learning (RL)
with different generative models has been demonstrated (Widatalla et al., 2024; Stocco et al.,
2024; Blalock et al., 2024), and guiding discrete diffusion models has begun to show promise
for this task (Nisonoff et al., 2024; Stark et al., 2024; Klarner et al., 2024; Gruver et al.,
2023; Lisanza et al., 2024). However, few previous studies have explored alignment with few
(102 − 103) labeled sequences (Lisanza et al., 2024; Stocco et al., 2024) for protein variant
optimization based on real fitness data, e.g. activity or fluorescence (Lisanza et al., 2024;
Blalock et al., 2024). Moreover, most studies only evaluate one type of generative prior and
steering strategy, so a comprehensive comparison of state-of-the-art methods is needed.
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Table 1: Aligning generative models with labeled data offers several advantages
compared to existing approaches. Many current approaches face at least one shortcom-
ing, limiting their broad applicability, but our approach aims to provide a general method
for protein fitness optimization addressing individual limitations in other methods. Namely,
our approach utilizes zero-shot knowledge from the natural distribution of proteins, can be
guided by assay-labeled fitness data, and can optimize many residues (N) simultaneously.
Note that beyond those listed here, there are many other studies that combine different
elements of these approaches.

Approach Prior In-
formation
Used?

Assay
Fitness
Used?

Scales
to large
N?

Protein Examples

Supervised ✓ ✓ × Wittmann et al. (2021b); Ding et al.
(2024); Hawkins-Hooker et al. (2024);
Zhao et al. (2024)

Generative:
Adaptive

× ✓ ✓ Brookes et al. (2019); Brookes & List-
garten (2020); Song & Li (2024); Stanton
et al. (2022)

Generative:
Zero-Shot

✓ × ✓ Hie et al. (2023)

Our Ap-
proach

✓ ✓ ✓ Widatalla et al. (2024); Stocco et al.
(2024); Nisonoff et al. (2024); Rector-
Brooks et al. (2024)

Our study builds upon existing work, and our main contribution is comparing differ-
ent types of models and steering strategies for protein variant fitness optimiza-
tion in a setting that is reflective of real-world engineering (Fig. 2, Section 2). On
the TrpB and CreiLOV protein fitness datasets, we find that our methods enable efficient
discovery of protein variants with high fitness, showing potential for future integration into
adaptive optimization workflows (Hie & Yang, 2022). We also introduce posterior sampling
(Zhang et al., 2024) for this task, a method which shows some of the highest performance.
Our results also suggest that guidance with diffusion models may be better than fine-tuning
with RL; the latter may not be ideal as it can cause the model to forget prior information
and can be computationally expensive. Our code will be made publicly available.

2 Strategies to Steer Generative Models with Labels

2.1 Guidance with Sequence-Based Diffusion Models

Increasingly, various diffusion model (Ho et al., 2020) architectures (Fig. 2) have shown their
potential for modeling discrete data, such as sequences (x), approaching the performance
of language models and leveraging many similar learning techniques such as masking or
autoregressive decoding (Sahoo et al., 2024; Lou et al., 2024). These models can broadly
be categorized into two types: those that perform diffusion in a continuous latent space (Li
et al., 2022; Chen et al., 2023a; Dieleman et al., 2022; Torres et al., 2025; Meshchaninov
et al., 2025) and those that diffuse directly over discrete space. Those performing diffusion
in discrete space use a transition matrix to update all discrete states in each timestep
(D3PM) (Austin et al., 2023), which has later been formulated as continuous-time Markov
chains (Lou et al., 2024; Campbell et al., 2022; 2024), followed by simplified frameworks
involving progressive unmasking of the discrete state (such as masked diffusion language
models, MDLMs) (Sahoo et al., 2024; Hoogeboom et al., 2022). We elaborate more on these
methods in Section A.2.

An advantage of diffusion models is the ability to perform guidance based on fitness la-
bels (y) without finetuning the prior model weights, resulting in reduced training costs and
potentially strong signal despite having few (∼ 102) labels. Sampling (inference) from a con-
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Figure 2: Non-exhaustive landscape of generative models for natural protein se-
quences and methods to steer/align them with experimental labeled data. Three
major types of diffusion models for sequences include those perform diffusion over continu-
ous space, or those perform diffusion over discrete space, as a continuous time markov chain
(D3PM) or with an iterative masking process (MDLM). Various types of guidance strate-
gies are compatible with certain diffusion models, in green (NOS: diffusion optimization
sampling, DDPP: discrete denoising posterior prediction, RTB: relative trajectory balance,
SVDD: soft value-based decoding in diffusion models). Differently, language models and
variational autoencoders can be aligned with labeled data via reinforcement learning such
as preference optimization or supervised finetuning.

tinuous diffusion model involves following gradients of the learned denoising function, and
these gradients can be updated or modified in various ways. In classifier guidance (Nisonoff
et al., 2024), posterior sampling (Chung et al., 2024; Zhang et al., 2024), and diffusion op-
timized sampling (NOS) (Gruver et al., 2023), the denoising process is guided via related
gradients from a supervised predictor model that can predict fitness from sequence represen-
tations, p(y|xt, t). There are many other variations on this guidance process, explained in
more detail in Section A.4. In this study, we focus on continuous (trained from scratch) and
discrete D3PM (finetuned EvoDiff (Alamdari et al., 2023)) models with classifier guidance
and posterior sampling as guidance techniques (Fig. 2). Future work on MDLMs could also
utilize the pretrained diffusion protein language model (DPLM) (Wang et al., 2024b) and
other recent guidance techniques (Tang et al., 2024; Rector-Brooks et al., 2024).

2.2 Reinforcement Learning

We consider RL broadly here as finetuning generative models such as language models with
labeled data about which generations are favorable vs unfavorable. There are emerging RL
techniques applied to discrete diffusion models including discrete denoising posterior predic-
tion (DDPP) (Rector-Brooks et al., 2024), relative trajectory balance (RTB) (Venkatraman
et al., 2025), and direct reward backpropagation with gumbel softmax trick (DRAKES)
(Wang et al., 2024a). While the above strategies are specific to discrete diffusion models,
supervised fine-tuning (SFT) and policy optimization are two important techniques used
in RL that can be applied generally to generative models such as language models (Fig.
2). Policy optimization generally shows better performance than SFT (Stocco et al., 2024;
Blalock et al., 2024); direct preference optimization (DPO), while not technically defined as
RL, is often used for its algorithmic simplicity and ease of training (Rafailov et al., 2023)
(details in Section A.4). RL has demonstrated utility for aligning generative models of pro-
teins (language models, inverse folding models, variational autoencoders) with properties
like stability (Widatalla et al., 2024; Blalock et al., 2024; Stocco et al., 2024), but these
methods can have high computational costs of finetuning and may require large amounts
of labels (> 103) to effectively steer generations. In this work, we include DPO with an
autoregressive PLM (finetuned ProGen2 (Nijkamp et al., 2023)) as a baseline.
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Figure 3: The distributions of sequences from pretrained generative priors largely
match those of the target distributions. The target distribution shows all sequences
in the multiple sequence alignment of the parent, and the distributions of generative models
are approximated by sampling 1000 sequences. The continuous model was trained from
scratch while the D3PM diffusion model and language model (LM) were finetuned from
EvoDiff and ProGen2, respectively. The residues shown for TrpB are 4 out of 15 positions
studied in the dataset (parent is VFVS), and 5 out of 119 residues for CreiLOV are shown
as they correspond to those harboring favorable mutations in the original dataset (parent is
AGQRD). The target distributions for the diffusion model and language model are slightly
different due to differences in the usage of gaps during pretraining (Section A.1).

3 Results

Model pretraining recapitulates the distribution of evolutionarily related protein
sequences. We focus our fitness optimization studies on two proteins, the TrpB enzyme
(length 389) (Johnston et al., 2024) and the CreiLOV fluorescent protein (length 119) (Chen
et al., 2023b) due to the availability of fitness data across many residues and the large
number of homologous protein sequences found in their multiple sequence alignments. Based
on the methods explained in Section A.1, we trained generative priors on these natural
sequences for each family, focusing on continuous diffusion models, D3PM diffusion models,
and autoregressive language models. Overall, these models capture the natural distribution
of protein sequences, with the D3PM models seeming to match the distribution the most
closely while also generating sequences with high diversity (Fig. 3).

Pretrained priors and steered/aligned models generate sequences with high fit-
ness. We focused protein fitness optimization to a design space of 15 residues in TrpB
and all 119 residues in CreiLOV (details in Section A.3); for each protein’s variants, we
evaluated fitness by approximating it via a supervised oracle trained on a large amount of
real data (Section A.3). We evaluated fitness optimization under two different scenarios: (1)
limiting generated sequences to having a maximum of 4 mutations from the parent sequence
and (2) unconstrained optimization of all residues in the design space. The former is a more
conservative approach to fitness optimization, as our oracles show good performance in this
domain (Fig. A1), but we manually satisfy this constraint after unconstrained generation
(Section A.3). The latter is ultimately a more generalizable approach, but most mutations
are known to be deleterious, meaning that many of these sequences may not be functional
in the real world, and the oracle may not accurately extrapolate to these outcomes.

Overall, we found that pretrained priors sample protein variants that are enriched in high
fitness, which corroborates previous studies finding that sequences with higher evolutionary
likelihood are also likely to have higher fitness (Li et al., 2024; Hie et al., 2023). Impres-
sively, steering/alignment with modest amounts of labeled data (200 sequence-fitness pairs)
enabled most models and methods to generate sequences with even higher fitness (Fig. 4).
In this regime, guidance with diffusion models (particularly D3PM models) seems to out-
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Figure 4: Sequences sampled from our generative models, before and after steer-
ing/alignment with labeled fitness data, are enriched in high-fitness protein vari-
ants. 200 unique sequences were sampled in each round, and models were steered/aligned
based on samples drawn from the prior. Variants with negative predicted fitness were
rounded up to zero. D3PM: Discrete Diffusion, CLS: Classifier, DAPS: Posterior Sampling,
LM: Language Model, DPO: Direct Preference Optimization.

perform DPO with language models, but additional computational experiments are needed
to understand this.

4 Discussion

There are many directions for future work. One promising avenue is exploring alternative
guidance methods for diffusion models (Fig. 2), particularly MDLM and other models, which
have recently achieved state-of-the-art performance in sequence modeling (Sahoo et al., 2024;
Peng et al., 2025; Liu et al., 2024). Additionally, we conducted preliminary testing for our
approach in an iterative setting, with ten iterations of 100 samples each–similar to batched
active learning (Yang et al., 2025; Lisanza et al., 2024). Future work will investigate how
increased training samples and increased iterations affects performance (Hie & Yang, 2022).
To this end, repeated experiments are needed to conclude which strategies are most effective,
and other baselines will be tested. So far, we have focused on proteins with many homologous
sequences and fitness as mostly native function, but we will need to test our approach on
other protein fitness optimization tasks where the pretrained prior may not provide as
much utility. While diffusion models seem to be more amenable and effective for the task
explored in this work, further comparisons with different language model architectures, such
as masked language models (Blalock et al., 2024), are needed. Furthermore, we manually
constrained generations to have few mutations at the end of generation, but implicitly
building this guidance into predictor models or sampling techniques (such as inpainting in
masked models) may lead to improved performance.

In short, guiding generative models with labeled data is a satisfying and general protein
fitness optimization framework, as it takes advantage of knowledge from both the natural
protein universe and specific fitness objectives. Overall, we have demonstrated that several
implementations of this approach (diffusion and language models with different steering
strategies) could be practically useful for protein fitness optimization, laying the groundwork
for further exploration.
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and Noelia Ferruz. Guiding Generative Protein Language Models with Reinforcement
Learning. 2024.

Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. PepTune: De Novo Generation of
Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion, December 2024.
URL http://arxiv.org/abs/2412.17780. arXiv:2412.17780 [q-bio].

Marcelo D. T. Torres, Tianlai Chen, Fangping Wan, Pranam Chatterjee, and Cesar de la
Fuente-Nunez. Generative latent diffusion language modeling yields anti-infective syn-
thetic peptides, February 2025. URL https://www.biorxiv.org/content/10.1101/
2025.01.31.636003v1. Pages: 2025.01.31.636003 Section: New Results.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin
Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam,
Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing
intractable inference in diffusion models for vision, language, and control, January 2025.
URL http://arxiv.org/abs/2405.20971. arXiv:2405.20971 [cs].

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika
Lal, Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-Tuning Dis-
crete Diffusion Models via Reward Optimization with Applications to DNA and Protein
Design, October 2024a. URL http://arxiv.org/abs/2410.13643. arXiv:2410.13643
[cs].

10

http://arxiv.org/abs/2410.08134
http://arxiv.org/abs/2410.08134
http://arxiv.org/abs/2406.07524
http://arxiv.org/abs/2305.00386
http://arxiv.org/abs/2203.12742
http://arxiv.org/abs/2203.12742
http://arxiv.org/abs/2402.05841
https://www.nature.com/articles/nbt.3988
https://www.nature.com/articles/nbt.3988
http://arxiv.org/abs/2412.17780
https://www.biorxiv.org/content/10.1101/2025.01.31.636003v1
https://www.biorxiv.org/content/10.1101/2025.01.31.636003v1
http://arxiv.org/abs/2405.20971
http://arxiv.org/abs/2410.13643


Published at the GEM workshop, ICLR 2025

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu.
Diffusion Language Models Are Versatile Protein Learners. arXiv, February 2024b. URL
http://arxiv.org/abs/2402.18567. arXiv:2402.18567 [cs, q-bio].

Talal Widatalla, Rafael Rafailov, and Brian Hie. Aligning protein generative models with
experimental fitness via Direct Preference Optimization. 2024.

Bruce J. Wittmann, Kadina E. Johnston, Zachary Wu, and Frances H. Arnold. Advances
in machine learning for directed evolution. Current Opinion in Structural Biology, 69:
11–18, 2021a. ISSN 1879033X. doi: 10.1016/j.sbi.2021.01.008. URL https://doi.org/
10.1016/j.sbi.2021.01.008. Publisher: Elsevier Ltd.

Bruce J. Wittmann, Yisong Yue, and Frances H. Arnold. Informed training set design
enables efficient machine learning-assisted directed protein evolution. Cell Systems, 12
(11):1026–1045.e7, 2021b. ISSN 24054712. doi: 10.1016/j.cels.2021.07.008. URL https:
//doi.org/10.1016/j.cels.2021.07.008. Publisher: Elsevier Inc.

Zachary Wu, S. B. Jennifer Kan, Russell D. Lewis, Bruce J. Wittmann, and Frances H.
Arnold. Machine learning-assisted directed protein evolution with combinatorial libraries.
Proceedings of the National Academy of Sciences, 116(18):8852–8858, April 2019. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.1901979116. URL http://www.pnas.org/
lookup/doi/10.1073/pnas.1901979116.

Zachary Wu, Kadina E. Johnston, Frances H. Arnold, and Kevin K. Yang. Protein sequence
design with deep generative models. Current Opinion in Chemical Biology, 65:18–27,
2021. ISSN 13675931. doi: 10.1016/j.cbpa.2021.04.004. URL http://arxiv.org/abs/
2104.04457%0Ahttp://dx.doi.org/10.1016/j.cbpa.2021.04.004. arXiv: 2104.04457
Publisher: Elsevier Ltd.

Jason Yang, Aadyot Bhatnagar, Jeffrey A. Ruffolo, and Ali Madani. Conditional Enzyme
Generation Using Protein Language Models with Adapters. arXiv, October 2024a. URL
http://arxiv.org/abs/2410.03634. arXiv:2410.03634 null.

Jason Yang, Francesca-Zhoufan Li, and Frances H. Arnold. Opportunities and Challenges
for Machine Learning-Assisted Enzyme Engineering. ACS Central Science, 10(2):226–
241, February 2024b. ISSN 2374-7943, 2374-7951. URL https://pubs.acs.org/doi/
10.1021/acscentsci.3c01275.

Jason Yang, Ravi G. Lal, James C. Bowden, Raul Astudillo, Mikhail A. Hameedi, Sukhvin-
der Kaur, Matthew Hill, Yisong Yue, and Frances H. Arnold. Active learning-assisted
directed evolution. Nature Communications, 16(1):714, January 2025. ISSN 2041-
1723. doi: 10.1038/s41467-025-55987-8. URL https://www.nature.com/articles/
s41467-025-55987-8. Publisher: Nature Publishing Group.

Kevin K. Yang, Zachary Wu, and Frances H. Arnold. Machine-learning-guided directed evo-
lution for protein engineering. Nature Methods, 16(8):687–694, 2019. ISSN 15487105. doi:
10.1038/s41592-019-0496-6. URL http://dx.doi.org/10.1038/s41592-019-0496-6.
arXiv: 1811.10775 Publisher: Springer US.

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang
Song. Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing, July
2024. URL http://arxiv.org/abs/2407.01521. arXiv:2407.01521 [cs].

Junming Zhao, Chao Zhang, and Yunan Luo. Contrastive Fitness Learning: Reprogramming
Protein Language Models for Low-N Learning of Protein Fitness Landscape. preprint,
Bioinformatics, February 2024. URL http://biorxiv.org/lookup/doi/10.1101/2024.
02.11.579859.

11

http://arxiv.org/abs/2402.18567
https://doi.org/10.1016/j.sbi.2021.01.008
https://doi.org/10.1016/j.sbi.2021.01.008
https://doi.org/10.1016/j.cels.2021.07.008
https://doi.org/10.1016/j.cels.2021.07.008
http://www.pnas.org/lookup/doi/10.1073/pnas.1901979116
http://www.pnas.org/lookup/doi/10.1073/pnas.1901979116
http://arxiv.org/abs/2104.04457%0Ahttp://dx.doi.org/10.1016/j.cbpa.2021.04.004
http://arxiv.org/abs/2104.04457%0Ahttp://dx.doi.org/10.1016/j.cbpa.2021.04.004
http://arxiv.org/abs/2410.03634
https://pubs.acs.org/doi/10.1021/acscentsci.3c01275
https://pubs.acs.org/doi/10.1021/acscentsci.3c01275
https://www.nature.com/articles/s41467-025-55987-8
https://www.nature.com/articles/s41467-025-55987-8
http://dx.doi.org/10.1038/s41592-019-0496-6
http://arxiv.org/abs/2407.01521
http://biorxiv.org/lookup/doi/10.1101/2024.02.11.579859
http://biorxiv.org/lookup/doi/10.1101/2024.02.11.579859


Published at the GEM workshop, ICLR 2025

Table A1: Summary of datasets used in this work. Train and test fitness refer to the
number of fitness labels used for training and testing the oracle. While the TrpB dataset
has a lot more training labels, it may be more difficult to learn due to high amounts of
epistatic effects between residues (non-additivity of mutation effects).

Dataset Length Targeted Residues Design
Space

MSA
Size

Train
Fit-
ness

Test
Fit-
ness

Reference

TrpB 389 117, 118, 119, 162, 166,
182, 183, 184, 185, 186,
227, 228, 230, 231, 301

N=15 57,000 75,618 23,313 (Johnston
et al., 2024)

CreiLOV119 All N=119 370,000 6,842 2,401 (Chen et al.,
2023b)

A Appendix

A.1 Data for Pretraining of Priors

The first step in our pipeline involves learning a generative prior on naturally occurring
protein sequences to learn the distribution of those with high evolutionary likelihood. This
prior is unconditional in the sense that no labeled fitness data is used for training. However,
because we are optimizing protein variants for a desired fitness, we pretrained our generative
prior on sequences homologous to the parent protein to be optimized (known as a multiple
sequence alignment or MSA), either TrpB or CreiLOV. Likelihoods from MSAs have been
captured by statistical models and have been shown to offer good zero-shot approximations
of fitness. In other words, they capture mutational substitutions that are more favorable,
based on the precedent of natural evolution.

We chose the TrpB (Johnston et al., 2024) and CreiLOV (Chen et al., 2023b) datasets due to
the extensive number of sequences in their MSAs, which were obtained by running jackhm-
mer (Johnson et al., 2010) against Uniref90 for two iterations with the parent sequence as
target. For the MSA, we only used sequences where the aligned portion was at least 75%
the length of the parent sequence. For the diffusion model priors, we used the MSA that was
aligned to the parent sequence, with gap tokens replaced by the corresponding amino acid
found in the parent sequence, resulting in full, fixed-length pseudo-natural sequences. For
the language model, the sequences used were the portions of the MSA that was aligned to the
parent sequence, with gaps removed, thus resulting in variable length sequence fragments.

We performed sequence clustering using mmseqs2 (Steinegger & Söding, 2017) at 80% iden-
tity and resampled the dataset by weighting each sample with 1

1+ln (n) relative probability of

being sampled, where n is the size of the cluster associated with that sequence. Afterward,
we removed 5% of the clusters and their associated sequences as a validation set.

A.2 Generative Models for Sequences

A.2.1 Diffusion over Continuous Space

Diffusion models construct samples by reversing a diffusion process that maps clean data
points x0 to samples from a prior distribution π(x). The forward process (x0 → xT ) is
composed of conditional distributions p(xt|xt−1), which admit closed-form expressions for
the conditional distributions p(xt|x0) and p(xt−1|xt, x0). The reverse process (xT → x0)
converts samples from the prior into samples from the learned data distribution pθ(x0) by
repeatedly predicting the denoised variable x̂0 from noisy values xt, using the conditional
distribution p(xt−1|xt, x̂0) to derive a transition distribution pθ(xt−1|xt).

Continuous Noise Forward Process. Similarly to Gruver et al. (2023), we define a
protein sequence as w ∈ AL, where A is the alphabet of amino acids and L is the fixed

12



Published at the GEM workshop, ICLR 2025

length of the sequence. To learn a distribution p(w), we first embed w into a continuous
variable x0 using an embedding matrix Uθ, transforming discrete tokens into a continuous
latent space. Gaussian noise is then applied to this embedding space. The prior distribution
is defined as:

π(x) = N (0, I), (1)

while the forward process follows a Gaussian corruption schedule:

p(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I), ᾱt =

t∏
i=1

αi, αt = 1− βt. (2)

The variance schedule {βt} follows the cosine schedule proposed by Nichol & Dhariwal
(2021), which is commonly used to stabilize training.

Reverse Process. The reverse process aims to recover the original sequence by learning
a function pθ(ŵ|xt, t) that predicts the sequence from noised points xt. This is done by
minimizing the following objective:

L(θ) = Ew0,t [− log pθ(w0|xt)] , xt ∼ p(xt|x0 = Uθw0). (3)

By learning pθ(ŵ|xt, t), we construct the reverse transition distribution:

pθ(xt−1|xt) =
∑
ŵ

p(xt−1|xt, x̂0 = Uθŵ)pθ(ŵ|xt, t), (4)

where the posterior p(xt−1|xt, x0) follows:

p(xt−1|xt, x0) = N (xt−1;µt, σ
2
t I), (5)

with mean µt and variance σ2
t given by:

µt =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (6)

σ2
t =

1− ᾱt−1

1− ᾱt
βt. (7)

Inference and Sampling. At inference time, the learned reverse process is used to gen-
erate protein sequences from the prior π(x). This is done by iteratively sampling:

xt−1 ∼ pθ(xt−1|xt), (8)

and then reconstructing w by sampling:

w ∼ pθ(ŵ|x0). (9)

This denoising process iteratively refines noisy embeddings back into structured sequences.

Training and Hyperparameters. The continuous diffusion model was trained using a
cosine noise schedule with T = 500 diffusion steps, following the improved variance schedule
from Nichol & Dhariwal (2021). The embedding dimension was set to 64, and the denoising
network was a transformer encoder with 12 layers and 8 attention heads, based on the NOS-
C model from Gruver et al. (2023). We used the AdamW optimizer with a learning rate of
10−4, linear learning rate schedule, and weight decay of 0.01 for 5 epochs of training, taking
the model with the lowest validation loss.

A.2.2 Diffusion over Discrete Space.

Discrete diffusion models (Austin et al., 2023; Campbell et al., 2022; Lou et al., 2024) gen-
erate data in discrete spaces by reversing a predefined forward Markov process. Specifically,
a family of distributions pt evolves according to the Markov chain

dpt
dt

= Qtpt, (10)
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where p0 = pdata is the data distribution and Qt ∈ RN×N are predefined transition matrices.
In this work, we use uniform transition matrices Qt = 1

N 11T − I. When T → ∞, the
probability distribution pT converges to a uniform distribution.

This Markov process can be reversed with the help of a concrete score function, s(x, t) :=

[pt(x̃)
pt(x)

]x̃ ̸=x, as its time reversal is given by

dpT−t

dt
= Q̄T−tpT−t, (11)

where Q̄t[x̃, x] = s(x, t)x̃Qt[x, x̃] for x̃ ̸= x, and Q̄t[x, x] = −
∑

x̃ ̸=x Q̄t[x̃, x]. To generate
data x0 ∼ pdata, we start with sampling xT from a uniform distribution and then evolve
through Eq. 11 by the Euler method.

Training and Hyperparameters. We used the 38 million parameter ByteNet architec-
ture from Alamdari et al. (2023) (EvoDiff) to model the score function and finetuned from
their final checkpoint. This model uses a hidden dimension of 1024, 16 layers, and a kernel
size of 5. Diffusion was performed over 500 timesteps using the uniform noise scheduler from
EvoDiff. We used the AdamW optimizer with a learning rate of 10−4, and linear learning
rate schedule for 5 epochs of training, taking the model with the lowest validation loss.

A.2.3 Autoregressive Language Models.

In this work, we finetuned the ProGen2-base decoder-only transformer (780 million param-
eters) based on the code and parameters used in Yang et al. (2024a). Models were trained
based on next token prediction and cross entropy loss. We used the AdamW optimizer with
a learning rate of 10−4, and linear learning rate schedule, for 10 epochs of training, taking
the model with the lowest validation loss. However, we did not use adapter layers, and we
did not group batches based on sequence length.

A.3 Protein Fitness Optimization Task

We studied fitness optimization across two different protein-fitness datasets, TrpB and
CreiLOV (Table A1). TrpB is 389 residues in length, but based on available fitness data,
we limited design to 15 residues: 117, 118, 119, 162, 166, 182, 183, 184, 185, 186, 227, 228,
230, 231, and 301. Namely, we combined the fitness data from 6 combinatorially complete
3-site libraries (D-I from Johnston et al. (2024)) and the 4-site library across residues 183,
184, 227, and 228. We normalized the parent fitness to 1 in each dataset and rounded all
negative fitness values up to zero. The fitness here is the rate catalytic activity of a native
reaction, the formation of tryptophan from indole and serine. To obtain a proxy fitness
for all variants in the design space (2015 possibilities) we trained an oracle inspired by the
dataset splitting and model architecture used in Blalock et al. (2024). Namely, we used
all of the single, double, and triple mutants in the library for training, with 10% and 20%
of the quadruple mutants being using for validation and testing, respectively. Our model
consists of an ensemble of 20 MLPs for TrpB, and each was trained on onehot encodings of
the designed residues for 1000 epochs. From here forth, we treated ground truth fitness for
TrpB as outputs from the oracle.

Differently, the CreiLOV dataset (length N = 119) contains experimental fitnesses for all
single mutations in the protein and certain higher order mutations at 15 selected positions
with beneficial single mutations. Fitness here refers to associated fluorescence. To obtain
a proxy fitness for all variants in the design space (20119 possibilities) we trained an oracle
similar to the procedure above, using similar splits to those in Blalock et al. (2024) and
were able to reproduce their high performance on the test set. Before model training, we
scaled the fitnesses of the single mutants to the fitnesses of multi mutants by adding a
normalization factor to all single mutants such that the parent sequence in both datasets
had the same fitness. Our model consists of an ensemble of 10 MLPs for CreiLOV, and each
was trained on onehot encodings of sequences for 1000 epochs. From here forth, we treated
ground truth fitness for CreiLOV as outputs from the oracle. Our oracles have high Pearson
correlation on the test set (Fig. A1)
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Figure A1: Oracles trained on available labeled data for TrpB and CreiLOV extrapolate
well to higher order combinations of mutations within the design space, as measured by
Pearson correlation.

Figure A2: Pipeline for generating protein sequences for evaluation, based on a hypothetical
parent sequence: MKKFG...SQRFD (length=100), with 8 residues being optimized (3, 4,
26, 27, 28, 29, 98, 99), corresponding to a design space combo of KFDEACRF.

Our primary method for evaluation involved examining the distribution of sampled se-
quences and their corresponding fitness values. The processing pipeline for generated se-
quences in shown in Fig. A2. In diffusion models, sequences were generated with fixed
length equal to the parent length. For the language model, sequence fragments of variable
length were generated and aligned with the parent sequence using mafft (Katoh & Standley,
2013), and gaps were replaced with the corresponding amino acid in the parent sequence to
generate complete pseudo-sequences. Special tokens, which occurred rarely in generation,
were replaced by a random amino acid. For TrpB, residues outside of the design space of
15 residues were naively mapped to the original amino acid type in the parent sequence at
the end of generation. For unconstrained generation, we allowed the entire design space to
be mutated. In constrained generation, we allowed for a maximum of 4 mutations in any
generated sequence, relative to parent, as the generalization ability of our oracle has only
been tested on variants that are similar to the parent. We enforced this constraint at the
end of generation by choosing 4 mutated residues randomly to keep, and other residues were
mapped back to their corresponding identities in the parent sequence.

For the plots in Fig. 3, 1000 sequences were generated and duplicates were not removed.
For the language model, we used a temperature of 1.0 and a top-p of 1.0. For Fig. 4, to
evaluate the fitness distribution of generated sequences, duplicate sequences were removed,
and unique sequences were generated until a certain threshold was met: 200 sequences. We
used the same generation parameters for generation from the aligned (conditional) mod-
els, which were aligned with sequence-fitness pairs obtained from an initial round of 200
sequences from the unconditional prior.
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A.4 Steering Methods

A.4.1 Classifier Guidance

Classifier guidance (Song et al., 2020) is a technique used to steer samples generated by
diffusion models toward desired attributes. The primary goal is to sample from a conditional
distribution p(x|y), where y is a guiding signal of interest. In continuous space, this can
be achieved by replacing the unconditional score function ∇xt

log pt(xt) at time t by a
conditional score function,

∇xt log p(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt). (12)

To obtain the conditional score function, one only needs to train a time-dependent predictor,
which predicts the probability of pt(y|xt) given xt and time t.

Continuous Guidance. Classifier guidance modifies the reverse diffusion process to steer
generated samples toward a desired property, represented by a conditioning variable y. The
guided sampling process modifies the update rule for xt by incorporating a classifier score
∇xt

log p(y|xt) into the model’s learned score function. This is based on the fact that the
conditional score function can be rewritten as:

∇xt log p(xt|y) = ∇xt log pt(xt) + λ∇xt log pt(y|xt), (13)

where λ is the guidance scale controlling the influence of the classifier.

Following Song et al. (2020), the classifier guidance term modifies the predicted x̂0 in the
denoising process:

x̂0 = xt + σ2(sθ(xt, t) + λ∇xt
log p(y|xt)). (14)

Since our diffusion model directly predicts logits rather than the score function sθ(xt, t),
adding classifier guidance requires modifying the predicted x̂0.

Instead of predicting the score function explicitly, our model predicts logits over the vocabu-
lary, from which the denoised representation x̂0 is obtained. We modify x̂0 by incorporating
classifier gradients as follows:

• Compute the unmodified x̂0 using the model’s predicted logits:

x̂0 =
∑
ŵ

p(ŵ|xt, t)Uθŵ (15)

where Uθ is the embedding matrix mapping discrete tokens to continuous space.

• If a classifier D is available, compute the classifier guidance term:

∇xt log p(y|xt) =
1

τ
∇xtD(xt, t). (16)

• Modify x̂0 using the classifier gradient:

x̂0 = x̂0 + λσ2∇xt
log p(y|xt). (17)

This allows the diffusion model to generate samples that are more likely to satisfy the desired
condition y.

To obtain a classifier D for continuous diffusion models, we trained an MLP predictor with a
hidden dimension of 264 to predict the fitness of a continuously embedded sequences given
xt and time t. We trained the classifier with 1000 epochs of Adam optimization with a
learning rate of 10−3. For classifier guidance with continuous models, we used a guidance
weight of λ = 100.

Discrete Guidance. Nisonoff et al. (2024) extend classifier guidance to discrete state-
space diffusion models. In analogy to classifier guidance for continuous diffusion models,
they modify the unconditional rate matrix Q̄t (as defined in Eq. 11) to be a conditional rate
matrix Ry

t with

Ry
t [x, x̃] =

p(y|x̃, t)
p(y|x, t)

Q̄t[x, x̃], ∀x̃ ̸= x. (18)
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For classifier guidance on both continuous and discrete diffusion models, we train a time-
dependent predictor (classifier) D that predicts the fitness y given xt at time t. We define
p(y|x) ∝ exp(r(x)/τ), where r(·) is a surrogate predictor of the fitness, and τ is the guidance
temperature and inversely governs the strength of guidance. Therefore, ∇xt

log pt(y|xt) =
1
τ∇xt

D(xt, t), and Ry
t [x, x̃] = exp

((
D(x̃, t)−D(x̃, t)

)
/τ

)
Q̄t[x, x̃].

To obtain a classifier D for discrete diffusion models, we trained an MLP predictor with a
hidden dimension of 64 to predict the fitness of a one-hot encoded sequence given xt and
time t. We trained the classifier with a uniformly random t ∈ [0, T ] over 1000 epochs of
Adam optimization with a learning rate of 10−3. For classifier guidance with D3PM models,
we used a guidance temperature of τ = 0.01.

A.4.2 Posterior Sampling

Another line of guidance work (Chung et al., 2023; Mardani et al., 2024; Zhang et al., 2024)
focuses on drawing samples from the posterior distribution p(x|y) ∝ p(x)p(y|x), where the
prior distribution is modeled by a pretrained diffusion model. The conditional distribution
p(y|x) can either be the likelihood function of a forward model (i.e., when y is an incomplete
measurement of x) or an exponential distribution with respect to a reward function (i.e.,
p(y|x) ∝ exp(r(x)/τ)). The major difference between posterior sampling and classifier
guidance is that it requires the reward function to be trained only on clean data x.

While many works have studied posterior sampling in Euclidean space with continuous
diffusion models, posterior sampling for discrete data has been less explored. We modified
DAPS (Zhang et al., 2024) to enable diffusion posterior sampling in discrete-state spaces.
Suppose x lies in a finite support XD, we follow the following steps:

• Initialize xT ∼ Uniform(X )D

• for i = 1, . . . ,K

1. Sample x̂
(i)
0 ∼ p(x0|xti−1

) by a discrete diffusion model.

2. Run Metropolis Hasting algorithm to sample x
(i)
0 ∼ p(x0|xti−1

, y) as defined in
Eq. 19.

3. Sample xti ∼ p(xti |x0) following the forward Markov process.

• Return xK .

Specifically, t0, t1, . . . , tK are mono-decreasing time steps with t0 = T and tK ≈ 0.
p(x0|xt, y) is defined as

p(x0|xt, y) ∝ p(y|x0)p(x0|xt)

≈ p(y|x0) exp(−∥x0 − x̂0(xt)∥0/σt), (19)

where x̂0(xt) ∼ p(x0|xt) is a point estimate of the conditional distribution, and we approxi-
mate p(x0|xt) by an exponential distribution over Hamming distance. Following Proposition

1 in Zhang et al. (2024), x̂
(i)
0 , x

(i)
0 , and xti converge to the posterior distribution as ti goes

to 0.

For posterior sampling with the D3PM model and DAPS, we obtained the reward model D
using the same model architecture and training parameters as discrete guidance but only
trained on clean data x (no noised xt). We used a guidance temperature τ = 0.1 and 1000
Metropolis Hasting steps in each iteration. We set K = 500 using the same time scheduler
{tk}Kk=0 as D3PM.

A.4.3 Policy Optimization

For DPO with language models, we used the ranked loss function from Widatalla et al.
(2024) and Stocco et al. (2024) (Eq. 20). πθ is the policy to be updated, πref is the original
model, and β is a tunable parameter describing the extent of drift from the reference model.

The loss therefore describes the cross entropy of the ratio β log πθ(x)
πref(x)

and the fitness value w.

Following Stocco et al. (2024), we calculated the ratio r as the difference of the log likelihood
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Figure A3: Performance generally improves over multiple iterations of alignment, but this
trend is more obvious for the CreiLOV dataset. 100 sequences were sampled in each round,
and the model was aligned with all accumulated previous samples. Solid lines represent the
mean fitness of samples in the round, while dashed lines represent the maximum fitness of
a sequences sampled during the round. The horizontal lines show baselines achieved by the
prior before alignment, and the black lines are random. This task will be explored more in
future work.

of the sequence from the updated model minus the log likelihood of the reference model,
and softmax was applied to all of the fitness values w. We used the default parameters
from (Stocco et al., 2024) but increased the learning rate to 10−4 and the β parameter to
1 with finetuning for 5 epochs. In future work, we will explore other DPO approaches such
as paired and weighted loss with other types of models.

LDPOranked
(πθ;πref) = −ED

K∑
k=1

β log
πθ(x)

πref(x)
− log

K∑
j=k

exp

(
β log

πθ(x)

πref(x)

) (20)

A.5 Additional Results
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