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ABSTRACT

While message-passing NNs (MPNNs) are naturally invariant on graphs, they are
fundamentally limited in expressive power. Canonicalization offers a powerful
alternative by mapping each graph to a unique, invariant representation on which
expressive encoders can operate. However, existing approaches rely on a single
canonical sequence, which flattens the structure, distorts graph distances, and
restricts expressivity. To address these limitations, we introduce Canonical Tree
Cover Neural Networks (CTNNs), which represent the graph with a canonical
spanning tree cover, i.e., a small collection of canonical trees covering all edges.
Each tree is then processed with an existing expressive tree encoder. Theoretically,
tree covers better preserve graph distances than sequences, and on sparse graphs,
the cover recovers all edges with a logarithmic number of trees in the graph size,
making CTNNs strictly more expressive than sequence-based canonicalization
pipelines. Empirically, CTNNs consistently outperform invariant GNNs, random
samplers, and sequence canonicalizations across graph classification benchmarks.
Overall, CTNNs advance graph learning by providing an efficient, invariant, and
expressive representation learning framework via tree cover-based canonicalization.

1 INTRODUCTION

In graph representation learning, capturing a graph’s natural symmetries (i.e., isomorphism invari-
ance) is essential for learning and generalization. One way to enforce this invariance is to bake it
directly into the architecture: message-passing neural networks (MPNNs) (Duvenaud et al., 2015;
Gilmer et al., 2017; Kipf and Welling, 2017) achieve architectural invariance by iteratively aggre-
gating neighbor embeddings, but are provably equivalent in expressive power to the 1-dimensional
Weisfeiler–Leman test (Xu et al., 2019; Morris et al., 2019), suffer from oversmoothing (Li et al.,
2018; Chen et al., 2020) and oversquashing (Oono and Suzuki, 2020; Di Giovanni et al., 2023), and
are thus fundamentally limited. A second approach achieves invariance via sampling: random walk
neural networks (RWNNs) (Wang and Cho, 2024; Tönshoff et al., 2023; Chen et al., 2025; Kim
et al., 2025) sample walks and feed them into powerful sequence models, overcoming limitations in
MPNN expressivity but incurring potentially prohibitive sampling costs on large datasets to achieve
the invariance. Finally, canonicalization maps each graph to a unique representative, allowing any
expressive, non-invariant model to operate on a fixed, invariant input, bypassing expensive sampling
(Bloem-Reddy and Teh, 2020). In this work, we establish the limitations of existing canonicalization
approaches on graphs and propose a new canonicalization.

Existing graph canonicalization approaches first assign labels to each node, flatten the graph into a
single sequence, either via learned sorting layers (Niepert et al., 2016; Zhang et al., 2018; Grover
et al., 2019) or through traversal as in canonical SMILES (Goh et al., 2017; Honda et al., 2019;
Chithrananda et al., 2020), and then feed the sequence into a powerful downstream sequence model.

Cseq−−→
Graph Canonical Sequence

Figure 1: Canonical sequence representations in-
troduce significant stretch and contraction.

In this work, we formally quantify how flatten-
ing into a sequence distorts graph distance. To
illustrate this limitation, consider Sn, the n-node
star (Figure 1, n = 7). Each leaf node in the
graph has distance 1 to the center node, while
leaf nodes in the sequence necessarily have dis-
tance O(n) to the center node (stretch). More-
over, while leaves have distance 2 to each other
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in Sn, certain leaves have distance 1 in the sequence (contraction). Thus, the canonicalization can
stretch and contract original distances, making structure harder to capture. We further establish that
the reduction of the graph into a single representative limits the expressivity of the overall approach
to that of its node labeler, discarding the benefits of using powerful downstream models.

To address these limitations, we propose Canonical Tree Cover Neural Networks (CTNNs), which
construct a canonical spanning tree cover via minimum spanning tree extraction and coverage-aware
edge label refinement. Each tree in the cover is processed by an existing expressive tree encoder
(Tai et al., 2015) and aggregating over the cover yields an invariant representation. By leveraging
tree representations and capturing structure across a set of canonical representatives, CTNNs better
capture graph distances and are more expressive than sequence canonicalizations. Across a variety of
graph classification tasks, CTNNs consistently outperform architecturally invariant GNNs, sampling
methods, and existing canonicalization approaches. In summary, we make the following contributions:

• Current Limitations of Canonicalizations. We establish that sequence-based graph
canonicalization methods fail to preserve graph distance and are limited in expressivity.

• New Canonical Model: Canonical Tree Cover Neural Networks (CTNNs). We introduce
CTNNs, which construct a canonical tree cover. Each tree is then processed by existing
expressive recurrent tree encoders and aggregated to obtain an invariant representation.

• Theory: Invariance, Distance Preservation, and Expressivity Guarantees. We prove that
CTNNs produce invariant graph representations, preserve graph distance information, and
exceed the expressivity of sequence-based canonicalizations and MPNNs. With universal
tree encoders, CTNNs achieve universality on invariant graph functions.

• Extensive Empirical Evaluation. Across 8 graph classification benchmarks, CTNNs
outperform architecturally invariant models, sampling approaches, and canonical baselines.

2 BACKGROUND AND PRELIMINARIES

We first introduce notation and review canonical approaches on graphs, the primary family of
models under investigation. These approaches typically produce a single sequence that is fed to a
sequence model. We then formalize recurrent sequence models, which often outperform attention
and convolution on graphs by better matching the traversal inductive bias. Despite their practical
performance, however, recurrent sequence models can suffer from long graph-derived sequences.
These limitations lead us to consider recurrent tree models that instead propagate information along
trees, which we will later demonstrate better capture graph distance.

2.1 NOTATION ON GRAPHS AND TREES

Let G = (V,E,X) be an undirected graph with n = |V | nodes, m = |E| edges, and node features
X ∈ Rn×d. For v ∈ V , let xv denote the v-th row of X, N (v) = {u ∈ V : (u, v) ∈ E} its
neighborhood, and deg(v) = |N (v)| and dG(u, v) the shortest path distance in G. A rooted tree is
T = (V,E,X, r) with root r ∈ V . Each non-root node v ̸= r has a unique parent p(v), and we write
C(v) = {u ∈ V : p(u) = v} for its children. Leaf nodes of the tree satisfy C(v) = ∅.

2.2 MESSAGE-PASSING NEURAL NETWORKS AND GNN EXPRESSIVITY

Standard GNNs adopt a message-passing approach, where each layer iteratively updates a node’s
representation by aggregating the features of its neighbors (Gilmer et al., 2017). Formally, the initial
message-passing layer can be defined as the following propagation rule at the node level for all i ∈ V ,

fMPNN(G)i = fagg({xj | j ∈ N̂ (i)}),
where fagg is a permutation-invariant function. Because of this aggregation step, MPNNs incur
fundamental expressivity limitations and cannot distinguish certain classes of non-isomorphic graphs
(Xu et al., 2019). We compare the expressivity of GNNs by the pairs of graphs they can distinguish
(Azizian and Lelarge, 2020), introducing the following notation. For two GNNs f1 and f2, we write

f2 ⪯ f1 ⇐⇒ ∀G,H : f1(G) = f1(H) ⇒ f2(G) = f2(H).

Thus, any pair indistinguishable by f1 is also indistinguishable by f2, so f1 is at least as expressive
as f2. The relation is strict, f2 ≺ f1, if f2 ⪯ f1 and there exist graphs G,H with f1(G) ̸= f1(H)
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while f2(G) = f2(H). f1 and f2 are equally expressive, written f1 ≃ f2, if f2 ⪯ f1 and f1 ⪯ f2.
These relations coincide with notions of approximation power. For example, if f2 ≺ f1, every target
approximable by f2 is approximable by f1, and there exist targets approximable by f1 but not f2.

2.3 CANONICAL APPROACHES ON GRAPHS

Graph canonicalization aims to obtain a unique isomorphism–invariant node labeling (McKay et al.,
1981). Because computing an exact canonical labeling is as hard as the graph isomorphism problem,
practical methods adopt soft approximations (e.g., GNN embeddings). After obtaining an approximate
labeling, these pipelines typically flatten the graph into a single sequence either via sorting layers
(Niepert et al., 2016; Zhang et al., 2018) or through traversal such as canonical SMILES (Goh et al.,
2017; Honda et al., 2019), allowing expressive sequence models to process the sequence. Formally,
let πV : V → R be a node labeling function (e.g., MPNN), Cseq be a single-sequence canonicalizer
that maps the labeled graph (G, πV ) to a sequence depending only on πV and carrying only the node
features X, and fseq be a sequence model. A general sequence–based canonical model is defined as

fCanSeq(G) = fseq(Cseq(G, πV )).

As a concrete instance, if πV is an MPNN, Cseq is a differentiable sorting layer, and fseq is a 1D
CNN, then fCanSeq recovers Deep Graph Convolutional Neural Network (Zhang et al., 2018).

2.4 RECURRENT SEQUENCE AND TREE MODELS

Recent RWNNs find that recurrence often outperforms attention and convolution by better matching
the traversal inductive bias (Wang and Cho, 2024; Chen et al., 2025). Given inputs (xt)

T
t=1, initial

state h0, and state transition map Φ : Rd × Rd → Rd, the recurrent update is defined

ht = Φ
(
ht−1,xt

)
, for t = 1, . . . , T.

Recurrent models suffer on long sequences that exacerbate vanishing/exploding gradients, which
motivates our use of recurrent tree models that shorten dependency paths and mitigate these instabil-
ities. Recurrent tree models generalize sequence recurrence to rooted trees (Tai et al., 2015; Xiao
et al., 2024), propagating information bottom–up from children to their parent. Given T = (V,E, r)
with L levels and node inputs {xv}v∈V , recurrent tree models compute hidden states {hv}v∈V by
applying a local transition to child states and aggregating with a permutation–invariant operator fagg:

hv = fagg({Φ(hc,xv) | c ∈ C(v)}) for ℓ = L, . . . , 0 and all v with dT (v, r) = ℓ,

with fagg(∅) = 0 for leaves. Setting Φ
(
hc,xv

)
as a standard LSTM update recovers the Tree LSTM

of Tai et al., 2015. The tree representation is taken as hr at the root. In Section 4, we propose a
canonicalization of graphs via spanning tree covers that can be used as input to recurrent tree models.

3 LIMITATIONS OF SEQUENCE-BASED CANONICALIZATIONS

In this section, we characterize the limitations of single-sequence canonicalization. First, we quantify
how sequence canonicalization distorts graph structure, stretching and contracting graph distances.
We next turn to expressivity and demonstrate that even when the sequence model is universal, the full
canonical pipeline is no more expressive than its node labeler because it relies on a single canonical
representative. Together, these limitations motivate our tree cover–based canonicalization, which
better preserves distances and increases expressivity by operating on a cover of spanning trees.

3.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION

To formalize how sequence canonicalization fails to preserve structure, we use distortion (Matoušek,
2013), which quantifies the stretch/contraction in distance after mapping points between spaces.
Intuitively, we prefer canonicalizations with lower distortion, better preserving the original distances.
Definition 3.1 (Distortion). Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : (X, dX)→
(Y, dY ) has distortion D ≥ 1 if there exists r > 0 such that for all x, y ∈ X ,

r dX(x, y) ≤ dY
(
f(x), f(y)

)
≤ D r dX(x, y).
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�∼=
Sequence Canonicalizer 
(SORT, BFS) :

Node Labelling Function
(1-WL, MPNN) :

=Cseq

πV

↓ ↓

Figure 3: Sequence canonicalization is only as expressive as its labeler πV despite using a universal
downstream sequence model. fCanSeq thus fails to distinguish graphs πV fails to distinguish.

Let (G, dG) denote a graph G with shortest–path distance dG, and let Cseq(G, πV ) be its single
canonical sequence under πV . Equip Cseq with the positional distance dseq(u, v) = |σ(u)− σ(v)|,
where σ : V →{1, . . . , |V |} is the induced ordering. The next proposition lower bounds the distortion
of Cseq with the graph bandwidth (Díaz et al., 2002), φ(G), which measures the smallest maximum
stretch over any edge when G is laid out on a line across all orderings:

φ(G) = min
σ

max
(u,v)∈E

|σ(u)− σ(v)|.

Proposition 3.2 (Graph bandwidth lower bounds sequence distortion). Let Dseq be the distortion of
Cseq(G, πV ) from (G, dG) to the line with distance dseq. Then, for any πV , φ(G) ≤ Dseq.

All proofs are in Appendix A. The bandwidth lower bound gives a concrete well-studied graph metric
to evaluate the distortion of Cseq. Although φ(G) is hard to compute in general, it is known for many
families (Figures 1, 2): on n-node stars Sn and cliques Kn one has φ(Sn) = φ(Kn) = Θ(n), so any
single–sequence canonicalization incurs the worst-case linear distortion; on complete binary trees
φ(T2,ℓ) = Θ(2ℓ/ℓ) = Θ(n/ log n), and on cycles Cn and paths Pn one has φ(Pn) = φ(Cn) = Θ(1).
Beyond specific families, the bound offers general insights. Given that φ(G) ≥ (n− 1)/ diam(G),

ϕ(T2,�) = Θ(n/ log n)ϕ(Kn) = Θ(n)

Figure 2: φ(G) for n-node clique, Kn, and
complete binary tree with ℓ levels, T2,ℓ.

Dseq is at least (n− 1)/ diam(G). It is also monotone un-
der edge addition, indicating that highly connected graphs,
reflected by larger algebraic connectivity λ2, force larger
distortion. These effects negatively impact the sequence
model: distorted distances make structure more difficult
to capture. Importantly, any method relying on sequences,
including canonicalizations and sampling approaches like
RWNNs, inherits these limitations. To address the lim-
itations of sequences, we turn to tree representations.

3.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION

Beyond the limitations of sequence representations due to distortion, we characterize the expressive
limitations of the full canonical model due to relying only on a single representative. Formally, we
show that fCanSeq when equipped with universal fSeq is only as expressive as its node labeler πV .
Proposition 3.3 (πV and fCanSeq are equally expressive). Let fCanSeq be a canonical sequence–based
model with universal fseq and let πV be its labeling function. Then, fCanSeq ≃ πV .

If πV is an MPNN, its power matches 1-WL; consequently, fCanSeq inherits 1-WL limitations and
fails on the same graph families (Figure 3). Crucially, this holds even when fseq is universal: once
information is lost at the labeling stage, no downstream single-sequence canonicalization can recover
it, limiting the expressivity of the full pipeline. Thus, in order to address the limitations of the
single labeler, we instead consider sets of labelers and canonical representatives.

4 CANONICAL TREE COVER NEURAL NETWORKS (CTNNS)

To address the sequence representation limitations due to distortion and the expressive limitations
due to single representatives, we introduce Canonical Tree Cover Neural Networks (CTNNs), which
construct a canonical spanning tree cover. In Section 5, we demonstrate that tree representations
better reflect graph distances in comparison to sequences, while sets of canonical representatives that
allow for complete graph reconstruction are strictly more expressive than a single representative.

4
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T (0) = MST(G, π
(0)
E )) T (1) = MST(G, π

(1)
E )){

{

Original Graph

, ,

Log(|V|) Canonical Spanning Tree Cover

. . .

Weighted MST Edge

Weighted Missed Edge

Legend

. . .

↑ ↑

↑

↑

Figure 4: Canonical spanning-tree cover. At iteration k, compute MST(G, π
(k)
E ) using coverage-

aware edge weights (thicker = larger magnitude weight). Edges missed in k (red) are up-weighted to
bias their inclusion in k + 1. On sparse graphs, the union of O(log |V |) trees covers all edges.

4.1 CANONICAL SPANNING TREE COVERS

To construct a canonical spanning tree cover, we leverage coverage-aware edge labelers and minimum
spanning tree (MST) samplers rather than a fixed node labeler and sequence canonicalizers. By
updating edge weights across rounds, later trees are biased toward edges not yet selected, yielding
provable coverage across the union of sampled trees. Formally, let G be a graph and at iteration
k ∈ {0, . . . ,K − 1} for hyperparameter K let π(k)

E : E→R be an edge labeler. Let Ctree be an MST
extractor that maps an edge–labeled graph

(
G, π

(k)
E

)
to a spanning tree T (k) according to weights

π
(k)
E , setting the root node as the center of T (k). To promote edge coverage across the set, we update

the weights by penalizing edges used in the last tree T (k) with hyperparameter τ . We initialize with
any isomorphism-invariant node labeler πV (e.g., degree), which biases MSTs towards edges incident
to high label nodes. Formally, the update and initialization can be written:

π
(k+1)
E (e) = π

(k)
E (e) + τ 1{e ∈ T (k)}, π

(0)
E (u, v) = −

(
πV (u) + πV (v)

)
.

We refer to further implementation and pseudocode details of the construction in Appendix B.

4.2 INVARIANT CANONICAL TREE NEURAL NETWORKS

Given a canonical cover of MSTs, T = {T (k)}K−1
k=0 , we process each tree with a recurrent tree

encoder and augment it with message passing over the remaining non–tree edges to capture the
local connectivity missed by each individual spanning tree. Let the residual graph be G\T (k) :=
(V, E \ E(T (k))) and denote ftree as a recurrent tree encoder (e.g., Tree–LSTM) and fMPNN an
MPNN. For each k and node i ∈ V , define the per–tree representation

fTreeMPNN

(
T (k)

)
i
= ftree

(
T (k)

)
i
+ fMPNN

(
G\T (k)

)
i

We then aggregate across the set of trees with a permutation–invariant operator fagg to obtain

fCTNN(G) := fagg

({
fTreeMPNN

(
T (k)

)
: T (k) = Ctree

(
G, π

(k)
E

)
, k = 0, . . . ,K−1

})
.

Probabilistic invariance. Because CTNNs sample an MST at each iteration, we adopt probabilistic
invariance (Bloem-Reddy and Teh, 2020). A randomized graph representation is invariant if its
distribution is unchanged by any isomorphic graph. Formally, for a permutation g ∈ Sn acting on G
by relabeling nodes, we will show that the random output fCTNN(G) has the same distribution as
fCTNN(g·G); consequently, the averaged predictor E

[
fCTNN(G)

]
is an invariant function on graphs.

Theorem 4.1 (Probabilistic invariance of CTNNs). A randomized graph representation X(G) is

probabilistically invariant if its distribution is unchanged under any node relabeling, i.e., X(G)
d
=

X(g ·G) for every permutation g ∈ Sn. The random output fCTNN(G) is probabilistically invariant:

fCTNN(G)
d
= fCTNN(g ·G) for all g ∈ Sn.

Then, Φ(G) := E
[
fCTNN(G)

]
is an invariant function satisfying Φ(G) = Φ(g ·G) for all g ∈ Sn.
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{

{ O(1) Expected Distortion over Spanning Tree DistributionO(n) Single Tree Distortion

nn 1 1 1 1 1

Figure 5: Single tree distortion is O(n) on Cn, while expected distortion is constant over a spanning
tree distribution since on average the distance between any two nodes is small.

4.3 RUNTIME COMPLEXITY

CTNN preprocessing is primarily dominated by constructing the K MSTs and cost of πV . Using
Kruskal’s algorithm (Kruskal, 1956), the total cost is O(Km log n + πV ), which is efficient on
sparse graphs where m = O(n) and for inexpensive πV (e.g., degree). A major practical advantage
of canonicalization is that these trees are computed once before training and reused across epochs,
eliminating on-the-fly sampling incurred by sampling approaches. The computation parallelizes
naturally across graphs, and the memory cost is small (O(Kn) edges per graph). Empirically, we
show this preprocessing time is efficient across datasets (Appendix E.2).

5 DISTORTION AND EXPRESSIVITY BOUNDS FOR CTNNS

We first analyze distance preservation: because CTNNs aggregate over spanning trees, they yield
distortion bounds that better preserve graph distance in comparison to single-sequence canonicaliza-
tion. We then turn to expressivity, establishing the benefits of sets of canonical representatives. On
sparse graphs our tree cover recovers the full edge set with only O(logm) trees, which has two im-
mediate consequences for expressivity: (i) CTNNs are strictly more expressive than single–sequence
canonicalizations, and (ii) when paired with universal tree encoders, CTNNs become universal.

5.1 EXPECTED DISTORTION BOUNDS FOR CTNNS

We first analyze how well CTNNs preserve distances, establishing distortion bounds for Ctree. Because
CTNNs sample MSTs, we use probabilistic distortion (Fakcharoenphol et al., 2003).
Definition 5.1 (Expected distortion). Let (X, dX) be a metric space and let µ be a distribution on
metrics M(X). The expected distortion of µ is the least D ≥ 1 such that for some r > 0 and for all
x, y ∈ X ,

r dX(x, y) ≤ Eρ∼µ

[
ρ(x, y)

]
≤ D r dX(x, y).

As a baseline, we analyze the case in which CTNN samples uniform spanning trees (USTs) (obtained
when τ = 0, πV = 0), where we experimentally verify similar behavior in the general setting. In this
regime, the expected tree distance between nodes u and v is upper bounded by the square root of
their hitting time, the expected number of steps a random walk takes to travel from u to v:
Theorem 5.2 (UST expected distortion). Let G be a graph, and let T be a uniform random spanning
tree of G. Denote by H(u, v) the random walk hitting time from u to v. Then,

DUST = max
u,v

E
[
dT (u, v)

]

dG(u, v)
, E

[
dT (u, v)

]
≤

√
H(u, v) +H(v, u)

2
,

In contrast to the bandwidth lower bound for single–sequence canonicalization, which can force
worst-case distortion, the expected UST distortion aligns with random walk distance and preserves
structure significantly better on sparse families. Every tree admits a unique spanning tree, so on trees
DUST = 1. By comparison, Cseq incurs distortion Θ(n/ log n) on balanced trees and Θ(n) on stars.
On Cn, distortion is also constant, highlighting the benefit of averaging over trees (Figure 5), while
on dense cliques Kn, DUST = Θ(

√
n). Despite the Θ(

√
n) distortion, this remains smaller than Cseq

which again incurs Θ(n) distortion. Our bounds also provide general insights: tree distances behave
well in sparse graphs, where the square root of hitting times and shortest paths scale comparably. In
highly dense graphs, however, shortest paths are smaller than hitting times and distortion worsens.
Overall, CTNNs yield expected distortion that is small on many sparse structures where in comparison
single sequences stretch distances, better capturing graph structure for downstream encoders.

6
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5.2 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION

We now turn to the expressive benefits of CTNNs. Instead of relying on a single canonical represen-
tative, CTNNs build a spanning tree cover, providing downstream encoders access to full structure.
We first show our coverage–aware MST scheme needs only logarithmically many trees to cover all
edges on sparse graphs. We then leverage coverage to show CTNN expressivity is strictly greater
than sequence–based canonicalization and establish its universality on graph functions.
Lemma 5.3 (Logarithmic spanning–tree cover). Let G = (V,E) be a graph with m = |E| and
arboricity Υ(G), the minimum number of forests required to cover G. Fix any node labeler πV with
τ > maxe π

(0)
E (e)−mine π

(0)
E (e). Denote T = {T (k)}K−1

k=0 as the set of trees produced by a CTNN.
If K ≥ Υ(G) lnm iterations, the union of the MSTs covers all edges:

⋃K−1
k=0 E

(
T (k)

)
= E.

Importantly, on sparse graphs, arboricity is constant and CTNNs obtain full coverage with K ≥
O(log(|V |)). As established in Section 3, fCanSeq is only as expressive as πV . CTNNs, by contrast,
operate on a tree cover, and as a result are strictly more expressive than fCanSeq when πV ≃ fMPNN.
Lemma 5.4 (fCanTree is strictly more expressive than fMPNN and fCanSeq). Suppose K satisfies
Lemma 5.3. Let πV ≃ fMPNN. Then, πV ≺ fCanTree and hence fCanSeq ≺ fCanTree.

Notably, fCanTree initializes πE with πV , but additionally leverages evolving edge weights that
ensure full edge coverage across trees, allowing fCanTree to surpass the expressivity of πV . Moreover,
equipped with Lemma 5.3, CTNNs can achieve universality when its tree encoder is universal.
Theorem 5.5 (CTNN Universality). Let G be a finite class of graphs. Assume: (i) K satisfies
Lemma 5.3; (ii) the tree encoder ftree and aggregation fagg are universal on their domains. Then for
any continuous invariant graph function f : G → R and any ε > 0, there exists a CTNN such that

sup
G∈G

∣∣ fCTNN(G)− f(G)
∣∣ ≤ ε.

6 EXPERIMENTS AND RESULTS

Through empirical evaluation we aim to answer the following research questions, extending our
theory by testing CTNNs on datasets with factors not explicitly addressed in the theoretical analysis
(e.g., class imbalance), and including domain–specific canonicalizations beyond our theory, such as
molecular fingerprints (Rogers and Hahn, 2010) commonly used in molecular analysis.

• RQ1 (Discriminative performance). How does CTNN compare to (i) invariant GNNs
(MPNNs, GTs), (ii) sampling approaches (RWNN), and (iii) canonicalization baselines?

• RQ2 (Distance distortion). Do CTNNs reduce metric distortion relative to sequence-based
canonicalizations, and does this reduction translate into improved task performance?

• RQ3 (Ablations and sensitivity). Which components of CTNN contribute most to perfor-
mance, and how sensitive is performance to their settings?

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate on molecular and protein benchmarks, domains where canonicalization
is widely adopted and frequently used in practice (Goh et al., 2017; Alley et al., 2019) and where
long–range dependencies and high expressivity are critical (Dwivedi et al., 2022). For molecules,
we use tasks from the PCBA datasets from MoleculeNet (Wu et al., 2018). For proteins, we adopt
ProteinShake (Kucera et al., 2023) datasets: SCOP, PFAM, GO MOL, GO BIO. These tasks span
diverse molecule and protein tasks such as molecular activity and protein structure classification.
Notably, proteins are larger and denser than molecules, making structure more difficult to capture.

Baselines. We consider invariant GNNs and sampling approaches: (1) GCN (Kipf and Welling,
2017), (2) GAT (Veličković et al., 2018), (3) GIN (Xu et al., 2019),(4) GT (Dwivedi and Bresson,
2021), and (5) RWNN (Kim et al., 2025). We next evaluate canonicalization approaches: (6)
Fingerprint (Rogers and Hahn, 2010), stacking an MLP on hand-crafted chemical descriptors,
(7) SMILES (Goh et al., 2017), applying sequence models over canonical SMILES, (8) Primary Seq.
(Alley et al., 2019), applying sequence models to the primary sequence, (9) DGCNN (Zhang et al.,
2018), a representative sequence-based canonical approach leveraging MPNNs as πV and sorting as
Cseq, and (10) RCM (Diamant et al., 2023), applying sequence models to the ordering determined by
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Table 1: Median (min, max) of model performance (×100) across 5 test splits. We highlight in blue
the best model. “NA” indicates not applicable; “OOT” denotes training exceeds the time limit (24h).

Molecular Benchmarks Protein Benchmarks

PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCOP PFAM GO BIO GO MOL
# Graphs 160K 200K 240K 300K 10K 25K 22K 32K
Avg. |V | 24.29 25.05 25.27 25.19 217.5 251.3 254.5 250.1
Avg. |E| 26.18 27.10 27.24 27.20 593.8 691.5 698.5 687.5
Metric AUC ↑ AUC ↑ AUC ↑ AUC ↑ ACC ↑ ACC ↑ AUC ↑ AUC ↑

M
P/

G
T

/R
W GCN 72.7 (70.3, 74.7) 84.9 (84.2, 85.6) 80.9 (78.6, 82.7) 91.4 (88.2, 91.7) 63.4 (62.8, 64.9) 9.3 (6.4, 11.5) 59.2 (57.9, 69.7) 60.6 (49.8, 84.5)

GAT 71.9 (64.9, 72.8) 80.5 (79.8, 80.8) 76.5 (74.7, 80.0) 89.3 (88.1, 90.6) 58.9 (51.6, 59.9) 5.1 (2.5, 6.0) 57.0 (53.2, 58.7) 57.6 (50.3, 81.1)

GIN 75.6 (71.3, 77.4) 85.7 (84.4, 86.4) 82.9 (81.8, 83.9) 92.2 (90.7, 92.5) 68.0 (67.9, 69.2) 20.0 (18.1, 21.0) 66.3 (59.9, 79.0) 83.7 (81.5, 85.6)

GT 68.1 (67.9, 68.6) 81.2 (81.0, 81.5) 78.9 (77.8, 79.9) 87.7 (87.6, 88.2) OOT OOT OOT OOT
RWNN 62.1 (62.0, 63.3) 77.0 (75.7, 77.1) 75.0 (74.6, 76.5) 80.6 (80.6, 81.1) 59.0 (58.4, 60.2) 13.5 (12.1, 14.9) 65.4 (64.9, 65.8) 76.7 (74.1, 77.3)

C
an

on
ic

al
iz

at
io

n Fingerprint 79.3 (78.5, 79.5) 86.7 (85.9, 88.1) 83.8 (83.2, 84.8) 92.4 (91.4, 93.2) NA NA NA NA
SMILES 71.6 (70.2, 72.5) 84.9 (84.5, 86.4) 80.9 (80.0, 81.4) 90.2 (89.8, 90.8) NA NA NA NA
Primary Seq. NA NA NA NA 63.0 (60.8, 63.5) 23.5 (17.4, 26.3) 74.3 (69.2, 79.5) 85.2 (84.5, 85.8)
DGCNN 73.1 (72.7, 73.9) 86.3 (86.0, 86.8) 82.8 (82.1, 83.7) 91.6 (91.2, 92.1) 65.3 (64.6, 67.8) 20.8 (20.2, 23.7) 62.0 (59.7, 68.9) 84.5 (84.0, 84.7)

RCM 77.8 (77.1, 77.9) 87.7 (87.2, 89.0) 85.3 (84.4, 85.7) 93.0 (92.6, 93.4) 57.0 (56.5, 57.8) 22.1 (16.8, 23.4) 68.4 (66.7, 69.3) 83.3 (82.6, 83.7)

DFS SET 65.6 (60.2, 67.6) 78.7 (77.3, 80.7) 75.5 (74.8, 79.0) 83.6 (83.3, 84.0) 55.8 (54.1, 57.2) 14.3 (12.3, 14.8) 75.6 (74.4, 77.6) 84.6 (83.8, 85.9)

CTNN (ours) 80.6 (80.3, 81.2) 89.1 (88.0, 89.9) 86.8 (86.5, 87.4) 94.6 (94.2, 94.9) 72.0 (71.4, 72.3) 24.7 (20.9, 26.0) 78.3 (77.9, 79.4) 84.3 (84.0, 86.0)

Table 2: Mean ± s.d. of empirical stretch and contraction across 50 random samples for canonicaliza-
tions. In comparison to all canonicalizations, CTNNs significantly reduce stretch and contraction.

Max Stretch ↓ Max Stretch ↓
PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCOP PFAM GO BIO GO MOL

SMILES 18.12 ± 5.49 20.2 ± 6.02 19.32 ± 6.95 19.74 ± 6.36 NA NA NA NA
Primary Seq. NA NA NA NA 172.6 ± 34.11 164.36 ± 45.55 165.72 ± 44.51 173.08 ± 37.83
DGCNN 18.96 ± 4.07 19.40 ± 4.63 19.48 ± 4.99 18.64 ± 4.02 196.44 ± 16.03 196.96 ± 15.87 192.56 ± 15.54 192.84 ± 14.62
RCM 3.38 ± 0.71 3.66 ± 1.17 3.64 ± 1.05 3.64 ± 0.86 34.68 ± 7.68 32.32 ± 7.56 33.76 ± 9.11 33.44 ± 8.71
DFS SET 18.41 ± 5.89 18.91 ± 6.59 18.77 ± 6.85 18.68 ± 6.25 211.02 ± 19.28 211.52 ± 19.06 209.45 ± 20.51 210.90 ± 16.52
CTNN (ours) 2.23 ± 0.26 2.18 ± 0.22 2.24 ± 0.30 2.28 ± 0.30 17.85 ± 3.15 18.21 ± 4.72 17.56 ± 4.56 18.12 ± 4.45

Max Contraction ↓ Max Contraction ↓
SMILES 5.32 ± 1.96 6.22 ± 2.06 5.54 ± 1.89 5.34 ± 1.86 NA NA NA NA
Primary Seq. NA NA NA NA 2.72 ± 2.86 5.16 ± 5.34 4.44 ± 5.62 5.44 ± 6.31
DGCNN 12.82 ± 2.79 13.24 ± 2.76 13.16 ± 2.54 12.02 ± 2.37 16.32 ± 3.25 17.56 ± 4.85 16.04 ± 4.12 16.16 ± 4.15
RCM 4.66 ± 1.94 4.94 ± 1.98 5.50 ± 2.62 5.70 ± 2.30 12.56 ± 2.04 12.00 ± 2.60 12.16 ± 2.37 11.92 ± 2.34
DFS SET 4.92 ± 1.44 5.71 ± 1.82 5.46 ± 1.86 5.30 ± 1.49 9.22 ± 2.58 9.45 ± 2.20 8.96 ± 1.60 8.49 ± 1.86
CTNN (ours) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

the Cuthill-McKee algorithm. We also include (11) DFS SET, a set-based sequence approach. We
provide a summary of the design space for all canonicalizations in Appendix C.
Training and Evaluation. For all benchmarks, we set ftree as a Tree-LSTM, fMPNN as a GIN, fagg
as SUM, πV (v) = deg(v), and τ = 1. For molecular datasets, we set K = 4, and for proteins, we use
K = 8. Following each dataset’s protocol, performance is computed as AUC or accuracy. We report
median (min, max) performance over five random splits (60/20/20), which is more robust than mean
and standard deviation for small sample sizes. We compute stretch as maxi,j{demb(i, j)/dG(i, j)}
and contraction as maxi,j{dG(i, j)/demb(i, j)}. For sequence canonicalizations, demb = dseq. For
DFS SET and CTNNs, we report expected distortion as the average across the sequences or trees
(e.g., maxi,j meank{dG(i, j)/dT (k)(i, j)}). We provide remaining details in Appendix D.

6.2 RQ1 & RQ2: DISCRIMINATIVE PERFORMANCE AND DISTANCE DISTORTION

CTNNs significantly outperform invariant GNNs, consistent with the theoretical expressivity gains
established in Section 5.2 (Table 1). CTNNs also outperform RWNN, demonstrating the benefits
of canonicalizaion over sampling approaches. While some canonicalizations are competitive, they
depend on domain knowledge and lack generality (e.g., Fingerprint). Notably, CTNNs outperform
or match all sequence-based canonicalizations, including those that are domain-driven and provide
one-to-one encodings of their graphs (SMILES, Primary Seq.), allowing for maximal expressivity.

We attribute CTNNs’ gains to distortion introduced by sequences (Tables 2). Across molecular and
protein benchmarks, CTNNs achieve substantially smaller stretch than sequence-based canonical-
izations. Crucially, trees never contract distances, obtaining optimal contraction = 1. In contrast,
sequences exhibit both large stretch and nontrivial contraction. A noteworthy case is RCM: its
ordering reduces bandwidth and lowers stretch on molecular graphs, yet it still doesn’t reach CTNN
performance because it incurs contraction. Moreover, on denser protein graphs its stretch dramatically
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Table 3: Median (max-min) performance for ablations on benchmarks across 5 test splits. CTNN
(full) obtains or matches the best performance across all datasets, supporting each design choice.

Ablation PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCOP PFAM GO BIO GO MOL

Single can. tree instead of cover 79.4 (1.2) 86.2 (0.4) 85.6 (0.6) 92.2 (0.6) 67.5 (1.3) 22.0 (3.6) 69.5 (0.7) 56.2 (12.1)
MPNN instead of TreeRNN 76.7 (0.8) 85.8 (0.2) 82.9 (1.6) 91.5 (1.0) 68.2 (0.5) 18.9 (2.9) 63.1 (2.6) 82.8 (0.9)
No MPNN on residual edges 80.9 (0.2) 89.2 (0.5) 87.0 (0.5) 94.6 (0.2) 69.2 (1.3) 26.8 (5.2) 77.6 (1.5) 61.8 (16.9)

CTNN (full) 80.6 (0.9) 89.1 (1.9) 86.8 (0.9) 94.6 (0.7) 72.0 (0.9) 24.7 (5.1) 78.3 (1.5) 84.3 (2.0)

increases, underscoring a fundamental limitation of single sequence canonical representatives. While
DFS SET, which leverages sets of sequences, can improve performance in comparison to a single
sequence (e.g., GO BIO), it still underperforms relative to CTNNs across most benchmarks because it
also incurs significant stretch and contraction, indicating sets of sequences do not capture distances as
well as sets of trees. Collectively, these results align with our theory: canonical spanning-tree covers
preserve graph distances significantly better than sequences, enabling stronger downstream models.

6.3 RQ3: ABLATIONS AND SENSITIVITY

Ablations. We evaluate three CTNN variants to isolate what contributes most to its performance
(Table 3). (i) Replacing the cover with a single canonical tree reduces edge coverage, limits expressiv-
ity, and can increase distortion by collapsing to a single representative. Thus, it underperforms across
all benchmarks, especially in protein graphs where multiple trees significantly increase coverage and
reduce distortion on average. (ii) Replacing the TreeRNN with an MPNN is equivalent to a standard
message-passing encoder on the full graph, reintroducing 1-WL expressivity limits, and significantly
drops performance across all benchmarks. (iii) Removing the processing of residual edges leaves
performance largely unaffected on sparse molecules, where few edges remain after MST extraction,
but drops performance on denser proteins, where residual edge processing can help capture local
signals. Overall, CTNN (full) obtains or matches best performance across datasets, and the analysis
highlights that (a) the canonical tree cover and (b) expressive tree encoder are the primary drivers of
performance, while the residual MPNN provides complementary gains on denser graphs.
Sensitivity. We also conduct sensitivity analyses for different choices of number of trees, K, node
labeler, πV , and penalty, τ (Appendix E.1). Increasing K yields consistent gains: edge coverage
rises rapidly, average distortion decreases, and performance improves. These results align with our
theory that only a small number of trees is needed for full coverage on sparse graphs and additional
trees better capture original graph distances on average, resulting in increased performance for larger
K. CTNN is also robust to node labeler πV : degree, closeness centrality (CC), and 1-WL are close
in performance, with CC and 1-WL offering improvements at higher cost. In the main experiments,
we default to degree for its efficiency. CTNN is also stable across the penalty τ , where coverage,
distortion, and accuracy follow similar trends across choices of τ .

7 CONCLUSION

In this work, we developed the first theoretical analysis of sequence-based canonicalization for graphs,
establishing that sequences distort structure and that single-representative approaches are constrained
by the expressivity of their labelers. This analysis covered canonicalizations widely used in practice
such as domain-driven sequences including SMILES (Goh et al., 2017; Honda et al., 2019) and
primary protein sequences (Alley et al., 2019; Rao et al., 2019), learnable orderings based on GNNs
and differentiable sorting (Niepert et al., 2016; Zhang et al., 2018), and algorithmic orderings that
optimize bandwidth (Cuthill and McKee, 1969; Diamant et al., 2023). Motivated by this analysis, we
introduced Canonical Tree Cover Neural Networks, which construct canonical spanning-tree covers
and leverage expressive tree encoders. CTNNs are provably invariant, preserve graph distances, and
are more expressive than sequence canonicalizations. Empirically, CTNNs outperform invariant
GNNs, sampling approaches, and canonicalization baselines on molecular and protein benchmarks.

Our coverage and expressivity guarantees rely on sparsity assumptions, and thus, characterizing
CTNNs in dense regimes remains open. Despite the focused scope, CTNNs consistently maintain
advantages in our experiments, highlighting the value of spanning-tree covers over sequences. More
broadly, our results underscore the importance of canonical representations that respect underlying
graph geometry. By leveraging canonical tree covers, CTNNs offer an expressive, invariant, and
efficient framework for learning on sparse graphs.
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A OMITTED MATHEMATICAL PROOFS

A.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION

Proposition A.1 (Bandwidth lower-bounds sequence distortion). Let G = (V,E) be a connected,
unweighted graph with shortest-path metric dG. Let φ(G) := minσ max{u,v}∈E |σ(u)− σ(v)| be
the bandwidth of G. Then for every ordering π,

φ(G) ≤ Dseq(π).

Proof. For an injective ordering π : V → {1, . . . , n}, define the sequence distance dπseq(u, v) :=
|π(u)− π(v)|. The (two-sided) distortion can be written

Dseq(π) :=

max
u ̸=v

dπseq(u, v)

dG(u, v)

min
u ̸=v

dπseq(u, v)

dG(u, v)

.

Define ρπ(u, v) := dπseq(u, v)/dG(u, v) for u ̸= v, so that Dseq(π) =
max ρπ

min ρπ
.

For any edge {u, v} ∈ E, dG(u, v) = 1, hence ρπ(u, v) = |π(u)− π(v)|. Therefore,

max
u ̸=v

ρπ(u, v) ≥ max
{u,v}∈E

|π(u)− π(v)| = φ(π).

Let x, y be the two adjacent vertices in π; then dπseq(x, y) = 1 while dG(x, y) ≥ 1, so

min
u̸=v

ρπ(u, v) ≤ ρπ(x, y) =
1

dG(x, y)
≤ 1.

Combining the two bounds proves the claim.

Dseq(π) =
max ρπ
min ρπ

≥ φ(π)

1
≥ φ(G),

A.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION

Proposition A.2 (πV and fCanSeq are equally expressive). Let fCanSeq be a canonical se-
quence–based model with universal fseq and let πV be its labeling function. Then, fCanSeq ≃ πV .

Proof. Let Gi = (Vi, Ei, Xi) for i ∈ {1, 2} with G1 ̸∼= G2. Let πV : Vi → R be a node labeler and
define the augmented features x̃v := (xv, πV (v)). Assume the augmented multisets coincide:

{{x̃v : v ∈ V1}} = {{x̃v : v ∈ V2}}.
Consider a single-sequence canonicalizer Cseq that outputs a permutation of V and the corresponding
sequence of per-node feature vectors, without adding structural annotations and whose ordering rule
is a deterministic function of {x̃v}v∈V (e.g., a stable sort by a fixed key in x̃v with deterministic
tie-breaking depending only on x̃v). Because the two graphs have the same multiset of keys, and
the ordering depends solely on these keys (and not on Ei), the resulting ordered lists of features are
identical:

Cseq(G1, πV ) = Cseq(G2, πV ).

(If ties occur, the tie-breaking is the same function of x̃; when two items share identical x̃, they are
indistinguishable in the output sequence, so any permutation within such ties yields the same feature
sequence.) Hence, there exist non-isomorphic graphs that collide under such Cseq that no fseq can
distinguish regardless of its expressivity.

13
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Example (DGCNN / Sort). Let Cseq = Sort be a stable sort that orders vertices by a fixed
key computed from x̃v = (xv, πV (v)) with deterministic tie-breaking depending only on x̃v. If
{{(xv, πV (v)) : v ∈ V1}} = {{(xv, πV (v)) : v ∈ V2}} and G1 ̸∼= G2, then Sort(G1, πV ) =
Sort(G2, πV ). This covers the DGCNN setting where πV ≃ fMPNN provides the sort keys; the sort-
based canonicalization cannot separate G1 and G2 beyond what is already encoded in the augmented
multiset.

A.3 INVARIANT CANONICAL TREE NEURAL NETWORKS

We first introduce definitions for probabilistic invariance for random trees and covers.

Definition A.3 (Probabilistic invariance for random trees). Let A be a randomized procedure that, on
input a graph G, outputs a (labeled) spanning tree TA(G). We say A is probabilistically invariant if
for every pair of isomorphic graphs G ∼=π H with isomorphism π : V (G)→V (H),

π
(
TA(G)

) d
= TA(H).

Equivalently, TA(G)
d
= π−1

(
TA(H)

)
.

Definition A.4 (Probabilistic invariance for tree covers). Let A output a (multi)set or sequence
of trees TA(G) = (T (0), . . . , T (K−1)) on G. We call A probabilistically invariant if for every
isomorphism G ∼=π H ,

π
(
TA(G)

) d
= TA(H),

where π acts elementwise on the sequence (and, for an unordered cover, equality in distribution is
taken after forgetting order).

Lemma A.5 (MST is probabilistically invariant). Let G = (V,E) be an undirected graph. Let
w : E→R be an isomorphism–invariant base weight (so w(g ·e) = w(e) for all g ∈ S|V |), and let
ζ : E→(0, 1) assign i.i.d. continuous tie–breakers to edges. Run Kruskal’s algorithm (Algorithm 2)
with lexicographic keys k(e) = (w(e), ζ(e)) and let XMST(G) = (e0, . . . , e|V |−2) be the resulting
edge sequence. Then, for every g ∈ S|V |,

g ·XMST(G)
d
= XMST(g ·G) (equivalently, XMST(G)

d
= g−1 ·XMST(g ·G)).

Proof. We prove by induction on t that the t-th edge in Kruskal’s sequence has the same pushforward
conditional law on G and on g ·G.

For a prefix x = (e0, . . . , et−1) valid for Kruskal on G, let C(G;x) be the component partition
(union–find state) after processing x. Define the admissible set

A(G;x) := { e = {u, v} ∈ E : u, v lie in different components of C(G;x) },
and the frontier of minimum–base–weight admissible edges

F (G;x) := { e ∈ A(G;x) : w(e) = min
e′∈A(G;x)

w(e′) }.

Under Kruskal with keys (w, ζ), the next edge et is the unique minimizer of ζ over F (G;x) (if
|F | = 1 the choice is deterministic). Since the ζ’s are i.i.d. continuous, conditional on x the edge et
is uniform on F (G;x).

Base case (t = 0). Here A(G; ∅) = E and F (G; ∅) = {e ∈ E : w(e) = mine′∈E w(e′)}.
Because w is isomorphism–invariant, F (g ·G; ∅) = g · F (G; ∅). The next edge is uniform on the
respective frontier; pushing this uniform forward by g yields

g ·XMST(G)[0]
d
= XMST(g ·G)[0].

Induction step. Assume for some t ≥ 0 that the prefixes satisfy

g ·XMST(G)[: t]
d
= XMST(g ·G)[: t].

14
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Fix any realization x = (e0, . . . , et−1) of this prefix on G, and let gx = (g · e0, . . . , g · et−1)
be the corresponding prefix on g ·G. Relabeling preserves adjacency, hence components map as
C(g ·G; gx) = g · C(G;x) and therefore

A(g ·G; gx) = g ·A(G;x), F (g ·G; gx) = g · F (G;x).

Conditional on x, the next edge on G is uniform on F (G;x). Pushing this distribution forward by g
gives a uniform distribution on g · F (G;x) = F (g ·G; gx), which is exactly the conditional law of
the next edge on g ·G given gx:

g ·
(
XMST(G)[t]

∣∣ x
) d
= XMST(g ·G)[t]

∣∣ gx.
Averaging over all realizations x (which, by the induction hypothesis, have matching laws under G
and g ·G after applying g to the G prefix) yields

g ·XMST(G)[t]
d
= XMST(g ·G)[t].

By induction for t = 0, 1, . . . , |V | − 2, we conclude g · XMST(G)
d
= XMST(g ·G), equivalently

XMST(G)
d
= g−1 ·XMST(g ·G).

Theorem A.6 (Probabilistic invariance of BUILDCANONICALTREECOVER). Fix any isomor-
phism–invariant node labeler πV (i.e., πV (g ·u) = πV (u) for all g ∈ S|V |) and define base edge

weights π(0)
E (u, v) = −(πV (u) + πV (v)). For k ≥ 0 let the iterative weights update be

π
(k+1)
E (e) = π

(k)
E (e) + τ 1{e ∈ T (k)}, τ > 0,

where T (k) is the tree returned by KRUSKALMST (Algorithm 2) on (G, π
(k)
E ) with i.i.d. continuous

exchangeable tie–breakers ζ : E → (0, 1) reused across all rounds. Let T (G) = (T (0), . . . , T (K−1))
be the random sequence of trees produced by BUILDCANONICALTREECOVER (Algorithm 1). Then,
for every permutation g ∈ S|V |,

g · T (G)
d
= T (g ·G) (equivalently, T (G)

d
= g−1 · T (g ·G)).

Proof. We prove by induction on k that, together with the evolving weights, the next tree is distribu-
tionally equivariant under relabeling.

For clarity, write the round–k weights as a function of the history

Π(k)(G) := π
(k)
E ( · ;T (0), . . . , T (k−1)),

and let g act on edge–indexed objects by (g ·f)(e) = f(g−1 · e). The induction claim is

g · T (k)(G)
d
= T (k)(g ·G) and g ·Π(k+1)(G)

d
= Π(k+1)(g ·G). (⋆k)

Base case (k = 0). Since πV is isomorphism–invariant, so is π
(0)
E : π

(0)
E (g · e) = π

(0)
E (e). By

Lemma A.5 (KruskalMST probabilistic invariance), we have g · T (0)(G)
d
= T (0)(g ·G). The update

π
(1)
E = π

(0)
E + τ 1{· ∈ T (0)} is isomorphism–equivariant, hence g·Π(1)(G)

d
= Π(1)(g·G). Thus (⋆k)

holds for k = 0.

Induction step. Assume (⋆k) holds for all s < k. Couple the two runs on G and g ·G by reusing
the same exchangeable tie–breakers ζ. By the induction hypothesis, the joint law of the prefixes

(
g · T (0)(G), . . . , g · T (k−1)(G), g ·Π(k)(G)

)

equals the joint law of
(
T (0)(g ·G), . . . , T (k−1)(g ·G), Π(k)(g ·G)

)
.

Conditioned on these prefixes, the round–k Kruskal call on each graph uses (isomor-
phism–equivariant) weights and the same i.i.d. continuous tie–breakers, so Lemma A.5 applies
conditionally and yields

g ·
(
T (k)(G)

∣∣ T (<k)(G),Π(k)(G)
) d
= T (k)(g ·G)

∣∣ T (<k)(g ·G),Π(k)(g ·G).
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Averaging over the (matched) prefixes gives g · T (k)(G)
d
= T (k)(g ·G). Finally, the weight update

Π(k+1) = Π(k)+ τ 1{· ∈ T (k)} is isomorphism–equivariant, so g·Π(k+1)(G)
d
= Π(k+1)(g·G). Thus

(⋆k) holds for round k.

By induction for k = 0, 1, . . . ,K − 1 we conclude g · T (G)
d
= T (g ·G).

Having established T (G) is probabilistically invariant, it follows that fCTNN(G), a deterministic
function on T (G), is also probabilistically invariant.

A.4 EXPECTED DISTORTION BOUNDS FOR CTNNS

We introduce two identities leveraging the electrical interpretation along networks: (i) the probability
an edge appears in a uniform random spanning tree due to Kirchhoff, and (ii) a commute-time identity
relating commute time and effective resistance.

Theorem A.7 (Kirchoff’s Effective Resistance Formula (Lyons and Peres, 2017)). Let G = (V,E)

be an unweighted connected graph, T a uniform spanning tree of G, and let i(u→v) = (i
(u→v)
e )e∈E

denote the unit electrical u → v flow (so
∑

e∈E(i
(u→v)
e )2 = Reff(u, v)). For any undirected edge e,

if PT (u, v) is the unique u–v path in T , then

Pr
[
e ∈ E(PT (u, v))

]
=

∣∣ i(u→v)
e

∣∣.

In particular, for a single edge e = {a, b}, Pr[e ∈ T ] = Reff(a, b).

Theorem A.8 (Commute-time and effective resistance (Lovász, 1993)). For a simple random walk
on G with m = |E|, the commute time satisfies

Cuv := H(u, v) +H(v, u) = 2mReff(u, v).

Theorem A.9 (UST distance bound and expected distortion). Let G be an unweighted connected
graph and let T be a uniform spanning tree of G. Then for every u, v ∈ V ,

E
[
dT (u, v)

]
≤

√
H(u, v) +H(v, u)

2
=

√
Cuv

2
.

Consequently, the expected UST distortion

DUST := max
u ̸=v

E[dT (u, v)]
dG(u, v)

obeys

DUST ≤ max
u̸=v

√
Cuv/2

dG(u, v)
.

Proof. Fix u, v ∈ V . Since T is a tree, there is a unique u–v path PT (u, v), and

dT (u, v) =
∑

e∈E

1{ e ∈ E(PT (u, v)) } .

Taking expectations and using the transfer–current fact,

E[dT (u, v)] =
∑

e∈E

Pr[e ∈ E(PT (u, v))] =
∑

e∈E

∣∣ i(u→v)
e

∣∣.

Apply Cauchy–Schwarz:

∑

e∈E

∣∣ i(u→v)
e

∣∣ ≤
√(∑

e∈E

1
)(∑

e∈E

(i
(u→v)
e )2

)
=

√
mReff(u, v) .

Finally, use Cuv = 2mReff(u, v) to obtain E[dT (u, v)] ≤
√

Cuv/2. Dividing by dG(u, v) and
taking the maximum over u ̸= v yields the stated distortion bound.
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A.5 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION

Lemma A.10 (Logarithmic spanning–tree cover). Let G = (V,E) be a graph with m = |E| and
arboricity Υ(G). Fix any node labeler πV with τ > maxe π

(0)
E (e)−mine π

(0)
E (e). Let Algorithm 1

produce trees T = {T (k)}K−1
k=0 . Then, after K ≥ Υ(G) lnm iterations, the union of the MSTs

covers all edges:
K−1⋃

k=0

E
(
T (k)

)
= E.

Proof. Let Υ = Υ(G). By the definition of arboricity, there exists a partition of the edges into Υ

forests, E =
⋃̇Υ

j=1E(Fj). For each j, fix a (witness) spanning tree T̃j ⊇ Fj . Let Uk ⊆ E be the
set of uncovered edges after k rounds and set uk := |Uk|. For each j, define uk,j := |Uk ∩ E(Fj)|,
so that

∑Υ
j=1 uk,j = uk. By the pigeonhole principle, there exists j⋆ with uk,j⋆ ≥ uk/Υ. Choose

τ > maxe be −mine be. Then, for any k ≥ 1,

min
e∈E\Uk

π
(k)
E (e) ≥ max

e∈Uk

π
(k)
E (e),

i.e., every seen edge is strictly more expensive than every unseen edge. Hence, minimizing total
weight over spanning trees is equivalent to maximizing the number of unseen edges |T ∩ Uk| (any
exchange that replaces a seen edge by an unseen edge strictly reduces cost). Since T̃j⋆ contains all
edges of Fj⋆ , it achieves |T̃j⋆ ∩ Uk| = uk,j⋆ . Therefore the MST T (k) satisfies

|T (k) ∩ Uk| ≥ uk,j⋆ ≥ uk

Υ
.

Consequently,

uk+1 = uk − |T (k) ∩ Uk| ≤
(
1− 1

Υ

)
uk.

Iterating yields uK ≤ u0

(
1 − 1

Υ

)K ≤ me−K/Υ. Choosing K ≥ Υ lnm gives uK < 1, hence
UK = ∅ and

⋃K−1
k=0 E(T (k)) = E, as claimed.

Lemma A.11 (fCanTree is strictly more expressive than fMPNN and fCanSeq). Suppose K satisfies
Lemma 5.3. Let πV ≃ fMPNN. Then, πV ≺ fCanTree and hence fCanSeq ≺ fCanTree.

Proof. We first show fCanSeq ⪯ fCanTree and then prove strictness, i.e., fCanSeq ≺ fCanTree.

Step 1: fCanSeq ⪯ fCanTree. Fix G = (V,E,X) and any spanning tree T of G. For a node v ∈ V ,
let CT (v) be its children in T , pT (v) its parent, and NG(v) its 1–hop neighbors in G. Consider a
tree-aware per-node update of the form

h(T )
v = fagg

(
{{xu : u ∈ CT (v)}} ⊎ {{xpT (v)}} ⊎ {{xu : u ∈ NG(v) \ (CT (v) ∪ {pT (v)})}}

)
,

where fagg is an injective, permutation-invariant function over multisets (e.g., a DeepSets). Note
that h(T )

v can be recovered by a TreeMPNN layer setting hc = 0 in ftree for all children c. By
construction, the multiset union inside fagg simplifies to the full neighbor multiset:

{{xu : u ∈ CT (v)}} ⊎ {{xpT (v)}} ⊎ {{xu : u ∈ NG(v)\(CT (v)∪{pT (v)})}} = {{xu : u ∈ NG(v)}}.
Hence

h(T )
v = fagg

(
{{xu : u ∈ NG(v)}}

)
,

which emulates a GIN/1-WL update at v. Since fagg is injective on multisets, this matches the
expressivity of a GIN step; in particular, any single-sequence model bounded by the same node
labeler πV (and hence by GIN/1-WL) can be simulated by a suitable choice of fagg within fCanTree.
Thus fCanSeq ⪯ fCanTree.
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Step 2: Strictness. We construct G,H with G ̸∼= H such that fCanSeq(G) = fCanSeq(H) but
fCanTree(G) ̸= fCanTree(H). Let G = Cn ⊔ Cn (two disjoint n-cycles; 2n vertices, 2 components)
and H = C2n (one 2n-cycle). Both are 2-regular, so 1-WL/GIN (and thus any πV ≃ fCanSeq that is
1-WL-bounded) yields identical color multisets; hence fCanSeq(G) = fCanSeq(H).

Now compare the multisets of spanning trees/forests:

T (G) = {{Pn ⊔ Pn }}n2

, T (H) = {{P2n }} 2n,

since each cycle Cm has exactly m spanning trees, all paths Pm. Thus every spanning forest of G is a
disjoint union of two n-paths (multiplicity n2), whereas every spanning tree of H is a single 2n-path
(multiplicity 2n). Choose a per-tree readout ρ(T ) that is injective on tree isomorphism types (e.g.,
map Pn⊔ Pn and P2n to distinct representations), and a global pooling over spanning trees that is an
injective multiset aggregator (e.g., DeepSets). Then

fCanTree(G) ̸= fCanTree(H).

Combining Steps 1 and 2 shows fCanSeq ≺ fCanTree.

To prove universality, we equip CTNNs with anonymous labels, a strategy used in (Wang and Cho,
2024; Kim et al., 2025). Intuitively, anonymous labels allow injectivity for tree covers on graphs,
while the overall construction remains isomorphism-invariant in distribution.
Definition A.12 (Anonymous labels). Given a graph G = (V,E,X), draw i.i.d. tags zv ∼ Unif[0, 1]
for v ∈ V (and set x̃v := (xv, zv)). Use the same tag assignment z = {zv}v∈V for all trees in
the CTNN cover of G. This yields a labeled cover Tz(G) = {T (k)(G), z}K−1

k=0 . Because the tag
distribution is i.i.d. and continuous, the construction remains permutation-invariant in distribution.
Lemma A.13 (Labeled covers are separating a.s.). Let K satisfy Lemma 5.3 so that⋃

k E(T (k)(G)) = E(G). With probability 1 over the draw of z (ties occur with prob. 0), the
map G 7→ Tz(G) is separating up to isomorphism on any finite class G.

Proof. Almost surely, all node tags are distinct. Let σz : V →{1, . . . , |V |} be the order on vertices
induced by sorting tags (i.e., zσ−1

z (1) < · · · < zσ−1
z (|V |)). Form the edge list

Canon(G; z) := {{ {σz(u), σz(v) } : {u, v} ∈ ⋃
k E

(
T (k)(G)

)
}}

which is isomorphic to the edge list of G because the cover union is E(G). Hence if G ̸∼= H then
Canon(G; z) ̸= Canon(H; z), i.e., the cover is separating. For a finite G this holds simultaneously
for all G ∈ G with probability 1.

Theorem A.14 (CTNN Universality with anonymous labels). Let G be a finite class of graphs.
Assume: (i) K satisfies Lemma 5.3; (ii) the per-tree encoder ftree is universal on labeled trees and
the multiset aggregator fagg is universal on finite multisets. Then for any continuous permutation-
invariant graph function f : G → R and any ε > 0, there exists a CTNN such that, for every draw of
anonymous labels z used consistently across the cover,

sup
G∈G

∣∣ fCTNN(G; z)− f(G)
∣∣ ≤ ε.

Proof. By Lemma 5.3 the cover edges union to E(G); by Lemma A.13, for every z the labeled cover
is separating on G via Canon(G; z). Thus the invariant target f factors as

f(G) = F
(
{{ ρ(T ) : T ∈ Tz(G) }}

)

for some continuous permutation-invariant F on multisets of tree representations and some ρ on la-
beled trees (e.g., any encoding that reproduces Canon(G; z)). By universality, ftree can approximate
ρ arbitrarily well on the finite support of observed labeled trees, and fagg can approximate F on finite
multisets of tree representations. Because G is finite, the composition error is uniformly bounded by
ε after suitable parameter choices.
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B ADDITIONAL MODEL DETAILS

B.1 ALGORITHMS FOR CANONICAL SPANNING-TREE COVERS

Algorithm 1 outlines our procedure for building a K–tree canonical cover. We initialize the edge
labeler π(0)

E using the negative sum of endpoint degrees for each edge, which prioritizes edges incident
to high-degree nodes. For rounds t = 0, . . . ,K − 1, we construct an MST with respect to the current
edge weights using Kruskal’s algorithm (Algorithm 2): edges are stably sorted (random tie–breaking)
and scanned in nondecreasing order, adding an edge if it does not create a cycle. After forming the
tree T (t), we update the labeler to encourage coverage in subsequent rounds: edges not selected in
T (t) receive an additive penalty (controlled by τ ) that increases their priority in the next MST. Finally,
we choose a canonical root as the tree center via the standard two–BFS routine (Algorithm 3): one
BFS finds an endpoint of a longest path, and a second BFS from that endpoint finds the opposite
endpoint; the center(s) of this path serve as the root. This procedure runs in O(m log n) per round for
the MST and O(n) for root selection, and returns the K trees with their canonical roots.

Algorithm 1: BUILDCANONICALTREECOVER: iterative MST cover with root selection
Input: Graph G = (V,E); node labeler πV : V →R; iterations K; step τ > 0; tiny ε > 0

Output: Tree cover T = {T (k)}K
′−1

k=0 and rootsR = {r(k)}K
′−1

k=0

(Initialization)
foreach e = {u, v} ∈ E do

w
(0)
e ← −

(
πV (u) + πV (v)

)
/* base edge weights π

(0)
E */

Draw i.i.d. tie–breakers ζ : E → (0, 1) (fixed across rounds)
S0 ← ∅ /* covered edges so far */
T ← ∅,R← ∅

for k = 0 to K − 1 do
// 1) Minimum spanning tree with lexicographic keys

T (k) ← KRUSKALMST
(
G, e 7→

(
w

(k)
e , ζ(e)

))
T ← T ∪ {T (k)}; Sk+1 ← Sk ∪ E(T (k))

// 2) Canonical root: tree center via two BFS passes

r(k) ← TREECENTER
(
T (k), πV

)
R ← R∪ {r(k)}
// 3) Edge-weight update (penalize edges just used)
foreach e ∈ E do

if e ∈ E(T (k)) then w
(k+1)
e ← w

(k)
e + τ

else w
(k+1)
e ← w

(k)
e

if |Sk+1| = |E| then break

return (T ,R)

Algorithm 2: KRUSKALMST with exchangeable tie–breakers
Input: Undirected graph G = (V,E); base edge weights w : E → R; tie–breakers ζ : E → (0, 1) i.i.d.
Output: A spanning tree T of G
T ← ∅; initialize disjoint–set D with MAKESET(v) for all v ∈ V
if E = ∅ then return T

// I.i.d. continuous tie-breakers ζ m ake keys distinct w.p. 1.
Sort edges E by nondecreasing key k(e) :=

(
w(e), ζ(e)

)
// Union-find tracks connected components of the partial forest.
for e = {u, v} in E in the above order do

if FINDD(u) ̸= FINDD(v) then
T ← T ∪ {e}; UNIOND(u, v)
if |T | = |V | − 1 then return T

return T
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Algorithm 3: TREECENTER: root selection by two BFS passes
Input: Tree T = (VT , ET ); tie–breaker ranking on vertices (e.g., (πV , ID))
Output: Root r ∈ VT (a center of T )
Pick canonical start s ∈ VT (minimizing the tie–breaker);
u← BFS_FARTHEST(T, s); v ← BFS_FARTHEST(T, u);
P ← unique path from u to v in T ;
if |P | odd then r ← middle vertex of P
else r ← the nearer of the two middle vertices under the tie–breaker
return r

B.2 ALGORITHMS FOR RECURRENT TREE NEURAL NETWORKS

We provide discussion and implementation details of the recurrent tree neural network (Algorithm 4).

Algorithm 4: BITREELSTMFORWARD: Bidirectional child–sum Tree-LSTM forward pass
Input :x ∈ RN×D node features; rooted tree T = (V,ET , r) in COO form with

(row, col) = (parent, child); arrays parent[v], depth[v] ∈ {0, . . . , L}
Output :h ∈ RN×2H : concat. of bottom-up and top-down hidden states

Parameters: bottom-up Wiou∈RD×3H , Uiou∈RH×3H ,Wf ∈RD×H , Uf ∈RH×H ; top-down
W ↓iou, U

↓
iou,W

↓
f , U

↓
f of matching shapes.

Init: h↑←0N×H , c↑←0N×H , h↓←0N×H , c↓←0N×H .
Bucket nodes by depth: Vℓ ← {v ∈ V : depth[v] = ℓ} for ℓ = 0, . . . , L.

/* Bottom-up pass (children→ parent): process parents from deepest to root. */
for ℓ = L to 0 do

P ← Vℓ // parents at depth ℓ
Eℓ ← {(u←v) ∈ ET : u ∈ P} // edges with parent at depth ℓ
// Aggregate child states with scatter_add (child-sum fagg =

∑
)

hsum←0N×H ;

hsum[u] +=
∑

(u←v)∈Eℓ
h↑[v]

// Per-edge forgets and summed transformed cell contributions

fuv←σ
(
Wfx[u] + Ufh

↑[v]
)

for (u←v) ∈ Eℓ

c∼←0N×H ;

c∼[u] +=
∑

(u←v)∈Eℓ
fuv ⊙ c↑[v]

// Node-level gates and updates for all u ∈ P
for u ∈ P do

[i, o, ũ]←split3
(
Wioux[u] + Uiouhsum[u]

)
;

i←σ(i), o←σ(o), ũ←tanh(ũ);
c↑[u]← i⊙ ũ+ c∼[u];
h↑[u]←o⊙ tanh

(
c↑[u]

)
/* Top-down pass (parent→ children): propagate from root to leaves. */
for ℓ = 1 to L do

V ← Vℓ // children at depth ℓ
for v ∈ V do

p←parent[v] // unique parent

[i, o, ũ]←split3
(
W ↓ioux[v] + U↓iouh

↓[p]
)
;

i←σ(i), o←σ(o), ũ←tanh(ũ);
f←σ

(
W ↓f x[v] + U↓f h

↓[p]
)
;

c↓[v]← i⊙ ũ+ f ⊙ c↓[p];
h↓[v]←o⊙ tanh

(
c↓[v]

)
return h← concat

(
h↑, h↓

)
// [N, 2H]
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Parallel bottom–up / top–down passes. For each canonical tree we precompute three arrays:
edge_index_tree (row=parent, col=child), parent[v] (unique parent), and depth[v] (dis-
tance to root). The bidirectional forward pass runs in two levelwise sweeps that are parallel across all
nodes at the same depth. In the bottom–up pass (leaves → root), we bucket nodes by depth and
use scatter_add to implement the child–sum aggregator and edgewise forget contributions in a
single batched operation over all edges whose parent is at the current depth. In the top–down pass
(root → leaves), each node reads its parent’s state via index_select and applies the same batched
gating. This organization avoids Python loops over edges and exploits segmented reductions on the
GPU; it only iterates over depth buckets. The forward pass can be efficiently batched across trees by
treating the full batch as a collection of disjoint graphs, whose edges are stored in COO format.

Tree encoder. We implement a bidirectional child–sum Tree–LSTM layer with two parameter sets
(children→parent and parent→children). Each direction computes input/output/update gates via
a single linear projection that yields 3H channels per node and applies elementwise nonlinearity;
edgewise forget gates are computed in parallel across all incident edges at a depth. The output
feature per node is the concatenation of the two hidden states, making the layer stackable (we use
residual/normalization as in standard practice when beneficial).

Complexity and memory. Each direction runs in O(|V |) time and O(|V |) memory for node states.
For a cover of K trees, the bidirectional layer cost is O(K|V |). In practice we batch trees along the
sample dimension, so the work parallelizes across graphs and across trees.
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C DESIGN SPACE OF CANONICAL APPROACHES

As shown in Table 4, we organize canonicalization methods along six axes: (i) whether they rely
on domain knowledge; (ii) the node labeler πV ; (iii) the edge labeler πE ; (iv) the canonicalizer
(ordering/selection rule); (v) the induced representation (vector/sequence/tree); and (vi) whether
they use a set of canonical elements per graph (vs. a single representative), together with the
downstream encoder. Table 4 situates common pipelines: domain-driven approaches (Fingerprint,
SMILES, Primary Seq.) produce a single canonical vector or sequence; graph-agnostic orderings
(DGCNN/SortPooling, RCM) also yield a single sequence from graph-derived ranks. DFS Set
employs multiple sequences but remains sequence-based. In contrast, CTNN is the only approach
that (a) uses an edge labeler to drive a coverage-aware canonicalization and (b) represents each graph
by a tree cover, a set of canonical trees obtaining full coverage. This design is domain-agnostic,
preserves distances more faithfully than sequences, and increases expressivity by operating on a set
rather than a single representative.

Table 4: Design space for graph canonicalization. “Set” indicates whether the method uses multiple
canonical elements per graph (e.g., a cover of trees) rather than a single canonicalization. “Domain
Knowledge” indicates reliance on domain-specific information (e.g., chemistry rules).

Approach Domain Knowledge Node Labeler Edge Labeler Canonicalizer Representation Set Backbone

Fingerprint Yes NA NA Handcrafted chemical descriptors Vector No MLP
SMILES Yes Atom canonical ranks NA Canonical SMILES algorithm Sequence No RNN/TRSF
Primary Seq. Yes NA NA Identity Sequence No RNN
DGCNN No MPNN No Differentiable sort (SortPooling) Sequence No 1D CNN
RCM No Degree No Reverse Cuthill–McKee ordering Sequence No RNN
DFS Set No Degree No Sorted DFS Sequence Set Yes RNN
CTNN (full) No Degree Coverage-aware Minimum Spanning Tree Tree Cover Yes TreeMPNN

D ADDITIONAL EXPERIMENTAL DETAILS

Training and Hyperparameter Selection. All models are trained by minimizing the binary
cross-entropy loss on binary classification tasks and the negative log-likelihood loss on multiclass
classification tasks. Training is performed for a maximum of 200 epochs with early stopping patience
set to 15 epochs based on validation performance. The best-performing model on the validation set is
selected for evaluation on the test set. We perform a grid search over the following hyperparameters
for models where applicable:

• Number of layers: {1, 2, 3, 4}
• Learning rate: {0.05, 0.01, 0.005, 0.001}
• Batch size: {64, 128, 512, 1024}
• Hidden dimension: {64, 128, 256}
• Global pooling: {mean, sum, max}
• Sequence model: {GRU, LSTM, Transformer}
• Number of sequences/trees K: {1, 4, 8}
• Coverage penalty τ : {1, 2, 4}

All models are optimized using the Adam optimizer.

E EXTENDED RESULTS

We include additional analyses on (i) sensitivity to the node labeler πV , (ii) the coverage penalty
τ , and (iii) the number of trees K. We find CTNN to be robust to the choice of πV and τ , while
increasing K consistently increases coverage, reduces distortion, and improves performance. We
further conduct a sensitivity analyses to the choice of sequence models for SMILES, comparing
performance when fseq is a LSTM or transformer. Here, we find recurrence outperforms attention
aligning with recent findings in RWNN studies. We lastly report preprocessing runtimes, confirming
that CTNN’s preprocessing is efficient and negligible with respect to training times for all datasets.
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(a) CTNN coverage, distortion, and performance across τ and K for PCBA-1030 molecular dataset.

(b) CTNN coverage, distortion, and performance across τ and K for GO BIO protein dataset.

Figure 6: Sensitivity of CTNN to the number of trees K and coverage penalty τ on PCBA-1030 (top)
and GO BIO (bottom). Coverage rises rapidly with K; distortion decreases monotonically with K;
and performance improves. Trends are similar across τ , indicating robustness, with larger τ yielding
slightly higher coverage at fixed K on proteins. Error bars denote standard deviation over samples.

Table 5: Median (min, max) test AUC on molecular datasets. We test CTNN with three node labelers
πV (Degree, Closeness Centrality, 1–WL). CTNN is robust to πV and typically outperforms baselines;
CC or 1–WL often yields the best scores, while Degree serves as a competitive, low-cost default.

Small MoleculeNet Molecular Benchmarks (AUC ↑)
CLINTOX SIDER BACE TOXCAST BBBP TOX21

# Graphs 1.5K 1.5K 1.5K 1.7K 2K 6K
Avg. |V | 26.1 33.6 34.1 17.1 23.9 16.4
Avg. |E| Node Labeler πV 28.0 35.4 36.9 17.5 26.0 16.9

GCN NA 62.4 (56.9, 74.7) 64.2 (62.4, 70.3) 59.2 (53.9, 64.3) 59.8 (52.4, 66.7) 73.9 (68.9, 81.4) 67.5 (63.1, 71.9)
GAT NA 62.1 (55.8, 65.9) 63.6 (61.0, 67.1) 60.8 (52.0, 75.1) 60.6 (56.9, 69.1) 77.5 (74.1, 82.8) 68.2 (65.0, 72.5)
GIN NA 59.7 (54.1, 72.4) 66.5 (64.0, 69.9) 59.9 (51.4, 71.8) 55.7 (38.8, 60.8) 75.3 (49.4, 85.3) 66.9 (64.6, 73.4)
GT NA 57.1 (46.5, 73.5) 64.3 (57.9, 69.0) 67.1 (57.6, 75.7) 68.4 (60.7, 74.1) 75.8 (62.6, 84.0) 67.8 (64.8, 73.9)

SMILES Atom Ranks 62.5 (45.7, 68.6) 61.5 (57.6, 66.4) 76.5 (68.4, 80.3) 65.7 (58.3, 70.7) 71.9 (65.5, 75.3) 71.3 (66.4, 73.8)
DGCNN GCN 60.1 (27.6, 69.6) 65.5 (62.9, 68.9) 67.2 (64.1, 74.8) 71.3 (67.5, 75.6) 75.0 (42.8, 86.4) 75.2 (71.4, 77.2)
RCM Degree 70.7 (48.6, 87.0) 63.1 (57.3, 67.7) 76.3 (73.3, 81.2) 70.9 (68.4, 74.9) 84.3 (75.1, 89.1) 76.0 (72.4, 79.9)

CTNN Degree 82.7 (56.8, 89.9) 64.1 (62.8, 67.3) 82.4 (79.7, 86.5) 75.7 (70.0, 78.0) 88.4 (83.7, 91.6) 80.9 (79.6, 84.9)
CTNN CC 84.3 (80.1, 92.0) 64.8 (61.0, 68.9) 82.7 (75.0, 87.4) 76.2 (71.5, 79.1) 88.3 (84.1, 92.3) 81.1 (78.9, 82.8)
CTNN 1-WL 84.8 (76.4, 91.0) 65.1 (63.3, 68.5) 83.5 (80.5, 86.7) 76.5 (71.4, 80.8) 86.8 (82.6, 92.0) 81.4 (78.7, 84.5)

E.1 SENSITIVITY ANALYSES

Sensitivity to K. We vary the number of trees K on PCBA-1030 (Figure 6a) and GO BIO (Figure
6b). Edge coverage increases rapidly with K, reaching full coverage by K=4 on PCBA-1030 and
by K=8 on GO BIO, consistent with the theory that only a small number of trees is needed on
sparse graphs. Distortion decreases monotonically as K grows, indicating that additional trees better
preserve original graph distances. Task performance likewise improves with K, showing the practical
value of the canonical tree cover.

Sensitivity to τ . We test coverage penalty τ = {1, 2, 4} on the same datasets (Figure 6). Across
benchmarks, coverage, distortion, and accuracy follow similar trends for different τ , indicating
robustness to the choice of penalizer. For proteins, larger τ yields higher coverage at a fixed K, as
heavier penalties bias the MST toward previously unseen edges. Overall, CTNN’s behavior is stable
across τ , while K primarily controls the coverage–distortion–accuracy tradeoff.

Sensitivity to πV . We assess CTNN’s dependence on the node labeler πV using small-molecule
benchmarks and include MPNNs and Graph Transformer (GT) as invariant architectural baselines
as well as canonical sequence baselines (Table 5). We compare three labelers: degree, closeness
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centrality (CC), and 1-Weisfeiler–Lehman (1-WL). Overall, CTNN is robust to the choice of πV : CC
or 1-WL typically achieve the best scores, while degree is slightly behind but competitive across
datasets. This reflects a natural trade-off: more informative labelers can yield slight gains at higher
preprocessing cost. Concretely, degree runs in O(m), 1-WL in O(tm) for t refinement rounds, and
CC in O(nm) via all-pairs BFS. In our main experiments, we default to the inexpensive degree
labeler for efficiency, noting that CC or 1-WL can be used when improvements justify the added cost.

Sensitivity to fseq. We evaluate the sensitivity of the sequence encoder fseq by comparing attention
(Transformer) and recurrence (LSTM) on canonical SMILES, and include a graph Transformer
(GT) that operates directly on molecular graphs (Table 6). We report the analysis on the molecular
benchmarks, whereas training analogous models on the larger, denser protein graphs did not converge
within 24 hours. Results demonstrate that attention and recurrence perform comparably on SMILES
and are similar to the GT baseline. In all cases, however, these models underperform in comparison
to CTNNs, which maintain a clear performance advantage. This occurs since attention relies on
the sequential positional encoding and recurrence relies on the linear ordering, which both incur
distortion and fail to capture graph distances

Table 6: Transformers and LSTMs achieve comparable AUC across PCBA datasets, indicating that
attention and recurrence perform similarly on the canonical sequence. GTs also perform comparably
to both. Values are median (min, max) over splits. CTNNs outperform all models.

Molecular Benchmarks (AUC ↑)
Approach Backbone PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297
GT Transformer 68.1 (67.9, 68.6) 81.2 (81.0, 81.5) 78.9 (77.8, 79.9) 87.7 (87.6, 88.2)

SMILES Transformer 71.9 (71.5, 72.3) 84.4 (83.7, 84.5) 82.4 (81.5, 82.5) 88.9 (88.3, 89.4)

SMILES LSTM 71.9 (71.2, 72.5) 84.9 (84.5, 85.9) 81.1 (80.0, 81.4) 90.2 (90.0, 90.3)

CTNN TreeMPNN 80.6 (80.3, 81.2) 89.1 (88.0, 89.9) 86.8 (86.5, 87.4) 94.6 (94.2, 94.9)

E.2 RUNTIME ANALYSES

We report per-graph preprocessing time for CTNNs when constructing K=8 trees with a degree-based
node labeler πV (v)=deg(v) (Table 7). On molecular graphs the cost is in the milliseconds, and on
protein graphs it is on the order of tenths of a second. In practice, this preprocessing is parallelizable
across graphs and is computed once and reused over all training epochs, making it a small fraction of
end-to-end training time. Overall, CTNN preprocessing is efficient for the datasets considered.

Table 7: CTNN preprocessing time per graph to construct K=8 canonical spanning trees using degree
labeler (πV (v) = deg(v)). We report dataset sizes and average graph statistics; times (seconds) are
averaged over all graphs. Overall, CTNN preprocessing is efficient across all datasets.

Dataset # Graphs Avg. |V | Avg. |E| Avg. deg(v) Time (sec)
PCBA-1030 160K 24.3 26.2 2.2 0.004
GO MOL 32K 250.1 687.5 5.4 0.093
PFAM 25K 251.3 691.3 5.4 0.121
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