
Under review as a conference paper at ICLR 2022

FASTER NEURAL NET INFERENCE VIA FORESTS OF

SPARSE OBLIQUE DECISION TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

It is widely established that large neural nets can be considerably compressed by
techniques such as pruning, quantization or low-rank factorization. We show that
neural nets can be further compressed by replacing layers of it with a special type
of decision forest. This consists of sparse oblique trees, trained with the Tree
Alternating Optimization (TAO) algorithm, using a teacher-student approach. We
find we can replace the fully-connected and some convolutional layers of standard
architectures with a decision forest containing very few, shallow trees so that the
prediction accuracy is preserved or improved, but the number of parameters and
especially the inference time is greatly reduced. For example, replacing last 7
layers of VGG16 with a single tree reduces the inference FLOPs by 7 440× with
a marginal increase in the test error, and a boosted ensemble of nine trees can
match the network’s performance while still reducing the FLOPs 6 289×. The
idea is orthogonal to other compression approaches, which can also be used on
other parts of the net not being replaced by a forest.

1 INTRODUCTION

It is well known that large neural nets can be considerably compressed with little accuracy loss,
which is especially important for them to be deployed in devices with limited computation. Many
research papers in the last few years have investigated various model compression techniques and
algorithms, and multiple industrial and academic compression software frameworks are available
Zmora et al. (2019); Kozlov et al. (2020); Wu et al. (2018); Idelbayev & Carreira-Perpiñán (2020).
By and large, most work has focused on compression forms such as pruning, quantization, low-rank
factorization and combinations thereof.

We consider the teacher-student approach, which consists of training a new model (the student) to
mimic the predictions of another, given model (the teacher). This is a generic idea dating back to at
least the early 1990s Craven & Shavlik (1994) and has been reinvented in multiple settings. It can
take many forms depending on the teacher and student models and the specifics of the training, and
it has many applications and motivations, such as rule extraction, transfer learning or knowledge
distillation Gou et al. (2021).

Our focus is on neural net compression: we replace portions of the neural net with an oblique
decision forest using teacher-student training. Specifically:

1. The student is a forest of oblique trees, which have (sparse) hyperplane decision nodes, rather
than the traditional axis-aligned decision nodes, which test a single feature. This is crucial
and its success relies on a recently proposed algorithm to train oblique trees, Tree Alternating
Optimization (TAO) Carreira-Perpiñán & Tavallali (2018). Why not use a traditional forest of
axis-aligned trees, as in random forests or gradient boosting, which have seen widespread use
(thanks in particular to highly optimized implementations such as XGBoost Chen & Guestrin
(2016))? As we show, these appear unable to approach the performance of sparse oblique
forests in the design space of accuracy, number of parameters and inference time.

2. The teacher is a portion of the neural net, in this paper the last several layers (up to the output
layer). The reason is that, while oblique forests are indeed powerful models, they are generally
unable to reach the accuracy of the full neural net, at least with certain types of data, such
as pixel-space images—for which convolutional layers (which capture spatial invariance and

1



Under review as a conference paper at ICLR 2022

hierarchical parts-of structure) are hard to beat. (Indeed, if the forest was as good as the neural
net, we would not need the latter in the first place.) However, the oblique forests are indeed
able to replace significant portions of the net, and the gains in inference time and number of
parameters are very considerable.

Our work touches on multiple, existing ideas that we review in section 2, and crucially relies on
the Tree Alternating Optimization (TAO) algorithm, which we describe in section 3. Then, we
describe our teacher-student procedure (section 4) and evaluate it in different neural net architectures
(section 5).

2 RELATED WORK

Neural net compression Most current work on neural net compression can be largely categorized
into pruning (weight or neuron removal), quantization (making weights take values in a small code-
book), decomposition methods (approximating weight matrices as products of smaller matrices),
and various combinations of those. See Lianga et al. (2021); Deng et al. (2020) for a review.

Conditional computation neural architectures There is a recent interest in having the inference
for an instance use only a small part of the neural net computational graph. It has been shown that,
for a given level of accuracy, conditional computation may reduce the network’s runtime require-
ments Shazeer et al. (2017); Hazimeh et al. (2020); Ioannou et al. (2016); Veit & Belongie (2018),
but these approaches have not been widely adopted as a standard part of the neural network training
pipelines. One reason is the lack of principled, effective algorithms to training networks with con-
ditional computational graphs. Note that decision trees and forests achieve conditional computation
naturally.

Tree-based neural architectures Most of these can be seen as variations of the hierarchical mix-
tures of experts Jordan & Jacobs (1994), which are “soft” trees. That is, the input instance is propa-
gated through every path down to every expert, with a certain positive probability, and their outputs
are averaged correspondingly. An important advantage is that such architectures can be readily
trained using gradient- or EM-based algorithms. However, training is very slow because each in-
stance affects each node—there is no conditional computation—and likewise inference is very slow,
which would defeat the purpose of compression. Also, “hardening” a soft tree generally increases
the prediction error significantly. The main motivation for this line of work with respect to neural
networks is to improve generalization by replacing the final layer by a soft decision tree Wan et al.
(2021), a forest of soft trees Rota Buló & Kontschieder (2014); Kontschieder et al. (2015), or a mix-
ture of smaller neural nets Ahmed et al. (2016). Another line of work includes building a neural
network with a tree structure, so that every root to leaf path is a proper neural network Murdock et al.
(2016); Tanno et al. (2019); Wang et al. (2018). To the best of our knowledge we are unaware of any
works using hard trees for network compression.

Teacher-student approaches The earliest teacher-student approaches sought to extract rules from
a neural net by training a decision tree to mimic it, using the predictions of the neural net for the train-
ing set or other dataset Craven & Shavlik (1994; 1996); Domingos (1998); Andrews et al. (1995).
Their success was strongly limited because they tried to mimic the entire neural net, which is hard
enough, and using a single, axis-aligned tree, which is generally too inaccurate. A recent version
of this is Frosst & Hinton (2017), who use a soft tree, but this defeats the purpose of fast inference,
since the input instance must travel through each path of the tree.

The teacher-student approach has also been used explicitly for compression, often by having the
teacher and the student be both neural nets of the same architecture, but forcing the student to learn
the teacher’s outputs with some compression constraint such as quantization Polino et al. (2018) or
pruning Aflalo et al. (2020).

Pretraining and transfer learning A common paradigm for transfer learning is to extract features
from early layers of a neural net (“pretrained” features) in the hope that they are transferable to
another task. Then, one fine-tunes a new classifier (which could be a forest) on those features. This
effectively results in a hybrid architecture consisting of some neural layers and a forest classifier.
However, this does not consitute compression of the original neural net for the original task.

Decision trees Although different types of decision trees have been proposed since the 1950s, the
form that has become established consists of axis-aligned trees, where a decision node tests a single

2



Under review as a conference paper at ICLR 2022

input feature vs a threshold, and a leaf outputs a prediction (say, class label). Likewise, most decision
forests use that type of trees with a bagging approach, such as random forests Breiman (2001), or
boosting, such as AdaBoost Freund & Schapire (1997) or gradient boosting Friedman (2001). They
are among the most powerful machine learning models, and very efficient implementations have
made them widely used in applications Chen & Guestrin (2016). In all cases, each individual tree
is learned using a recursive partitioning approach that grows the tree top-down one node at a time,
greedily fixing its parameters (feature and threshold) based on a heuristic that estimates a good,
“pure” split (such as the Gini index in CART Breiman et al. (1984) or the entropy in C4.5 Quinlan
(1993)). This is optionally followed by a pruning step that helps to reduce overfitting. Oblique trees,
having a hyperplane decision, are obviously more powerful, but have proven harder to learn than
axis-aligned trees Hastie et al. (2009). The TAO algorithm Carreira-Perpiñán & Tavallali (2018),
described below, is able to learn oblique trees with a much better accuracy, and this has been shown
to produce more accurate forests as well Zharmagambetov & Carreira-Perpiñán (2020) (although
these works did not use them for neural net compression).

3 ALTERNATING OPTIMIZATION TO LEARN SPARSE OBLIQUE TREES

The TAO algorithm was originally proposed in Carreira-Perpiñán & Tavallali (2018) to learn sparse
oblique trees with constant-label leaves, and later generalized to handle forests for classification and
regression Zharmagambetov & Carreira-Perpiñán (2020). We describe the form of the algorithm we
use and refer the reader to those papers for further details. Consider a decision tree with decision
nodes in set D and leaves in set L. Each decision node i ∈ D sends an input instance x to its right
child if θT

i x + θi0 ≥ 0 and to its left child otherwise (hyperplane, or oblique, decision nodes). For
classification, each leaf i ∈ L outputs a single class θi ∈ {1, . . . ,K} (constant-label leaves). The
tree predictive function T (x;Θ) (with nodes’ parameters written jointly as Θ) routes x to a leaf
which outputs its class. TAO works in a way that is very different from recursive partitioning (as in
CART or C4.5), and much closer to how most other machine learning models (such as neural nets)
are learned. TAO iteratively optimizes the regularized empirical risk of a parametric model, jointly
over all the nodes’ parameters:

E(Θ) =
∑N

n=1 L(yn, T (xn;Θ)) + λ
∑

i∈D
‖θi‖1 (1)

where L(·, ·) is a loss function (such as the 0/1 loss) and λ ≥ 0 a regularization hyperparameter.
That is, unlike with the traditional algorithms, with TAO we can choose a specific loss and regular-
ization term. One first fixes the model structure (say, a complete tree of depth ∆ with random node
parameters) just as one would with a neural net. Then, each iteration updates the tree parameters
(here, the decision node hyperplanes and leaf classes) so E decreases monotonically. Where in a
neural net one would use a gradient-based algorithm, with trees TAO uses alternating optimization
over sets of non-descendant nodes. Why this works is due to two theorems. Define the reduced set
Ri ⊂ {1, . . . , N} of decision node or leaf i as the training instances that reach i under the current
tree. Then we have (see Carreira-Perpiñán & Tavallali (2018) for proofs):

Separability condition If nodes i and j are not descendants of each other (e.g. all nodes at the same
depth), then E can be written equivalently as a separable function of the parameters of i and j.
(This follows from the fact that Ri ∩ Rj = ∅, because the tree makes hard, not soft, decisions,
by sending an instance down exactly one child at each decision node.)

Reduced problem The problem of optimizing E over the parameters θi of node i simplifies as
follows. For a leaf i, it is equivalent to training its model parameter θi on Ri to optimize E. In
our case, θi is simply the majority class on Ri.
For a decision node i, it is equivalent to a weighted 0/1 loss binary classification problem over
the node’s decision function on its reduced set. Each instance is “pseudolabeled” as the child
(left or right) that leads to a lower value of E under the current tree. (This follows from the
fact that all a decision node can do with an instance is send it down its left or right child, and
the ideal choice is the one that results in the best prediction downstream from that node.) The
regularization term ‖θi‖1 carries over to the reduced problem. While optimizing the 0/1 loss
in general is NP-hard, we can approximate it by a surrogate loss; we use ℓ1-regularized logistic
regression and solve it with LIBLINEAR Fan et al. (2008).

The separability condition allows us to optimize E in parallel over the parameters of any set of nodes
that are not descendants of each other (fixing the parameters of the remaining nodes). We process the

3



Under review as a conference paper at ICLR 2022

nodes in reverse breadth-first search order. The reduced problem theorem implies that optimizing
E over a decision node’s parameters reduces to optimizing a binary linear classifier with the 0/1
loss with certain pseudolabels. Overall, then, what TAO does is simple: at each iteration, it trains a
binary linear classifier at each decision node and a majority-vote K-class classifier at each leaf. This
monotonically decreases the objective function E. Note that after each iteration the reduced set on
which each classifier or leaf predictor is trained changes.

Finally, if one uses an ℓ1 regularization term (as in eq. (1)), each node’s weight vector will be sparse,
or even entirely zero, which makes the node redundant (since it directs all input instances to the
same child) and can be removed in a postprocessing step at the end of the training. This means that
TAO also learns the tree structure (subject to being a subset of the initial tree’s structure). The size
of the tree (and the sparsity of the node weight vectors) is controlled by λ: larger values result in
smaller trees, eventually a single-leaf tree. This type of trees were called sparse oblique trees in
Carreira-Perpiñán & Tavallali (2018) and can be seen as a tree form of a Lasso.

3.1 SPARSE OBLIQUE FOREST: CONSTRUCTION AND HYPERPARAMETERS

A sparse oblique forest can be naturally learned via any standard ensembling mechanism, such as
bagging or boosting, but where each individual tree is learned with TAO. Here we consider bagging
Breiman (1996), where each tree is trained independently on a bootstrap sample; and SAMME
Zhu et al. (2009), a version of AdaBoost, where trees are trained sequentially on the entire, but
adaptively reweighted, dataset.

A sparse oblique forest is controlled by 3 hyperparameters: ∆, the depth of the initial, complete
tree; λ, the sparsity hyperparameter (the same for all the trees in the forest); and T , the number of
trees. The structure and size of the learned tree is determined by λ, so ∆ should simply be taken
large enough so it does not interfere. (Note that Zharmagambetov & Carreira-Perpiñán (2020) used
a fixed λ value and varied ∆ and T instead.)

To find a forest that strikes a good tradeoff between accuracy and compression, we want to generate
a collection of forests, each for a choice (λi, Ti) where λi ∈ {λ1, λ2, . . . , λQ} and Ti ∈ {1, . . . , T}.
To learn them it is useful to use warm-start, i.e., to compute the regularization path starting from λ1

and ending in λQ so that the tree for λi is initialized from that of λi−1. This has the advantage over
using an arbitrary initial tree with random parameters that training is faster (the tree for λi−1 should
be close to that of λi) and the result is smoother (we reduce erratic convergence to disparate local
optima). For bagging, repeating this independently (i.e., we run T regularization paths) for each
Ti ∈ {1, . . . , T} gives the Q forests. For boosting, we run a single regularization path, which gives
the first tree for each forest; then, the remaining trees in each forest are learnt by boosting as usual.

4 TEACHER-STUDENT COMPRESSION OF NEURAL NET WITH FORESTS

In our setting, the teacher model is the part of the network that is being replaced, and the student
model is a forest of oblique decision trees trained using the TAO algorithm (sec. 3). Formally, let
us denote the input to the network as x, the corresponding true label as y, and the output after the
kth layer as fk(x) with k = 1, . . . ,K. Using such a definition, the output of the entire network
is fK(x), and typically the teacher model is trained to have fK(x) ≈ y by minimizing some loss
function (e.g., cross entropy in case of multi class classification). Now, assume we want to replace
all K ′ to K layers using a forest F : that is, the output of the preceding layer, fK′−1(x), will be
fed as an input to our forest F and the forest’s prediction F(fK′−1(x)) will be used instead of the
network’s output fK(x). In the knowledge distillation version of the teacher-student approach, the
student model is trained to match the teaching model’s output (i.e., fK(x)), however, we use the
true label y as the teaching signal. See an illustration in Fig. 6 of appendix. To train our forests we
collect the input/target pairs (fK−1(x),y) computed on the training data.

The compression of the replaced part of the network is achieved in two ways. First, since we are
using hard decision trees, the prediction through a tree requires computing inference along a single
root to leaf path of depth ∆ (a balanced tree), which involves ∆ vector-vector products, while
prediction through a neural network requires computing K − K ′ + 1 matrix-vector products of
various sizes. While it is still possible to design a large tree that requires more computation than the
replaced part of the neural network, we experimentally find that this is not the case: a relatively small
and shallow trees can approximate large chunks of networks well. A second factor contributing to

4



Under review as a conference paper at ICLR 2022

the compression is the sparsity of the decision nodes controlled by a hyperparameter λ, see eq. (1).
With sparse decision nodes, each evaluation becomes much faster and requires fewer parameters
(for a sufficiently sparse weights). The sandwiching of sparse decision trees and forest on top of the
neural network can lead to a further compression as sparse decision tree will act as feature selector.
The inputs that are not used by a tree, which correspond to the output neurons of the feeding layer,
can be safely removed.

5 EXPERIMENTS

We quantify how well sparse oblique forests and axis-aligned forests are able to replace specific
portions of several well-known deep net architectures. In summary, we find that oblique forests
(with suitable hyperparameter choices) can comfortably retain the accuracy of all the fully-connected
layers and even some convolutional layers while speeding up the inference very considerably, and
also using fewer parameters. Random forests and XGBoost forests are not able to replace so many
layers, and are also much slower. Next, we describe how we measure the number of parameters
and inference time, and describe our experimental results. We relegate details of the training to
the appendix B. In this section, and throughout the text, unless specifically noted, we report the
compression ratios wrt replaced parts of the neural networks.

Number of parameters We define the number of parameters as the total count of nonzero weights
in the model. We opt to report the number of parameters instead of the required storage bits when
saved to disk because: first, the actual disk storage will depend on the chosen format for the sparse
weights, and it is often possible to manipulate the final storage size by simply changing the format
or by chaining it with other compression forms (which constitutes a large research field on its own);
second, the number of nonzero parameters can be compared directly across different models and pa-
pers, while the storage size depends on many (hidden) factors which will hinder future comparisons.

Inference time and FLOPs We report an estimate of floating-point operations (FLOPs) and the
required inference times through the forests we have trained. Unlike the neural networks, where
given a constant sized input, the FLOPs count remain the same, the inference FLOPs through a
decision tree is instance conditioned and, depending on the taken branch (and its sparsity), might
differ across the examples. Additionally, we find that the FLOPs model is a poor approximation for
the inference speed of decision trees.

We define a FLOPs count as the average number of fused additions and multiplications involving
nonzero weights as counted during the inference of a single training point and then averaged across
the dataset. We use fused FLOPs count to be consistent with neural network compression literature:
for example, 1× 2 + 3 will be reported as a single FLOP (instead of two FLOPs).

The inference time is defined in a similar to FLOPs manner: it is the average number of seconds
required to compute a prediction for a single input (averaged over training dataset). To measure
the inference times we execute all models (including neural nets) in a single core (single thread)
on Intel Xeon CPU (E5-2699v3) clocked at 2.30GHz. While simple in definition, in practice, the
measurements are complicated due to the quality of the implementations. For example, neural net-
works enjoy highly optimized execution due to structured matrix-vector products (which induce
fewer number of cache misses and easier to vectorize), and have efficient back-ends (we use ONNX
Runtime in our measurements). On the other hand, while XGBoost library is highly optimized for
training and inference of decision trees, we find that single input inference exhibits unexpectedly
large inference times for forests of small sizes (e.g., T = 1) when compared to the inference times
of larger XGBoost forests (e.g., T = 100). At the same time, the random forest implementation
through scikit-learn was the slowest, possibly due to being written in python.

To alleviate the implementation effects of XGBoost and random forests, we used TreeLite library
Cho & Li (2018) that optimize the decision tree’s computational graph and result in very fast trees
by compiling them into annotated C code that provides hints for compiler optimization. Unfortu-
nately, TreeLite does not support oblique trees, which puts our TAO forests at a disadvantage: while
our TAO tree inference is reasonably implemented, we strongly believe that it would benefit from
additional optimization. For these reasons, we expect our inference times will vary depending on
the system. However, since our oblique trees have most room for additional system optimizations,
we would expect their performance gap over the other models to be even larger. Finally, we did not
consider parallel processing; all models here will profit from it, again depending on the system.

5



Under review as a conference paper at ICLR 2022

Table 1: Compression of the softmax layer of VGG16 trained on CIFAR10. Inference time measured
using default implementation (inf.) and using TreeLite (inf.+)

Model test error, % params FLOPs inf. (ms) inf.+ (ms)

Reference softmax 6.46 5130 5130 0.01249 —

TAO, T = 1, λ = 0.01 6.68 3070 1305 0.00156 —
CART, T = 1 7.37 19 6 0.07140 0.01973
XGB, T = 1× 10 7.75 40 10 0.41064 0.02132

Gradient boosting is slow with multiclass problems First, we give some intuition why gradient
boosting (GB) forests are expected to be large. Boosting works by greedily learning T learners.
With K-class classification, each learner can be a single K-class tree with AdaBoost, but with GB
it is a forest of K trees each outputting a scalar. Hence, T learners are T trees for AdaBoost (or for
Random Forests, or for our bagged or boosted oblique trees) but a staggering TK trees for XGBoost.

Now consider replacing a K-class softmax layer having D input features. Its computation can be
seen as K scalar products (of dimension D), to compute each class score. The XGBoost computation
can be seen as K independent computations too, each a T -tree forest. Although the actual inference
time depends on specifics (in particular the dimension D), this seems much heavier than one scalar
product, however well optimized XGBoost is.

We evaluated this in compression of softmax layer of VGG16 trained on CIFAR10, which has a test
error of 6.46% and 5130 softmax weights. We report our compression results in Table 1. Our single
TAO tree achieves a marginally higher test error of 6.68% and has fastest inference time. Notice
that FLOPs and parameters counts for XGBoost and random forest (RF) are much smaller than for
a TAO tree, yet, it does not result in a faster inference even when using with TreeLite compilation
(reported as inf.+). In particular, even a single CART tree needs more time to finish the inference
than softmax itself, whereas our single tree is 8× faster.

How many layers can we replace with a forest without accuracy loss? An important question
we need to ask is how many layers we can replace with a forest without an accuracy loss. This is
an empirical question and its answer will vary from case to case. To get an intuition, we compress
progressively larger parts of 16 layer VGG network (13 convolutional and 3 fully-connected layers)
trained on CIFAR10, starting from fully-connected layer 1 (i.e., FC1 → output). We then run a
similar experiment using random forest compression and report the achieved test errors in Fig.1.

We observe that using TAO trees we can replace parts of the network up to 10th convolutional layer
(conv10 → output) without any loss in predictive performance. With random forest compression,
the accuracy degradation is quite significant and starts earlier than with TAO trees.

How much faster is a forest than the original neural net portion? Equipped with a strong
empirical evidence that large portions of the neural networks can be precisely approximated by
forests of decision trees, we now task ourselves with compressing some parts of the neural networks
and analyze it from the compression perspective.

In the first experiment, we replace all (two) fully-connected layers of LeNet5 trained on MNIST. The
original network has 431K parameters, 2.2M FLOPs, runs in 0.18 ms, and has the test error of 0.55%.
The replaced part has 405K parameters, 405K FLOPs, and runs in 0.076 ms. The compression-
error tradeoff curves for this experiment are given in Fig. 2 We observe that bagged and boosted
TAO forests allow us to significantly reduce the required FLOPs and storage: with bagged forest
of T = 11 trees (λ = 10) we obtain a replacement model with the test accuracy of 0.57%, 5841
FLOPs (↓ 69×) and 118K params (↓ 3.41×), which runs in 0.019 ms; similarly, using the boosted
ensemble of T = 5 trees (λ = 0.01) we can compress the fully-connected layers to a model having
19K FLOPs (↓ 21×), 110K parameters (↓ 4×), and the inference time of 0.020 ms, which has a
better test error of 0.52%.

In the second experiment, we replace the last seven (four convolutional and three fully-connected)
layers of VGG16. The original reference model has 15.2M parameters, 313.7M FLOPs, and runs
in 13.03 ms, and the test error of 6.46%. The replaced part has 9.9M parameters 66.5M FLOPs,
and runs in 4.42 ms. For this network, we observe even higher compression ratios. For instance, an

6



Under review as a conference paper at ICLR 2022

Compression using bagged TAO trees Compression using Random Forest

F
C

1

co
nv13

co
nv12

co
nv11

co
nv10

co
nv9

co
nv8

co
nv7

co
nv6

co
nv5

5

10

15

20

25

30

35

FC1 conv13 conv12 conv11 conv10 conv9

6

6.5

7

T
es

t
er

ro
r,

%
T = 1 T = 3 T = 5

T = 7 T = 9 T = 11

R

F
C

1

co
nv13

co
nv12

co
nv11

co
nv10

co
nv9

co
nv8

co
nv7

co
nv6

co
nv5

5

10

15

20

25

30

35

FC1 conv13 conv12 conv11

6

6.5

7

R

T = 1 T = 5 T = 11

T = 50 T = 100 T = 1000

Figure 1: Test error as a function of layers when tree-based compression (TAO bagging and random
forest) is applied to progressively larger parts of the network. For every layer X (FC1, conv13, etc.)
we report the test accuracy when we replace the X → output part of the network with a forest of size
T . Test error of the reference network is indicated with a horizontal dashed line labeled with R.

ensemble of T = 9 bagged trees (λ = 0.01) has the same error as the reference net (6.46%) but
needs only 1.04M parameters (↓ 9.6×), 0.13 MFLOPs (↓ 516×), and runs in 0.16 ms (↓ 28×). An
ensemble of T = 9 boosted trees (λ = 1) has the test error of 6.46% with 10.5K FLOPs (↓ 6289×)
and 20K parameters (↓ 488×), and runs in 0.052 ms (↓ 86×)

In Figures 3 and 5 we put selected results in comparison to the baselines. Our TAO forests are
orders of magnitudes faster than regular XGBoost and random forests, and achieve much smaller
test errors. Our advantage in inference-error tradeoff space remains still even when we compare
it to TreeLite optimized versions (dashed colored lines) of achieved XGBoost and random forests.
Additional experiments on ResNets and VGG16 networks are available in appendices D, E and F.

Training time of a sparse oblique forest A major advantage of our compression approach is that
we do not need to train any neural networks: we just need to train a forest on the selected neural net
outputs. The TAO training itself, is parallelized on the level of decision node problems (see sec. 3),
and on the level of trees in case of bagging. Additionally, our node-problem solver, LIBLINEAR,
can utilize the sparsity in the input features to speed up the training; this comes handy because
majority of the activations in the neural networks are ReLUs, which produce sparse outputs. Overall,
using 16 cores of Intel Xeon E5-2699 clocked at 2.30 GHz, our longest TAO bagging experiment
(VGG16, conv8 → output) with T = 15 finishes in 24 minutes, and the longest TAO boosting
experiment (on the same dataset) finishes in 95 minutes. In average, any reported experiments finish
within 40 minutes.

Combination with other compression techniques Our compression mechanism is orthogonal to
other techniques like pruning, quantization, and low-rank compression; and in combination with
those, further compression can be achieved. To demonstrate such a capability, we obtain low-rank
compressed VGG16 model from Idelbayev & Carreira-Perpiñán (2021) trained on CIFAR10. This
network has a test error of 6.49%, 1.96M parameters, 61.31M FLOPs, and runs in 2.20 ms; with
respect to the reference VGG16, this numbers correspond to 7.74× reduction in parameters, 5.10×
reduction in FLOPs, and 5.91× inference speed-up. We replace the last six layers of this low-rank
network with a bagged forest of T = 15 trees and achieve a further compressed low-rank+tree
model with a better test error of 6.44%, fewer parameters count of 1.55M (↓ 9.81×) and fewer
FLOPs count of 58.85M (↓5.31×), which runs in 2.13(↓6.11×).

Our obtained low-rank + tree model not only improves over original low-rank model but also obtains
a better tradeoff than filter pruning methods like HRank Lin et al. (2020) (which achieves 8.77% test
error at 73.70M FLOPs and 1.78M parameters).

6 DISCUSSION

Although we have motivated our work as neural net compression, effectively we learn a hybrid ar-
chitecture consisting of the composition of neural and forest layers. Why not train the whole model
jointly over all its parameters? At present, we do not have a reliable way to do this, because a deci-
sion tree is a nondifferentiable function. Also, separate training does have an important advantage:

7



Under review as a conference paper at ICLR 2022

Compression of the fully-connected layers of LeNet5 with a forest of T bagged trees (TAO-bg)

0 1 2 3 4 5 6

0.5

1

1.5
te

st
er

ro
r,

%

inference FLOPs, ×10
4

RFLOPs =4×10
5
→

best models
around here

0 1 2 3 4 5

0.5

1

1.5

parameters, ×10
5

Rparams =4×10
5
→

0 0.01 0.02 0.03 0.04 0.05 0.06

0.5

1

1.5

inference, ms

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100

Rinf =0.076ms →

Compression of the fully-connected layers of LeNet5 with a forest of T boosted trees (TAO-bo)

0 1 2 3 4 5 6

0.5

1

1.5

te
st

er
ro

r,
%

inference FLOPs, ×10
4

RFLOPs =4×10
5
→

best models
around here

0 1 2 3 4 5

0.5

1

1.5

parameters, ×10
5

Rparams =4×10
5
→

0 0.01 0.02 0.03 0.04 0.05 0.06

0.5

1

1.5

inference, ms

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100

Rinf =0.076ms →

Figure 2: Tradeoff curves when compressing the last two fully-connected layers of LeNet5 (on
MNIST). For a given value of λ we change the number of trees T and generate an entire curve when
using bagging (top) or boosting (bottom). The test error of the reference network (along with its
FLOPs, parameters, and inf. time) is denoted with a horizontal dashed line marked with R. The best
models are as close as possible to the left bottom corner.

Selected results on LeNet5

Model error, % params. FLOPs inf. inf.+

reference FC layers 0.55 405K 405K 0.076 —

TAO, T = 1, λ = 0.01 1.11 20K 4K 0.004 —
TAO-bo, T = 5, λ = 0.01 0.52 101K 20K 0.020 —
TAO-bg, T = 11, λ = 10 0.57 118K 5.8K 0.017 —

CART, T = 1 6.15 2.8K 48 0.043 0.022
RF, T = 5 3.50 26K 159 0.446 0.026
RF, T = 7 2.70 36K 240 0.592 0.027
RF, T = 100 1.18 521K 3.4K 5.459 0.115
RF, T = 1000 1.12 5.22M 34K 53.169 —

XGB, T = 1× 10 6.19 2.7K 80 0.491 0.024
XGB, T = 10× 10 1.50 32K 800 0.588 0.050
XGB, T = 100× 10 0.84 55K 4.5K 0.760 0.148

Inference time vs test error

10
-2

10
-1

10
0

10
1

0

1

2

3

4

5

6

te
st

er
ro

r,
%

XGB

TAO-bo, λ = 0.01
TAO-bo, λ = 0.1

TAO-bg, λ = 1

TAO-bg, λ = 1

RF

inference time, ms

R

Figure 3: Left: selected comparisons to the baselines when compressing all (two) FC layers of
LeNet5. Inference speed using regular baselines reported as inf. and TreeLite-compiled versions as
inf.+ Right: comparison to baselines along entire inference-error tradeoff curves. Our trees achieve
of magnitudes better tradeoff than regular and highly optimized versions (using TreeLite, dashed
lines) of these forests. The inference time (of the replaced part) is given with a diamond mark, �.

it is simple and much faster, since we need not train any neural net. That said, the remaining portions
of the neural net can be compressed with other approaches (such as pruning or quantization), so the
final model may use a combination of techniques in order to achieve the most compression.

Replacing the last layers of a neural net can also be seen as learning a decision forest on pretrained
features (as is often done in transfer learning). However, our goal is to compress optimally a given
neural net for a given task, and determining which layers to replace is part of the problem.

A limitation of our experiments is that our inference times may change depending on the hardware
and software implementation of the different models. That said, since the least optimized implemen-
tation is that of the oblique forests, we expect their advantage to remain. Ultimately, however, the
success of the approach—what portions of a neural net can be successfully replaced by an oblique
forest—must be determined empirically in each case.

8



Under review as a conference paper at ICLR 2022

Compression of the last 7 layers of VGG16 with a forest of T bagged trees (TAO-bg)

0 1 2 3 4
6

6.5

7

7.5

8

te
st

er
ro

r,
%

inference FLOPs, ×10
5

parameters,

RFLOPs =6.6×10
7
→

0 0.5 1 1.5 2
6

6.5

7

7.5

8

parameters, ×10
6

Rparams =9.9×10
6
→

0 0.1 0.2 0.3 0.4 0.5 0.6
6

6.5

7

7.5

8

inference, ms

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 10

Rinf =4.42ms →

Compression of the last 7 layers of VGG16 with a forest of T boosted trees (TAO-bo)

0 1 2 3 4 5
6

6.5

7

7.5

8

te
st

er
ro

r,
%

inference FLOPs, ×10
4

RFLOPs =6.6×10
7
→

0 0.5 1 1.5
6

6.5

7

7.5

8

parameters, ×10
5

Rparams =9.9×10
6
→

0 0.05 0.1 0.15
6

6.5

7

7.5

8

inference, ms

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 10

Rinf =4.42ms →

Figure 4: Similar curves as in Fig. 2 but now for the bagged ensemble of trees applied to compress
the last 7 layers of the VGG16 on the CIFAR10: we jointly compress convolutional layers 10–13
and 3 fully-connected layers. Note that some boosting curves (e.g., λ = 0.01) have only a single
reported result due to achieving 0 train error, thus no further boosting is possible. These 7 layers
have 9.9M parameters and require 66.5 MFLOPs.

Selected results on VGG16

Model error, % param. FLOPs inf. inf.+

reference last 7 layers 6.46 10M 66M 4.419 —

TAO, T = 1, λ = 0.01 6.83 97K 8871 0.017 —
TAO-bg, T = 9, λ = 0.01 6.46 1M 129K 0.159 —
TAO-bo, T = 9, λ = 1 6.46 20K 10.5K 0.052 —
TAO-bo, T = 7, λ = 0.1 6.30 84K 26.0K 0.059 —

CART, T = 1 9.38 733 20 0.106 0.040
RF, T = 5 7.75 6.7K 145 1.725 0.042
RF, T = 11 7.02 13.7K 292 4.900 0.047
RF, T = 1000 6.47 1.4M 29K 109.58 0.612

XGB, T = 1× 10 9.84 829 60 2.368 0.044
XGB, T = 10× 10 6.86 12K 600 2.286 0.052
XGB, T = 100× 10 6.58 23K 1931 2.484 0.080

Inference time vs error

10
-2

10
-1

10
0

10
1

6

6.5

7

7.5

8

8.5

9

9.5

te
st

er
ro

r,
%

XGB

TAO-bo, λ = 0.1
TAO-bo, λ = 1
TAO-bg, λ = 0.1
TAO-bg, λ = 0.01

R

RF

inference time, ms

Figure 5: Similar comparisions as in Fig. 3 but now when compressing last 7 layers of the
VGG16 on the CIFAR10, While our oblique trees have larger parameter and FLOPs count wrt
regular CART/RF/XGB models, our models achieve significantly better tradeof in the inference-
compression design space.

7 CONCLUSION

We have shown that a special type of decision forests, consisting of sparse oblique trees, can replace
significant portions of a neural net—resulting in a neural net/forest hybrid—so that its prediction
accuracy is retained but its inference is considerably accelerated. The same does not seem to hold as
well for traditional forests of axis-aligned trees. The training time required to compress the neural
net is also much faster than for compression approaches based on pruning, quantization or low-rank
factorization that require neural net training; we just need to train the forest, which is much faster
and highly parallelizable (within each individual tree, and across trees with bagging).

The success of this hybrid architecture opens up multiple directions for future research, such as
replacing arbitrary portions of the neural net (rather than the last few layers), again with a teacher-
student approach; using other types of trees or ensembling mechanisms; effectively training such an
architecture end-to-end; and efficiently implementing oblique trees and forests in CPUs or GPUs.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik-Manor. Knapsack pruning
with inner distillation. arXiv:2002.08258, 2020.

Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. Network of experts for large-scale
image categorization. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Proc.
14th European Conf. Computer Vision (ECCV’16), pp. 516–532, Amsterdam, The Netherlands,
October 11–14 2016.

Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6):373–389,
December 1995.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

Leo J. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and Charles J. Stone. Classification and Re-
gression Trees. Wadsworth, Belmont, Calif., 1984.

Miguel Á. Carreira-Perpiñán and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems
(NEURIPS), volume 31, pp. 1211–1221. MIT Press, Cambridge, MA, 2018.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proc. of the 22nd
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (SIGKDD 2016), pp. 785–794,
San Francisco, CA, August 13–17 2016.

Hyunsu Cho and Mu Li. Treelite: Toolbox for decision tree deployment. In Proc. of the 1st Conf.
Systems and Machine Learning (SysML 2018), Stanford, CA, February 15–16 2018.

Mark Craven and Jude W. Shavlik. Using sampling and queries to extract rules from trained neural
networks. In Proc. of the 11th Int. Conf. Machine Learning (ICML’94), pp. 37–45, 1994.

Mark Craven and Jude W. Shavlik. Extracting tree-structured representations of trained networks.
In David S. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural Information
Processing Systems (NIPS), volume 8, pp. 24–30. MIT Press, Cambridge, MA, 1996.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. 108(4):485–532, April 2020.

Pedro Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2(1–4):
187–202, 1998.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
library for large linear classification. J. Machine Learning Research, 9:1871–1874, August 2008.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. J. Computer and System Sciences, 55(1):119–139, 1997.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree.
arXiv:1711.09784, November 27 2017.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. Int. J. Computer Vision, 129:1789–1819, June 2021.

Trevor J. Hastie, Robert J. Tibshirani, and Jerome H. Friedman. The Elements of Statistical
Learning—Data Mining, Inference and Prediction. Springer Series in Statistics. Springer-Verlag,
second edition, 2009.

10



Under review as a conference paper at ICLR 2022

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In Hal Daumé III and Aarti
Singh (eds.), Proc. of the 37th Int. Conf. Machine Learning (ICML 2020), pp. 4138–4148, Online,
July 13–18 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
tion. In Proc. of the 2016 IEEE Computer Society Conf. Computer Vision and Pattern Recognition
(CVPR’16), pp. 770–778, Las Vegas, NV, June 26 – July 1 2016.

Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán. A flexible, extensible software framework for
model compression based on the LC algorithm. arXiv:2005.07786, May 15 2020.

Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán. Optimal selection of matrix shape and decompo-
sition scheme for neural network compression. In Proc. of the IEEE Int. Conf. Acoustics, Speech
and Sig. Proc. (ICASSP’21), pp. 3250–3254, Toronto, Canada, June 6–11 2021.

Yani Ioannou, Duncan P. Robertson, Darko Zikic, Peter Kontschieder, Jamie Shotton, Matthew
Brown, and Antonio Criminisi. Decision forests, convolutional networks and the models in-
between. arXiv:1603.01250, March 3 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proc. of the 32nd Int.
Conf. Machine Learning (ICML 2015), pp. 448–456, Lille, France, July 6–11 2015.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181–214, March 1994.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Buló. Deep neural
decision forests. In Proc. 15th Int. Conf. Computer Vision (ICCV’15), pp. 1467–1475, Santiago,
Chile, December 11–18 2015.

Alexander Kozlov, Ivan Lazarevich, Vasily Shamporov, Nikolay Lyalyushkin, and Yury Gorbachev.
Neural network compression framework for fast model inference. arXiv:2002.08679, February 20
2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, November 1998.

Tailin Lianga, John Glossnera, Lei Wanga, and Shaobo Shi. Pruning and quantization for deep
neural network acceleration: A survey. arXiv:2101.09671, January 24 2021.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. HRank: Filter pruning using high-rank feature map. In Proc. of the 2020 IEEE Computer
Society Conf. Computer Vision and Pattern Recognition (CVPR’20), pp. 1526–1535, Seattle, WA,
June 14–19 2020.

Calvin Murdock, Zhen Li, Howard Zhou, and Tom Duerig. Blockout: Dynamic model selection for
hierarchical deep networks. In Proc. of the 2016 IEEE Computer Society Conf. Computer Vision
and Pattern Recognition (CVPR’16), pp. 2583–2591, Las Vegas, NV, June 26 – July 1 2016.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,

Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in Python. J. Machine Learning Research, 12:2825–2830,
October 2011. Available online at https://scikit-learn.org.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quanti-
zation. In Proc. of the 6th Int. Conf. Learning Representations (ICLR 2018), Vancouver, Canada,
April 30 – May 3 2018.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

11

https://scikit-learn.org


Under review as a conference paper at ICLR 2022

Samuel Rota Buló and Peter Kontschieder. Neural decision forests for semantic image labelling.
In Proc. of the 2014 IEEE Computer Society Conf. Computer Vision and Pattern Recognition
(CVPR’14), pp. 81–88, Columbus, OH, June 23–28 2014.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer.
In Proc. of the 5th Int. Conf. Learning Representations (ICLR 2017), Toulon, France, April 24–26
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proc. of the 3rd Int. Conf. Learning Representations (ICLR 2015), San Diego, CA,
May 7–9 2015.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, and Aditya Nori. Adap-
tive neural trees. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proc. of the 36th Int.
Conf. Machine Learning (ICML 2019), pp. 6166–6175, Long Beach, CA, June 9–15 2019.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In Vit-
torio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Proc. 15th European
Conf. Computer Vision (ECCV’18), pp. 3–18, Munich, Germany, September 8–14 2018.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne Petryk, Sarah Adel Bargal, and
Joseph E. Gonzalez. NBDT: Neural-backed decision tree. In Proc. of the 9th Int. Conf. Learning
Representations (ICLR 2021), Online, April 25–29 2021.

Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. In Proc. of the 2018 IEEE Computer Society Conf. Com-
puter Vision and Pattern Recognition (CVPR’18), pp. 4376–4384, Salt Lake City, UT, June 18–22
2018.

Jiaxiang Wu, Yao Zhang, Haoli Bai, Huasong Zhong, Jinlong Hou, Wei Liu, Wenbing Huang, and
Junzhou Huang. PocketFlow: An automated framework for compressing and accelerating deep
neural networks. In NIPS Workshop on Compact Deep Neural Network Representation with
Industrial Applications (CDNNRIA), 2018.

Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán. Smaller, more accurate regression
forests using tree alternating optimization. In Hal Daumé III and Aarti Singh (eds.), Proc. of
the 37th Int. Conf. Machine Learning (ICML 2020), pp. 11398–11408, Online, July 13–18 2020.

Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie. Multi-class AdaBoost. Statistics and Its
Interface, 2(3):349–360, 2009.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural network distiller: a
Python package for DNN compression research. arXiv:1910.12232, October 27 2019.

12



Under review as a conference paper at ICLR 2022

APPENDICES

This appendix contains additional graphical illustrations explaining our approach (sec. A), full de-
tails of experimental setup (sec. B), details of LeNet experiments (sec. C), details of VGG experi-
ments on CIFAR10 (sec. D) and CIFAR100 (sec. E), details of ResNet56 experiment (sec. F), and
details on combining tree-based compression with other mechanisms (sec. G).

A ILLUSTRATION OF OUR APPROACH

Figures 6–7 illustrate pictorially our neural net compression approach, and the construction of the
forests, respectively.

x

D input

features

y

K output

classes

fL(x), entire L-layer neural net

f
K′

−1
(x), portion retained

layers K′ to L,

replaced by a

tree/forest

x

D input

features

y

K output

classes

T(f
K′

−1
(x)), neural net / tree hybrid

f
K′

−1
(x), portion retained

T,

tree/forest

Figure 6: Illustration of our neural net compression approach. Top: a standard neural network archi-
tecture (the LeNet5 of (LeCun et al., 1998)), showing the portion retained and the portion replaced.
Bottom: the resulting model. The parameters of the retained part are unchanged; the tree/forest is
trained via the teacher-student approach. This diagram is only for illustration purposes, it does not
necessarily correspond to any specific experiment in the paper.

B DETAILS OF EXPERIMENTAL SETUP

We give the details of the experimental setup for TAO (sec. B.1), the other baselines (sec. B.2,
and describe our methodology in reporting various metrics (sec. B.3). Summary of hardware and
software resources used in our experiments can be found in Table 2.

13



Under review as a conference paper at ICLR 2022

λ1 λ2 λQ

bagged forests

Ti\λi λ1 λ2 · · · λQ

1 • → • → · · · → •
2 • → • → · · · → •
...

...
...

...
...

T • → • → · · · → •











































trees 1, . . . , T
in parallel

for each forest

boosted forests

Ti\λi λ1 λ2 · · · λQ

1 • → • → · · · → •
↓ ↓ ↓ ↓
2 • • · · · •
↓ ↓ ↓ ↓
...

...
...

...
...

↓ ↓ ↓ ↓
T • • · · · •











































trees 1, . . . , T
sequentially

for each forest

Figure 7: Top: illustration of the regularization path for λ1 < λ2 < · · · < λQ. Each tree is trained
with TAO using the same initial tree structure (a complete tree of depth ∆) but with warm-start,
i.e., the tree for λi is initialized from the parameters of the tree for λi−1. As λ increases, so does
the sparsity penalty, which encourages weight vectors at the decision nodes to become sparse and
nodes to be pruned. Although it is not shown, the parameters at each tree (in the decision nodes and
leaves) are different, since TAO optimizes jointly over all the parameters. Bottom: illustration of
the procedure to construct a forest of Ti trees and sparsity hyperparameter λi, for bagging (left) and
boosting (right), for λi ∈ {λ1, λ2, . . . , λQ} and Ti ∈ {1, . . . , T}. Each black circle • represents
one tree. The (Ti, λi) forest consists of all the trees in the column for λi, for rows 1–Ti. Hence,
each column is a forest (T, λi). A horizontal arrow “→” means the next tree is initialized from the
previous one, to construct a regularization path (as in the top panel). A vertical arrow “↓” means,
for boosting, that the next tree t+ 1 depends on all the previous trees 1, . . . , t, to construct a greedy
additive model. In bagging, the trees 1, . . . , T are independent.

B.1 TAO EXPERIMENTS

We have re-implemented the TAO algorithm and the inference of the TAO-generated oblique deci-
sion trees in the C++. We use LIBLINEAR v2.30 as the node-problem solver within our library.

Hyperparameters There are three hyperparameters of interest: the amount of sparsity of the
nodes in the ensemble (controlled by λ), the number of trees in the ensemble T , and the depth
of the decision trees d. Out of these three hyperparameters, we set d to be as large as (reasonably)
possible, and initialize the trees to be a balanced tree with 2d+1 decision nodes. A typical range for
d is 4 to 11. In our experiments we vary number of trees T , amount of sparsity λ, and generate entire
error-compression tradeoffs. We set the number of maximum iterations of the TAO algorithm to be
20: here, one iteration is a single optimization pass over all decision nodes and leaves. Decision
nodes require training ℓ1 regularized logistic regressions, which were optimized using LIBLINEAR
with default settings. The decision node parameters are initialized randomly by sampling from a
standard Gaussian. For boosting experiments we use the learning rate of 0.1.

Training time and other resources The training of the forest using TAO can be efficiently paral-
lelized on two levels: first, all non-descending nodes’ problems are independent of each other, thus
they can be trained in parallel; second, if trees are independent of each other (in case bagging) we
have tree-level parallelism. In our experiments, we utilize both parallelization options. In general,
the training of the forests is extremely fast. For example, using 16 cores of Intel Xeon E5-2699
clocked at 2.30 GHz, our longest TAO bagging experiment (VGG16, conv8 → output) with T = 15
finishes in 24 minutes, and the longest TAO boosting experiment (on the same dataset) finishes in
95 minutes. In average, any reported experiments finish within 40 minutes.

14



Under review as a conference paper at ICLR 2022

In terms of memory usage, the amount of used RAM is proportional to the level of parallelization
and the size of dataset. The recorded largest RAM usage for a single experiment was 54.4 GB when
training in parallel on 16 cores.

B.2 BASELINES

We compare TAO trained forests to random forest and boosted forest models. We use the scikit-learn
Pedregosa et al. (2011) library to train the random forest models, and the XGBoost Chen & Guestrin
(2016) library for boosted forests. To strengthen the inference speed measurements of these base-
lines, we further compiled the generated forests using TreeLite library Cho & Li (2018). In the paper
we report the inference times for regular and TreeLite-optimized models.

Random forest hyperparameters When training the random forest ensembles we use the follow-
ing settings: no limit on the depth of the trees (i.e., fully grown trees), no pruning, the size of the

randomly selected features subset is
√
D where D is the size of the training input. Other options

were populated with the default scikit-learn settings for random forests.

XGBoost hyperparameters We set a predetermined number of rounds for boosting (which is
equivalent to the number of trees T/C in the ensemble, where C is the number of classes). For
every T value we are using, we find the optimal depth and learning rate using a grid search with the
following grid options: tree depth in {4, 6, 8, 10} and learning rate in {0.1, 0.3, 0.5}. The quality of
the settings were validated on randomly selected hold-out subset of training points.

B.3 METRICS

As part of our evaluation, we report several metrics of interest: the number of floating-point oper-
ations (FLOPs), the number of the parameters, and the inference time. Here we discuss how we
compute these values.

FLOPs We define a total FLOPs count as the number of fused additions and multiplications in-
volving nonzero weights happening during the inference of a single input1. With such a definition,
for instance, the expression 1 × 2 + 0 × 3 will be counted as a single FLOP: although there are
four operations (2 multiplications, 2 additions). While we can additionally leverage the sparsity in
inputs themselves—with prevalent ReLU non-linearities, a significant portion of the between-layer
activations are exactly zero—we opt not to involve it into FLOPs count to be consistent with the
literature. For neural networks, the inference FLOPs is a constant and does not depend on input val-
ues. For trees, it is different: depending on which branch of the tree is being traversed, the number

1For the axis-aligned trees we extend this definition to include comparison operator (e.g., x > 4) as a single
FLOP

Machine details

CPU 2× Xeon E5-2699 v3, 2.30GHz
RAM 256 GB ECC DDR3 at 2133 MHz
OS Ubuntu 20.04.2 LTS
Kernel Linux 5.4.0-70-generic
Storage Hard drive

Software details

TAO re-implementation in C++
scikit-learn version 0.24.2
xgboost version 1.3.3
TreeLite version 1.3.0
LIBLINEAR version 2.30
ONNXruntime version 1.7.0
PyTorch version 1.4.1

Table 2: Summary of the training machine (left) and the software (right) used in our experiments.
Although our machine has 72 CPU cores, we used no more than 16 cores for any single experiment
to share the resources with other machine users. The RAM usage for TAO was proportional to
the size of the dataset: at most, we recorded using 54.4 GBs of RAM when parallelizing on 16
cores (bagging); for TAO boosting, the RAM usage was never higher than 10GB. Except for the
TAO training code, which we have re-implemented internally in C++, we used standard software
packages available online. Our TAO implementation uses LIBLINEAR v2.30 as the node-problem
solver.

15



Under review as a conference paper at ICLR 2022

of floating-point operations might differ. Therefore, for decision trees we report an average FLOPs
count per example when making an inference over the training dataset.

Parameters We define the number of parameters as the total count of non-zero weights in the
model. We opt to report the number of parameters instead of the required storage bits (when model
is saved to disk) for two reasons. First, the actual disk storage will depend on the chosen format for
the sparse weights, and it is often possible to manipulate the final storage size by simply changing the
format or by chaining it with other compression forms (e.g., quantization). Second, the number of
nonzero parameters can be compared directly across different models and papers, while the storage
size depends on many (hidden) factors which will hinder future comparisons.

Inference time We define the inference time in a similar manner as the FLOPs count: inference
time is the amount of time required to complete an inference of a single input through a model.
In case of trees, the inference time is averaged over the dataset. We measure the inference times
on a single core of Intel Xeon CPU model E5-2699v3 clocked at 2.30GHz. To make the actual
measurements consistent we measured all inference times within python, and use the following
strategy: we record the start time by calling time.time(), we then run the inference through
entire training data (calling appropriate backend) using batch size of 1, and then record the finishing
time. Then, the reported inference time is computed as:

inf. time =
start time − end time

total processed examples
. (2)

To measure the neural net times we use ONNXruntime v1.7 as the inference backend due to highly
optimized CPU kernels.

C LENET5 ON MNIST

We trained Caffe version2 of the LeNet5 network containing 431K parameters which requires 2.29M
floating-point operations (FLOPs) to perform the inference. The network consists of two convolu-
tional and two fully-connected (FC) layers, and we replace both FC layers with our proposed scheme.
The two FC layers that are being compressed have 405K params and 405K FLOPs.

Training details The reference network was trained to the test error of 0.55% using the SGD
with batch size of 256 images and learning rate of 0.05 which was decayed by 0.99 after every
epoch. The total training epochs was 300. The input to the first FC layer is a vector of size 800.
We applied TAO compression using boosting and bagging for T ∈ {1, 3, 5, 7, 9, 11, 15} and λ ∈
{0.001, 0.01, 0.1, 1, 10, 100}. In all experiments we used trees of depth d = 6.

D VGG16 ON CIFAR10

We adapt the ImageNet version of the VGG16 Simonyan & Zisserman (2015) for the CIFAR10
dataset. The network has the same number of convolutional filters and parameters and the differences
are in the dimensions of fully-connected layers (the FC layers have 512 units instead of 4096 as in
the ImageNet version) and the usage of batch-normalization Ioffe & Szegedy (2015) between layers.
In total, the network has 13 convolutional and 3 fully-connected layers (hence the name VGG16),
15.2M parameters, and requires 313 MFLOPs of computation for the inference pass. The reference
network were trained to the test error of 6.46%.

Training details The reference VGG16 network is trained using SGD with a learning rate of
0.035 which was decayed by 0.97716 after every epoch. The network was trained for 350 epochs
in total. We used a standard data augmentation of: first zero padding the images from all sides with
a row of 2 pixels, and then cropping out 32 × 32 sized part at a random location, followed by a
random left-to-right flip. We applied TAO compression using bagging for T ∈ {1, 3, 5, 7, 9, 11}
and λ ∈ {0.001, 0.01, 0.1, 1, 10}. We set the following depth d for the trees: for conv10 → output
compression (Figure 5 in the main paper) we had d = 6, for layerwise compression results (Figure 1
in the main paper) we varied d in range 6–10, and for compression of the FC layers we set d = 4.

2https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt

16

https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt


Under review as a conference paper at ICLR 2022

Compression of the fully-connected layers of VGG16 with a forest of T bagged trees (TAO-bg)

0 1 2 3 4
6

6.5

7

7.5

8

te
st

er
ro

r,
%

FLOPs, ×10
3

RFLOPs =5.3×10
5
→

0 2 4 6 8 10
6

6.5

7

7.5

8

parameters, ×10
3

Rparams =5.3×10
5
→

0 1 2 3 4 5
6

6.5

7

7.5

8

inference, µs

λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100
λ = 1000

Rinf =101µs →

Compression of the fully-connected layers of VGG16 with a forest of T boosted trees (TAO-bo)

0 1 2 3 4
6

6.5

7

7.5

8

te
st

er
ro

r,
%

FLOPs, ×10
3

RFLOPs =5.3×10
5
→

0 2 4 6 8 10
6

6.5

7

7.5

8

parameters, ×10
3

Rparams =5.3×10
5
→

0 1 2 3 4 5
6

6.5

7

7.5

8

inference, µs

λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100
λ = 1000

Rinf =101µs →

Figure 8: Similar curves as in Figures 2 and 4 of the main paper, but now applied to compress
the last 3 fully-connected layers (params/FLOPs: 0.53M, inference: 101 µs) of the VGG16 on the
CIFAR10. A single tree (T = 1) is already powerful enough to compress all FC layers with a
minimal degradation: we can achieve the test error of 6.49% using only 2827 parameters (↓ 187×),
which requires 800 FLOPs (↓ 663×) and runs in 1.5 µs (↓ 66×) in average. Bagging (top) and
boosting (bottom) the trees makes the accuracy identical to the NN’s performance and still give
competitive operating characteristics: a bagged ensemble of T = 5 trees has the same error as the
reference net (6.46%) but needs only 5816 parameters (↓ 91.2×), 1343 FLOPs (↓ 395×), and runs
in 3.1 µs (↓ 32×).

Compression of the fully-connected FC layers of VGG16 (CIFAR10)
Selected results

Model error, % params. FLOPs inf. inf.+

reference FC layers 6.46 530K 530K 0.1013 —

TAO, T = 1, λ = 0.01 6.49 2827 800 0.0015 —
TAO-bg, T = 5, λ = 10 6.46 5816 1343 0.0031 —
TAO-bo, T = 3, λ = 1 6.48 4154 1413 0.0022 —

CART, T = 1 7.39 19 5 0.0937 0.0180
RF, T = 5 6.66 133 42 1.9418 0.0196
RF, T = 7 6.63 289 82 2.7108 0.0214
RF, T = 100 6.47 3K 843 17.574 0.0367
RF, T = 1000 6.46 29K 8K 200.00 0.1344

XGB, T = 1× 10 8.44 193 45 0.3647 0.0212
XGB, T = 10× 10 7.74 2K 408 0.3725 0.0249

Inference time vs error

10
-2

10
0

6

6.5

7

7.5

8

8.5

te
st

er
ro

r,
%

XGB

TAO-bo, λ = 0.1
TAO-bo, λ = 1
TAO-bg, λ = 0.1
TAO-bg, λ = 0.01

R

RF

inference time, ms

Figure 9: Selected comparisons when compressing all FC layers of the VGG16 trained on the CI-
FAR10. While our oblique trees have larger parameter and FLOPs count wrt regular CART/RF
models, in the inference-compression tradeoff our time our models are the fastest thanks to shorter
depth and extreme decision node sparsity. The TreeLite optimized inference times are given by inf.+

and depicted using the dashed lines.

Additional experiments Along with the VGG16 experiments reported in the main paper, here
we report additional experiments on compressing all (three) fully-connected layers of VGG16 (see
Figures 8–9), and on compression of the final softmax layer (Figure 11, bottom).

17



Under review as a conference paper at ICLR 2022

Compression of all fully-connected layers of VGG16 (CIFAR100) with a forest of T bagged trees.
Error-compression tradeoff as a function of varying T for a fixed λ

0 1 2 3 4 5 6 7
26

27

28

29

te
st

er
ro

r,
%

FLOPs, ×10
4

RFLOPs =5.3×10
5
→

0 2 4 6 8
26

27

28

29

parameters, ×10
6

R

0 0.01 0.02 0.03 0.04 0.05 0.06
26

27

28

29

inference, ms

λ = 0.01
λ = 0.1
λ = 1

Rinf =0.10ms →

Figure 10: Similar curves as in Figure 8 but now for the bagged ensemble of trees applied to com-
press all fully-connected layers of the VGG16 on the CIFAR100. These layers have 576K parame-
ters and require 576K FLOPs. The test error of the reference network is indicated by a horizontal
dashed line with a label R, and the black diamond symbol (�) along this dashed line indicates the
tradeoff of the reference model; if no black diamond is shown, the reference model’s operating point
is outside of the axis on the right. Speeding-up the fully-connected layers of the CIFAR100 version
of VGG16 is a harder task, however, a forest of T = 11 trees trained with λ = 0.1 can achieve a
speed-up of 14.45×. Unfortunately, such a forest requires 5× more parameters than the reference
fully-connected layers on their own.

E VGG16 ON CIFAR100

We modified the original VGG16 to the CIFAR100 dataset in the same way as in sec. D with only
difference of having 100 output classes instead of 10. The network still has 16 layers (13 convo-
lutional and 3 fully-connected), but the FLOPs and parameters counts are slightly higher: 313M
FLOPs and 15.3M parameters respectively. The reference network is trained to have a test error of
26.54%.

Training details The reference net was trained using the same settings as in sec. D).
We applied TAO compression using bagging for T ∈ {1, 3, 5, 7, 9, 11, 15} and λ ∈
{0.001, 0.01, 0.1, 1, 10, 100}. We used trees of depth d = 9 for softmax layer compression, and
trees of depth d = 11 for compression of all fully-connected layers.

Results We report the results of compression of all (three) fully-connected layers using TAO-
bagging (Figure 10), and the results of softmax layer compression using TAO-bagging as well (Fig-
ure 11, bottom)

F RESNET56 ON CIFAR10

We train a 56-layer version of ResNet He et al. (2016) designed for CIFAR10 dataset. The network
has 125M FLOPs, 0.84M parameters, and achieve a test error of 6.58%. We apply our compression
mechanism to replace final three layers (two convolutional and one fully-connected). These three
layers have 74K parameters and 4.7M FLOPs.

Training details To train the reference model we use the settings (data-augmentation, learning-
rate schedule) as recommended in the original paper He et al. (2016). We train TAO forests with
depth d = 7 and λ = 0.01.

Results With a bagged forest of T = 3 trees, we can replace the last three layers of the ResNet56
to a model having 300K parameters, and 31K FLOPs that achieves a test error of 7.78%. This
outperforms random forest and XGBoost based compression: even a large random forest model
with T = 1000 trees, with 11M parameters and 37K FLOPs achieves much higher test error of
8.97%. The XGBoost forest with T = 10 × 100 trees achieve a test error of 8.36% with 68K
parameters and 700 FLOPs.

18



Under review as a conference paper at ICLR 2022

Compression of the softmax layer of VGG16 (CIFAR10) with a forest of T bagged trees.

0 2 4 6 8 10
6.4

6.6

6.8

7

te
st

er
ro

r,
%

FLOPs, ×10
3

parameters,

R
0 0.5 1 1.5 2 2.5 3

6.4

6.6

6.8

7

parameters, ×10
4

R
0 5 10 15

6.4

6.6

6.8

7

inference, µs

λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100
λ = 1000

R

Compression of the softmax layer of VGG16 (CIFAR100) with a forest of T bagged trees.

0 1 2 3 4 5 6
26

27

28

29

te
st

er
ro

r,
%

FLOPs, ×10
4

R

0 2 4 6 8
26

27

28

29

parameters, ×10
5

R

0 0.01 0.02 0.03 0.04

inf-time

26

27

28

29

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 10
λ = 100

R

Figure 11: Compression of softmax layer of VGG16 on CIFAR10. The test error of the softmax
layer is indicated by a horizontal dashed line with a label R, and the black diamond symbol (�)
along this dashed line indicates the operating point of the reference model.

G COMBINATION WITH OTHER COMPRESSIONS

In the main paper, we reported the results of combining the tree-based compression with already
downsized models obtained through low-rank compression. Here we report the hyperparameters of
this experiment.

Training details The low-rank models were obtained following the training routine of the original
paper Idelbayev & Carreira-Perpiñán (2021). For our compression, we used a bagged forest of
T = 5 trees with λ = 0.01.

19


	Introduction
	Related work
	Alternating optimization to learn sparse oblique trees
	Sparse oblique forest: construction and hyperparameters

	Teacher-student compression of neural net with forests
	Experiments
	Discussion
	Conclusion
	Illustration of our approach
	Details of experimental setup
	TAO experiments
	Baselines
	Metrics

	LeNet5 on MNIST
	VGG16 on CIFAR10
	VGG16 on CIFAR100
	ResNet56 on CIFAR10
	Combination with other compressions

