

EXPRESSIVE AND INVARIANT GRAPH LEARNING VIA CANONICAL TREE COVER NEURAL NETWORKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 While message-passing NNs (MPNNs) are naturally invariant on graphs, they are
012 fundamentally limited in expressive power. Canonicalization offers a powerful
013 alternative by mapping each graph to a unique, invariant representation on which
014 expressive encoders can operate. However, existing approaches rely on a single
015 canonical *sequence*, which flattens the structure, distorts graph distances, and
016 restricts expressivity. To address these limitations, we introduce *Canonical Tree*
017 *Cover Neural Networks* (CTNNs), which represent the graph with a canonical
018 spanning tree cover, i.e., a small collection of canonical trees covering all edges.
019 Each tree is then processed with an existing expressive tree encoder. Theoretically,
020 tree covers better preserve graph distances than sequences, and on sparse graphs,
021 the cover recovers all edges with a logarithmic number of trees in the graph size,
022 making CTNNs strictly more expressive than sequence-based canonicalization
023 pipelines. Empirically, CTNNs consistently outperform invariant GNNs, random
024 samplers, and sequence canonicalizations across graph classification benchmarks.
025 Overall, CTNNs advance graph learning by providing an efficient, invariant, and
026 expressive representation learning framework via tree cover-based canonicalization.
027

1 INTRODUCTION

029 In graph representation learning, capturing a graph’s natural symmetries (i.e., isomorphism invariance)
030 is essential for learning and generalization. One way to enforce this invariance is to bake it directly into
031 the architecture: message-passing neural networks (MPNNs) (Duvenaud et al., 2015; Gilmer et al.,
032 2017; Kipf and Welling, 2017) achieve architectural invariance by iteratively aggregating neighbor
033 embeddings, but are provably equivalent in expressive power to the 1-dimensional Weisfeiler–Leman
034 test (Xu et al., 2019; Morris et al., 2019), suffer from oversmoothing (Li et al., 2018; Chen et al., 2020)
035 and oversquashing (Oono and Suzuki, 2020; Di Giovanni et al., 2023), and are thus fundamentally
036 limited. A second approach achieves invariance via random sampling: random walk neural networks
037 (RWNNs) (Wang and Cho, 2024; Tönshoff et al., 2023; Chen et al., 2025; Kim et al., 2025) sample
038 walks and feed them into powerful sequence models, overcoming limitations in MPNN expressivity
039 but incurring potentially prohibitive sampling costs when training on large datasets. A complementary
040 line of work relies on canonicalization, which maps each graph to a canonical representative so
041 that any expressive, non-invariant model can operate on invariant inputs (Bloem-Reddy and Teh,
042 2020). **While canonicalization can be fully deterministic, mapping each graph to a single unique**
043 **representative, in practice, one often constructs a distribution over possible representatives, achieving**
044 **probabilistic invariance with a small number of samples from the distribution. In this work, we**
045 **establish the limitations of existing canonicalization approaches on graphs and propose a new**
046 **canonicalization framework that leverages distributions of representative structures.**

047 Existing graph canonicalization approaches first
048 assign labels to each node, flatten the graph into
049 a single sequence, either via learned sorting layers
050 (Niepert et al., 2016; Zhang et al., 2018;
051 Grover et al., 2019) or through traversal as in
052 canonical SMILES (Goh et al., 2017; Honda
053 et al., 2019; Chithrananda et al., 2020), and then
feed the sequence into a powerful downstream
sequence model. In this work, we formally quantify how flattening into a sequence distorts graph

Figure 1: Canonical sequence representations introduce significant stretch and contraction.

054 distance. To illustrate this limitation, consider S_n , the n -node star (Figure 1, $n = 7$). Each leaf node
 055 in the graph has distance 1 to the center node, while leaf nodes in the sequence necessarily have
 056 distance $O(n)$ to the center node (stretch). Moreover, while leaves have distance 2 to each other
 057 in S_n , certain leaves have distance 1 in the sequence (contraction). Thus, the canonicalization can
 058 stretch and contract original distances, making structure harder to capture. We further establish that
 059 the reduction of the graph into a single representative limits the expressivity of the overall approach
 060 to that of its node labeler, discarding the benefits of using powerful downstream models.

061 To address these limitations, we propose *Canonical Tree Cover Neural Networks* (CTNNs), which
 062 construct a canonical spanning tree cover via minimum spanning tree extraction and coverage-aware
 063 edge label refinement. Each tree in the cover is processed by an existing expressive tree encoder (Tai
 064 et al., 2015), and aggregating over the cover yields an invariant representation. **Notably, CTNNs**
 065 **are parameterized by a node labeler that initializes edge weights:** when using a canonical graph
 066 node labeler that assigns unique labels to all nodes (e.g., NAUTY (McKay and Piperno, 2014)),
 067 the resulting tree cover is fully deterministic and invariant; when using inexpensive, structurally
 068 meaningful labelers (e.g., degree, centrality, or 1-WL), tie-breaking introduces randomness, leading
 069 to **probabilistic invariance while preserving useful inductive biases**. By leveraging tree representations
 070 and capturing structure across a set of canonical representatives, CTNNs better capture graph distances
 071 and are more expressive than sequence canonicalizations. Across a variety of graph classification
 072 tasks, CTNNs consistently outperform architecturally invariant GNNs, sampling methods, and
 073 existing canonicalization approaches. In summary, we make the following contributions:
 074

- **Current Limitations of Canonicalizations.** We establish that sequence-based graph canonicalization methods fail to preserve graph distance and are limited in expressivity.
- **New Canonical Model: Canonical Tree Cover Neural Networks (CTNNs).** We introduce CTNNs, which construct a canonical tree cover. Each tree is then processed by existing expressive recurrent tree encoders and aggregated to obtain an invariant representation.
- **Theory: Invariance, Distance Preservation, and Expressivity Guarantees.** We prove that CTNNs produce invariant graph representations, preserve graph distance information, and exceed the expressivity of sequence-based canonicalizations and MPNNs. With universal tree encoders, CTNNs achieve universality on invariant graph functions.
- **Extensive Empirical Evaluation.** Across 8 graph classification benchmarks, CTNNs outperform architecturally invariant models, sampling approaches, and canonical baselines.

085 2 BACKGROUND AND PRELIMINARIES

087 We first introduce notation and review canonical approaches on graphs, the primary family of
 088 models under investigation. These approaches typically produce a single sequence that is fed to a
 089 sequence model. We then formalize recurrent sequence models, which often outperform attention
 090 and convolution on graphs by better matching the traversal inductive bias. Despite their practical
 091 performance, however, recurrent sequence models can suffer from long graph-derived sequences.
 092 These limitations lead us to consider recurrent tree models that instead propagate information along
 093 trees, which we will later demonstrate better capture graph distance.

095 2.1 NOTATION ON GRAPHS AND TREES

097 Let $G = (V, E, \mathbf{X})$ be an undirected graph with $n = |V|$ nodes, $m = |E|$ edges, and node features
 098 $\mathbf{X} \in \mathbb{R}^{n \times d}$. For $v \in V$, let \mathbf{x}_v denote the v -th row of \mathbf{X} , $\mathcal{N}(v) = \{u \in V : (u, v) \in E\}$ its
 099 neighborhood, and $\deg(v) = |\mathcal{N}(v)|$ and $d_G(u, v)$ the shortest path distance in G . A rooted tree is
 100 $T = (V, E, \mathbf{X}, r)$ with root $r \in V$. Each non-root node $v \neq r$ has a unique parent $p(v)$, and we write
 101 $C(v) = \{u \in V : p(u) = v\}$ for its children. Leaf nodes of the tree satisfy $C(v) = \emptyset$.

102 2.2 MESSAGE-PASSING NEURAL NETWORKS AND GNN EXPRESSIVITY

104 Standard GNNs adopt a message-passing approach, where each layer iteratively updates a node’s
 105 representation by aggregating the features of its neighbors (Gilmer et al., 2017). Formally, the initial
 106 message-passing layer can be defined as the following propagation rule at the node level for all $i \in V$,
 107

$$f_{\text{MPNN}}(G)_i = f_{\text{agg}}(\{\mathbf{x}_j \mid j \in \hat{\mathcal{N}}(i)\}),$$

108 where f_{agg} is a permutation-invariant function. Because of this aggregation step, MPNNs incur
 109 fundamental expressivity limitations and cannot distinguish certain classes of non-isomorphic graphs
 110 (Xu et al., 2019). We compare the expressivity of GNNs by the pairs of graphs they can distinguish
 111 (Azizian and Lelarge, 2020), introducing the following notation. For two GNNs f_1 and f_2 , we
 112 write

$$113 \quad f_2 \preceq f_1 \iff \forall G, H : f_1(G) = f_1(H) \Rightarrow f_2(G) = f_2(H).$$

115 Thus, any pair indistinguishable by f_1 is also indistinguishable by f_2 , so f_1 is at least as expressive
 116 as f_2 . The relation is strict, $f_2 \prec f_1$, if $f_2 \preceq f_1$ and there exist graphs G, H with $f_1(G) \neq f_1(H)$
 117 while $f_2(G) = f_2(H)$. f_1 and f_2 are equally expressive, written $f_1 \simeq f_2$, if $f_2 \preceq f_1$ and $f_1 \preceq f_2$.
 118 These relations coincide with notions of approximation power. For example, if $f_2 \prec f_1$, every target
 119 approximable by f_2 is approximable by f_1 , and there exist targets approximable by f_1 but not f_2 .

120 2.3 CANONICAL APPROACHES ON GRAPHS

121 Graph canonicalization aims to obtain a unique isomorphism-invariant node labeling (McKay et al.,
 122 1981). Because computing an exact canonical labeling is as hard as the graph isomorphism problem,
 123 practical methods adopt soft approximations (e.g., GNN embeddings). After obtaining an approximate
 124 labeling, these pipelines typically flatten the graph into a single sequence either via sorting layers
 125 (Niepert et al., 2016; Zhang et al., 2018) or through traversal such as canonical SMILES (Goh et al.,
 126 2017; Honda et al., 2019), allowing expressive sequence models to process the sequence. Formally,
 127 let $\pi_V : V \rightarrow \mathbb{R}$ be a node labeling function (e.g., MPNN), \mathcal{C}_{seq} be a single-sequence canonicalizer
 128 that maps the labeled graph (G, π_V) to a sequence depending only on π_V and carrying only the node
 129 features \mathbf{X} , and f_{seq} be a sequence model. A general sequence-based canonical model is defined as
 130

$$131 \quad f_{\text{CanSeq}}(G) = f_{\text{seq}}(\mathcal{C}_{\text{seq}}(G, \pi_V)).$$

132 As a concrete instance, if π_V is an MPNN, \mathcal{C}_{seq} is a differentiable sorting layer, and f_{seq} is a 1D
 133 CNN, then f_{CanSeq} recovers Deep Graph Convolutional Neural Network (Zhang et al., 2018).

136 2.4 RECURRENT SEQUENCE AND TREE MODELS

137 Recent RWNNs find that recurrence often outperforms attention and convolution by better matching
 138 the traversal inductive bias (Wang and Cho, 2024; Chen et al., 2025). Given inputs $(\mathbf{x}_t)_{t=1}^T$, initial
 139 state \mathbf{h}_0 , and state transition map $\Phi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$, the recurrent update is defined

$$141 \quad \mathbf{h}_t = \Phi(\mathbf{h}_{t-1}, \mathbf{x}_t), \quad \text{for } t = 1, \dots, T.$$

142 Recurrent models suffer on long sequences that exacerbate vanishing/exploding gradients, which
 143 motivates our use of recurrent tree models that shorten dependency paths and mitigate these instabilities.
 144 Recurrent tree models generalize sequence recurrence to rooted trees (Tai et al., 2015; Xiao
 145 et al., 2024), propagating information bottom-up from children to their parent. Given $T = (V, E, r)$
 146 with L levels and node inputs $\{\mathbf{x}_v\}_{v \in V}$, recurrent tree models compute hidden states $\{\mathbf{h}_v\}_{v \in V}$ by
 147 applying a local transition to child states and aggregating with a permutation-invariant operator f_{agg} :

$$149 \quad \mathbf{h}_v = f_{\text{agg}}(\{\Phi(\mathbf{h}_c, \mathbf{x}_v) \mid c \in C(v)\}) \quad \text{for } \ell = L, \dots, 0 \text{ and all } v \text{ with } d_T(v, r) = \ell,$$

150 with $f_{\text{agg}}(\emptyset) = 0$ for leaves. Setting $\Phi(\mathbf{h}_c, \mathbf{x}_v)$ as a standard LSTM update recovers the Tree LSTM
 151 of Tai et al., 2015. The tree representation is taken as \mathbf{h}_r at the root. In Section 4, we propose a
 152 canonicalization of graphs via spanning tree covers that can be used as input to recurrent tree models.

154 3 LIMITATIONS OF SEQUENCE-BASED CANONICALIZATIONS

155 In this section, we characterize the limitations of single-sequence canonicalization. First, we quantify
 156 how sequence canonicalization distorts graph structure, stretching and contracting graph distances.
 157 We next turn to expressivity and demonstrate that even when the sequence model is universal, the full
 158 canonical pipeline is no more expressive than its node labeler because it relies on a single canonical
 159 representative. Together, these limitations motivate our tree cover-based canonicalization, which
 160 better preserves distances and increases expressivity by operating on a cover of spanning trees.

169
170 Figure 3: Sequence canonicalization is only as expressive as its labeler π_V despite using a universal
171 downstream sequence model. f_{CanSeq} thus fails to distinguish graphs π_V fails to distinguish.

172 3.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION

174 To formalize how sequence canonicalization fails to preserve structure, we use distortion (Matoušek,
175 2013), which quantifies the stretch/contraction in distance after mapping points between spaces.
176 Intuitively, we prefer canonicalizations with lower distortion, better preserving the original distances.

177 **Definition 3.1** (Distortion). Let (X, d_X) and (Y, d_Y) be metric spaces. A mapping $f : (X, d_X) \rightarrow$
178 (Y, d_Y) has distortion $D \geq 1$ if there exists $r > 0$ such that for all $x, y \in X$,

$$r d_X(x, y) \leq d_Y(f(x), f(y)) \leq D r d_X(x, y).$$

181 Let (G, d_G) denote a graph G with shortest-path distance d_G , and let $\mathcal{C}_{\text{seq}}(G, \pi_V)$ be its single
182 canonical sequence under π_V . Equip \mathcal{C}_{seq} with the positional distance $d_{\text{seq}}(u, v) = |\sigma(u) - \sigma(v)|$,
183 where $\sigma : V \rightarrow \{1, \dots, |V|\}$ is the induced ordering. The next proposition lower bounds the distortion
184 of \mathcal{C}_{seq} with the *graph bandwidth* (Díaz et al., 2002), $\varphi(G)$, which measures the smallest maximum
185 stretch over any edge when G is laid out on a line across all orderings:

$$\varphi(G) = \min_{\sigma} \max_{(u, v) \in E} |\sigma(u) - \sigma(v)|.$$

187 **Proposition 3.2** (Graph bandwidth lower bounds sequence distortion). Let D_{seq} be the distortion of
188 $\mathcal{C}_{\text{seq}}(G, \pi_V)$ from (G, d_G) to the line with distance d_{seq} . Then, for any π_V , $\varphi(G) \leq D_{\text{seq}}$.

190 All proofs are in Appendix A. The bandwidth lower bound gives a concrete well-studied graph metric
191 to evaluate the distortion of \mathcal{C}_{seq} . Although $\varphi(G)$ is hard to compute in general, it is known for many
192 families (Figures 1, 2): on n -node stars S_n and cliques K_n one has $\varphi(S_n) = \varphi(K_n) = \Theta(n)$, so any
193 single-sequence canonicalization incurs the worst-case linear distortion; on complete binary trees
194 $\varphi(T_{2,\ell}) = \Theta(2^\ell/\ell) = \Theta(n/\log n)$, and on cycles C_n and paths P_n one has $\varphi(P_n) = \varphi(C_n) = \Theta(1)$.
195 Beyond specific families, the bound offers general insights. Given that $\varphi(G) \geq (n-1)/\text{diam}(G)$,
196 D_{seq} is at least $(n-1)/\text{diam}(G)$. It is also monotone under edge addition, indicating that highly connected graphs,
197 reflected by larger algebraic connectivity λ_2 , force larger distortion. These effects negatively impact the sequence
198 model: distorted distances make structure more difficult to capture. Importantly, any method relying on sequences,
199 including canonicalizations and sampling approaches like
200 RWNNS, inherits these limitations. **To address the limitations of sequences, we turn to tree representations.**

201 Figure 2: $\varphi(G)$ for n -node clique, K_n , and
202 complete binary tree with ℓ levels, $T_{2,\ell}$.

205 3.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION

207 Beyond the limitations of sequence representations due to distortion, we characterize the expressive
208 limitations of the full canonical model due to relying only on a single representative. Formally, we
209 show that f_{CanSeq} when equipped with universal f_{Seq} is only as expressive as its node labeler π_V .

210 **Proposition 3.3** (π_V and f_{CanSeq} are equally expressive). Let f_{CanSeq} be a canonical sequence-based
211 model with universal f_{Seq} and let π_V be its labeling function. Then, $f_{\text{CanSeq}} \simeq \pi_V$.

212 If π_V is an MPNN, its power matches 1-WL; consequently, f_{CanSeq} inherits 1-WL limitations and
213 fails on the same graph families (Figure 3). Crucially, this holds even when f_{Seq} is universal: once
214 information is lost at the labeling stage, no downstream single-sequence canonicalization can recover
215 it, limiting the expressivity of the full pipeline. **Thus, in order to address the limitations of the**
single labeler, we instead consider sets of labelers and canonical representatives.

Figure 4: Canonical spanning-tree cover. At iteration k , compute $\text{MST}(G, \pi_E^{(k)})$ using coverage-aware edge weights (thicker = larger magnitude weight). Edges missed in k (red) are up-weighted to bias their inclusion in $k + 1$. On sparse graphs, the union of $O(\log |V|)$ trees covers all edges.

4 CANONICAL TREE COVER NEURAL NETWORKS (CTNNs)

To address the sequence representation limitations due to distortion and the expressive limitations due to single representatives, we introduce Canonical Tree Cover Neural Networks (CTNNs), which construct a canonical spanning tree cover. In Section 5, we demonstrate that tree representations better reflect graph distances in comparison to sequences, while sets of canonical representatives that allow for complete graph reconstruction are strictly more expressive than a single representative.

4.1 CANONICAL SPANNING TREE COVERS

To construct a canonical spanning tree cover, we leverage coverage-aware edge labelers and minimum spanning tree (MST) samplers rather than a fixed node labeler and sequence canonicalizers. By updating edge weights across rounds, later trees are biased toward edges not yet selected, yielding provable coverage across the union of sampled trees. Formally, let G be a graph and at iteration $k \in \{0, \dots, K-1\}$ for hyperparameter K let $\pi_E^{(k)}: E \rightarrow \mathbb{R}$ be an edge labeler. Let $\mathcal{C}_{\text{tree}}$ be an MST extractor that maps an edge-labeled graph $(G, \pi_E^{(k)})$ to a spanning tree $T^{(k)}$ according to weights $\pi_E^{(k)}$, setting the root node as the center of $T^{(k)}$. To promote edge coverage across the set, we update the weights by penalizing edges used in the last tree $T^{(k)}$ with hyperparameter τ . We initialize with any isomorphism-invariant node labeler π_V (e.g., degree), which biases MSTs towards edges incident to high label nodes. Formally, the update and initialization can be written:

$$\pi_E^{(k+1)}(e) = \pi_E^{(k)}(e) + \tau \mathbb{1}\{e \in T^{(k)}\}, \quad \pi_E^{(0)}(u, v) = -(\pi_V(u) + \pi_V(v)).$$

We refer to further implementation and pseudocode details of the construction in Appendix B.

4.2 INVARIANT CANONICAL TREE NEURAL NETWORKS

Given a canonical cover of MSTs, $\mathcal{T} = \{T^{(k)}\}_{k=0}^{K-1}$, we process each tree with a recurrent tree encoder and augment it with message passing over the remaining non-tree edges to capture the local connectivity missed by each individual spanning tree. Let the residual graph be $G \setminus T^{(k)} := (V, E \setminus E(T^{(k)}))$ and denote f_{tree} as a recurrent tree encoder (e.g., Tree-LSTM) and f_{MPNN} an MPNN. For each k and node $i \in V$, define the per-tree representation

$$f_{\text{TreeMPNN}}(T^{(k)})_i = f_{\text{tree}}(T^{(k)})_i + f_{\text{MPNN}}(G \setminus T^{(k)})_i$$

We then aggregate across the set of trees with a permutation-invariant operator f_{agg} to obtain

$$f_{\text{CTNN}}(G) := f_{\text{agg}}\left(\{f_{\text{TreeMPNN}}(T^{(k)}): T^{(k)} = \mathcal{C}_{\text{tree}}(G, \pi_E^{(k)}), k = 0, \dots, K-1\}\right).$$

Probabilistic invariance. When CTNNs use an inexpensive node labeler that does not uniquely distinguish vertices (e.g., degree), we obtain probabilistic invariance (Bloem-Reddy and Teh, 2020). Such labelers are isomorphism-invariant but may assign identical scores to nodes, so we resolve ties using random tie-breaking. This induces an isomorphism-invariant distribution over spanning tree covers. Formally, for any permutation $g \in \mathbb{S}_n$ acting on G by relabeling nodes, the random

270 output $f_{\text{CTNN}}(G)$ has the same distribution as $f_{\text{CTNN}}(g \cdot G)$. Consequently, the averaged predictor
 271 $\mathbb{E}[f_{\text{CTNN}}(G)]$ is an invariant function on graphs. In this regime, CTNN relies on a small amount of
 272 randomness to break symmetries, but that randomness is controlled by the underlying canonicalization
 273 (i.e., node labeler).

274 **Theorem 4.1** (Probabilistic invariance of CTNNs). *A randomized graph representation $X(G)$ is
 275 probabilistically invariant if its distribution is unchanged under any node relabeling, i.e., $X(G) \stackrel{d}{=}\br/>
 276 X(g \cdot G)$ for every permutation $g \in \mathbb{S}_n$. The random output $f_{\text{CTNN}}(G)$ is probabilistically invariant:
 277*

$$278 \quad f_{\text{CTNN}}(G) \stackrel{d}{=} f_{\text{CTNN}}(g \cdot G) \quad \text{for all } g \in \mathbb{S}_n.$$

280 Then, $\Phi(G) := \mathbb{E}[f_{\text{CTNN}}(G)]$ is an invariant function satisfying $\Phi(G) = \Phi(g \cdot G)$ for all $g \in \mathbb{S}_n$.
 281

282 **Deterministic invariance.** At the other end of the spectrum, one can instantiate CTNN with a
 283 true graph canonicalization tool such as NAUTY (McKay and Piperno, 2014), which computes a
 284 canonical labeling that separates all nodes up to isomorphism. With such a canonical node labeler, an
 285 injective initialization of edge weights, and a deterministic tie-breaking rule in the MST construction,
 286 the induced tree cover becomes a deterministic canonical representation: isomorphic graphs are
 287 mapped to exactly the same set of trees, and $f_{\text{CTNN}}(G) = f_{\text{CTNN}}(g \cdot G)$ holds for all permutations g .
 288 This is particularly beneficial when the graph exhibits a high degree of symmetry such as complete or
 289 regular graphs, where node labelers like degree or 1-WL result in many ties. CTNN thus provides a
 290 unified framework that interpolates between fully deterministic canonicalization and probabilistic
 291 invariance, depending on the choice of node labeler.

292 4.3 RUNTIME COMPLEXITY

294 CTNN preprocessing is primarily dominated by constructing the K MSTs and cost of π_V . Using
 295 Kruskal’s algorithm (Kruskal, 1956), the total cost is $O(Km \log n + \pi_V)$, which is efficient on
 296 sparse graphs where $m = O(n)$ and for inexpensive π_V (e.g., degree). A major practical advantage
 297 of canonicalization is that these trees are computed once before training and reused across epochs,
 298 eliminating on-the-fly sampling incurred by sampling approaches. The computation parallelizes
 299 naturally across graphs, and the memory cost is small ($O(Kn)$ edges per graph). Empirically, we
 300 show this preprocessing time is efficient across datasets (Appendix E.2).

302 5 DISTORTION AND EXPRESSIVITY BOUNDS FOR CTNNs

304 We first analyze distance preservation: because CTNNs aggregate over spanning trees, they yield
 305 distortion bounds that better preserve graph distance in comparison to single-sequence canonicalization.
 306 We then turn to expressivity, establishing the benefits of sets of canonical representatives. On
 307 sparse graphs our tree cover recovers the full edge set with only $O(\log m)$ trees, which has two im-
 308 mediate consequences for expressivity: (i) CTNNs are strictly more expressive than single-sequence
 309 canonicalizations, and (ii) when paired with universal tree encoders, CTNNs become universal.

311 5.1 EXPECTED DISTORTION BOUNDS FOR CTNNs

313 We first analyze how well CTNNs preserve distances, establishing distortion bounds for $\mathcal{C}_{\text{tree}}$. Because
 314 CTNNs sample MSTs, we use probabilistic distortion (Fakcharoenphol et al., 2003).

315 **Definition 5.1** (Expected distortion). Let (X, d_X) be a metric space and let μ be a distribution on
 316 metrics $\mathcal{M}(X)$. The *expected distortion* of μ is the least $D \geq 1$ such that for some $r > 0$ and for all
 317 $x, y \in X$,

$$318 \quad r d_X(x, y) \leq \mathbb{E}_{\rho \sim \mu} [\rho(x, y)] \leq D r d_X(x, y).$$

320 As a baseline, we analyze the case in which CTNN samples uniform spanning trees (USTs) (obtained
 321 when $\tau = 0, \pi_V = \mathbf{0}$). In this regime, the expected tree distance between nodes u and v is upper
 322 bounded by the square root of their hitting time, the expected number of steps a random walk takes to
 323 travel from u to v . Empirically, we verify CTNN tree distributions inherit and can improve upon the
 low-distortion behavior established by USTs (Appendix E.3):

Figure 5: Single tree distortion is $O(n)$ on C_n , while expected distortion is constant over a spanning tree distribution since on average the distance between any two nodes is small.

Theorem 5.2 (UST expected distortion). *Let G be a graph, and let T be a uniform random spanning tree of G . Denote by $H(u, v)$ the random walk hitting time from u to v . Then,*

$$D_{\text{UST}} = \max_{u, v} \frac{\mathbb{E}[d_T(u, v)]}{d_G(u, v)}, \quad \mathbb{E}[d_T(u, v)] \leq \sqrt{\frac{H(u, v) + H(v, u)}{2}},$$

In contrast to the bandwidth lower bound for single-sequence canonicalization, which can force worst-case distortion, the expected UST distortion aligns with random walk distance and preserves structure significantly better on sparse families. Every tree admits a unique spanning tree, so on trees $D_{\text{UST}} = 1$. By comparison, \mathcal{C}_{seq} incurs distortion $\Theta(n/\log n)$ on balanced trees and $\Theta(n)$ on stars. On C_n , distortion is also constant, highlighting the benefit of averaging over trees (Figure 5), while on dense cliques K_n , $D_{\text{UST}} = \Theta(\sqrt{n})$. Despite the $\Theta(\sqrt{n})$ distortion, this remains smaller than \mathcal{C}_{seq} which again incurs $\Theta(n)$ distortion. Our bounds also provide general insights: tree distances behave well in sparse graphs, where the square root of hitting times and shortest paths scale comparably. In highly dense graphs, however, shortest paths are smaller than hitting times and distortion worsens. Overall, CTNNs yield expected distortion that is small on many sparse structures where in comparison single sequences stretch distances, better capturing graph structure for downstream encoders.

5.2 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION

We now turn to the expressive benefits of CTNNs. Instead of relying on a single canonical representative, CTNNs build a spanning tree cover, providing downstream encoders access to full structure. We first show our coverage-aware MST scheme needs only logarithmically many trees to cover all edges on sparse graphs. We then leverage coverage to show CTNN expressivity is strictly greater than sequence-based canonicalization and establish its universality on graph functions.

Lemma 5.3 (Logarithmic spanning-tree cover). *Let $G = (V, E)$ be a graph with $m = |E|$ and arboricity $\Upsilon(G)$, the minimum number of forests required to cover G . Fix any node labeler π_V with $\tau > \max_e \pi_E^{(0)}(e) - \min_e \pi_E^{(0)}(e)$. Denote $\mathcal{T} = \{T^{(k)}\}_{k=0}^{K-1}$ as the set of trees produced by a CTNN. If $K \geq \Upsilon(G) \ln m$ iterations, the union of the MSTs covers all edges: $\bigcup_{k=0}^{K-1} E(T^{(k)}) = E$.*

Importantly, on sparse graphs, arboricity is constant and CTNNs obtain full coverage with $K \geq O(\log(|V|))$. As established in Section 3, f_{CanSeq} is only as expressive as π_V . CTNNs, by contrast, operate on a tree cover, and as a result are strictly more expressive than f_{CanSeq} when $\pi_V \simeq f_{\text{MPNN}}$.

Lemma 5.4 (f_{CanTree} is strictly more expressive than f_{MPNN} and f_{CanSeq}). *Suppose K satisfies Lemma 5.3. Let $\pi_V \simeq f_{\text{MPNN}}$. Then, $\pi_V \prec f_{\text{CanTree}}$ and hence $f_{\text{CanSeq}} \prec f_{\text{CanTree}}$.*

Notably, f_{CanTree} initializes π_E with π_V , but additionally leverages evolving edge weights that ensure full edge coverage across trees, allowing f_{CanTree} to surpass the expressivity of π_V . Moreover, equipped with Lemma 5.3, CTNNs can achieve universality when its tree encoder is universal.

Theorem 5.5 (CTNN Universality). *Let \mathcal{G} be a finite class of graphs. Assume: (i) K satisfies Lemma 5.3; (ii) the tree encoder f_{tree} and aggregation f_{agg} are universal on their domains. Then for any continuous invariant graph function $f : \mathcal{G} \rightarrow \mathbb{R}$ and any $\varepsilon > 0$, there exists a CTNN such that*

$$\sup_{G \in \mathcal{G}} |f_{\text{CTNN}}(G) - f(G)| \leq \varepsilon.$$

6 EXPERIMENTS AND RESULTS

Through empirical evaluation we aim to answer the following research questions, extending our theory by testing CTNNs on datasets with factors not explicitly addressed in the theoretical analysis

(e.g., class imbalance), and including domain-specific canonicalizations beyond our theory, such as molecular fingerprints (Rogers and Hahn, 2010) commonly used in molecular analysis.

- **RQ1 (Discriminative performance).** How does CTNN compare to (i) invariant GNNs (MPNNs, GTs), (ii) sampling approaches (RWNN), and (iii) canonicalization baselines?
- **RQ2 (Distance distortion).** Do CTNNs reduce metric distortion relative to sequence-based canonicalizations, and does this reduction translate into improved task performance?
- **RQ3 (Ablations and sensitivity).** Which components of CTNN contribute most to performance, and how sensitive is performance to their settings?

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate on molecular and protein benchmarks, domains where canonicalization is widely adopted and frequently used in practice (Goh et al., 2017; Alley et al., 2019) and where long-range dependencies and high expressivity are critical (Dwivedi et al., 2022a). For molecules, we use tasks from the **PCBA** datasets from MoleculeNet (Wu et al., 2018). For proteins, we adopt ProteinShake (Kucera et al., 2023) datasets: **SCOP**, **PFAM**, **GO MOL**, **GO BIO**. These tasks span diverse molecule and protein tasks such as molecular activity and protein structure classification. Notably, proteins are larger than molecules, making structure more difficult to capture. **To demonstrate CTNNs are applicable to domains in which canonicalization is not yet widely adopted, we additionally evaluate on a larger brain graph classification benchmark from NeuroGraph (Said et al., 2023), where the task is to predict one of seven mental states (e.g., emotion processing, language) (Appendix E.4).**

Baselines. We consider invariant GNNs and sampling approaches: (1) **GCN** (Kipf and Welling, 2017), (2) **GAT** (Veličković et al., 2018), (3) **GIN** (Xu et al., 2019), (4) **GT** (Dwivedi and Bresson, 2021), and (5) **RWNN** (Kim et al., 2025). **We next consider expressive subgraph-based GNNs strictly more expressive than 1-WL message passing. These subgraph approaches augment message-passing with additional structural features, (6) **GIN+RWSE** (Dwivedi et al., 2022b), (7) **GSN** (Bouritsas et al., 2022), or decompose the graph into subgraphs, processing each component with a MPNN, (8) **ESAN** (Bevilacqua et al., 2022).** We also evaluate canonicalization approaches: (9) **Fingerprint** (Rogers and Hahn, 2010), stacking an MLP on hand-crafted chemical descriptors, (10) **SMILES** (Goh et al., 2017), applying sequence models over canonical SMILES, (11) **Primary Seq.** (Alley et al., 2019), applying sequence models to the primary sequence, (12) **DGCNN** (Zhang et al., 2018), a representative sequence-based canonical approach leveraging MPNNs as π_V and sorting as \mathcal{C}_{seq} , and (13) **RCM** (Diamant et al., 2023), applying sequence models to the ordering determined by the Cuthill-McKee algorithm. We also include (14) **DFS SET**, a set-based sequence approach. We provide a summary of the design space for all canonicalizations in Appendix C.

Training and Evaluation. For all benchmarks, we set f_{tree} as a Tree-LSTM, f_{MPNN} as a GIN, f_{agg} as SUM, $\pi_V(v) = \deg(v)$, and $\tau = 1$. For molecular datasets, we set $K = 4$, and for proteins, we use $K = 8$. Following each dataset’s protocol, performance is computed as AUC or accuracy. We report median (min, max) performance over five random splits (60/20/20), which is more robust than mean and standard deviation for small sample sizes. We compute stretch as $\max_{i,j} \{d_{\text{emb}}(i, j) / d_G(i, j)\}$ and contraction as $\max_{i,j} \{d_G(i, j) / d_{\text{emb}}(i, j)\}$. For sequence canonicalizations, $d_{\text{emb}} = d_{\text{seq}}$. For DFS SET and CTNNs, we report expected distortion as the average across the sequences or trees (e.g., $\max_{i,j} \text{mean}_k \{d_G(i, j) / d_{T^{(k)}}(i, j)\}$). We provide remaining details in Appendix D.

6.2 RQ1 & RQ2: DISCRIMINATIVE PERFORMANCE AND DISTANCE DISTORTION

CTNNs significantly outperform invariant GNNs, consistent with the theoretical expressivity gains established in Section 5.2 (Table 1). CTNNs also outperform RWNN, demonstrating the benefits of canonicalizaion over sampling approaches. **Subgraph GNNs (GIN+RWSE, GSN, ESAN) are strong baselines and are particularly competitive on protein datasets, but CTNN exceeds their performance on molecular benchmarks.** We attribute this to the fact that, although subgraph GNNs increase theoretical expressivity beyond 1-WL, they still fundamentally rely on global message passing and inherit known limitations such as oversmoothing and oversquashing, which can hinder their ability to capture long-range interactions; CTNN mitigates these issues by operating on low-distortion spanning tree covers with powerful recurrent encoders.

While some canonicalizations are competitive, they depend on domain knowledge and lack generality (e.g., Fingerprint). Notably, CTNNs outperform or match all sequence-based canonicalizations,

432 Table 1: Median (min, max) of model performance ($\times 100$) across 5 test splits. We highlight in **blue**
 433 the best model. “NA” indicates not applicable; “OOT” denotes training exceeds the time limit (24h).

	# Graphs	Molecular Benchmarks				Protein Benchmarks			
		PCBA-1030	PCBA-1458	PCBA-4467	PCBA-5297	SCOP	PFAM	GO BIO	GO MOL
MPNN/GT/RW	Avg. $ V $	160K	200K	240K	300K	10K	25K	22K	32K
	Avg. $ E $	24.29	25.05	25.27	25.19	217.5	251.3	254.5	250.1
	Metric	26.18	27.10	27.24	27.20	593.8	691.5	698.5	687.5
	AUC \uparrow	AUC \uparrow	AUC \uparrow	AUC \uparrow	AUC \uparrow	ACC \uparrow	ACC \uparrow	AUC \uparrow	AUC \uparrow
	GCN	72.7 (70.3, 74.7)	84.9 (84.2, 85.6)	80.9 (78.6, 82.7)	91.4 (88.2, 91.7)	63.4 (62.8, 64.9)	9.3 (6.4, 11.5)	59.2 (57.9, 69.7)	60.6 (49.8, 84.5)
	GAT	71.9 (64.9, 72.8)	80.5 (79.8, 80.8)	76.5 (74.7, 80.0)	89.3 (88.1, 90.6)	58.9 (51.6, 59.9)	5.1 (2.5, 6.0)	57.0 (53.2, 58.7)	57.6 (50.3, 81.1)
	GIN	75.6 (71.3, 77.4)	85.7 (84.4, 86.4)	82.9 (81.8, 83.9)	92.2 (90.7, 92.5)	68.0 (67.9, 69.2)	20.0 (18.1, 21.0)	66.3 (59.9, 79.0)	83.7 (81.5, 85.6)
	GT	68.1 (67.9, 68.6)	81.2 (81.0, 81.5)	78.9 (77.8, 79.9)	87.7 (87.6, 88.2)	OOT	OOT	OOT	OOT
	RWNN	62.1 (62.0, 63.3)	77.0 (75.7, 77.1)	75.0 (74.6, 76.5)	80.6 (80.6, 81.1)	59.0 (58.4, 60.2)	13.5 (12.1, 14.9)	65.4 (64.9, 65.8)	76.7 (74.1, 77.3)
	GIN+RWSE	78.1 (76.9, 79.1)	87.9 (87.1, 89.5)	85.5 (82.9, 86.0)	92.5 (92.0, 94.3)	74.5 (72.1, 75.5)	17.6 (15.4, 21.0)	74.0 (69.8, 75.0)	85.8 (85.0, 86.1)
Canonicalization	GSN	76.9 (76.2, 77.3)	87.4 (86.4, 88.1)	83.1 (82.1, 83.4)	92.3 (91.9, 92.8)	74.5 (73.4, 76.7)	15.1 (13.6, 16.5)	71.2 (59.0, 77.5)	85.0 (76.6, 85.3)
	ESAN	74.7 (74.3, 75.0)	85.5 (85.3, 85.5)	80.3 (79.7, 81.6)	90.9 (90.7, 91.0)	66.6 (66.5, 68.5)	24.3 (19.0, 27.8)	74.8 (70.7, 75.7)	85.7 (85.6, 86.4)
CTNN (ours)				80.6 (80.3, 81.2)	89.1 (88.0, 89.9)	86.8 (86.5, 87.4)	94.6 (94.2, 94.9)	72.0 (71.4, 72.3)	24.7 (20.9, 26.0)
								78.3 (77.9, 79.4)	84.3 (84.0, 86.0)

450 Table 2: Mean \pm s.d. of empirical stretch and contraction across 50 random samples for canonicaliza-
 451 tions. In comparison to all canonicalizations, CTNNs significantly reduce stretch and contraction.

	Max Stretch \downarrow				Max Stretch \downarrow			
	PCBA-1030	PCBA-1458	PCBA-4467	PCBA-5297	SCOP	PFAM	GO BIO	GO MOL
SMILES	18.12 \pm 5.49	20.2 \pm 6.02	19.32 \pm 6.95	19.74 \pm 6.36	NA	NA	NA	NA
Primary Seq.	NA	NA	NA	NA	172.6 \pm 34.11	164.36 \pm 45.55	165.72 \pm 44.51	173.08 \pm 37.83
DGCNN	18.96 \pm 4.07	19.40 \pm 4.63	19.48 \pm 4.99	18.64 \pm 4.02	196.44 \pm 16.03	196.96 \pm 15.87	192.56 \pm 15.54	192.84 \pm 14.62
RCM	3.38 \pm 0.71	3.66 \pm 1.17	3.64 \pm 1.05	3.64 \pm 0.86	34.68 \pm 7.68	32.32 \pm 7.56	33.76 \pm 9.11	33.44 \pm 8.71
DFS SET	18.41 \pm 5.89	18.91 \pm 6.59	18.77 \pm 6.85	18.68 \pm 6.25	211.02 \pm 19.28	211.52 \pm 19.06	209.45 \pm 20.51	210.90 \pm 16.52
CTNN (ours)	2.23 \pm 0.26	2.18 \pm 0.22	2.24 \pm 0.30	2.28 \pm 0.30	17.85 \pm 3.15	18.21 \pm 4.72	17.56 \pm 4.56	18.12 \pm 4.45
Max Contraction \downarrow								
SMILES	5.32 \pm 1.96	6.22 \pm 2.06	5.54 \pm 1.89	5.34 \pm 1.86	NA	NA	NA	NA
Primary Seq.	NA	NA	NA	NA	2.72 \pm 2.86	5.16 \pm 5.34	4.44 \pm 5.62	5.44 \pm 6.31
DGCNN	12.82 \pm 2.79	13.24 \pm 2.76	13.16 \pm 2.54	12.02 \pm 2.37	16.32 \pm 3.25	17.56 \pm 4.85	16.04 \pm 4.12	16.16 \pm 4.15
RCM	4.66 \pm 1.94	4.94 \pm 1.98	5.50 \pm 2.62	5.70 \pm 2.30	12.56 \pm 2.04	12.00 \pm 2.60	12.16 \pm 2.37	11.92 \pm 2.34
DFS SET	4.92 \pm 1.44	5.71 \pm 1.82	5.46 \pm 1.86	5.30 \pm 1.49	9.22 \pm 2.58	9.45 \pm 2.20	8.96 \pm 1.60	8.49 \pm 1.86
CTNN (ours)	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00				

453 including those that are domain-driven and provide one-to-one encodings of their graphs (SMILES,
 454 Primary Seq.), allowing for maximal expressivity. We attribute CTNNs’ gains to distortion introduced
 455 by sequences (Tables 2). Across molecular and protein benchmarks, CTNNs achieve substantially
 456 smaller stretch than sequence-based canonicalizations. Crucially, trees never contract distances,
 457 obtaining optimal contraction = 1. In contrast, sequences exhibit both large stretch and nontrivial
 458 contraction. A noteworthy case is RCM: its ordering reduces bandwidth and lowers stretch on molec-
 459 ular graphs, yet it still doesn’t reach CTNN performance because it incurs contraction. Moreover,
 460 on denser protein graphs its stretch dramatically increases, underscoring a fundamental limitation
 461 of single sequence canonical representatives. While DFS SET, which leverages sets of sequences,
 462 can improve performance in comparison to a single sequence (e.g., GO BIO), it still underperforms
 463 relative to CTNNs across most benchmarks because it also incurs significant stretch and contraction,
 464 indicating sets of sequences do not capture distances as well as sets of trees. Collectively, these
 465 results align with our theory: canonical spanning-tree covers preserve graph distances significantly
 466 better than sequences, enabling stronger downstream models.

479 6.3 RQ3: ABLATIONS AND SENSITIVITY

480 **Ablations.** We evaluate three CTNN variants to isolate what contributes most to its performance
 481 (Table 3). (i) Replacing the cover with a single canonical tree reduces edge coverage, limits expressiv-
 482 ity, and can increase distortion by collapsing to a single representative. Thus, it underperforms across
 483 all benchmarks, especially in protein graphs where multiple trees significantly increase coverage and
 484 reduce distortion on average. (ii) Replacing the TreeRNN with an MPNN is equivalent to a standard
 485 message-passing encoder on the full graph, reintroducing 1-WL expressivity limits, and significantly

486 Table 3: Median (max-min) performance for ablations on benchmarks across 5 test splits. CTNN
 487 (full) obtains or matches the best performance across all datasets, supporting each design choice.
 488

Ablation	PCBA-1030	PCBA-1458	PCBA-4467	PCBA-5297	SCOP	PFAM	GO BIO	GO MOL
Single can. tree instead of cover	79.4 (1.2)	86.2 (0.4)	85.6 (0.6)	92.2 (0.6)	67.5 (1.3)	22.0 (3.6)	69.5 (0.7)	56.2 (12.1)
MPNN instead of TreeRNN	76.7 (0.8)	85.8 (0.2)	82.9 (1.6)	91.5 (1.0)	68.2 (0.5)	18.9 (2.9)	63.1 (2.6)	82.8 (0.9)
No MPNN on residual edges	80.9 (0.2)	89.2 (0.5)	87.0 (0.5)	94.6 (0.2)	69.2 (1.3)	26.8 (5.2)	77.6 (1.5)	61.8 (16.9)
CTNN (full)	80.6 (0.9)	89.1 (1.9)	86.8 (0.9)	94.6 (0.7)	72.0 (0.9)	24.7 (5.1)	78.3 (1.5)	84.3 (2.0)

494 drops performance across all benchmarks. (iii) Removing the processing of residual edges leaves
 495 performance largely unaffected on sparse molecules, where few edges remain after MST extraction,
 496 but drops performance on denser proteins, where residual edge processing can help capture local
 497 signals. Overall, CTNN (full) obtains or matches best performance across datasets, and the analysis
 498 highlights that (a) the canonical tree cover and (b) expressive tree encoder are the primary drivers of
 499 performance, while the residual MPNN provides complementary gains on denser graphs.

500 **Sensitivity.** We also conduct sensitivity analyses for different choices of number of trees, K , node
 501 labeler, π_V , and penalty, τ (Appendix E.1). Increasing K yields consistent gains: edge coverage
 502 rises rapidly, average distortion decreases, and performance improves. These results align with our
 503 theory that only a small number of trees is needed for full coverage on sparse graphs and additional
 504 trees better capture original graph distances on average, resulting in increased performance for larger
 505 K . CTNN is also robust to node labeler π_V : degree, closeness centrality (CC), and 1-WL are close
 506 in performance, with CC and 1-WL offering improvements at higher cost. In the main experiments,
 507 we default to degree for its efficiency. CTNN is also stable across the penalty τ , where coverage,
 508 distortion, and accuracy follow similar trends across choices of τ .

7 CONCLUSION

510 In this work, we developed the first theoretical analysis of sequence-based canonicalization for graphs,
 511 establishing that sequences distort structure and that single-representative approaches are constrained
 512 by the expressivity of their labelers. This analysis covered canonicalizations widely used in practice
 513 such as domain-driven sequences including SMILES (Goh et al., 2017; Honda et al., 2019) and
 514 primary protein sequences (Alley et al., 2019; Rao et al., 2019), learnable orderings based on GNNs
 515 and differentiable sorting (Niepert et al., 2016; Zhang et al., 2018), and algorithmic orderings that
 516 optimize bandwidth (Cuthill and McKee, 1969; Diamant et al., 2023). Motivated by this analysis, we
 517 introduced *Canonical Tree Cover Neural Networks*, which construct canonical spanning-tree covers
 518 and leverage expressive tree encoders. CTNNs are provably invariant, preserve graph distances, and
 519 are more expressive than sequence canonicalizations. Empirically, CTNNs outperform invariant
 520 GNNs, sampling approaches, and canonicalization baselines on molecular and protein benchmarks.

521 Our coverage and expressivity guarantees rely on sparsity assumptions, and thus, characterizing
 522 CTNNs in dense regimes remains open. Despite the focused scope, CTNNs consistently maintain
 523 advantages in our experiments, highlighting the value of spanning-tree covers over sequences. More
 524 broadly, our results underscore the importance of canonical representations that respect underlying
 525 graph geometry. By leveraging canonical tree covers, CTNNs offer an expressive, invariant, and
 526 efficient framework for learning on sparse graphs.

527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
543 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
544 fingerprints. In *Advances in Neural Information Processing Systems*, 2015.

545 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
546 message passing for quantum chemistry. In *International Conference on Machine Learning*, 2017.

547 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
548 In *International Conference on Learning Representations*, 2017.

549 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
550 networks? In *International Conference on Learning Representations*, 2019.

551 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
552 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
553 *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 4602–4609, 2019.

554 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
555 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*,
556 volume 32, 2018.

557 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
558 convolutional networks. In *International conference on machine learning*, pages 1725–1735.
559 PMLR, 2020.

560 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
561 classification. In *International Conference on Learning Representations*, 2020.

562 Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc Lackenby,
563 Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of gnns?
564 *arXiv preprint arXiv:2306.03589*, 2023.

565 Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. In *Advances in
566 Neural Information Processing Systems*, 2024.

567 Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
568 hierarchy: Graph learning beyond message passing. *Transactions in Machine Learning Research*,
569 2023.

570 Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on
571 graphs via random walks. In *International Conference on Learning Representations*, 2025.

572 Jinwoo Kim, Olga Zagheni, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong. Revisiting
573 random walks for learning on graphs. In *International Conference on Learning Representations*,
574 2025.

575 Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
576 *Journal of Machine Learning Research*, 21(90):1–61, 2020.

577 Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
578 for graphs. In *International conference on machine learning*, pages 2014–2023. PMLR, 2016.

579 Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
580 architecture for graph classification. In *Proceedings of the AAAI conference on artificial intelligence*,
581 volume 32, 2018.

582 Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
583 networks via continuous relaxations. *arXiv preprint arXiv:1903.08850*, 2019.

584 Garrett B Goh, Nathan O Hadas, Charles Siegel, and Abhinav Vishnu. Smiles2vec: An inter-
585 pretable general-purpose deep neural network for predicting chemical properties. *arXiv preprint
586 arXiv:1712.02034*, 2017.

594 Shion Honda, Shoi Shi, and Hiroki R Ueda. Smiles transformer: Pre-trained molecular fingerprint
 595 for low data drug discovery. *arXiv preprint arXiv:1911.04738*, 2019.
 596

597 Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
 598 supervised pretraining for molecular property prediction. *arXiv preprint arXiv:2010.09885*, 2020.
 599

600 Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
 601 from tree-structured long short-term memory networks. *arXiv preprint arXiv:1503.00075*, 2015.
 602

603 Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. *Journal of symbolic
 604 computation*, 60:94–112, 2014.
 605

606 Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
 607 *arXiv preprint arXiv:2006.15646*, 2020.
 608

609 Brendan D McKay et al. Practical graph isomorphism. 1981.
 610

611 Yicheng Xiao, Lin Song, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, Ying Shan, et al. Mambatree:
 612 Tree topology is all you need in state space model. *Advances in Neural Information Processing
 613 Systems*, 37:75329–75354, 2024.
 614

615 Jiri Matoušek. Lecture notes on metric embeddings. *ETH Zürich*, 2013.
 616

617 Josep Díaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. *ACM Computing
 618 Surveys (CSUR)*, 34(3):313–356, 2002.
 619

620 Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
 621 *Proceedings of the American Mathematical society*, 7(1):48–50, 1956.
 622

623 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
 624 metrics by tree metrics. In *Proceedings of the thirty-fifth annual ACM symposium on Theory of
 625 computing*, pages 448–455, 2003.
 626

627 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical information
 628 and modeling*, 50(5):742–754, 2010.
 629

630 Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church.
 631 Unified rational protein engineering with sequence-based deep representation learning. *Nature
 632 methods*, 16(12):1315–1322, 2019.
 633

634 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
 635 Luu, and Dominique Beaini. Long range graph benchmark. In *Advances in Neural Information
 636 Processing Systems*, 2022a.
 637

638 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 639 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
 640 *Chemical science*, 9(2):513–530, 2018.
 641

642 Tim Kucera, Carlos Oliver, Dexiong Chen, and Karsten Borgwardt. Proteinshake: Building datasets
 643 and benchmarks for deep learning on protein structures. In *Advances in Neural Information
 644 Processing Systems*, 2023.
 645

646 Anwar Said, Roza Bayrak, Tyler Derr, Mudassir Shabbir, Daniel Moyer, Catie Chang, and Xeno-
 647 fon Koutsoukos. Neurograph: Benchmarks for graph machine learning in brain connectomics.
 648 *Advances in Neural Information Processing Systems*, 36:6509–6531, 2023.
 649

650 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 651 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 652 2018.
 653

654 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
 655 *AAAI Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.
 656

648 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
649 Graph neural networks with learnable structural and positional representations. In *International*
650 *Conference on Learning Representations*, 2022b.

651 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
652 neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern*
653 *Analysis and Machine Intelligence*, 45(1):657–668, 2022.

654 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
655 Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
656 networks. In *International Conference on Learning Representations*, 2022.

657 Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
658 Scalia. Improving graph generation by restricting graph bandwidth. In *International Conference*
659 *on Machine Learning*, pages 7939–7959. PMLR, 2023.

660 Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
661 and Yun Song. Evaluating protein transfer learning with tape. *Advances in neural information*
662 *processing systems*, 32, 2019.

663 Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
664 *Proceedings of the 1969 24th national conference*, pages 157–172, 1969.

665 Russell Lyons and Yuval Peres. *Probability on trees and networks*, volume 42. Cambridge University
666 Press, 2017.

667 László Lovász. Random walks on graphs. *Combinatorics, Paul erdos is eighty*, 2(1-46):4, 1993.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A OMITTED MATHEMATICAL PROOFS
703704 A.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION
705706 **Proposition A.1** (Bandwidth lower-bounds sequence distortion). *Let $G = (V, E)$ be a connected,
707 unweighted graph with shortest-path metric d_G . Let $\varphi(G) := \min_{\sigma} \max_{\{u, v\} \in E} |\sigma(u) - \sigma(v)|$ be
708 the bandwidth of G . Then for every ordering π ,*

709
$$\varphi(G) \leq D_{\text{seq}}(\pi).$$

710

711 *Proof.* For an injective ordering $\pi : V \rightarrow \{1, \dots, n\}$, define the sequence distance $d_{\text{seq}}^\pi(u, v) :=$
712 $|\pi(u) - \pi(v)|$. The (two-sided) distortion can be written

713
$$D_{\text{seq}}(\pi) := \frac{\max_{u \neq v} \frac{d_{\text{seq}}^\pi(u, v)}{d_G(u, v)}}{\min_{u \neq v} \frac{d_{\text{seq}}^\pi(u, v)}{d_G(u, v)}}.$$

714

715 Define $\rho_\pi(u, v) := d_{\text{seq}}^\pi(u, v)/d_G(u, v)$ for $u \neq v$, so that $D_{\text{seq}}(\pi) = \frac{\max \rho_\pi}{\min \rho_\pi}$.
716717 For any edge $\{u, v\} \in E$, $d_G(u, v) = 1$, hence $\rho_\pi(u, v) = |\pi(u) - \pi(v)|$. Therefore,
718

719
$$\max_{u \neq v} \rho_\pi(u, v) \geq \max_{\{u, v\} \in E} |\pi(u) - \pi(v)| = \varphi(\pi).$$

720

721 Let x, y be the two adjacent vertices in π ; then $d_{\text{seq}}^\pi(x, y) = 1$ while $d_G(x, y) \geq 1$, so
722

723
$$\min_{u \neq v} \rho_\pi(u, v) \leq \rho_\pi(x, y) = \frac{1}{d_G(x, y)} \leq 1.$$

724

725 Combining the two bounds proves the claim.
726

727
$$D_{\text{seq}}(\pi) = \frac{\max \rho_\pi}{\min \rho_\pi} \geq \frac{\varphi(\pi)}{1} \geq \varphi(G),$$

728

729 \square 730 A.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION
731732 **Proposition A.2** (π_V and f_{CanSeq} are equally expressive). *Let f_{CanSeq} be a canonical
733 sequence-based model with universal f_{seq} and let π_V be its labeling function. Then, $f_{\text{CanSeq}} \simeq \pi_V$.*
734735 *Proof.* Let $G_i = (V_i, E_i, X_i)$ for $i \in \{1, 2\}$ with $G_1 \not\cong G_2$. Let $\pi_V : V_i \rightarrow \mathbb{R}$ be a node labeler and
736 define the augmented features $\tilde{\mathbf{x}}_v := (\mathbf{x}_v, \pi_V(v))$. Assume the augmented multisets coincide:
737

738
$$\{\{\tilde{\mathbf{x}}_v : v \in V_1\}\} = \{\{\tilde{\mathbf{x}}_v : v \in V_2\}\}.$$

739

740 Consider a single-sequence canonicalizer \mathcal{C}_{seq} that outputs a permutation of V and the corresponding
741 sequence of per-node feature vectors, without adding structural annotations and whose ordering rule
742 is a deterministic function of $\{\tilde{\mathbf{x}}_v\}_{v \in V}$ (e.g., a stable sort by a fixed key in $\tilde{\mathbf{x}}_v$ with deterministic
743 tie-breaking depending only on $\tilde{\mathbf{x}}_v$). Because the two graphs have the same multiset of keys, and
744 the ordering depends solely on these keys (and not on E_i), the resulting ordered lists of features are
745 identical:
746

747
$$\mathcal{C}_{\text{seq}}(G_1, \pi_V) = \mathcal{C}_{\text{seq}}(G_2, \pi_V).$$

748

749 (If ties occur, the tie-breaking is the same function of $\tilde{\mathbf{x}}$; when two items share identical $\tilde{\mathbf{x}}$, they are
750 indistinguishable in the output sequence, so any permutation within such ties yields the same feature
751 sequence.) Hence, there exist non-isomorphic graphs that collide under such \mathcal{C}_{seq} that no f_{seq} can
752 distinguish regardless of its expressivity. \square

756 **Example (DGCNN / Sort).** Let $\mathcal{C}_{\text{seq}} = \text{Sort}$ be a stable sort that orders vertices by a fixed
 757 key computed from $\tilde{\mathbf{x}}_v = (\mathbf{x}_v, \pi_V(v))$ with deterministic tie-breaking depending only on $\tilde{\mathbf{x}}_v$. If
 758 $\{\{(\mathbf{x}_v, \pi_V(v)) : v \in V_1\}\} = \{\{(\mathbf{x}_v, \pi_V(v)) : v \in V_2\}\}$ and $G_1 \not\cong G_2$, then $\text{Sort}(G_1, \pi_V) =$
 759 $\text{Sort}(G_2, \pi_V)$. This covers the DGCNN setting where $\pi_V \simeq f_{\text{MPNN}}$ provides the sort keys; the sort-
 760 based canonicalization cannot separate G_1 and G_2 beyond what is already encoded in the augmented
 761 multiset.

762 A.3 INVARIANT CANONICAL TREE NEURAL NETWORKS

763 We first introduce definitions for probabilistic invariance for random trees and covers.

764 **Definition A.3** (Probabilistic invariance for random trees). Let \mathcal{A} be a randomized procedure that, on
 765 input a graph G , outputs a (labeled) spanning tree $T_{\mathcal{A}}(G)$. We say \mathcal{A} is *probabilistically invariant* if
 766 for every pair of isomorphic graphs $G \cong_{\pi} H$ with isomorphism $\pi : V(G) \rightarrow V(H)$,

$$767 \pi(T_{\mathcal{A}}(G)) \stackrel{d}{=} T_{\mathcal{A}}(H).$$

768 Equivalently, $T_{\mathcal{A}}(G) \stackrel{d}{=} \pi^{-1}(T_{\mathcal{A}}(H))$.

769 **Definition A.4** (Probabilistic invariance for tree covers). Let \mathcal{A} output a (multi)set or sequence
 770 of trees $\mathcal{T}_{\mathcal{A}}(G) = (T^{(0)}, \dots, T^{(K-1)})$ on G . We call \mathcal{A} *probabilistically invariant* if for every
 771 isomorphism $G \cong_{\pi} H$,

$$772 \pi(\mathcal{T}_{\mathcal{A}}(G)) \stackrel{d}{=} \mathcal{T}_{\mathcal{A}}(H),$$

773 where π acts elementwise on the sequence (and, for an unordered cover, equality in distribution is
 774 taken after forgetting order).

775 **Lemma A.5** (MST is probabilistically invariant). Let $G = (V, E)$ be an undirected graph. Let
 776 $w : E \rightarrow \mathbb{R}$ be an isomorphism-invariant base weight (so $w(g \cdot e) = w(e)$ for all $g \in \mathbb{S}_{|V|}$), and let
 777 $\zeta : E \rightarrow (0, 1)$ assign i.i.d. continuous tie-breakers to edges. Run Kruskal's algorithm (Algorithm 2)
 778 with lexicographic keys $k(e) = (w(e), \zeta(e))$ and let $X_{\text{MST}}(G) = (e_0, \dots, e_{|V|-2})$ be the resulting
 779 edge sequence. Then, for every $g \in \mathbb{S}_{|V|}$,

$$780 g \cdot X_{\text{MST}}(G) \stackrel{d}{=} X_{\text{MST}}(g \cdot G) \quad (\text{equivalently, } X_{\text{MST}}(G) \stackrel{d}{=} g^{-1} \cdot X_{\text{MST}}(g \cdot G)).$$

781 *Proof.* We prove by induction on t that the t -th edge in Kruskal's sequence has the same *pushforward*
 782 conditional law on G and on $g \cdot G$.

783 For a prefix $\mathbf{x} = (e_0, \dots, e_{t-1})$ valid for Kruskal on G , let $\mathcal{C}(G; \mathbf{x})$ be the component partition
 784 (union-find state) after processing \mathbf{x} . Define the *admissible set*

$$785 A(G; \mathbf{x}) := \{e = \{u, v\} \in E : u, v \text{ lie in different components of } \mathcal{C}(G; \mathbf{x})\},$$

786 and the *frontier* of minimum-base-weight admissible edges

$$787 F(G; \mathbf{x}) := \{e \in A(G; \mathbf{x}) : w(e) = \min_{e' \in A(G; \mathbf{x})} w(e')\}.$$

788 Under Kruskal with keys (w, ζ) , the next edge e_t is the unique minimizer of ζ over $F(G; \mathbf{x})$ (if
 789 $|F| = 1$ the choice is deterministic). Since the ζ 's are i.i.d. continuous, conditional on \mathbf{x} the edge e_t
 790 is *uniform* on $F(G; \mathbf{x})$.

801 **Base case ($t = 0$).** Here $A(G; \emptyset) = E$ and $F(G; \emptyset) = \{e \in E : w(e) = \min_{e' \in E} w(e')\}$.
 802 Because w is isomorphism-invariant, $F(g \cdot G; \emptyset) = g \cdot F(G; \emptyset)$. The next edge is uniform on the
 803 respective frontier; pushing this uniform forward by g yields

$$804 g \cdot X_{\text{MST}}(G)[0] \stackrel{d}{=} X_{\text{MST}}(g \cdot G)[0].$$

805 **Induction step.** Assume for some $t \geq 0$ that the prefixes satisfy

$$806 g \cdot X_{\text{MST}}(G)[:t] \stackrel{d}{=} X_{\text{MST}}(g \cdot G)[:t].$$

Fix any realization $\mathbf{x} = (e_0, \dots, e_{t-1})$ of this prefix on G , and let $g\mathbf{x} = (g \cdot e_0, \dots, g \cdot e_{t-1})$ be the corresponding prefix on $g \cdot G$. Relabeling preserves adjacency, hence components map as $\mathcal{C}(g \cdot G; g\mathbf{x}) = g \cdot \mathcal{C}(G; \mathbf{x})$ and therefore

$$A(g \cdot G; g\mathbf{x}) = g \cdot A(G; \mathbf{x}), \quad F(g \cdot G; g\mathbf{x}) = g \cdot F(G; \mathbf{x}).$$

Conditional on \mathbf{x} , the next edge on G is uniform on $F(G; \mathbf{x})$. Pushing this distribution forward by g gives a uniform distribution on $g \cdot F(G; \mathbf{x}) = F(g \cdot G; g\mathbf{x})$, which is exactly the conditional law of the next edge on $g \cdot G$ given $g\mathbf{x}$:

$$g \cdot (X_{\text{MST}}(G)[t] \mid \mathbf{x}) \stackrel{d}{=} X_{\text{MST}}(g \cdot G)[t] \mid g\mathbf{x}.$$

Averaging over all realizations \mathbf{x} (which, by the induction hypothesis, have matching laws under G and $g \cdot G$ after applying g to the G prefix) yields

$$g \cdot X_{\text{MST}}(G)[t] \stackrel{d}{=} X_{\text{MST}}(g \cdot G)[t].$$

By induction for $t = 0, 1, \dots, |V| - 2$, we conclude $g \cdot X_{\text{MST}}(G) \stackrel{d}{=} X_{\text{MST}}(g \cdot G)$, equivalently $X_{\text{MST}}(G) \stackrel{d}{=} g^{-1} \cdot X_{\text{MST}}(g \cdot G)$. \square

Theorem A.6 (Probabilistic invariance of `BUILDCANONICALTREECOVER`). *Fix any isomorphism-invariant node labeler π_V (i.e., $\pi_V(g \cdot u) = \pi_V(u)$ for all $g \in \mathbb{S}_{|V|}$) and define base edge weights $\pi_E^{(0)}(u, v) = -(\pi_V(u) + \pi_V(v))$. For $k \geq 0$ let the iterative weights update be*

$$\pi_E^{(k+1)}(e) = \pi_E^{(k)}(e) + \tau \mathbf{1}\{e \in T^{(k)}\}, \quad \tau > 0,$$

where $T^{(k)}$ is the tree returned by `KRUSKALMST` (Algorithm 2) on $(G, \pi_E^{(k)})$ with i.i.d. continuous exchangeable tie-breakers $\zeta : E \rightarrow (0, 1)$ reused across all rounds. Let $\mathcal{T}(G) = (T^{(0)}, \dots, T^{(K-1)})$ be the random sequence of trees produced by `BUILDCANONICALTREECOVER` (Algorithm 1). Then, for every permutation $g \in \mathbb{S}_{|V|}$,

$$g \cdot \mathcal{T}(G) \stackrel{d}{=} \mathcal{T}(g \cdot G) \quad (\text{equivalently, } \mathcal{T}(G) \stackrel{d}{=} g^{-1} \cdot \mathcal{T}(g \cdot G)).$$

Proof. We prove by induction on k that, together with the evolving weights, the next tree is distributionally equivariant under relabeling.

For clarity, write the round- k weights as a function of the history

$$\Pi^{(k)}(G) := \pi_E^{(k)}(\cdot; T^{(0)}, \dots, T^{(k-1)}),$$

and let g act on edge-indexed objects by $(g \cdot f)(e) = f(g^{-1} \cdot e)$. The induction claim is

$$g \cdot T^{(k)}(G) \stackrel{d}{=} T^{(k)}(g \cdot G) \quad \text{and} \quad g \cdot \Pi^{(k+1)}(G) \stackrel{d}{=} \Pi^{(k+1)}(g \cdot G). \quad (\star_k)$$

Base case ($k = 0$). Since π_V is isomorphism-invariant, so is $\pi_E^{(0)}$: $\pi_E^{(0)}(g \cdot e) = \pi_E^{(0)}(e)$. By Lemma A.5 (KruskalMST probabilistic invariance), we have $g \cdot T^{(0)}(G) \stackrel{d}{=} T^{(0)}(g \cdot G)$. The update $\pi_E^{(1)} = \pi_E^{(0)} + \tau \mathbf{1}\{\cdot \in T^{(0)}\}$ is isomorphism-equivariant, hence $g \cdot \Pi^{(1)}(G) \stackrel{d}{=} \Pi^{(1)}(g \cdot G)$. Thus (\star_k) holds for $k = 0$.

Induction step. Assume (\star_k) holds for all $s < k$. Couple the two runs on G and $g \cdot G$ by reusing the same exchangeable tie-breakers ζ . By the induction hypothesis, the joint law of the prefixes

$$(g \cdot T^{(0)}(G), \dots, g \cdot T^{(k-1)}(G), g \cdot \Pi^{(k)}(G))$$

equals the joint law of

$$(T^{(0)}(g \cdot G), \dots, T^{(k-1)}(g \cdot G), \Pi^{(k)}(g \cdot G)).$$

Conditioned on these prefixes, the round- k Kruskal call on each graph uses (isomorphism-equivariant) weights and the same i.i.d. continuous tie-breakers, so Lemma A.5 applies conditionally and yields

$$g \cdot (T^{(k)}(G) \mid T^{(<k)}(G), \Pi^{(k)}(G)) \stackrel{d}{=} T^{(k)}(g \cdot G) \mid T^{(<k)}(g \cdot G), \Pi^{(k)}(g \cdot G).$$

864 Averaging over the (matched) prefixes gives $g \cdot T^{(k)}(G) \stackrel{d}{=} T^{(k)}(g \cdot G)$. Finally, the weight update
 865 $\Pi^{(k+1)} = \Pi^{(k)} + \tau \mathbf{1}\{\cdot \in T^{(k)}\}$ is isomorphism-equivariant, so $g \cdot \Pi^{(k+1)}(G) \stackrel{d}{=} \Pi^{(k+1)}(g \cdot G)$. Thus
 866 (\star_k) holds for round k .
 867

868 By induction for $k = 0, 1, \dots, K-1$ we conclude $g \cdot \mathcal{T}(G) \stackrel{d}{=} \mathcal{T}(g \cdot G)$. \square
 869

870 Having established $\mathcal{T}(G)$ is probabilistically invariant, it follows that $f_{\text{CTNN}}(G)$, a deterministic
 871 function on $\mathcal{T}(G)$, is also probabilistically invariant.
 872

873 A.4 EXPECTED DISTORTION BOUNDS FOR CTNNs 874

875 We introduce two identities leveraging the electrical interpretation along networks: (i) the probability
 876 an edge appears in a uniform random spanning tree due to Kirchhoff, and (ii) a commute-time identity
 877 relating commute time and effective resistance.
 878

Theorem A.7 (Kirchoff's Effective Resistance Formula (Lyons and Peres, 2017)). *Let $G = (V, E)$ be an unweighted connected graph, T a uniform spanning tree of G , and let $i_e^{(u \rightarrow v)} = (i_e^{(u \rightarrow v)})_{e \in E}$ denote the unit electrical $u \rightarrow v$ flow (so $\sum_{e \in E} (i_e^{(u \rightarrow v)})^2 = R_{\text{eff}}(u, v)$). For any undirected edge e , if $P_T(u, v)$ is the unique $u \rightarrow v$ path in T , then*

$$883 \quad \Pr[e \in E(P_T(u, v))] = |i_e^{(u \rightarrow v)}|. \\ 884$$

885 In particular, for a single edge $e = \{a, b\}$, $\Pr[e \in T] = R_{\text{eff}}(a, b)$.
 886

Theorem A.8 (Commute-time and effective resistance (Lovász, 1993)). *For a simple random walk
 887 on G with $m = |E|$, the commute time satisfies*

$$888 \quad C_{uv} := H(u, v) + H(v, u) = 2m R_{\text{eff}}(u, v). \\ 889$$

890 **Theorem A.9** (UST distance bound and expected distortion). *Let G be an unweighted connected
 891 graph and let T be a uniform spanning tree of G . Then for every $u, v \in V$,*

$$892 \quad \mathbb{E}[d_T(u, v)] \leq \sqrt{\frac{H(u, v) + H(v, u)}{2}} = \sqrt{\frac{C_{uv}}{2}}. \\ 893 \\ 894$$

895 Consequently, the expected UST distortion
 896

$$897 \quad D_{\text{UST}} := \max_{u \neq v} \frac{\mathbb{E}[d_T(u, v)]}{d_G(u, v)} \\ 898$$

899 obeys
 900

$$901 \quad D_{\text{UST}} \leq \max_{u \neq v} \frac{\sqrt{C_{uv}/2}}{d_G(u, v)}. \\ 902$$

903 *Proof.* Fix $u, v \in V$. Since T is a tree, there is a unique $u \rightarrow v$ path $P_T(u, v)$, and
 904

$$905 \quad d_T(u, v) = \sum_{e \in E} \mathbf{1}\{e \in E(P_T(u, v))\}. \\ 906 \\ 907$$

908 Taking expectations and using the transfer-current fact,
 909

$$910 \quad \mathbb{E}[d_T(u, v)] = \sum_{e \in E} \Pr[e \in E(P_T(u, v))] = \sum_{e \in E} |i_e^{(u \rightarrow v)}|. \\ 911$$

912 Apply Cauchy-Schwarz:
 913

$$914 \quad \sum_{e \in E} |i_e^{(u \rightarrow v)}| \leq \sqrt{\left(\sum_{e \in E} 1\right) \left(\sum_{e \in E} (i_e^{(u \rightarrow v)})^2\right)} = \sqrt{m R_{\text{eff}}(u, v)}. \\ 915 \\ 916$$

917 Finally, use $C_{uv} = 2m R_{\text{eff}}(u, v)$ to obtain $\mathbb{E}[d_T(u, v)] \leq \sqrt{C_{uv}/2}$. Dividing by $d_G(u, v)$ and
 918 taking the maximum over $u \neq v$ yields the stated distortion bound. \square

918 A.5 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION
919

920 **Lemma A.10** (Logarithmic spanning-tree cover). *Let $G = (V, E)$ be a graph with $m = |E|$ and*
 921 *arboricity $\Upsilon(G)$. Fix any node labeler π_V with $\tau > \max_e \pi_E^{(0)}(e) - \min_e \pi_E^{(0)}(e)$. Let Algorithm 1*
 922 *produce trees $\mathcal{T} = \{T^{(k)}\}_{k=0}^{K-1}$. Then, after $K \geq \Upsilon(G) \ln m$ iterations, the union of the MSTs*
 923 *covers all edges:*

$$924 \quad 925 \quad 926 \quad 927 \quad \bigcup_{k=0}^{K-1} E(T^{(k)}) = E.$$

928 *Proof.* Let $\Upsilon = \Upsilon(G)$. By the definition of arboricity, there exists a partition of the edges into Υ
 929 forests, $E = \bigcup_{j=1}^{\Upsilon} E(F_j)$. For each j , fix a (witness) spanning tree $\tilde{T}_j \supseteq F_j$. Let $U_k \subseteq E$ be the
 930 set of *uncovered* edges after k rounds and set $u_k := |U_k|$. For each j , define $u_{k,j} := |U_k \cap E(F_j)|$,
 931 so that $\sum_{j=1}^{\Upsilon} u_{k,j} = u_k$. By the pigeonhole principle, there exists j^* with $u_{k,j^*} \geq u_k/\Upsilon$. Choose
 932 $\tau > \max_e b_e - \min_e b_e$. Then, for any $k \geq 1$,

$$934 \quad 935 \quad 936 \quad \min_{e \in E \setminus U_k} \pi_E^{(k)}(e) \geq \max_{e \in U_k} \pi_E^{(k)}(e),$$

937 i.e., every seen edge is strictly more expensive than every unseen edge. Hence, minimizing total
 938 weight over spanning trees is equivalent to *maximizing* the number of unseen edges $|T \cap U_k|$ (any
 939 exchange that replaces a seen edge by an unseen edge strictly reduces cost). Since \tilde{T}_{j^*} contains all
 940 edges of F_{j^*} , it achieves $|\tilde{T}_{j^*} \cap U_k| = u_{k,j^*}$. Therefore the MST $T^{(k)}$ satisfies

$$941 \quad 942 \quad 943 \quad |T^{(k)} \cap U_k| \geq u_{k,j^*} \geq \frac{u_k}{\Upsilon}.$$

944 Consequently,

$$945 \quad 946 \quad u_{k+1} = u_k - |T^{(k)} \cap U_k| \leq \left(1 - \frac{1}{\Upsilon}\right) u_k.$$

947 Iterating yields $u_K \leq u_0 \left(1 - \frac{1}{\Upsilon}\right)^K \leq m e^{-K/\Upsilon}$. Choosing $K \geq \Upsilon \ln m$ gives $u_K < 1$, hence
 948 $U_K = \emptyset$ and $\bigcup_{k=0}^{K-1} E(T^{(k)}) = E$, as claimed. \square

950 **Lemma A.11** (f_{CanTree} is strictly more expressive than f_{MPNN} and f_{CanSeq}). *Suppose K satisfies*
 951 *Lemma 5.3. Let $\pi_V \simeq f_{\text{MPNN}}$. Then, $\pi_V \prec f_{\text{CanTree}}$ and hence $f_{\text{CanSeq}} \prec f_{\text{CanTree}}$.*

953 *Proof.* We first show $f_{\text{CanSeq}} \preceq f_{\text{CanTree}}$ and then prove strictness, i.e., $f_{\text{CanSeq}} \prec f_{\text{CanTree}}$.

955 **Step 1:** $f_{\text{CanSeq}} \preceq f_{\text{CanTree}}$. Fix $G = (V, E, X)$ and any spanning tree T of G . For a node $v \in V$,
 956 let $C_T(v)$ be its children in T , $p_T(v)$ its parent, and $N_G(v)$ its 1-hop neighbors in G . Consider a
 957 tree-aware per-node update of the form

$$958 \quad 959 \quad \mathbf{h}_v^{(T)} = f_{\text{agg}}\left(\{\{\mathbf{x}_u : u \in C_T(v)\}\} \uplus \{\{\mathbf{x}_{p_T(v)}\}\} \uplus \{\{\mathbf{x}_u : u \in N_G(v) \setminus (C_T(v) \cup \{p_T(v)\})\}\}\right),$$

960 where f_{agg} is an *injective*, permutation-invariant function over multisets (e.g., a DeepSets). Note
 961 that $\mathbf{h}_v^{(T)}$ can be recovered by a TreeMPNN layer setting $\mathbf{h}_c = \mathbf{0}$ in f_{tree} for all children c . By
 962 construction, the multiset union inside f_{agg} simplifies to the full neighbor multiset:

$$963 \quad 964 \quad \{\{\mathbf{x}_u : u \in C_T(v)\}\} \uplus \{\{\mathbf{x}_{p_T(v)}\}\} \uplus \{\{\mathbf{x}_u : u \in N_G(v) \setminus (C_T(v) \cup \{p_T(v)\})\}\} = \{\{\mathbf{x}_u : u \in N_G(v)\}\}.$$

965 Hence

$$966 \quad 967 \quad \mathbf{h}_v^{(T)} = f_{\text{agg}}\left(\{\{\mathbf{x}_u : u \in N_G(v)\}\}\right),$$

968 which emulates a GIN/1-WL update at v . Since f_{agg} is injective on multisets, this matches the
 969 expressivity of a GIN step; in particular, any single-sequence model bounded by the same node
 970 labeler π_V (and hence by GIN/1-WL) can be simulated by a suitable choice of f_{agg} within f_{CanTree} .
 971 Thus $f_{\text{CanSeq}} \preceq f_{\text{CanTree}}$.

972 **Step 2: Strictness.** We construct G, H with $G \not\cong H$ such that $f_{\text{CanSeq}}(G) = f_{\text{CanSeq}}(H)$ but
 973 $f_{\text{CanTree}}(G) \neq f_{\text{CanTree}}(H)$. Let $G = C_n \sqcup C_n$ (two disjoint n -cycles; $2n$ vertices, 2 components)
 974 and $H = C_{2n}$ (one $2n$ -cycle). Both are 2-regular, so 1-WL/GIN (and thus any $\pi_V \simeq f_{\text{CanSeq}}$ that is
 975 1-WL-bounded) yields identical color multisets; hence $f_{\text{CanSeq}}(G) = f_{\text{CanSeq}}(H)$.

976 Now compare the multisets of spanning trees/forests:
 977

$$\mathcal{T}(G) = \{\{P_n \sqcup P_n\}\}^{n^2}, \quad \mathcal{T}(H) = \{\{P_{2n}\}\}^{2n},$$

980 since each cycle C_m has exactly m spanning trees, all paths P_m . Thus every spanning forest of G is a
 981 disjoint union of two n -paths (multiplicity n^2), whereas every spanning tree of H is a single $2n$ -path
 982 (multiplicity $2n$). Choose a per-tree readout $\rho(T)$ that is injective on tree isomorphism types (e.g.,
 983 map $P_n \sqcup P_n$ and P_{2n} to distinct representations), and a global pooling over spanning trees that is an
 984 injective multiset aggregator (e.g., DeepSets). Then

$$f_{\text{CanTree}}(G) \neq f_{\text{CanTree}}(H).$$

985 Combining Steps 1 and 2 shows $f_{\text{CanSeq}} \prec f_{\text{CanTree}}$. \square
 986

988 To prove universality, we equip CTNNs with anonymous labels, a strategy used in (Wang and Cho,
 989 2024; Kim et al., 2025). Intuitively, anonymous labels allow injectivity for tree covers on graphs,
 990 while the overall construction remains isomorphism-invariant in distribution.

991 **Definition A.12** (Anonymous labels). Given a graph $G = (V, E, X)$, draw i.i.d. tags $z_v \sim \text{Unif}[0, 1]$
 992 for $v \in V$ (and set $\tilde{x}_v := (\mathbf{x}_v, z_v)$). Use the *same* tag assignment $z = \{z_v\}_{v \in V}$ for all trees in
 993 the CTNN cover of G . This yields a labeled cover $\mathcal{T}_z(G) = \{T^{(k)}(G), z\}_{k=0}^{K-1}$. Because the tag
 994 distribution is i.i.d. and continuous, the construction remains permutation-invariant *in distribution*.

995 **Lemma A.13** (Labeled covers are separating a.s.). *Let K satisfy Lemma 5.3 so that*
 996 $\bigcup_k E(T^{(k)}(G)) = E(G)$. *With probability 1 over the draw of z (ties occur with prob. 0), the*
 997 *map $G \mapsto \mathcal{T}_z(G)$ is separating up to isomorphism on any finite class \mathcal{G} .*

999 *Proof.* Almost surely, all node tags are distinct. Let $\sigma_z : V \rightarrow \{1, \dots, |V|\}$ be the order on vertices
 1000 induced by sorting tags (i.e., $z_{\sigma_z^{-1}(1)} < \dots < z_{\sigma_z^{-1}(|V|)}$). Form the edge list
 1001

$$\text{Canon}(G; z) := \{\{\{\sigma_z(u), \sigma_z(v)\} : \{u, v\} \in \bigcup_k E(T^{(k)}(G))\}\}$$

1004 which is isomorphic to the edge list of G because the cover union is $E(G)$. Hence if $G \not\cong H$ then
 1005 $\text{Canon}(G; z) \neq \text{Canon}(H; z)$, i.e., the cover is separating. For a finite \mathcal{G} this holds simultaneously
 1006 for all $G \in \mathcal{G}$ with probability 1. \square

1007 **Theorem A.14** (CTNN Universality with anonymous labels). *Let \mathcal{G} be a finite class of graphs.*
 1008 *Assume: (i) K satisfies Lemma 5.3; (ii) the per-tree encoder f_{tree} is universal on labeled trees and*
 1009 *the multiset aggregator f_{agg} is universal on finite multisets. Then for any continuous permutation-*
 1010 *invariant graph function $f : \mathcal{G} \rightarrow \mathbb{R}$ and any $\varepsilon > 0$, there exists a CTNN such that, for every draw of*
 1011 *anonymous labels z used consistently across the cover,*

$$\sup_{G \in \mathcal{G}} |f_{\text{CTNN}}(G; z) - f(G)| \leq \varepsilon.$$

1015 *Proof.* By Lemma 5.3 the cover edges union to $E(G)$; by Lemma A.13, for every z the labeled cover
 1016 is separating on \mathcal{G} via $\text{Canon}(G; z)$. Thus the invariant target f factors as

$$f(G) = F(\{\{\rho(T) : T \in \mathcal{T}_z(G)\}\})$$

1019 for some continuous permutation-invariant F on multisets of tree representations and some ρ on la-
 1020 beled trees (e.g., any encoding that reproduces $\text{Canon}(G; z)$). By universality, f_{tree} can approximate
 1021 ρ arbitrarily well on the finite support of observed labeled trees, and f_{agg} can approximate F on finite
 1022 multisets of tree representations. Because \mathcal{G} is finite, the composition error is uniformly bounded by
 1023 ε after suitable parameter choices. \square

1024
 1025

1026
1027**B ADDITIONAL MODEL DETAILS**1028
1029**B.1 ALGORITHMS FOR CANONICAL SPANNING-TREE COVERS**1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

Algorithm 1 outlines our procedure for building a K -tree canonical cover. We initialize the edge labeler $\pi_E^{(0)}$ using the negative sum of endpoint degrees for each edge, which prioritizes edges incident to high-degree nodes. For rounds $t = 0, \dots, K - 1$, we construct an MST with respect to the current edge weights using Kruskal's algorithm (Algorithm 2): edges are stably sorted (random tie-breaking) and scanned in nondecreasing order, adding an edge if it does not create a cycle. After forming the tree $T^{(t)}$, we update the labeler to encourage coverage in subsequent rounds: edges *not* selected in $T^{(t)}$ receive an additive penalty (controlled by τ) that increases their priority in the next MST. Finally, we choose a canonical root as the tree center via the standard two-BFS routine (Algorithm 3): one BFS finds an endpoint of a longest path, and a second BFS from that endpoint finds the opposite endpoint; the center(s) of this path serve as the root. This procedure runs in $O(m \log n)$ per round for the MST and $O(n)$ for root selection, and returns the K trees with their canonical roots.

1041

Algorithm 1: BUILDCANONICALTREECOVER: iterative MST cover with root selection

1042

Input: Graph $G = (V, E)$; node labeler $\pi_V : V \rightarrow \mathbb{R}$; iterations K ; step $\tau > 0$; tiny $\varepsilon > 0$

1043

Output: Tree cover $\mathcal{T} = \{T^{(k)}\}_{k=0}^{K'-1}$ and roots $\mathcal{R} = \{r^{(k)}\}_{k=0}^{K'-1}$

1044

(Initialization)

1045

foreach $e = \{u, v\} \in E$ **do**

1046

 $w_e^{(0)} \leftarrow -(\pi_V(u) + \pi_V(v))$ /* base edge weights $\pi_E^{(0)}$ */

1047

 Draw i.i.d. tie-breakers $\zeta : E \rightarrow (0, 1)$ (fixed across rounds)

1048

 $S_0 \leftarrow \emptyset$

1049

/* covered edges so far */

1050

 $\mathcal{T} \leftarrow \emptyset, \mathcal{R} \leftarrow \emptyset$

1051

for $k = 0$ **to** $K - 1$ **do**

1052

// 1) Minimum spanning tree with lexicographic keys

1053

 $T^{(k)} \leftarrow \text{KRUSKALMST}(G, e \mapsto (w_e^{(k)}, \zeta(e)))$

1054

 $\mathcal{T} \leftarrow \mathcal{T} \cup \{T^{(k)}\}; S_{k+1} \leftarrow S_k \cup E(T^{(k)})$

1055

// 2) Canonical root: tree center via two BFS passes

1056

 $r^{(k)} \leftarrow \text{TREECENTER}(T^{(k)}, \pi_V)$

1057

 $\mathcal{R} \leftarrow \mathcal{R} \cup \{r^{(k)}\}$

1058

// 3) Edge-weight update (penalize edges just used)

1059

foreach $e \in E$ **do**

1060

if $e \in E(T^{(k)})$ **then** $w_e^{(k+1)} \leftarrow w_e^{(k)} + \tau$
 else $w_e^{(k+1)} \leftarrow w_e^{(k)}$

1061

if $|S_{k+1}| = |E|$ **then break**

1062

return $(\mathcal{T}, \mathcal{R})$

1063

1064

1065

1066

Algorithm 2: KRUSKALMST with exchangeable tie-breakers

1067

Input: Undirected graph $G = (V, E)$; base edge weights $w : E \rightarrow \mathbb{R}$; tie-breakers $\zeta : E \rightarrow (0, 1)$ i.i.d.

1068

Output: A spanning tree T of G

1069

 $T \leftarrow \emptyset$; initialize disjoint-set D with $\text{MAKESET}(v)$ for all $v \in V$

1070

if $E = \emptyset$ **then return** T

1071

 // I.i.d. continuous tie-breakers ζ make keys distinct w.p. 1.

1072

Sort edges E by nondecreasing key $k(e) := (w(e), \zeta(e))$

1073

// Union-find tracks connected components of the partial forest.

1074

for $e = \{u, v\}$ **in** E **in the above order do**

1075

if $\text{FIND}_D(u) \neq \text{FIND}_D(v)$ **then**

1076

 $T \leftarrow T \cup \{e\}; \text{UNION}_D(u, v)$

1077

if $|T| = |V| - 1$ **then return** T

1078

return T

1079

```

1080
1081 Algorithm 3: TREECENTER: root selection by two BFS passes
1082 Input: Tree  $T = (V_T, E_T)$ ; tie-breaker ranking on vertices (e.g.,  $(\pi_V, \text{ID})$ )
1083 Output: Root  $r \in V_T$  (a center of  $T$ )
1084 Pick canonical start  $s \in V_T$  (minimizing the tie-breaker);
1085  $u \leftarrow \text{BFS\_FARTHEST}(T, s); \quad v \leftarrow \text{BFS\_FARTHEST}(T, u);$ 
1086  $P \leftarrow$  unique path from  $u$  to  $v$  in  $T$ ;
1087 if  $|P| \text{ odd}$  then  $r \leftarrow$  middle vertex of  $P$ 
1088 else  $r \leftarrow$  the nearer of the two middle vertices under the tie-breaker
1089 return  $r$ 

```

B.2 ALGORITHMS FOR RECURRENT TREE NEURAL NETWORKS

1093 We provide discussion and implementation details of the recurrent tree neural network (Algorithm 4).

Algorithm 4: `BTREELSTMFORWARD`: Bidirectional child-sum Tree-LSTM forward pass

1109 **Input** : $x \in \mathbb{R}^{N \times D}$ node features; rooted tree $T = (V, E_T, r)$ in COO form with
 (row, col) = (parent, child); arrays $\text{parent}[v], \text{depth}[v] \in \{0, \dots, L\}$
 1110 **Output**: $h \in \mathbb{R}^{N \times 2H}$: concat. of bottom-up and top-down hidden states
 1111 **Parameters:** bottom-up $W_{iou} \in \mathbb{R}^{D \times 3H}, U_{iou} \in \mathbb{R}^{H \times 3H}, W_f \in \mathbb{R}^{D \times H}, U_f \in \mathbb{R}^{H \times H}$; top-down
 1112 $W_{iou}^\downarrow, U_{iou}^\downarrow, W_f^\downarrow, U_f^\downarrow$ of matching shapes.
 1113 **Init:** $h^\uparrow \leftarrow 0_{N \times H}, c^\uparrow \leftarrow 0_{N \times H}, h^\downarrow \leftarrow 0_{N \times H}, c^\downarrow \leftarrow 0_{N \times H}$.
 1114 Bucket nodes by depth: $\mathcal{V}_\ell \leftarrow \{v \in V : \text{depth}[v] = \ell\}$ for $\ell = 0, \dots, L$.
 1115 /* Bottom-up pass (children \rightarrow parent): process parents from deepest to root. */
 1116 **for** $\ell = L$ **to** 0 **do**
 1117 $P \leftarrow \mathcal{V}_\ell$ // parents at depth ℓ
 1118 $E_\ell \leftarrow \{(u \leftarrow v) \in E_T : u \in P\}$ // edges with parent at depth ℓ
 1119 // Aggregate child states with **scatter_add** (child-sum $f_{agg} = \sum$)
 1120 $h_{sum} \leftarrow 0_{N \times H}$;
 1121
 1122 $h_{sum}[u] \leftarrow \sum_{(u \leftarrow v) \in E_\ell} h^\uparrow[v]$
 1123 // Per-edge forgets and summed transformed cell contributions
 1124 $f_{uv} \leftarrow \sigma(W_f x[u] + U_f h^\uparrow[v])$ for $(u \leftarrow v) \in E_\ell$
 1125 $c_\sim \leftarrow 0_{N \times H}$;
 1126
 1127 $c_\sim[u] \leftarrow \sum_{(u \leftarrow v) \in E_\ell} f_{uv} \odot c^\uparrow[v]$
 1128 // Node-level gates and updates for all $u \in P$
 1129 **for** $u \in P$ **do**
 1130 $[i, o, \tilde{u}] \leftarrow \text{split}_3(W_{iou} x[u] + U_{iou} h_{sum}[u]);$
 1131 $i \leftarrow \sigma(i), o \leftarrow \sigma(o), \tilde{u} \leftarrow \tanh(\tilde{u});$
 1132 $c^\uparrow[u] \leftarrow i \odot \tilde{u} + c_\sim[u];$
 1133 $h^\uparrow[u] \leftarrow o \odot \tanh(c^\uparrow[u])$
 1134
 1135 /* Top-down pass (parent \rightarrow children): propagate from root to leaves. */
 1136 **for** $\ell = 1$ **to** L **do**
 1137 $V \leftarrow \mathcal{V}_\ell$ // children at depth ℓ
 1138 **for** $v \in V$ **do**
 1139 $p \leftarrow \text{parent}[v]$ // unique parent
 1140 $[i, o, \tilde{u}] \leftarrow \text{split}_3(W_{iou}^\downarrow x[v] + U_{iou}^\downarrow h^\downarrow[p]);$
 1141 $i \leftarrow \sigma(i), o \leftarrow \sigma(o), \tilde{u} \leftarrow \tanh(\tilde{u});$
 1142 $f \leftarrow \sigma(W_f^\downarrow x[v] + U_f^\downarrow h^\downarrow[p]);$
 1143 $c^\downarrow[v] \leftarrow i \odot \tilde{u} + f \odot c^\downarrow[p];$
 1144 $h^\downarrow[v] \leftarrow o \odot \tanh(c^\downarrow[v])$
 1145
 1146 **return** $h \leftarrow \text{concat}(h^\uparrow, h^\downarrow)$ // $[N, 2H]$

1134 **Parallel bottom-up / top-down passes.** For each canonical tree we precompute three arrays:
 1135 `edge_index_tree` (row=parent, col=child), `parent[v]` (unique parent), and `depth[v]` (dis-
 1136 tance to root). The bidirectional forward pass runs in two levelwise sweeps that are parallel across all
 1137 nodes at the same depth. In the bottom-up pass (leaves \rightarrow root), we bucket nodes by `depth` and
 1138 use `scatter_add` to implement the child-sum aggregator and edgewise forget contributions in a
 1139 single batched operation over all edges whose parent is at the current depth. In the top-down pass
 1140 (root \rightarrow leaves), each node reads its parent’s state via `index_select` and applies the same batched
 1141 gating. This organization avoids Python loops over edges and exploits segmented reductions on the
 1142 GPU; it only iterates over depth buckets. The forward pass can be efficiently batched across trees by
 1143 treating the full batch as a collection of disjoint graphs, whose edges are stored in COO format.

1144 **Tree encoder.** We implement a *bidirectional child-sum Tree-LSTM* layer with two parameter sets
 1145 (children \rightarrow parent and parent \rightarrow children). Each direction computes input/output/update gates via
 1146 a single linear projection that yields $3H$ channels per node and applies elementwise nonlinearity;
 1147 edgewise forget gates are computed in parallel across all incident edges at a depth. The output
 1148 feature per node is the concatenation of the two hidden states, making the layer stackable (we use
 1149 residual/normalization as in standard practice when beneficial).

1150 **Complexity and memory.** Each direction runs in $O(|V|)$ time and $O(|V|)$ memory for node states.
 1151 For a cover of K trees, the bidirectional layer cost is $O(K|V|)$. In practice we batch trees along the
 1152 sample dimension, so the work parallelizes across graphs and across trees.

1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

C DESIGN SPACE OF CANONICAL APPROACHES

1189
 1190 As shown in Table 4, we organize canonicalization methods along six axes: (i) whether they rely
 1191 on domain knowledge; (ii) the node labeler π_V ; (iii) the edge labeler π_E ; (iv) the canonicalizer
 1192 (ordering/selection rule); (v) the induced representation (vector/sequence/tree); and (vi) whether
 1193 they use a set of canonical elements per graph (vs. a single representative), together with the
 1194 downstream encoder. Table 4 situates common pipelines: domain-driven approaches (Fingerprint,
 1195 SMILES, Primary Seq.) produce a single canonical vector or sequence; graph-agnostic orderings
 1196 (DGCNN/SortPooling, RCM) also yield a single sequence from graph-derived ranks. DFS Set
 1197 employs multiple sequences but remains sequence-based. In contrast, CTNN is the only approach
 1198 that (a) uses an edge labeler to drive a coverage-aware canonicalization and (b) represents each graph
 1199 by a tree cover, a set of canonical trees obtaining full coverage. This design is domain-agnostic,
 1200 preserves distances more faithfully than sequences, and increases expressivity by operating on a set
 1201 rather than a single representative.

1202
 1203 Table 4: Design space for graph canonicalization. “Set” indicates whether the method uses multiple
 1204 canonical elements per graph (e.g., a cover of trees) rather than a single canonicalization. “Domain
 1205 Knowledge” indicates reliance on domain-specific information (e.g., chemistry rules).

Approach	Domain Knowledge	Node Labeler	Edge Labeler	Canonicalizer	Representation	Set	Backbone
Fingerprint	Yes	NA	NA	Handcrafted chemical descriptors	Vector	No	MLP
SMILES	Yes	Atom canonical ranks	NA	Canonical SMILES algorithm	Sequence	No	RNN/TRSF
Primary Seq.	Yes	NA	NA	Identity	Sequence	No	RNN
DGCNN	No	MPNN	No	Differentiable sort (SortPooling)	Sequence	No	1D CNN
RCM	No	Degree	No	Reverse Cuthill–McKee ordering	Sequence	No	RNN
DFS Set	No	Degree	No	Sorted DFS	Sequence Set	Yes	RNN
CTNN (full)	No	Degree	Coverage-aware	Minimum Spanning Tree	Tree Cover	Yes	TreeMPNN

1214

D ADDITIONAL EXPERIMENTAL DETAILS

1215
 1216 **Training and Hyperparameter Selection.** All models are trained by minimizing the binary
 1217 cross-entropy loss on binary classification tasks and the negative log-likelihood loss on multiclass
 1218 classification tasks. Training is performed for a maximum of 200 epochs with early stopping patience
 1219 set to 15 epochs based on validation performance. The best-performing model on the validation set is
 1220 selected for evaluation on the test set. We perform a grid search over the following hyperparameters
 1221 for models where applicable:

- 1223 • Number of layers: {1, 2, 3, 4}
- 1224 • Learning rate: {0.05, 0.01, 0.005, 0.001}
- 1225 • Batch size: {64, 128, 512, 1024}
- 1226 • Hidden dimension: {64, 128, 256}
- 1227 • Global pooling: {mean, sum, max}
- 1228 • Sequence model: {GRU, LSTM, Transformer}
- 1229 • Number of sequences/trees K : {1, 4, 8}
- 1230 • Coverage penalty τ : {1, 2, 4}

1231 All models are optimized using the Adam optimizer.

1234

E EXTENDED RESULTS

1235
 1236 We include additional analyses on (i) sensitivity to the node labeler π_V , (ii) the coverage penalty
 1237 τ , and (iii) the number of trees K . We find CTNN to be robust to the choice of π_V and τ , while
 1238 increasing K consistently increases coverage, reduces distortion, and improves performance. We
 1239 further conduct a sensitivity analyses to the choice of sequence models for SMILES, comparing
 1240 performance when f_{seq} is a LSTM or transformer. Here, we find recurrence outperforms attention
 1241 aligning with recent findings in RWNN studies. We lastly report preprocessing runtimes, confirming
 that CTNN’s preprocessing is efficient and negligible with respect to training times for all datasets.

Figure 6: Sensitivity of CTNN to the number of trees K and coverage penalty τ on PCBA-1030 (top) and GO BIO (bottom). Coverage rises rapidly with K ; distortion decreases monotonically with K ; and performance improves. Trends are similar across τ , indicating robustness, with larger τ yielding slightly higher coverage at fixed K on proteins. Error bars denote standard deviation over samples.

Table 5: Median (min, max) test AUC on molecular datasets. We test CTNN with three node labelers π_V (Degree, Closeness Centrality, 1-WL). CTNN is robust to π_V and typically outperforms baselines; CC or 1-WL often yields the best scores, while Degree serves as a competitive, low-cost default.

# Graphs	Avg. $ V $	Avg. $ E $	Small MoleculeNet Molecular Benchmarks (AUC \uparrow)					
			CLINTOX		SIDER		BACE	
			1.5K	1.5K	1.5K	1.5K	2K	6K
GCN	NA	62.4 (56.9, 74.7)	64.2 (62.4, 70.3)	59.2 (53.9, 64.3)	59.8 (52.4, 66.7)	73.9 (68.9, 81.4)	67.5 (63.1, 71.9)	
GAT	NA	62.1 (55.8, 65.9)	63.6 (61.0, 67.1)	60.8 (52.0, 75.1)	60.6 (56.9, 69.1)	77.5 (74.1, 82.8)	68.2 (65.0, 72.5)	
GIN	NA	59.7 (54.1, 72.4)	66.5 (64.0, 69.9)	59.9 (51.4, 71.8)	55.7 (38.8, 60.8)	75.3 (49.4, 85.3)	66.9 (64.6, 73.4)	
GT	NA	57.1 (46.5, 73.5)	64.3 (57.9, 69.0)	67.1 (57.6, 75.7)	68.4 (60.7, 74.1)	75.8 (62.6, 84.0)	67.8 (64.8, 73.9)	
SMILES	Atom Ranks	62.5 (45.7, 68.6)	61.5 (57.6, 66.4)	76.5 (68.4, 80.3)	65.7 (58.3, 70.7)	71.9 (65.5, 75.3)	71.3 (66.4, 73.8)	
DGCNN	GCN	60.1 (27.6, 69.6)	65.5 (62.9, 68.9)	67.2 (64.1, 74.8)	71.3 (67.5, 75.6)	75.0 (42.8, 86.4)	75.2 (71.4, 77.2)	
RCM	Degree	70.7 (48.6, 87.0)	63.1 (57.3, 67.7)	76.3 (73.3, 81.2)	70.9 (68.4, 74.9)	84.3 (75.1, 89.1)	76.0 (72.4, 79.9)	
GIN+RWSE	NA	63.6 (56.4, 74.6)	66.7 (63.4, 71.3)	57.7 (42.3, 69.6)	65.4 (53.3, 69.1)	73.7 (69.7, 86.5)	70.4 (66.1, 77.5)	
GSN	NA	63.7 (55.6, 68.2)	65.6 (62.4, 68.6)	70.1 (64.9, 79.1)	55.0 (49.3, 60.8)	71.4 (64.3, 79.7)	68.6 (60.7, 73.0)	
ESAN	NA	61.8 (56.7, 66.7)	65.9 (65.2, 70.8)	55.8 (52.3, 69.2)	65.8 (53.3, 69.5)	74.9 (70.5, 80.6)	70.3 (65.4, 75.9)	
RTNN	None	76.8 (68.8, 85.1)	64.9 (61.8, 66.7)	74.6 (68.1, 81.4)	70.7 (62.5, 76.2)	80.2 (70.1, 85.8)	76.8 (75.7, 79.2)	
CTNN	Degree	82.7 (56.8, 89.9)	64.1 (62.8, 67.3)	82.4 (79.7, 86.5)	75.7 (70.0, 78.0)	88.4 (83.7, 91.6)	80.9 (79.6, 84.9)	
CTNN	CC	84.3 (80.1, 92.0)	64.8 (61.0, 68.9)	82.7 (75.0, 87.4)	76.2 (71.5, 79.1)	88.3 (84.1, 92.3)	81.1 (78.9, 82.8)	
CTNN	1-WL	84.8 (76.4, 91.0)	65.1 (63.3, 68.5)	83.5 (80.5, 86.7)	76.5 (71.4, 80.8)	86.8 (82.6, 92.0)	81.4 (78.7, 84.5)	

E.1 SENSITIVITY ANALYSES

Sensitivity to K . We vary the number of trees K on PCBA-1030 (Figure 6a) and GO BIO (Figure 6b). Edge coverage increases rapidly with K , reaching full coverage by $K=4$ on PCBA-1030 and by $K=8$ on GO BIO, consistent with the theory that only a small number of trees is needed on sparse graphs. Distortion decreases monotonically as K grows, indicating that additional trees better preserve original graph distances. Task performance likewise improves with K , showing the practical value of the canonical tree cover.

Sensitivity to τ . We test coverage penalty $\tau = \{1, 2, 4\}$ on the same datasets (Figure 6). Across benchmarks, coverage, distortion, and accuracy follow similar trends for different τ , indicating robustness to the choice of penalizer. For proteins, larger τ yields higher coverage at a fixed K , as heavier penalties bias the MST toward previously unseen edges. Overall, CTNN’s behavior is stable across τ , while K primarily controls the coverage–distortion–accuracy tradeoff.

Sensitivity to π_V . We assess CTNN’s dependence on the node labeler π_V using small-molecule benchmarks and include MPNNs and Graph Transformer (GT) as invariant architectural baselines as well as canonical sequence baselines (Table 5). We additionally include three subgraph-based GNNs: **GIN+RWSE, GSN, and ESAN**. All three are strictly more expressive than 1-WL message passing and are representative of recent expressive subgraph/structural-encoding methods. We compare three labelers: degree, closeness centrality (CC), and 1-Weisfeiler–Lehman (1-WL). Overall, CTNN is robust to the choice of π_V : CC or 1-WL typically achieve the best scores, while degree is slightly behind but competitive across datasets. This reflects a natural trade-off: more informative labelers can yield slight gains at higher preprocessing cost. Concretely, degree runs in $O(m)$, 1-WL in $O(t m)$ for t refinement rounds, and CC in $O(nm)$ via all-pairs BFS. In our main experiments, we default to the inexpensive degree labeler for efficiency, noting that CC or 1-WL can be used when improvements justify the added cost.

Sensitivity to f_{seq} . We evaluate the sensitivity of the sequence encoder f_{seq} by comparing attention (Transformer) and recurrence (LSTM) on canonical SMILES, and include a graph Transformer (GT) that operates directly on molecular graphs (Table 6). We report the analysis on the molecular benchmarks, whereas training analogous models on the larger, denser protein graphs did not converge within 24 hours. Results demonstrate that attention and recurrence perform comparably on SMILES and are similar to the GT baseline. In all cases, however, these models underperform in comparison to CTNNs, which maintain a clear performance advantage. This occurs since attention relies on the sequential positional encoding and recurrence relies on the linear ordering, which both incur distortion and fail to capture graph distances

Table 6: Transformers and LSTMs achieve comparable AUC across PCBA datasets, indicating that attention and recurrence perform similarly on the canonical sequence. GTs also perform comparably to both. Values are median (min, max) over splits. CTNNs outperform all models.

Molecular Benchmarks (AUC \uparrow)					
Approach	Backbone	PCBA-1030	PCBA-1458	PCBA-4467	PCBA-5297
GT	Transformer	68.1 (67.9, 68.6)	81.2 (81.0, 81.5)	78.9 (77.8, 79.9)	87.7 (87.6, 88.2)
SMILES	Transformer	71.9 (71.5, 72.3)	84.4 (83.7, 84.5)	82.4 (81.5, 82.5)	88.9 (88.3, 89.4)
SMILES	LSTM	71.9 (71.2, 72.5)	84.9 (84.5, 85.9)	81.1 (80.0, 81.4)	90.2 (90.0, 90.3)
CTNN	TreeMPNN	80.6 (80.3, 81.2)	89.1 (88.0, 89.9)	86.8 (86.5, 87.4)	94.6 (94.2, 94.9)

E.2 RUNTIME ANALYSES

We report per-graph preprocessing time for CTNNs when constructing $K=8$ trees with a degree-based node labeler $\pi_V(v) = \deg(v)$ (Table 7). On molecular graphs the cost is in the milliseconds, and on protein graphs it is on the order of tenths of a second. In practice, this preprocessing is parallelizable across graphs and is computed once and reused over all training epochs, making it a small fraction of end-to-end training time. Overall, CTNN preprocessing is efficient for the datasets considered.

Table 7: CTNN preprocessing time per graph to construct $K=8$ canonical spanning trees using degree labeler ($\pi_V(v) = \deg(v)$). We report dataset sizes and average graph statistics; times (seconds) are averaged over all graphs. Overall, CTNN preprocessing is efficient across all datasets.

Dataset	# Graphs	Avg. $ V $	Avg. $ E $	Avg. $\deg(v)$	Time (sec)
PCBA-1030	160K	24.3	26.2	2.2	0.004
GO MOL	32K	250.1	687.5	5.4	0.093
NeuroGraph	7K	400.0	7000.29	17.6	0.127

E.3 UST vs. CTNN DISTORTION

The distortion bound in Theorem 5.2 is stated for uniform spanning trees (USTs), whereas CTNN constructs coverage-aware minimum spanning trees (MSTs) from a different, non-uniform distribution. USTs are used in the theory as a well-understood reference distribution to motivate why random

tree covers can achieve low distortion. Empirically, however, we find that our coverage-aware MST scheme achieves even lower distortion than USTs on the datasets we consider. Table 8 compares the shortest-path distortion for USTs and CTNN (degree labeler, $\tau=1$) on PCBA-1030 as the number of trees K increases. CTNN consistently attains smaller average distortion and variance than USTs for all K . This advantage is plausibly due to the coverage-aware construction, which explicitly favors edges that have not appeared in earlier trees, leading to tree covers that better preserve graph distances than independent UST samples, which have no bias toward uncovered edges. These results provide quantitative evidence that the practical CTNN tree distribution inherits and can even improve upon the low-distortion behavior suggested by the UST analysis.

Table 8: Distortion as the number of trees K increases on PCBA-1030 for uniform spanning trees (UST) and CTNN, using a degree-based node labeler and $\tau=1$. We report mean \pm standard deviation distortion over graphs.

PCBA-1030 Distortion				
	$K=1$	$K=2$	$K=4$	$K=8$
UST	5.58 ± 1.23	4.49 ± 1.16	3.57 ± 0.70	2.92 ± 0.45
CTNN	5.10 ± 0.45	3.08 ± 0.30	2.26 ± 0.42	2.13 ± 0.26

E.4 EVALUATION ON NON-MOLECULAR BENCHMARKS

We ran additional experiments on a non-molecular and non-protein benchmark (Table 9). Our main evaluation focuses on molecular and protein graph classification tasks because canonicalization is widely adopted and frequently used in practice in these domains. To demonstrate that our approach is applicable beyond these biochemical domains, we additionally evaluate CTNN on a brain graph classification benchmark from NeuroGraph (Said et al., 2023). Across this benchmark, CTNN obtains the best performance compared to a standard MPNN (GIN) and canonicalization baselines (RCM and DGCNN). These results demonstrate CTNNs’ applicability to domains in which canonicalization is not yet widely adopted.

Table 9: Median (min, max) accuracy of GIN, RCM, DGCNN, and CTNN on the NeuroGraph Activity prediction benchmark. CTNN obtains the best performance across baselines.

NeuroGraph-Activity	
# Graphs	7K
Avg. V	400
Avg. E	7000
Avg. deg	18.0
Metric	ACC \uparrow
GIN	85.4 (85.4, 86.1)
RCM	91.5 (91.3, 92.5)
DGCNN	91.9 (91.9, 92.5)
CTNN	94.1 (94.0, 94.2)