Under review as a conference paper at ICLR 2026

EXPRESSIVE AND INVARIANT GRAPH LEARNING VIA
CANONICAL TREE COVER NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While message-passing NNs (MPNNG5s) are naturally invariant on graphs, they are
fundamentally limited in expressive power. Canonicalization offers a powerful
alternative by mapping each graph to a unique, invariant representation on which
expressive encoders can operate. However, existing approaches rely on a single
canonical sequence, which flattens the structure, distorts graph distances, and
restricts expressivity. To address these limitations, we introduce Canonical Tree
Cover Neural Networks (CTNNs), which represent the graph with a canonical
spanning tree cover, i.e., a small collection of canonical trees covering all edges.
Each tree is then processed with an existing expressive tree encoder. Theoretically,
tree covers better preserve graph distances than sequences, and on sparse graphs,
the cover recovers all edges with a logarithmic number of trees in the graph size,
making CTNNS strictly more expressive than sequence-based canonicalization
pipelines. Empirically, CTNNs consistently outperform invariant GNNs, random
samplers, and sequence canonicalizations across graph classification benchmarks.
Overall, CTNNs advance graph learning by providing an efficient, invariant, and
expressive representation learning framework via tree cover-based canonicalization.

1 INTRODUCTION

In graph representation learning, capturing a graph’s natural symmetries (i.e., isomorphism invariance)
is essential for learning and generalization. One way to enforce this invariance is to bake it directly into
the architecture: message-passing neural networks (MPNN5s) (Duvenaud et al., [2015}; |(Gilmer et al.,
2017; Kipf and Welling} 2017) achieve architectural invariance by iteratively aggregating neighbor
embeddings, but are provably equivalent in expressive power to the 1-dimensional Weisfeiler—Leman
test (Xu et al., 2019; Morris et al.L|2019), suffer from oversmoothing (Li et al.|[2018;|Chen et al.,[2020)
and oversquashing (Oono and Suzukil, |2020; |D1 Giovanni et al., 2023)), and are thus fundamentally
limited. A second approach achieves invariance via random sampling: random walk neural networks
(RWNNs) (Wang and Chol [2024; [Tonshoff et al., 2023} |Chen et al., [2025} |Kim et al., [2025) sample
walks and feed them into powerful sequence models, overcoming limitations in MPNN expressivity
but incurring potentially prohibitive sampling costs when training on large datasets. A complementary
line of work relies on canonicalization, which maps each graph to a canonical representative so
that any expressive, non-invariant model can operate on invariant inputs (Bloem-Reddy and Teh,
2020). While canonicalization can be fully deterministic, mapping each graph to a single unique
representative, in practice, one often constructs a distribution over possible representatives, achieving
probabilistic invariance with a small number of samples from the distribution. In this work, we
establish the limitations of existing canonicalization approaches on graphs and propose a new
canonicalization framework that leverages distributions of representative structures.

Existing graph canonicalization approaches first Graph Canonical Sequence

assign labels to each node, flatten the graph into —
a single sequence, either via learned sorting lay- Cseq @
ers (Niepert et all 2016} Zhang et al.| [2018; 5

Grover et al, 2019) or through traversal as in

canonical SMILES (Goh et al., 2017; [Honda

et all [2019: [Chithrananda et al.|[2020), and then Figure 1: Canonical sequence representations in-
feed the sequence into a powerful downstream troduce significant stretch and contraction.
sequence model. In this work, we formally quantify how flattening into a sequence distorts graph

Under review as a conference paper at ICLR 2026

distance. To illustrate this limitation, consider S,,, the n-node star (FigureE], n = 7). Each leaf node
in the graph has distance 1 to the center node, while leaf nodes in the sequence necessarily have
distance O(n) to the center node (stretch). Moreover, while leaves have distance 2 to each other
in S,,, certain leaves have distance 1 in the sequence (contraction). Thus, the canonicalization can
stretch and contract original distances, making structure harder to capture. We further establish that
the reduction of the graph into a single representative limits the expressivity of the overall approach
to that of its node labeler, discarding the benefits of using powerful downstream models.

To address these limitations, we propose Canonical Tree Cover Neural Networks (CTNNs), which
construct a canonical spanning tree cover via minimum spanning tree extraction and coverage-aware
edge label refinement. Each tree in the cover is processed by an existing expressive tree encoder (Tai
et al., |2015), and aggregating over the cover yields an invariant representation. Notably, CTNNs
are parameterized by a node labeler that initializes edge weights: when using a canonical graph
node labeler that assigns unique labels to all nodes (e.g., NAUTY (McKay and Piperno}, [2014)),
the resulting tree cover is fully deterministic and invariant; when using inexpensive, structurally
meaningful labelers (e.g., degree, centrality, or 1-WL), tie-breaking introduces randomness, leading
to probabilistic invariance while preserving useful inductive biases. By leveraging tree representations
and capturing structure across a set of canonical representatives, CTNNSs better capture graph distances
and are more expressive than sequence canonicalizations. Across a variety of graph classification
tasks, CTNNs consistently outperform architecturally invariant GNNs, sampling methods, and
existing canonicalization approaches. In summary, we make the following contributions:

* Current Limitations of Canonicalizations. We establish that sequence-based graph
canonicalization methods fail to preserve graph distance and are limited in expressivity.

¢ New Canonical Model: Canonical Tree Cover Neural Networks (CTNNs). We introduce
CTNNSs, which construct a canonical tree cover. Each tree is then processed by existing
expressive recurrent tree encoders and aggregated to obtain an invariant representation.

* Theory: Invariance, Distance Preservation, and Expressivity Guarantees. We prove that
CTNNs produce invariant graph representations, preserve graph distance information, and
exceed the expressivity of sequence-based canonicalizations and MPNNs. With universal
tree encoders, CTNNs achieve universality on invariant graph functions.

* Extensive Empirical Evaluation. Across 8 graph classification benchmarks, CTNNs
outperform architecturally invariant models, sampling approaches, and canonical baselines.

2 BACKGROUND AND PRELIMINARIES

We first introduce notation and review canonical approaches on graphs, the primary family of
models under investigation. These approaches typically produce a single sequence that is fed to a
sequence model. We then formalize recurrent sequence models, which often outperform attention
and convolution on graphs by better matching the traversal inductive bias. Despite their practical
performance, however, recurrent sequence models can suffer from long graph-derived sequences.
These limitations lead us to consider recurrent tree models that instead propagate information along
trees, which we will later demonstrate better capture graph distance.

2.1 NOTATION ON GRAPHS AND TREES

Let G = (V, E, X) be an undirected graph with n = |V| nodes, m = | E| edges, and node features
X € R™4, Forv € V, let x, denote the v-th row of X, N'(v) = {u € V : (u,v) € E} its
neighborhood, and deg(v) = |A (v)| and dg (u, v) the shortest path distance in G. A rooted tree is
T = (V,E,X,r) with root r € V. Each non-root node v # r has a unique parent p(v), and we write
C(v) = {u € V: p(u) = v} for its children. Leaf nodes of the tree satisfy C(v) = @.

2.2 MESSAGE-PASSING NEURAL NETWORKS AND GNN EXPRESSIVITY

Standard GNNs adopt a message-passing approach, where each layer iteratively updates a node’s
representation by aggregating the features of its neighbors (Gilmer et al.,|2017). Formally, the initial
message-passing layer can be defined as the following propagation rule at the node level for all 7 € V,

Fupnn(G)i = fags({x; | 5 € N(i)}),

Under review as a conference paper at ICLR 2026

where fage is a permutation-invariant function. Because of this aggregation step, MPNNs incur
fundamental expressivity limitations and cannot distinguish certain classes of non-isomorphic graphs
(Xu et al., 2019). We compare the expressivity of GNNs by the pairs of graphs they can distin-
guish (Azizian and Lelarge, [2020), introducing the following notation. For two GNNs f; and f,, we
write

fL2fi = VGH: [i(G)=fiH) = f(G) = fa(H).

Thus, any pair indistinguishable by f; is also indistinguishable by fs, so f7 is at least as expressive
as fo. The relation is strict, fo < f1, if fo < f1 and there exist graphs G, H with f1(G) # f1(H)
while fo(G) = f2(H). f1 and f, are equally expressive, written fi ~ fa, if fo < f1 and f1 < fo.
These relations coincide with notions of approximation power. For example, if fo < fi, every target
approximable by f> is approximable by f7, and there exist targets approximable by f; but not fs.

2.3 CANONICAL APPROACHES ON GRAPHS

Graph canonicalization aims to obtain a unique isomorphism—invariant node labeling (McKay et al.,
1981)). Because computing an exact canonical labeling is as hard as the graph isomorphism problem,
practical methods adopt soft approximations (e.g., GNN embeddings). After obtaining an approximate
labeling, these pipelines typically flatten the graph into a single sequence either via sorting layers
(Niepert et al., [2016} Zhang et al.,2018) or through traversal such as canonical SMILES (Goh et al.,
2017 Honda et al.,2019)), allowing expressive sequence models to process the sequence. Formally,
let my : V' — R be a node labeling function (e.g., MPNN), Cycq be a single-sequence canonicalizer
that maps the labeled graph (G, /) to a sequence depending only on 7y, and carrying only the node
features X, and fioq be a sequence model. A general sequence—based canonical model is defined as

fCanSeq(G) = fseq (Cseq(G7 7TV)>~

As a concrete instance, if my is an MPNN, Cqq is a differentiable sorting layer, and fsq is a 1D
CNN, then fcanseq recovers Deep Graph Convolutional Neural Network (Zhang et al., [2018)).

2.4 RECURRENT SEQUENCE AND TREE MODELS

Recent RWNNS find that recurrence often outperforms attention and convolution by better matching
the traversal inductive bias (Wang and Cho) 2024} [Chen et al., [2025). Given inputs (xt)thl, initial
state hy, and state transition map @ : R? x R¢ — R%, the recurrent update is defined

ht = @(ht,l,xt)7 fort=1,...7T.

Recurrent models suffer on long sequences that exacerbate vanishing/exploding gradients, which
motivates our use of recurrent tree models that shorten dependency paths and mitigate these instabil-
ities. Recurrent tree models generalize sequence recurrence to rooted trees (Tai et al., 2015 Xiao
et al.|[2024), propagating information bottom—up from children to their parent. Given T' = (V, E, r)
with L levels and node inputs {x, },cv, recurrent tree models compute hidden states {h, },cy by
applying a local transition to child states and aggregating with a permutation—invariant operator fags:

h, = fage({®(he,%xy)|c€ C(v)}) forld=L,...,0andallvwithdp(v,r) =2,

with faee (@) = O for leaves. Setting (hc, xu) as a standard LSTM update recovers the Tree LSTM
of [Tai et al., 2015, The tree representation is taken as h,. at the root. In Section 4} we propose a
canonicalization of graphs via spanning tree covers that can be used as input to recurrent tree models.

3 LIMITATIONS OF SEQUENCE-BASED CANONICALIZATIONS

In this section, we characterize the limitations of single-sequence canonicalization. First, we quantify
how sequence canonicalization distorts graph structure, stretching and contracting graph distances.
We next turn to expressivity and demonstrate that even when the sequence model is universal, the full
canonical pipeline is no more expressive than its node labeler because it relies on a single canonical
representative. Together, these limitations motivate our tree cover—based canonicalization, which
better preserves distances and increases expressivity by operating on a cover of spanning trees.

Under review as a conference paper at ICLR 2026

Node Labelling Function
(1-WL, MPNN) : Ty ’7_3

Sequence Canonicalizer

(SORT, BFS) : Cgeq o000 00000 — O O0OO0C0000

Figure 3: Sequence canonicalization is only as expressive as its labeler 7y despite using a universal
downstream sequence model. fcanseq thus fails to distinguish graphs 7y fails to distinguish.

3.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION

To formalize how sequence canonicalization fails to preserve structure, we use distortion (Matousek,
2013)), which quantifies the stretch/contraction in distance after mapping points between spaces.
Intuitively, we prefer canonicalizations with lower distortion, better preserving the original distances.
Definition 3.1 (Distortion). Let (X, dx) and (Y, dy) be metric spaces. A mapping f : (X,dx)—
(Y, dy) has distortion D > 1 if there exists > 0 such that for all z,y € X,

rdx(z,y) < dy(f(z), f(y)) < Drdx(z,y).

Let (G, d¢) denote a graph G with shortest—path distance d¢, and let Ceeq (G,) be its single
canonical sequence under 7y . Equip Cseq With the positional distance dgeq(u, v) = |o(u) — o (v)],
where o : V' —{1,...,|V|} is the induced ordering. The next proposition lower bounds the distortion
of Cseq With the graph bandwidth (Diaz et al., [2002), (@), which measures the smallest maximum
stretch over any edge when G is laid out on a line across all orderings:
¢(G) = min max |o(u) —o(v)|.
o (u,w)EE

Proposition 3.2 (Graph bandwidth lower bounds sequence distortion). Let Dgcq be the distortion of
Csoq(G, mv) from (G, dq) to the line with distance dgeq. Then, for any v, o(G) < Dagegq.

All proofs are in Appendix [A] The bandwidth lower bound gives a concrete well-studied graph metric
to evaluate the distortion of Cseq. Although (&) is hard to compute in general, it is known for many
families (Figures|[I] 2): on n-node stars S,, and cliques K, one has ¢(S,,) = ¢(K,) = ©(n), so any
single—sequence canonicalization incurs the worst-case linear distortion; on complete binary trees
©(Ty) = ©(2¢/¢) = ©(n/logn), and on cycles C,, and paths P, one has p(P,,) = »(C,,) = O(1).
Beyond specific families, the bound offers general insights. Given that p(G) > (n — 1)/ diam(G),
Dyeq is atleast (n — 1)/ diam(G). Itis also monotone un- ¢ y _ g(p) o(Tss) = O(n/logn)
der edge addition, indicating that highly connected graphs,

reflected by larger algebraic connectivity Ao, force larger

distortion. These effects negatively impact the sequence

model: distorted distances make structure more difficult

to capture. Importantly, any method relying on sequences,

including canonicalizations and sampling approaches like

RWNNS, inherits these limitations. To address the lim- Figure 2: ¢(G) for n-node clique, K, and
itations of sequences, we turn to tree representations. complete binary tree with £ levels, T .

3.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION

Beyond the limitations of sequence representations due to distortion, we characterize the expressive
limitations of the full canonical model due to relying only on a single representative. Formally, we
show that fcanseq When equipped with universal fseq is only as expressive as its node labeler 7y

Proposition 3.3 (my and fcanscq are equally expressive). Let fcanseq be a canonical sequence—based
model with universal fs.q and let vy be its labeling function. Then, fcanseq =~ TV -

If 7y is an MPNN, its power matches 1-WL; consequently, fcanseq inherits 1-WL limitations and
fails on the same graph families (Figure . Crucially, this holds even when f.q is universal: once
information is lost at the labeling stage, no downstream single-sequence canonicalization can recover
it, limiting the expressivity of the full pipeline. Thus, in order to address the limitations of the
single labeler, we instead consider sets of labelers and canonical representatives.

Under review as a conference paper at ICLR 2026

Legend

Log(|V]) Canonical Spanning Tree Cover
= \Neighted MST Edge

0) _ (0 1) (1)
= Weighted Missed Edge 78 = MST(G,7") T = MST(G, ")

3% m w

Figure 4: Canonical spanning-tree cover. At iteration k, compute MST(G, ﬁ(bf)) using coverage-
aware edge weights (thicker = larger magnitude weight). Edges missed in & (red) are up-weighted to
bias their inclusion in k& + 1. On sparse graphs, the union of O(log |V|) trees covers all edges.

4 CANONICAL TREE COVER NEURAL NETWORKS (CTNNS)

To address the sequence representation limitations due to distortion and the expressive limitations
due to single representatives, we introduce Canonical Tree Cover Neural Networks (CTNNs), which
construct a canonical spanning tree cover. In Section[5] we demonstrate that tree representations
better reflect graph distances in comparison to sequences, while sets of canonical representatives that
allow for complete graph reconstruction are strictly more expressive than a single representative.

4.1 CANONICAL SPANNING TREE COVERS

To construct a canonical spanning tree cover, we leverage coverage-aware edge labelers and minimum
spanning tree (MST) samplers rather than a fixed node labeler and sequence canonicalizers. By
updating edge weights across rounds, later trees are biased toward edges not yet selected, yielding
provable coverage across the union of sampled trees. Formally, let G be a graph and at iteration
k € {o,. — 1} for hyperparameter K let w E (*). E—R be an edge labeler. Let Ciyee be an MST

extractor that maps an edge—labeled graph (G 7t g) to a spanning tree 7®) according to weights
wg), setting the root node as the center of 7'®). To promote edge coverage across the set, we update
the weights by penalizing edges used in the last tree 7(*) with hyperparameter 7. We initialize with
any isomorphism-invariant node labeler 7y, (e.g., degree), which biases MSTs towards edges incident
to high label nodes. Formally, the update and initialization can be written:

) = wp(e) + rife e TWY, w) (wv) = ~(rv(u) + v (v).

We refer to further implementation and pseudocode details of the construction in Appendix

4.2 INVARIANT CANONICAL TREE NEURAL NETWORKS

Given a canonical cover of MSTs, T = {T(’“)} b 0 , we process each tree with a recurrent tree
encoder and augment it with message passing over the remaining non—tree edges to capture the
local connectivity missed by each individual spanning tree. Let the residual graph be G\T k) .=
(V, E\E (T(k))) and denote fi,ec as a recurrent tree encoder (e.g., Tree-LSTM) and fypnn an
MPNN. For each k and node ¢ € V, define the per—tree representation

fTrchPNN(T(k))i = ftrcc(T(k))i —+ fMPNN(G\T(k))l

We then aggregate across the set of trees with a permutation—invariant operator f,e¢ to obtain
fernn(G) = fagg ({ fTreeMPNN(T(k)) c TR = Ctree(G W(k)), k=0,... ,K—l}) .

Probabilistic invariance. When CTNNs use an inexpensive node labeler that does not uniquely
distinguish vertices (e.g., degree), we obtain probabilistic invariance (Bloem-Reddy and Teh| 2020).
Such labelers are isomorphism-invariant but may assign identical scores to nodes, so we resolve
ties using random tie-breaking. This induces an isomorphism-invariant distribution over spanning
tree covers. Formally, for any permutation g € S,, acting on G by relabeling nodes, the random

Under review as a conference paper at ICLR 2026

output fornn(G) has the same distribution as fornn(g-G). Consequently, the averaged predictor
E[fcrnw(G)] is an invariant function on graphs. In this regime, CTNN relies on a small amount of
randomness to break symmetries, but that randomness is controlled by the underlying canonicalization
(i.e., node labeler).

Theorem 4.1 (Probabilistic invariance of CTNNs). A randomized graph representation X (G) is

probabilistically invariant if its distribution is unchanged under any node relabeling, i.e., X (G) £

X (g-G) for every permutation g € S,,. The random output fcrnn(G) is probabilistically invariant:

fCTNN(G) 4 fCTNN(g'G) forallg € S,.
Then, ®(G) = E|fcrn~(G)] is an invariant function satisfying ®(G) = ®(g-G) forall g € S,,.

Deterministic invariance. At the other end of the spectrum, one can instantiate CTNN with a
true graph canonicalization tool such as NAUTY (McKay and Pipernol [2014)), which computes a
canonical labeling that separates all nodes up to isomorphism. With such a canonical node labeler, an
injective initialization of edge weights, and a deterministic tie-breaking rule in the MST construction,
the induced tree cover becomes a deterministic canonical representation: isomorphic graphs are
mapped to exactly the same set of trees, and fornn(G) = fornn(g-G) holds for all permutations g.
This is particularly beneficial when the graph exhibits a high degree of symmetry such as complete or
regular graphs, where node labelers like degree or 1-WL result in many ties. CTNN thus provides a
unified framework that interpolates between fully deterministic canonicalization and probabilistic
invariance, depending on the choice of node labeler.

4.3 RUNTIME COMPLEXITY

CTNN preprocessing is primarily dominated by constructing the K’ MSTs and cost of 7. Using
Kruskal’s algorithm (Kruskall [1956), the total cost is O(K mlogn +), which is efficient on
sparse graphs where m = O(n) and for inexpensive 7y (e.g., degree). A major practical advantage
of canonicalization is that these trees are computed once before training and reused across epochs,
eliminating on-the-fly sampling incurred by sampling approaches. The computation parallelizes
naturally across graphs, and the memory cost is small (O(Kn) edges per graph). Empirically, we
show this preprocessing time is efficient across datasets (Appendix [E.2).

5 DISTORTION AND EXPRESSIVITY BOUNDS FOR CTNNS

We first analyze distance preservation: because CTNNs aggregate over spanning trees, they yield
distortion bounds that better preserve graph distance in comparison to single-sequence canonicaliza-
tion. We then turn to expressivity, establishing the benefits of sets of canonical representatives. On
sparse graphs our tree cover recovers the full edge set with only O(log m) trees, which has two im-
mediate consequences for expressivity: (i) CTNNs are strictly more expressive than single—sequence
canonicalizations, and (ii) when paired with universal tree encoders, CTNNs become universal.

5.1 EXPECTED DISTORTION BOUNDS FOR CTNNS

We first analyze how well CTNNSs preserve distances, establishing distortion bounds for Ci.... Because
CTNNSs sample MSTs, we use probabilistic distortion (Fakcharoenphol et al.l 2003)).

Definition 5.1 (Expected distortion). Let (X, dx) be a metric space and let x be a distribution on
metrics M (X). The expected distortion of y is the least D > 1 such that for some > 0 and for all
z,y € X,

rdx(z,y) < Epr[P(x,y)} < Drdx(z,y).

As a baseline, we analyze the case in which CTNN samples uniform spanning trees (USTs) (obtained
when 7 = 0, 7y, = 0). In this regime, the expected tree distance between nodes v and v is upper
bounded by the square root of their hitting time, the expected number of steps a random walk takes to
travel from « to v. Empirically, we verify CTNN tree distributions inherit and can improve upon the
low-distortion behavior established by USTs (Appendix [E.3):

Under review as a conference paper at ICLR 2026

O(n) Single Tree Distortion 1) Expected Distortion over Spanning Tree Distribution

GO

Figure 5: Single tree distortion is O(n) on C,,, while expected distortion is constant over a spanning
tree distribution since on average the distance between any two nodes is small.

Theorem 5.2 (UST expected distortion). Let G be a graph, and let T" be a uniform random spanning
tree of G. Denote by H (u,v) the random walk hitting time from u to v. Then,

IE[dT(u,v)]7 E[dr(u,v)] < \/H(u,v);rH(v,u),

Drrarm —
UST = B da(u,v)

In contrast to the bandwidth lower bound for single—sequence canonicalization, which can force
worst-case distortion, the expected UST distortion aligns with random walk distance and preserves
structure significantly better on sparse families. Every tree admits a unique spanning tree, so on trees
Duygt = 1. By comparison, Cseq incurs distortion ©(n/log n) on balanced trees and ©(n) on stars.
On C,, distortion is also constant, highlighting the benefit of averaging over trees (Figure [3)), while
on dense cliques K,,, Dyst = ©(y/n). Despite the ©(/n) distortion, this remains smaller than Cseq
which again incurs ©(n) distortion. Our bounds also provide general insights: tree distances behave
well in sparse graphs, where the square root of hitting times and shortest paths scale comparably. In
highly dense graphs, however, shortest paths are smaller than hitting times and distortion worsens.
Overall, CTNNs yield expected distortion that is small on many sparse structures where in comparison
single sequences stretch distances, better capturing graph structure for downstream encoders.

5.2 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION

We now turn to the expressive benefits of CTNNs. Instead of relying on a single canonical represen-
tative, CTNNs build a spanning tree cover, providing downstream encoders access to full structure.
We first show our coverage—aware MST scheme needs only logarithmically many trees to cover all
edges on sparse graphs. We then leverage coverage to show CTNN expressivity is strictly greater
than sequence—based canonicalization and establish its universality on graph functions.

Lemma 5.3 (Logarithmic spanning—tree cover). Let G = (V, E) be a graph with m = |E| and
arboricity Y (Q), the minimum number of forests required to cover G. Fix any node labeler Ty with
T > maxe 71'(E)() —min, 7T(E)(). Denote T = {T W }5_! as the set of trees produced by a CTNN.
If K > Y(G) Inm iterations, the union of the MSTs covers all edges: 52_01 E(T(’“)) = F.

Importantly, on sparse graphs, arboricity is constant and CTNNs obtain full coverage with K >
O(log(|V])). As established in Section[3| fcanseq is only as expressive as .. CTNNS, by contrast,
operate on a tree cover, and as a result are strictly more expressive than fcangeq When Ty =~ fupnn.

Lemma 5.4 (fcanTree is strictly more expressive than fypny and fcoanseq). Suppose K satisfies
Lemma Let my =~ fypnn. Then, Ty < fcanTree and hence fCanSeq < fcanTree-

Notably, foanTree initializes g with my,, but additionally leverages evolving edge weights that
ensure full edge coverage across trees, allowing fcanTyree t0 surpass the expressivity of 7y,. Moreover,
equipped with Lemma[5.3] CTNNs can achieve universality when its tree encoder is universal.
Theorem 5.5 (CTNN Universality). Let G be a finite class of graphs. Assume: (i) K satisfies
Lemma @ (ii) the tree encoder fircc and aggregation f..s are universal on their domains. Then for
any continuous invariant graph function f : G — R and any € > 0, there exists a CTNN such that

SHP’ fornn(G) — F(G) ’ < e.
Geg

6 EXPERIMENTS AND RESULTS

Through empirical evaluation we aim to answer the following research questions, extending our
theory by testing CTNNs on datasets with factors not explicitly addressed in the theoretical analysis

Under review as a conference paper at ICLR 2026

(e.g., class imbalance), and including domain—specific canonicalizations beyond our theory, such as
molecular fingerprints (Rogers and Hahn|, 2010) commonly used in molecular analysis.

* RQ1 (Discriminative performance). How does CTNN compare to (i) invariant GNNs
(MPNNSs, GTs), (ii) sampling approaches (RWNN), and (iii) canonicalization baselines?

* RQ2 (Distance distortion). Do CTNNs reduce metric distortion relative to sequence-based
canonicalizations, and does this reduction translate into improved task performance?

* RQ3 (Ablations and sensitivity). Which components of CTNN contribute most to perfor-
mance, and how sensitive is performance to their settings?

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate on molecular and protein benchmarks, domains where canonicalization
is widely adopted and frequently used in practice 2017} and where
long—range dependencies and high expressivity are critical (Dwivedi et al., 2022a). For molecules,
we use tasks from the PCBA datasets from MoleculeNet [2018). For proteins, we adopt
ProteinShake (Kucera et al.| 2023 datasets: SCOP, PFAM, GO MOL, GO BIO. These tasks span
diverse molecule and protein tasks such as molecular activity and protein structure classification.
Notably, proteins are larger than molecules, making structure more difficult to capture. To demonstrate
CTNNSs are applicable to domains in which canonicalization is not yet widely adopted, we additionally
evaluate on a larger brain graph classification benchmark from NeuroGraph [2023), where
the task is to predict one of seven mental states (e.g., emotion processing, language) (Appendix [E-4).

Baselines. We consider invariant GNNs and sampling approaches: (1) GCN (Kipf and Welling|

2017), (2) GAT 2018), (3) GIN (Xu et al., 2019),(4) GT (Dwived: and Bresson
2021), and (5) RWNN (Kim et al.| 2025). We next consider expressive subgraph-based GNNs strictly
more expressive than 1-WL message passing. These subgraph approaches augment message-passing
with additional structural features, (6) GIN+RWSE (Dwivedi et al| 2022b)), (7) GSN
2022]), or decompose the graph into subgraphs, processing each component with a MPNN, (8) ESAN
(Bevilacqua et al] [2022). We also evaluate canonicalization approaches: (9) Fingerprint

Hahn 2010), stacking an MLP on hand-crafted chemical descriptors, (10) SMILES (Goh et al., 2017),

applying sequence models over canonical SMILES, (11) Primary Seq. (Alley et al.|[2019), applying
sequence models to the primary sequence, (12) DGCNN (Zhang et al., [2018), a representative

sequence-based canonical approach leveraging MPNNSs as 7y and sorting as Cseq, and (13) RCM
(Diamant et al.} [2023), applying sequence models to the ordering determined by the Cuthill-McKee
algorithm. We also include (14) DFS SET, a set-based sequence approach. We provide a summary
of the design space for all canonicalizations in Appendix [C]

Training and Evaluation. For all benchmarks, we set fi,ce as a Tree-LSTM, fypnn as a GIN, fage
as SUM, 7y (v) = deg(v), and 7 = 1. For molecular datasets, we set ' = 4, and for proteins, we use
K = 8. Following each dataset’s protocol, performance is computed as AUC or accuracy. We report
median (min, max) performance over five random splits (60/20/20), which is more robust than mean
and standard deviation for small sample sizes. We compute stretch as max; ;j{demv (%, j)/dc(i,7)}
and contraction as max; ;{d¢ (i, j)/demb(?, j) }. For sequence canonicalizations, demb = dgeq. For
DFS SET and CTNNSs, we report expected distortion as the average across the sequences or trees
(e.g., max; ; meang{d¢(%,j)/drw (4,7)}). We provide remaining details in Appendix

6.2 RQ1 & RQ2: DISCRIMINATIVE PERFORMANCE AND DISTANCE DISTORTION

CTNNs significantly outperform invariant GNNs, consistent with the theoretical expressivity gains
established in Section@ (Table |I|) CTNNss also outperform RWNN, demonstrating the benefits of
canonicalizaion over sampling approaches. Subgraph GNNs (GIN+RWSE, GSN, ESAN) are strong
baselines and are particularly competitive on protein datasets, but CTNN exceeds their performance
on molecular benchmarks. We attribute this to the fact that, although subgraph GNNs increase
theoretical expressivity beyond 1-WL, they still fundamentally rely on global message passing and
inherit known limitations such as oversmoothing and oversquashing, which can hinder their ability to
capture long-range interactions; CTNN mitigates these issues by operating on low-distortion spanning
tree covers with powerful recurrent encoders.

While some canonicalizations are competitive, they depend on domain knowledge and lack generality
(e.g., Fingerprint). Notably, CTNNs outperform or match all sequence-based canonicalizations,

Under review as a conference paper at ICLR 2026

Table 1: Median (min, max) of model performance (x100) across 5 test splits. We highlight in blue
the best model. “NA” indicates not applicable; “OOT” denotes training exceeds the time limit (24h).

Molecular Benchmarks Protein Benchmarks
PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCcorp PFAM GO BIO GO MOL
Graphs 160K 200K 240K 300K 10K 25K 22K 32K
Avg. |V| 24.29 25.05 25.27 25.19 217.5 251.3 254.5 250.1
Avg. |E| 26.18 27.10 27.24 27.20 593.8 691.5 698.5 687.5
Metric AUC 1 AUC 1 AUC 1 AUC 1 ACC 1 ACC 1 AUC 1 AUC 1
GCN 72.7(70.3,74.7) 84.9 (84.2,85.6) 80.9 (78.6,82.7) 91.4 (88.2,91.7) 63.4 (628,64.9) 9.3 (64,11.5) 59.2(57.9.69.7) 60.6 (49.8, 84.5)
= GAT 71.9 (64.9.72.8) 80.5(79.8.80.8) 76.5 (74.7,80.0) 89.3 (88.1,90.6) 58.9(51.6,59.9 5.1 (2560 57.0(532,58.7) 57.6(503,81.1)
&| GIN 75.6 (71.3,77.4) 85.7 (844,86.4) 82.9 (818,839 92.2(90.7,925 68.0(679,69.2) 20.0 (18.1,21.0) 66.3 (59.9,79.0) 83.7 (81.5,85.6)
S GT 68.1 (67.9.68.6) 81.2(81.0,81.5) 78.9(77.8,79.9) 87.7 (87.6,88.2) ooT ooT ooT ooT
Z| RWNN 62.1 62.0,63.3) 77.0 (75.7,77.1) 75.0 (74.6,76.5) 80.6 (80.6, 81.1) 59.0 (58.4,60.2) 13.5(12.1,14.9) 65.4 (64.9,65.8) 76.7 (74.1,71.3)
E GIN+RWSE 78.1(76.9,79.1) 87.9 (87.1,89.5) 85.5(829,86.0) 92.5(920,943) 74.5(72.1,755) 17.6 154,21.00 74.0 (69.8,75.0) 85.8 (85.0,86.1)
=l GsN 76.9 (76.2,71.3) 87.4 (86.4,88.1) 83.1 (82.1,834) 92.3 (91.9,92.8) 74.5(73.4,76.7) 15.1 (13.6,165) 71.2 (59.0,77.5) 85.0 (76.6, 85.3)
ESAN 74.7 (714.3,75.0) 85.5 (85.3.85.5) 80.3 (79.7.81.6) 90.9 (90.7,91.0) 66.6 (66.5,68.5) 24.3 (19.0,27.8) 74.8 (70.7,75.7) 85.7 (85.6, 86.4)
£| Fingerprint 79.3 (785.79.5) 86.7 (85.9.88.1) 83.8(83.2.84.8) 92.4 (914,932) NA NA NA NA
"'é' SMILES 71.6 (70.2,72.5) 84.9 (84.5.86.4) 80.9 (80.0,81.4) 90.2 (89.8,90.8) NA NA NA NA
= Primary Seq. NA NA NA NA 63.0 (60.8,63.5) 23.5(17.4,26.3) 74.3 (69.2,79.5) 85.2 (84.5,85.8)
g DGCNN 73.1(727.73.9) 86.3 (86.0.86.8) 82.8 (82.1,83.7) 91.6 (91.2,92.1) 65.3 (64.6,67.8) 20.8 (202,23.7) 62.0 (59.7,68.9) 84.5 (84.0,84.7)
g| RCM 77.8 (77.1,77.9) 87.7 (87.2,89.0) 85.3 (84.4,85.7) 93.0 (92.6,93.4) 57.0 (56.5,57.8) 22.1(16.8,234) 68.4 (66.7.69.3) 83.3 (82.6,83.7)
8 DFS SET 65.6 (60.2,67.6) 78.7 (77.3,80.7) 75.5 (74.8,79.0) 83.6 (83.3, 84.0) 55.8 (54.1,572) 14.3 (12.3,14.8) 75.6 (74.4,77.6) 84.6 (83.8,85.9)

CTNN (ours) 80.6 (80.3,81.2) 89.1 (88.0,89.9) 86.8 (86.5,87.4) 94.6 (94.2,94.9) 72.0 (71.4,72.3) 24.7 (20.9,26.0) 78.3 (77.9,79.4) 84.3 (84.0, 86.0)

Table 2: Mean =+ s.d. of empirical stretch and contraction across 50 random samples for canonicaliza-
tions. In comparison to all canonicalizations, CTNNSs significantly reduce stretch and contraction.

Max Stretch | Max Stretch |

PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCOoP PFAM GO BIO GO MOL
SMILES 18.12+549 202+6.02 1932+6.95 19.74 +6.36 NA NA NA NA
Primary Seq. NA NA NA NA 172.6 £34.11 164.36 +45.55 165.72+44.51 173.08 +37.83
DGCNN 18.96 £4.07 19.40+4.63 19.48+4.99 18.64+4.02 196.44 £ 16.03 196.96 + 15.87 192.56 + 15.54 192.84 + 14.62
RCM 338+0.71 3.66+1.17 3.64+1.05 3.64+0.86 34.68 +7.68 32.32+7.56 3376 £9.11 3344 +£8.71
DFS SET 1841 £589 1891+6.59 18.77+6.85 18.68 +£6.25 211.02+19.28 211.52+19.06 209.45+20.51 210.90 +16.52
CTNN (ours) 2.23+0.26 2.18+0.22 224+0.30 2.28 +0.30 17.85 +3.15 18.21 + 4.72 17.56 + 4.56 18.12 + 4.45

Max Contraction | Max Contraction |

SMILES 532+196 622+2.06 554+1.89 534+1.86 NA NA NA NA
Primary Seq. NA NA NA NA 2.72 +£2.86 5.16 £5.34 444 +5.62 5.44 +£6.31
DGCNN 12.82+£2.79 1324276 13.16+2.54 12.02+2.37 1632 £3.25 17.56 +4.85 16.04 £4.12 16.16 £4.15
RCM 466+1.94 494+198 550+£2.62 5.70+2.30 12.56 £2.04 12.00 +2.60 12.16 £2.37 11.92£2.34
DFS SET 492+144 571+182 546+186 530+149 922 +£2.58 9.45 £2.20 8.96 + 1.60 8.49 +1.86

CTNN (ours) 1.00+0.00 1.00+0.00 1.00£0.00 1.00 £ 0.00 1.00 = 0.00 1.00 = 0.00 1.00 + 0.00 1.00 = 0.00

including those that are domain-driven and provide one-to-one encodings of their graphs (SMILES,
Primary Seq.), allowing for maximal expressivity. We attribute CTNNs’ gains to distortion introduced
by sequences (Tables[2). Across molecular and protein benchmarks, CTNNs achieve substantially
smaller stretch than sequence-based canonicalizations. Crucially, trees never contract distances,
obtaining optimal contraction = 1. In contrast, sequences exhibit both large stretch and nontrivial
contraction. A noteworthy case is RCM: its ordering reduces bandwidth and lowers stretch on molec-
ular graphs, yet it still doesn’t reach CTNN performance because it incurs contraction. Moreover,
on denser protein graphs its stretch dramatically increases, underscoring a fundamental limitation
of single sequence canonical representatives. While DFS SET, which leverages sets of sequences,
can improve performance in comparison to a single sequence (e.g., GO BIO), it still underperforms
relative to CTNN’s across most benchmarks because it also incurs significant stretch and contraction,
indicating sets of sequences do not capture distances as well as sets of trees. Collectively, these
results align with our theory: canonical spanning-tree covers preserve graph distances significantly
better than sequences, enabling stronger downstream models.

6.3 RQ3: ABLATIONS AND SENSITIVITY

Ablations. We evaluate three CTNN variants to isolate what contributes most to its performance
(Table[3). (i) Replacing the cover with a single canonical tree reduces edge coverage, limits expressiv-
ity, and can increase distortion by collapsing to a single representative. Thus, it underperforms across
all benchmarks, especially in protein graphs where multiple trees significantly increase coverage and
reduce distortion on average. (ii) Replacing the TreeRNN with an MPNN is equivalent to a standard
message-passing encoder on the full graph, reintroducing 1-WL expressivity limits, and significantly

Under review as a conference paper at ICLR 2026

Table 3: Median (max-min) performance for ablations on benchmarks across 5 test splits. CTNN
(full) obtains or matches the best performance across all datasets, supporting each design choice.

Ablation PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297 SCOP PFAM GOBIO GO MOL
Single can. tree instead of cover 79.4 (1.2) 86.2 (0.4) 85.6(0.6) 92.2(0.6) 67.5(1.3) 22.0(3.6) 69.5(0.7) 56.2 (12.1)
MPNN instead of TreeRNN 76.7 (0.8) 85.8(0.2) 829 (1.6) 91.5(1.0) 68.2(0.5) 18.9(2.9) 63.1(2.6) 82.8(0.9)
No MPNN on residual edges 80.9 (0.2) 89.2 (0.5) 87.0 (0.5) 94.6 (0.2) 69.2(1.3) 26.8(5.2) 77.6 (1.5) 61.8(16.9)
CTNN (full) 80.6 (0.9) 89.1 (1.9) 86.8 (0.9) 94.6 (0.7) 72.0 (0.9) 24.7 (5.1) 78.3(1.5) 84.3(2.0)

drops performance across all benchmarks. (iii) Removing the processing of residual edges leaves
performance largely unaffected on sparse molecules, where few edges remain after MST extraction,
but drops performance on denser proteins, where residual edge processing can help capture local
signals. Overall, CTNN (full) obtains or matches best performance across datasets, and the analysis
highlights that (a) the canonical tree cover and (b) expressive tree encoder are the primary drivers of
performance, while the residual MPNN provides complementary gains on denser graphs.

Sensitivity. We also conduct sensitivity analyses for different choices of number of trees, K, node
labeler, 7y, and penalty, 7 (Appendix [E.I). Increasing K yields consistent gains: edge coverage
rises rapidly, average distortion decreases, and performance improves. These results align with our
theory that only a small number of trees is needed for full coverage on sparse graphs and additional
trees better capture original graph distances on average, resulting in increased performance for larger
K. CTNN is also robust to node labeler 7y: degree, closeness centrality (CC), and 1-WL are close
in performance, with CC and 1-WL offering improvements at higher cost. In the main experiments,
we default to degree for its efficiency. CTNN is also stable across the penalty 7, where coverage,
distortion, and accuracy follow similar trends across choices of 7.

7 CONCLUSION

In this work, we developed the first theoretical analysis of sequence-based canonicalization for graphs,
establishing that sequences distort structure and that single-representative approaches are constrained
by the expressivity of their labelers. This analysis covered canonicalizations widely used in practice
such as domain-driven sequences including SMILES (Goh et al., |2017; |Honda et al.l 2019) and
primary protein sequences (Alley et al.,|2019; |Rao et al.l 2019), learnable orderings based on GNNs
and differentiable sorting (Niepert et al.,[2016; Zhang et al., 2018]), and algorithmic orderings that
optimize bandwidth (Cuthill and McKee, |1969; |Diamant et al., [2023). Motivated by this analysis, we
introduced Canonical Tree Cover Neural Networks, which construct canonical spanning-tree covers
and leverage expressive tree encoders. CTNNs are provably invariant, preserve graph distances, and
are more expressive than sequence canonicalizations. Empirically, CTNNs outperform invariant
GNNgs, sampling approaches, and canonicalization baselines on molecular and protein benchmarks.

Our coverage and expressivity guarantees rely on sparsity assumptions, and thus, characterizing
CTNN s in dense regimes remains open. Despite the focused scope, CTNNs consistently maintain
advantages in our experiments, highlighting the value of spanning-tree covers over sequences. More
broadly, our results underscore the importance of canonical representations that respect underlying
graph geometry. By leveraging canonical tree covers, CTNNs offer an expressive, invariant, and
efficient framework for learning on sparse graphs.

10

Under review as a conference paper at ICLR 2026

REFERENCES

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldn
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing Systems, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 4602—4609, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725-1735.
PMLR, 2020.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Velickovi¢. How does over-squashing affect the power of gnns?
arXiv preprint arXiv:2306.03589, 2023.

Yuanqging Wang and Kyunghyun Cho. Non-convolutional graph neural networks. In Advances in
Neural Information Processing Systems, 2024.

Jan Tonshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. Transactions in Machine Learning Research,
2023.

Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on
graphs via random walks. In International Conference on Learning Representations, 2025.

Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong. Revisiting
random walks for learning on graphs. In International Conference on Learning Representations,
2025.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1-61, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning, pages 2014-2023. PMLR, 2016.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Garrett B Goh, Nathan O Hodas, Charles Siegel, and Abhinav Vishnu. Smiles2vec: An inter-
pretable general-purpose deep neural network for predicting chemical properties. arXiv preprint
arXiv:1712.02034, 2017.

11

Under review as a conference paper at ICLR 2026

Shion Honda, Shoi Shi, and Hiroki R Ueda. Smiles transformer: Pre-trained molecular fingerprint
for low data drug discovery. arXiv preprint arXiv:1911.04738, 2019.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of symbolic
computation, 60:94—-112, 2014.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
arXiv preprint arXiv:2006.15646, 2020.

Brendan D McKay et al. Practical graph isomorphism. 1981.

Yicheng Xiao, Lin Song, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, Ying Shan, et al. Mambatree:
Tree topology is all you need in state space model. Advances in Neural Information Processing
Systems, 37:75329-75354, 2024.

Jinn Matousek. Lecture notes on metric embeddings. ETH Ziirich, 2013.

Josep Diaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM Computing
Surveys (CSUR), 34(3):313-356, 2002.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48-50, 1956.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 448—455, 2003.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742-754, 2010.

Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church.
Unified rational protein engineering with sequence-based deep representation learning. Nature
methods, 16(12):1315-1322, 2019.

Vijay Prakash Dwivedi, Ladislav RampasSek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Advances in Neural Information
Processing Systems, 2022a.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513-530, 2018.

Tim Kucera, Carlos Oliver, Dexiong Chen, and Karsten Borgwardt. Proteinshake: Building datasets
and benchmarks for deep learning on protein structures. In Advances in Neural Information
Processing Systems, 2023.

Anwar Said, Roza Bayrak, Tyler Derr, Mudassir Shabbir, Daniel Moyer, Catie Chang, and Xeno-
fon Koutsoukos. Neurograph: Benchmarks for graph machine learning in brain connectomics.
Advances in Neural Information Processing Systems, 36:6509-6531, 2023.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

12

Under review as a conference paper at ICLR 2026

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657-668, 2022.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning, pages 7939—7959. PMLR, 2023.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
and Yun Song. Evaluating protein transfer learning with tape. Advances in neural information
processing systems, 32, 2019.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pages 157-172, 1969.

Russell Lyons and Yuval Peres. Probability on trees and networks, volume 42. Cambridge University
Press, 2017.

Laszl6 Lovasz. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4, 1993.

13

Under review as a conference paper at ICLR 2026

A OMITTED MATHEMATICAL PROOFS

A.1 DISTANCE DISTORTION UNDER SEQUENCE CANONICALIZATION

Proposition A.1 (Bandwidth lower-bounds sequence distortion). Let G = (V, E) be a connected,
unweighted graph with shortest-path metric dg. Let o(G) := min, maxy, .yep |0(u) — o(v)| be
the bandwidth of G. Then for every ordering T,

SO(G) < Dseq(w)'

Proof. For an injective ordering 7 : V' — {1,...,n}, define the sequence distance d
|7 (u) — w(v)|. The (two-sided) distortion can be written

scq(uv U) =

dscq(u ’U)
s da(u,v)
Dreal®) 3= o)

n——

utv dg(u,v)

Define pr(u,v) := dZ,,(u,v)/dc(u,v) for u # v, so that Dyeq(7) = —2L=
) —

seq min pr *

For any edge {u, v} € F, dg(u,v) = 1, hence pr(u,v) = |m(u) — mw(v)|. Therefore,

max pr(u,v) > max |m(u)—m(v)l =).
mx pe(u,0) > max [x(u) ~ ()| = (r)

Let z, y be the two adjacent vertices in 7; then df,, (v, y) = 1 while dg(z,y) > 1, so

i pe(,0) < peley) = ——— < 1
min pr(u,v) < pg(z,y) = —— < L
u;é’up p y dG((E,y)
Combining the two bounds proves the claim.
max pn 0
Dgeq(m) = ——= > plr) > (@),

min p 1

A.2 EXPRESSIVE LIMITATIONS OF SEQUENCE CANONICALIZATION

Proposition A.2 (my and fcangeq are equally expressive). Let fcanseq be a canonical se-
quence—based model with universal fs.q and let Ty be its labeling function. Then, fcangeq = Tv .

Proof. LetG; = (V;, E;, X;) fori € {1,2} with G; % Go. Let my : V; — R be a node labeler and
define the augmented features X, := (x,, 7y (v)). Assume the augmented multisets coincide:

{x, v e}t = {{x,:ve W}

Consider a single-sequence canonicalizer Cscq that outputs a permutation of V' and the corresponding
sequence of per-node feature vectors, without adding structural annotations and whose ordering rule
is a deterministic function of {X, },cv (e.g., a stable sort by a fixed key in X, with deterministic
tie-breaking depending only on X,). Because the two graphs have the same multiset of keys, and
the ordering depends solely on these keys (and not on E;), the resulting ordered lists of features are
identical:

Cseq(Glyﬂ'V) = Cseq(G2a7TV)-

(If ties occur, the tie-breaking is the same function of X; when two items share identical x, they are
indistinguishable in the output sequence, so any permutation within such ties yields the same feature
sequence.) Hence, there exist non-isomorphic graphs that collide under such Cseq that no fyeq can
distinguish regardless of its expressivity.

14

Under review as a conference paper at ICLR 2026

Example (DGCNN / Sort). Let Csoq = Sort be a stable sort that orders vertices by a fixed
key computed from X, = (x,, 7y (v)) with deterministic tie-breaking depending only on x,. If
{xp, 7y () : v € i} = {(xp, v (v)) : v € Vo}} and G; 2 Ga, then Sort(Gy,my) =
Sort(Ga, my). This covers the DGCNN setting where 7y ~ fypnn provides the sort keys; the sort-
based canonicalization cannot separate G; and G5 beyond what is already encoded in the augmented
multiset.

A.3 INVARIANT CANONICAL TREE NEURAL NETWORKS

We first introduce definitions for probabilistic invariance for random trees and covers.

Definition A.3 (Probabilistic invariance for random trees). Let .4 be a randomized procedure that, on
input a graph G, outputs a (labeled) spanning tree T'4(G). We say A is probabilistically invariant if
for every pair of isomorphic graphs G 2, H with isomorphism 7 : V(G)—V (H),

n(TA(G)) £ Ta(H).

Equivalently, T (G) £ 7= Y(T4(H)).

Definition A.4 (Probabilistic invariance for tree covers). Let .4 output a (multi)set or sequence
of trees T4(G) = (T©,..., T =1 on G. We call A probabilistically invariant if for every
isomorphism G =, H,

w(Ta(G)) £ Ta(H),

where 7 acts elementwise on the sequence (and, for an unordered cover, equality in distribution is
taken after forgetting order).

Lemma A.5 (MST is probabilistically invariant). Let G = (V, E) be an undirected graph. Let
w : £ —R be an isomorphism—invariant base weight (so w(g-e) = w(e) for all g € Sy|), and let
¢ : E—(0,1) assign i.i.d. continuous tie-breakers to edges. Run Kruskal’s algorithm (Algorithm
with lexicographic keys k(e) = (w(e), ((e)) and let XnsT(G) = (eo, - - -, €v|—2) be the resulting
edge sequence. Then, for every g € S|y|,

4

g- Xmst(G) 4 Xwust(9-G) (equivalently, Xnst(G) = g7 Xust(g-G)).

Proof. We prove by induction on ¢ that the ¢-th edge in Kruskal’s sequence has the same pushforward
conditional law on G and on g-G.

For a prefix x = (eq, ..., e;—1) valid for Kruskal on G, let C(G;x) be the component partition
(union—find state) after processing x. Define the admissible set

A(G;x) :={e={u,v} € E: u,v lie in different components of C(G; x) },
and the frontier of minimum-base—weight admissible edges

F(G;x):={ee€ A(G;x) : w(e) = e/erjgl(ig;x)w(e’) 1.

Under Kruskal with keys (w, ¢), the next edge e, is the unique minimizer of ¢ over F'(G;x) (if

|F'| = 1 the choice is deterministic). Since the (’s are i.i.d. continuous, conditional on x the edge e;
is uniform on F(G;x).

Base case (f = 0). Here A(G;0)) = FE and F(G;0) = {e € F : w(e) = mingepw(e)}.

Because w is isomorphism—invariant, F'(g-G;0) = g- F(G;0). The next edge is uniform on the
respective frontier; pushing this uniform forward by ¢ yields

d
g9- Xust(G)[0] = Xmsr(g-G)[0].
Induction step. Assume for some ¢ > 0 that the prefixes satisfy

9 Xust(Q)[: 1] £ Xnsr(g-G)[: 1]

15

Under review as a conference paper at ICLR 2026

Fix any realization x = (eg,...,e;—1) of this prefix on G, and let gx = (g-€eg,...,g-€1—1)
be the corresponding prefix on g-G. Relabeling preserves adjacency, hence components map as
C(g9-G; gx) = g- C(G;x) and therefore

Ag-Gigx) = g- A(G;x), F(g9-G;gx) = g- F(G;x).
Conditional on x, the next edge on G is uniform on F(G; x). Pushing this distribution forward by ¢

gives a uniform distribution on g- F(G;x) = F(g-G; gx), which is exactly the conditional law of
the next edge on g-G given gx:

d
9- (Xust(@)[t] | x) = Xusr(g-G)[] | gx.
Averaging over all realizations x (which, by the induction hypothesis, have matching laws under G
and g-G after applying g to the G prefix) yields

g Xust(G)[t] £ Xusr(g-G)[t).

By induction for ¢ = 0,1,...,|V| — 2, we conclude g- XnsT(G) < Xwmst(g-G), equivalently
XMST(G) g gil' XMST(Q‘G)~ O

Theorem A.6 (Probabilistic invariance of BUILDCANONICALTREECOVER). Fix any isomor-
phism—invariant node labeler ty (i.e., 7y (g-u) = my(u) for all g € S|y |) and define base edge
weights Wg))(u, v) = —(my(u) + my (v)). For k > 0 let the iterative weights update be

wngl)(e) = Wg)(e) + 71{e e TW}, T>0,

where TF) is the tree returned by KRUSKALMST (Algorithm on (G, 7T(Ek)) with i.i.d. continuous

exchangeable tie-breakers ¢ : E — (0, 1) reused across all rounds. Let T(G) = (T, ... TH-1)
be the random sequence of trees produced by BUILDCANONICALTREECOVER (Algorithm([I)). Then,
for every permutation g € SIV\’

g-T(G) £ T(g-G) (equivalently, T(G) £ ¢71- T(g-G)).

Proof. We prove by induction on k that, together with the evolving weights, the next tree is distribu-
tionally equivariant under relabeling.

For clarity, write the round—k weights as a function of the history
H(k)(G) = ﬂg)(TO ,T(k_l)),

and let g act on edge—indexed objects by (g-f)(e) = f(g~!- e). The induction claim is

d

9-TM (@) 4 T®M(g-G) and ¢-ON*D(@G) £ D¢+ (g.G). (*k)

Base case (k = 0). Since 7y is isomorphism—invariant, so is 7 ’: 7’ (9-€) = 7y (e). By

Lemma|A.5|(KruskalMST probabilistic invariance), we have g- T (G) £ T(®)(g-G). The update
70 = 79 4+ 1{. € T} is isomorphism—equivariant, hence g- TV (G) £ IV (¢-G). Thus
holds for k = 0.

0). __(0) (0)
E

Induction step. Assume holds for all s < k. Couple the two runs on GG and ¢-G by reusing
the same exchangeable tie—breakers (. By the induction hypothesis, the joint law of the prefixes

equals the joint law of

Conditioned on these prefixes, the round—k Kruskal call on each graph uses (isomor-
phism—equivariant) weights and the same i.i.d. continuous tie-breakers, so Lemma [A.5] applies
conditionally and yields

g-(T0(G) | TN (@).1W(G) £ TW(9-6) | TN (g-G). 11N (g-G).

16

Under review as a conference paper at ICLR 2026

Averaging over the (matched) prefixes gives g- T (@) L) (g-G). Finally, the weight update

E+D = 1) 4+ 1{. € T®)} is isomorphism—equivariant, so g- [I¢+1)(G) £ TI*+1 (¢.G). Thus
holds for round k.

By induction for k = 0,1,..., K — 1 we conclude g- T (G) L T(g-G). O

Having established 7 (G) is probabilistically invariant, it follows that fornn(G), a deterministic
function on 7 (G), is also probabilistically invariant.

A.4 EXPECTED DISTORTION BOUNDS FOR CTNNS

We introduce two identities leveraging the electrical interpretation along networks: (i) the probability
an edge appears in a uniform random spanning tree due to Kirchhoff, and (ii) a commute-time identity
relating commute time and effective resistance.

Theorem A.7 (Kirchoff’s Effective Resistance Formula (Lyons and Peres, [2017)). Let G = (V, E)
be an unweighted connected graph, T a uniform spanning tree of G, and let it =) = (z‘&""”))

denote the unit electrical u — v flow (so Z(,GE(ZSJ_W)) = Regt(u,v)). For any undirected edge e,

if Pr(u,v) is the unique u—v path in T, then

ee

Pr [e € E(PT(u,v))] = ‘ ig“_”’) ’

In particular, for a single edge e = {a,b}, Prle € T] = Reg(a,b).

Theorem A.8 (Commute-time and effective resistance (Lovasz, 1993)). For a simple random walk
on G withm =

Cuv = H(u,v) + Hv,u) = 2m Reg(u,v).

Theorem A.9 (UST distance bound and expected distortion). Let G be an unweighted connected
graph and let T' be a uniform spanning tree of G. Then for every u,v € V,

H(u,v)+ H(v,u) Cuv
E|d < = .
[dr(w o)) < 2 2
Consequently, the expected UST distortion
Eldr(u,v)]
D = —_
UsT I}}iﬁ(da(u,v)
obeys
Cuv/2
D < max ~———.
UsT = uFv dg(u,’l})

Proof. Fix u,v € V. Since T is a tree, there is a unique u—v path Pr(u,v), and
dr(u,v) = > 1{e€ E(Pr(u,v))}.
ecE
Taking expectations and using the transfer—current fact,
Eldr(u,v)] ZPreGE (Pr(u,v) Z’z(“””w
eckE ecE

Apply Cauchy—Schwarz:

it < \/ () (36 2) = VmBalu,0).

eckE ecE eckE

Finally, use Cy,, = 2m Reg(u,v) to obtain E[dr(u,v)] < 4/Cyy/2. Dividing by dg(u,v) and
taking the maximum over u # v yields the stated distortion bound. O

17

Under review as a conference paper at ICLR 2026

A.5 COVERAGE AND EXPRESSIVITY GUARANTEES VIA MST CANONICALIZATION

Lemma A.10 (Logarithmic spanning—tree cover). Let G = (V, E) be a graph with m = |E| and
arboricity Y (G). Fix any node labeler my with T > max, ﬁg)) (e) — min, Wg) (e). Let Algorithm 1
produce trees T = {T(k)}f:_ol. Then, after K > Y(G) Inm iterations, the union of the MSTs
covers all edges:

Proof. Let T = Y(G). By the definition of arboricity, there exists a partition of the edges into T
.Y ~

forests, F = szlE(Fj). For each j, fix a (witness) spanning tree 7; O Fj. Let U, C E be the

set of uncovered edges after k rounds and set uy, := |Uy|. For each j, define uy, ; := |Uy N E(F})|,

so that Z;r:l uy,; = ui. By the pigeonhole principle, there exists j* with uy j« > u/Y. Choose

T > max, be — min, b.. Then, for any k > 1,

min wgc)(e) > maxwgc)(e),

EEE\Uk T ecUyg
i.e., every seen edge is strictly more expensive than every unseen edge. Hence, minimizing total
weight over spanning trees is equivalent to maximizing the number of unseen edges |7 N Uy | (any
exchange that replaces a seen edge by an unseen edge strictly reduces cost). Since T}~ contains all
edges of I}, it achieves |7}« N Uy| = uy, j-. Therefore the MST T*) satisfies
k U
|T()N Uk| > Uk = T

Consequently,
1
Uk4+1 = Uk — |T(k) n Uk‘ < <]. - ?)uk

Iterating yields ux < uo(l — %)K < me K/T, Choosing K > T Inm gives ux < 1, hence

Uk = @ and Uf:_ol E(T™) = E, as claimed. O

Lemma A.11 (fcanTree 8 strictly more expressive than fyrpnn and fcanseq). Suppose K satisfies
Lemma Let TV &~ fMPNN~ Then, Ty < fCanTree and hence fCanSeq = fCanTree~

Proof. We first show fcanseq = fcanTree and then prove strictness, i.e., fcanSeq < fcanTree-

Step 1: fcanSeq = fcanTree Fix G = (V, E, X) and any spanning tree T of G. For anode v € V,
let Cr(v) be its children in T', pr(v) its parent, and N (v) its 1-hop neighbors in G. Consider a
tree-aware per-node update of the form

B = fae({fxu i u€ Cr)}} © e B & {30 ue No@)\ (Crv) U lpr@)D}),

where f,q, 1S an injective, permutation-invariant function over multisets (e.g., a DeepSets). Note

that hq(JT) can be recovered by a TreeMPNN layer setting h, = 0 in f;,ee for all children c. By
construction, the multiset union inside f.zs simplifies to the full neighbor multiset:

{xu:u e Or()} W {xp, i {{xu s v € Na()\(Cr(0)u{pr(v)D}} = {{xu:ue Na()}}-

Hence
hng) = fagg({{xu ‘u € NG(U)}})a

which emulates a GIN/1-WL update at v. Since f,q. is injective on multisets, this matches the
expressivity of a GIN step; in particular, any single-sequence model bounded by the same node
labeler 7y (and hence by GIN/1-WL) can be simulated by a suitable choice of fage Within foanTree.
Thus fCanSeq = fCanTree-

18

Under review as a conference paper at ICLR 2026

Step 2: Strictness. We construct G, H with G 2% H such that foanseq(G) = fcanseq(H) but
feanTree(G) # foanTree(H). Let G = C,, U C), (two disjoint n-cycles; 2n vertices, 2 components)
and H = C5, (one 2n-cycle). Both are 2-regular, so 1-WL/GIN (and thus any 7y ~ fcanseq that is
1-WL-bounded) yields identical color multisets; hence fcanseq(G) = fcanSeq(H)-

Now compare the multisets of spanning trees/forests:

T@) ={P.UPY}", TEH) ={Pu}}?

since each cycle C,,, has exactly m spanning trees, all paths P,,. Thus every spanning forest of G is a
disjoint union of two n-paths (multiplicity n?), whereas every spanning tree of H is a single 2n-path
(multiplicity 2n). Choose a per-tree readout p(T') that is injective on tree isomorphism types (e.g.,
map P,U P, and P, to distinct representations), and a global pooling over spanning trees that is an
injective multiset aggregator (e.g., DeepSets). Then

fCanTree(G) 7& fCanTree(H) .
Combining Steps 1 and 2 shows fcanseq < fCanTree- O]

To prove universality, we equip CTNNs with anonymous labels, a strategy used in (Wang and Cho,
2024; |[Kim et al., [2025)). Intuitively, anonymous labels allow injectivity for tree covers on graphs,
while the overall construction remains isomorphism-invariant in distribution.

Definition A.12 (Anonymous labels). Given a graph G = (V, E, X)), draw i.i.d. tags z,, ~ Unif[0, 1]
for v € V (and set X, := (X4, 2,)). Use the same tag assignment z = {2z, },¢cy for all trees in
the CTNN cover of G. This yields a labeled cover T,(G) = {T"(G), 2};'. Because the tag
distribution is i.i.d. and continuous, the construction remains permutation-invariant in distribution.

Lemma A.13 (Labeled covers are separating a.s.). Let K satisfy Lemma so that

U, E(T™(G)) = E(G). With probability 1 over the draw of z (ties occur with prob. 0), the
map G — T,(QG) is separating up to isomorphism on any finite class G.

Proof. Almost surely, all node tags are distinct. Let o, : V—{1,...,|V|} be the order on vertices
induced by sorting tags (i.e., Zyotq) <o < Za_z—l(lv‘)). Form the edge list

Canon(G;2) == { {o.(u), o.(v)} : {u,v} € U, B(T™(G)) }}

which is isomorphic to the edge list of G because the cover union is E(G). Hence if G % H then
Canon(G; z) # Canon(H; z), i.e., the cover is separating. For a finite G this holds simultaneously
for all G € G with probability 1. O

Theorem A.14 (CTNN Universality with anonymous labels). Let G be a finite class of graphs.
Assume: (i) K satisfies Lemma ' (ii) the per-tree encoder firee is universal on labeled trees and
the multiset aggregator fage is universal on finite multisets. Then for any continuous permutation-
invariant graph function f : G — R and any € > 0, there exists a CTNN such that, for every draw of
anonymous labels z used consistently across the cover,

sup| fornn(Gi2) — f(G) | < e
Geg

Proof. By Lemmathe cover edges union to F(G); by LemmalA.13] for every z the labeled cover
is separating on G via Canon(G; z). Thus the invariant target f factors as

F(G) = F({p(T):TeTAG)})

for some continuous permutation-invariant /' on multisets of tree representations and some p on la-
beled trees (e.g., any encoding that reproduces Canon(G; z)). By universality, fi.ce can approximate
p arbitrarily well on the finite support of observed labeled trees, and f,z, can approximate F' on finite
multisets of tree representations. Because G is finite, the composition error is uniformly bounded by
¢ after suitable parameter choices. O

19

Under review as a conference paper at ICLR 2026

B ADDITIONAL MODEL DETAILS

B.1 ALGORITHMS FOR CANONICAL SPANNING-TREE COVERS

Algorithm [T] outlines our procedure for building a K—tree canonical cover. We initialize the edge
labeler 771(.5) using the negative sum of endpoint degrees for each edge, which prioritizes edges incident
to high-degree nodes. For rounds ¢ = 0, ..., K — 1, we construct an MST with respect to the current
edge weights using Kruskal’s algorithm (Algorithm [2): edges are stably sorted (random tie—breaking)
and scanned in nondecreasing order, adding an edge if it does not create a cycle. After forming the
tree T(*), we update the labeler to encourage coverage in subsequent rounds: edges nor selected in
T® receive an additive penalty (controlled by 7) that increases their priority in the next MST. Finally,
we choose a canonical root as the tree center via the standard two—BFS routine (Algorithm 3): one
BFS finds an endpoint of a longest path, and a second BFS from that endpoint finds the opposite
endpoint; the center(s) of this path serve as the root. This procedure runs in O(m log n) per round for
the MST and O(n) for root selection, and returns the K trees with their canonical roots.

Algorithm 1: BUILDCANONICALTREECOVER: iterative MST cover with root selection
Input: Graph G = (V, E); node labeler 7y : V —R; iterations K; step 7 > 0; tiny € > 0
Output: Tree cover T = {T(M}ff:/al and roots R = {r(m}ff:/al

(Initialization)
foreach ¢ = {u,v} € F do
L w'® —(mv (u) + 7y (v)) /+ base edge weights 7r§;0> */
Draw i.i.d. tie-breakers ¢ : E — (0, 1) (fixed across rounds)
So +— O /+ covered edges so far =*/

T+ O, R+
fork=0to K —1do
// 1) Minimum spanning tree with lexicographic keys
T® « KRUSKALMST(G, e (wl,¢(e)))
T« TU{T®}; Spi1 « S UE(T®)
// 2) Canonical root: tree center via two BFS passes
r*) < TREECENTER(T™, y)
R+ RU{r™}
// 3) Edge-weight update (penalize edges just used)
foreach e € E do
L if e € E(T®) then w) w® 47

else wng) — wgk)

| if |Sky1| = | E| then break
return (7, R)

Algorithm 2: KRUSKALMST with exchangeable tie—breakers

Input: Undirected graph G = (V, E); base edge weights w : F — R; tie-breakers ¢ : £ — (0, 1) i.i.d.
Output: A spanning tree 7" of G

T <+ &; initialize disjoint-set D with MAKESET(v) for allv € V

if £ = o then return T’

// I.i.d. continuous tie-breakers ¢ m ake keys distinct w.p. 1.
Sort edges E by nondecreasing key k(e) = (w(e), ((e))
// Union-find tracks connected components of the partial forest.
for e = {u, v} in E in the above order do
if FINDp (u) # FINDp (v) then
T <+ TU{e}; UNIONp(u,v)
L if || = |V| — 1 then return T’

return 7'

20

Under review as a conference paper at ICLR 2026

Algorithm 3: TREECENTER: root selection by two BFS passes

Input: Tree 7' = (Vr, E7); tie-breaker ranking on vertices (e.g., (v, ID))
Output: Root r € Vr (a center of T')

Pick canonical start s € Vr (minimizing the tie-breaker);

u <~ BFS_FARTHEST(T, s); v < BFS_FARTHEST(T, u);

P < unique path from u to v in T';

if | P| odd then r < middle vertex of P

else r < the nearer of the two middle vertices under the tie—breaker
return r

B.2 ALGORITHMS FOR RECURRENT TREE NEURAL NETWORKS

We provide discussion and implementation details of the recurrent tree neural network (Algorithm).

Algorithm 4: BITREELSTMFORWARD: Bidirectional child—sum Tree-LSTM forward pass

Input :x € RV*P node features; rooted tree T = (V, Er,r) in COO form with
(row, col) = (parent, child); arrays parent[v], depth[v] € {0,..., L}
Output :h € RV *2H: concat. of bottom-up and top-down hidden states
Parameters: bottom-up Wi, € R?*3H U, e RT3H W, cRP*H 7, c RF*H top-down
Wk U W;, UJ% of matching shapes.

ou’ ou’

Init:]’LT<—ON><H,CT<—ON><H,hi(—ONXH,Ci(—ONXH.
Bucket nodes by depth: Vy <— {v € V : depth[v] = ¢} for £ =0,..., L.

/* Bottom-up pass (children — parent): process parents from deepest to root. */
for { = L to 0 do

P+ // parents at depth /
E;+ {(u+v) € Er: ue P} // edges with parent at depth ¢
// BAggregate child states with scatter_add (child-sum fage =)
hsum<_0N><H§

hsum[u] +:Z(u<—v)EEZhT[v]

// Per-edge forgets and summed transformed cell contributions
fuvo(Wyzlu] + UshT[v]) for (u+v) € E,

o O0NxH;

e~ [u] +:Z(U<—U)EE1{ fuv © o]
// Node-level gates and updates for all uwé€ P
for u € P do

[i, 0, U] «—splity (qum[u} + Usiouhsum [u})

i140(i), o<o(0), u<+tanh(a);

Mu)+i® @+ cofu];

h'[u] o0 ® tanh(c'[u])

/* Top-down pass (parent — children): propagate from root to leaves. */
for / =1to L do

V<V // children at depth /£
forv € V do
p<—parent(v] // unigue parent

[i, 0, @] < splits(W},, x[v] + U h*[p])s
i+0(i), 0+0(0), G+ tanh(a);
feo(Wiz] + Urh[p)):
cHu]«—i®a+ f O ctpl;

h*[v] <0 ® tanh(c*[v])

return h < concat(h', h') // [N,2H]

21

Under review as a conference paper at ICLR 2026

Parallel bottom-up / top—-down passes. For each canonical tree we precompute three arrays:
edge_index_tree (row=parent, col=child), parent[v] (unique parent), and depth[v] (dis-
tance to root). The bidirectional forward pass runs in two levelwise sweeps that are parallel across all
nodes at the same depth. In the bottom—up pass (leaves — root), we bucket nodes by depth and
use scatter_add to implement the child—sum aggregator and edgewise forget contributions in a
single batched operation over all edges whose parent is at the current depth. In the top—down pass
(root — leaves), each node reads its parent’s state via index_select and applies the same batched
gating. This organization avoids Python loops over edges and exploits segmented reductions on the
GPU; it only iterates over depth buckets. The forward pass can be efficiently batched across trees by
treating the full batch as a collection of disjoint graphs, whose edges are stored in COO format.

Tree encoder. We implement a bidirectional child—sum Tree—LSTM layer with two parameter sets
(children—parent and parent—children). Each direction computes input/output/update gates via
a single linear projection that yields 3H channels per node and applies elementwise nonlinearity;
edgewise forget gates are computed in parallel across all incident edges at a depth. The output
feature per node is the concatenation of the two hidden states, making the layer stackable (we use
residual/normalization as in standard practice when beneficial).

Complexity and memory. Each direction runs in O(|V|) time and O(|V'|) memory for node states.
For a cover of K trees, the bidirectional layer cost is O(K |V]). In practice we batch trees along the
sample dimension, so the work parallelizes across graphs and across trees.

22

Under review as a conference paper at ICLR 2026

C DESIGN SPACE OF CANONICAL APPROACHES

As shown in Table |4}, we organize canonicalization methods along six axes: (i) whether they rely
on domain knowledge; (ii) the node labeler 7y ; (iii) the edge labeler mg; (iv) the canonicalizer
(ordering/selection rule); (v) the induced representation (vector/sequence/tree); and (vi) whether
they use a set of canonical elements per graph (vs. a single representative), together with the
downstream encoder. Table [situates common pipelines: domain-driven approaches (Fingerprint,
SMILES, Primary Seq.) produce a single canonical vector or sequence; graph-agnostic orderings
(DGCNN/SortPooling, RCM) also yield a single sequence from graph-derived ranks. DFS Set
employs multiple sequences but remains sequence-based. In contrast, CTNN is the only approach
that (a) uses an edge labeler to drive a coverage-aware canonicalization and (b) represents each graph
by a tree cover, a set of canonical trees obtaining full coverage. This design is domain-agnostic,
preserves distances more faithfully than sequences, and increases expressivity by operating on a set
rather than a single representative.

Table 4: Design space for graph canonicalization. “Set” indicates whether the method uses multiple
canonical elements per graph (e.g., a cover of trees) rather than a single canonicalization. “Domain
Knowledge” indicates reliance on domain-specific information (e.g., chemistry rules).

Approach Domain Knowledge Node Labeler Edge Labeler Canonicalizer Representation Set Backbone
Fingerprint Yes NA NA Handcrafted chemical descriptors Vector No MLP
SMILES Yes Atom canonical ranks NA Canonical SMILES algorithm Sequence No RNN/TRSF
Primary Seq. Yes NA NA Identity Sequence No RNN
DGCNN No MPNN No Differentiable sort (SortPooling) Sequence No IDCNN
RCM No Degree No Reverse Cuthill-McKee ordering Sequence No RNN
DFS Set No Degree No Sorted DFS Sequence Set Yes RNN
CTNN (full) No Degree Coverage-aware Minimum Spanning Tree Tree Cover Yes TreeMPNN

D ADDITIONAL EXPERIMENTAL DETAILS

Training and Hyperparameter Selection. All models are trained by minimizing the binary
cross-entropy loss on binary classification tasks and the negative log-likelihood loss on multiclass
classification tasks. Training is performed for a maximum of 200 epochs with early stopping patience
set to 15 epochs based on validation performance. The best-performing model on the validation set is
selected for evaluation on the test set. We perform a grid search over the following hyperparameters
for models where applicable:

* Number of layers: {1, 2, 3,4}

* Learning rate: {0.05, 0.01, 0.005, 0.001}

* Batch size: {64, 128, 512, 1024}

¢ Hidden dimension: {64, 128, 256}

* Global pooling: {mean, sum, max}

* Sequence model: {GRU, LSTM, Transformer}
* Number of sequences/trees K: {1, 4, 8}

» Coverage penalty 7: {1, 2, 4}

All models are optimized using the Adam optimizer.

E EXTENDED RESULTS

We include additional analyses on (i) sensitivity to the node labeler 7y, (ii) the coverage penalty
7, and (iii) the number of trees K. We find CTNN to be robust to the choice of 7y and 7, while
increasing K consistently increases coverage, reduces distortion, and improves performance. We
further conduct a sensitivity analyses to the choice of sequence models for SMILES, comparing
performance when fsq is a LSTM or transformer. Here, we find recurrence outperforms attention
aligning with recent findings in RWNN studies. We lastly report preprocessing runtimes, confirming
that CTNN’s preprocessing is efficient and negligible with respect to training times for all datasets.

23

Under review as a conference paper at ICLR 2026

o 1.00 # - - <+ CcINNr=1 | 081}

@ g -#- CINNT=2 | g

g 0.95 £4 “E- CTNNT=4 |2 g9

o —4— CINNt=1 |8 i - CINN t=1

@

2 0.90 -4 CINNt=2 |7 B -#- CINN 1=2

3 -¥- CINNt=4 2 = 079 -%¥- CTNN 1=4
1 2 4 8 12 4 8 12 4 8

Number of Spanning Trees (K) Number of Spanning Trees (K) Number of Spanning Trees (K)

(a) CTNN coverage, distortion, and performance across 7 and K for PCBA-1030 molecular dataset.

1.0 S ———— 30
° s % craNt=1 | %801 F crant=1
208) -$- CINNT1=2 | §g ~®- CTNN 7=2
g B -%- CINN7=4 | £ 5] -¥- CINN 1=4
S o6 % CINNt=1 |8, 5 =
e -®- CINNt=2 |& E
504l -¥- CINN t=4 15 0.70
102 4 8 1 2 4 8 1 2 4 8
Number of Spanning Trees (K) Number of Spanning Trees (K) Number of Spanning Trees (K)

(b) CTNN coverage, distortion, and performance across 7 and K for GO BIO protein dataset.

Figure 6: Sensitivity of CTNN to the number of trees K and coverage penalty 7 on PCBA-1030 (top)
and GO BIO (bottom). Coverage rises rapidly with K; distortion decreases monotonically with K;
and performance improves. Trends are similar across 7, indicating robustness, with larger 7 yielding
slightly higher coverage at fixed K on proteins. Error bars denote standard deviation over samples.

Table 5: Median (min, max) test AUC on molecular datasets. We test CTNN with three node labelers
7y (Degree, Closeness Centrality, I-WL). CTNN is robust to 7y and typically outperforms baselines;
CC or 1-WL often yields the best scores, while Degree serves as a competitive, low-cost default.

Small MoleculeNet Molecular Benchmarks (AUC 1)

CLINTOX SIDER BACE TOXCAST BBBP TOX21

Graphs 1.5K 1.5K 1.5K 1.7K 2K 6K

Avg. |V] 26.1 33.6 34.1 17.1 239 16.4

Avg. |E| Node Labeler 71 28.0 354 36.9 17.5 26.0 16.9

GCN NA 62.4 (56.9,74.7) 64.2 (62.4,70.3) 59.2 (53.9,64.3) 59.8 (52.4,66.7) 73.9 (68.9,81.4) 67.5(63.1,71.9)
GAT NA 62.1 (55.8,65.9) 63.6 (61.0,67.1) 60.8 (52.0,75.1) 60.6 (56.9,69.1) 77.5 (74.1,82.8) 68.2 (65.0,72.5)
GIN NA 59.7 (54.1,72.4) 66.5 (64.0,69.9) 59.9 (51.4,71.8) 55.7 (38.8,60.8) 75.3 (49.4,85.3) 66.9 (64.6,73.4)
GT NA 57.1 46.5,735) 64.3 (57.9,69.0) 67.1 (57.6,75.7) 68.4 (60.7,74.1) 75.8 (62.6,84.0) 67.8 (64.8,73.9)
SMILES Atom Ranks 62.5 45.7,68.6) 61.5(57.6,66.4) 76.5 (68.4,80.3) 65.7(58.3,70.7) 71.9 (65.5,75.3) T1.3 (66.4,73.8)
DGCNN GCN 60.1 (27.6,69.6) 65.5 (62.9,68.9) 67.2 (64.1,74.8) 71.3 (67.5,75.6) 75.0 (42.8,86.4) 75.2(71.4,77.2)
RCM Degree 70.7 (48.6,87.0) 63.1(57.3,67.7) 76.3 (73.3,81.2) 70.9 (68.4,74.9) 84.3 (75.1,89.1) 76.0 (72.4,79.9)
GIN+RWSE NA 63.6 (56.4,74.6) 66.7 (63.4,71.3) 57.7 42.3,69.6) 65.4(53.3,69.1) 73.7 (69.7,86.5) 70.4 (66.1,77.5)
GSN NA 63.7 (55.6,68.2) 65.6 (62.4,68.6) 70.1(64.9,79.1) 55.0 49.3,60.8) 71.4(643,79.7) 68.6 (60.7,73.0)
ESAN NA 61.8 (56.7,66.7) 65.9 (65.2,70.8) 55.8(52.3,69.2) 65.8 (53.3,69.5) 74.9 (70.5,80.6) 70.3 (65.4,75.9)
RTNN None 76.8 (68.8,85.1) 64.9 (61.8,66.7) 74.6 (68.1,81.4) 70.7 (62.5,76.2) 80.2 (70.1,85.8) 76.8 (75.7,79.2)
CTNN Degree 82.7 (56.8,89.9) 64.1 (62.8,67.3) 82.4(79.7,86.5) 75.7 (70.0,78.0) 88.4 (83.7,91.6) 80.9 (79.6, 84.9)
CTNN CcC 84.3 (80.1,92.0) 64.8 (61.0,68.9) 82.7 (75.0,87.4) 76.2 (71.5,79.1) 88.3 (84.1,92.3) 81.1 (78.9,82.8)
CTNN 1-WL 84.8 (76.4,91.0) 65.1 (63.3,68.5) 83.5(80.5,86.7) 76.5 (71.4,80.8) 86.8 (82.6,92.0) 81.4 (78.7, 84.5)

E.1 SENSITIVITY ANALYSES

Sensitivity to K. We vary the number of trees K on PCBA-1030 (Figure[6a) and GO BIO (Figure
[6b). Edge coverage increases rapidly with K, reaching full coverage by K =4 on PCBA-1030 and
by K=8 on GO BIO, consistent with the theory that only a small number of trees is needed on
sparse graphs. Distortion decreases monotonically as K grows, indicating that additional trees better
preserve original graph distances. Task performance likewise improves with K, showing the practical
value of the canonical tree cover.

Sensitivity to 7. We test coverage penalty 7 = {1, 2,4} on the same datasets (Figure |§|) Across
benchmarks, coverage, distortion, and accuracy follow similar trends for different 7, indicating
robustness to the choice of penalizer. For proteins, larger 7 yields higher coverage at a fixed K, as
heavier penalties bias the MST toward previously unseen edges. Overall, CTNN’s behavior is stable
across 7, while K primarily controls the coverage—distortion—accuracy tradeoff.

24

Under review as a conference paper at ICLR 2026

Sensitivity to 7. We assess CTNN’s dependence on the node labeler 7y using small-molecule
benchmarks and include MPNNs and Graph Transformer (GT) as invariant architectural baselines as
well as canonical sequence baselines (Table[3). We additionally include three subgraph-based GNNs:
GIN+RWSE, GSN, and ESAN. All three are strictly more expressive than 1-WL message passing
and are representative of recent expressive subgraph/structural-encoding methods. We compare three
labelers: degree, closeness centrality (CC), and 1-Weisfeiler—Lehman (1-WL). Overall, CTNN is
robust to the choice of 7y CC or 1-WL typically achieve the best scores, while degree is slightly
behind but competitive across datasets. This reflects a natural trade-off: more informative labelers can
yield slight gains at higher preprocessing cost. Concretely, degree runs in O(m), 1-WL in O(t m) for
t refinement rounds, and CC in O(nm) via all-pairs BFS. In our main experiments, we default to the
inexpensive degree labeler for efficiency, noting that CC or 1-WL can be used when improvements
justify the added cost.

Sensitivity to fieq. We evaluate the sensitivity of the sequence encoder fiq by comparing attention
(Transformer) and recurrence (LSTM) on canonical SMILES, and include a graph Transformer
(GT) that operates directly on molecular graphs (Table[6). We report the analysis on the molecular
benchmarks, whereas training analogous models on the larger, denser protein graphs did not converge
within 24 hours. Results demonstrate that attention and recurrence perform comparably on SMILES
and are similar to the GT baseline. In all cases, however, these models underperform in comparison
to CTNNSs, which maintain a clear performance advantage. This occurs since attention relies on
the sequential positional encoding and recurrence relies on the linear ordering, which both incur
distortion and fail to capture graph distances

Table 6: Transformers and LSTMs achieve comparable AUC across PCBA datasets, indicating that
attention and recurrence perform similarly on the canonical sequence. GTs also perform comparably
to both. Values are median (min, max) over splits. CTNNs outperform all models.

Molecular Benchmarks (AUC 1)
Approach Backbone PCBA-1030 PCBA-1458 PCBA-4467 PCBA-5297

GT Transformer 68.1 (679,686) 81.2 81.0,81.5) 78.9 (77.8,79.9) 87.7 (87.6,88.2)
SMILES Transformer 71.9 71.5,723) 84.4 (83.7,84.5) 82.4 (81.5,825 88.9 (88.3,89.4)
SMILES LSTM 71.9 712,725) 84.9 (84.5,859) 81.1 (80.0.81.4) 90.2 (90.0,90.3)

CTNN TreeMPNN 80.6 80.3,81.2) 89.1 (88.0,89.9) 86.8 (86.5,87.4) 94.6 (94.2,94.9)

E.2 RUNTIME ANALYSES

We report per-graph preprocessing time for CTNNs when constructing K =8 trees with a degree-based
node labeler 7y (v)= deg(v) (Table[7). On molecular graphs the cost is in the milliseconds, and on
protein graphs it is on the order of tenths of a second. In practice, this preprocessing is parallelizable
across graphs and is computed once and reused over all training epochs, making it a small fraction of
end-to-end training time. Overall, CTNN preprocessing is efficient for the datasets considered.

Table 7: CTNN preprocessing time per graph to construct /=8 canonical spanning trees using degree
labeler (7y (v) = deg(v)). We report dataset sizes and average graph statistics; times (seconds) are
averaged over all graphs. Overall, CTNN preprocessing is efficient across all datasets.

Dataset # Graphs Avg. |[V| Avg. |[E| Avg. deg(v) Time (sec)
PCBA-1030 160K 243 26.2 22 0.004
GO MOL 32K 250.1 687.5 54 0.093
NeuroGraph 7K 400.0 7000.29 17.6 0.127

E.3 UST vs. CTNN DISTORTION
The distortion bound in Theorem[5.2)is stated for uniform spanning trees (USTs), whereas CTNN

constructs coverage-aware minimum spanning trees (MSTs) from a different, non-uniform distribution.
USTs are used in the theory as a well-understood reference distribution to motivate why random

25

Under review as a conference paper at ICLR 2026

tree covers can achieve low distortion. Empirically, however, we find that our coverage-aware MST
scheme achieves even lower distortion than USTs on the datasets we consider. Table[8]compares the
shortest-path distortion for USTs and CTNN (degree labeler, 7=1) on PCBA-1030 as the number of
trees K increases. CTNN consistently attains smaller average distortion and variance than USTs for
all K. This advantage is plausibly due to the coverage-aware construction, which explicitly favors
edges that have not appeared in earlier trees, leading to tree covers that better preserve graph distances
than independent UST samples, which have no bias toward uncovered edges. These results provide
quantitative evidence that the practical CTNN tree distribution inherits and can even improve upon
the low-distortion behavior suggested by the UST analysis.

Table 8: Distortion as the number of trees K increases on PCBA-1030 for uniform spanning trees
(UST) and CTNN, using a degree-based node labeler and 7=1. We report mean =+ standard deviation
distortion over graphs.

PCBA-1030 Distortion
K=1 K=2 K=4 K=8

UST 558+1.23 4.49+£1.16 3.57£0.70 2.92+£0.45
CTNN 5.10+£045 3.08+0.30 226£0.42 2.13+0.26

E.4 EVALUATION ON NON-MOLECULAR BENCHMARKS

We ran additional experiments on a non-molecular and non-protein benchmark (Table[d). Our main
evaluation focuses on molecular and protein graph classification tasks because canonicalization is
widely adopted and frequently used in practice in these domains. To demonstrate that our approach
is applicable beyond these biochemical domains, we additionally evaluate CTNN on a brain graph
classification benchmark from NeuroGraph [2023)). Across this benchmark, CTNN obtains
the best performance compared to a standard MPNN (GIN) and canonicalization baselines (RCM
and DGCNN). These results demonstrate CTNNSs’ applicability to domains in which canonicalization
is not yet widely adopted.

Table 9: Median (min, max) accuracy of GIN, RCM, DGCNN, and CTNN on the NeuroGraph
Activity prediction benchmark. CTNN obtains the best performance across baselines.

NeuroGraph-Activity

Graphs 7K

Avg. |V| 400

Avg. |E| 7000

Avg. deg 18.0
Metric ACC 1T
GIN 85.4 (85.4, 86.1)
RCM 91.5 (91.3, 92.5)
DGCNN 91.9 (91.9, 92.5)
CTNN 94.1 (94.0, 94.2)

26

	Introduction
	Background and Preliminaries
	Notation on Graphs and Trees
	Message-passing Neural Networks and GNN Expressivity
	Canonical Approaches on Graphs
	Recurrent Sequence and Tree Models

	Limitations of Sequence-based Canonicalizations
	Distance Distortion under Sequence Canonicalization
	Expressive Limitations of Sequence Canonicalization

	Canonical Tree Cover Neural Networks (CTNNs)
	Canonical Spanning Tree Covers
	Invariant Canonical Tree Neural Networks
	Runtime Complexity

	Distortion and Expressivity Bounds for CTNNs
	Expected Distortion Bounds for CTNNs
	Coverage and Expressivity Guarantees via MST Canonicalization

	Experiments and Results
	Experimental Setup
	RQ1 & RQ2: Discriminative Performance and Distance Distortion
	RQ3: Ablations and sensitivity

	Conclusion
	Omitted Mathematical Proofs
	Distance Distortion under Sequence Canonicalization
	Expressive Limitations of Sequence Canonicalization
	Invariant Canonical Tree Neural Networks
	Expected Distortion Bounds for CTNNs
	Coverage and Expressivity Guarantees via MST Canonicalization

	Additional Model Details
	Algorithms for Canonical Spanning-Tree Covers
	Algorithms for Recurrent Tree Neural Networks

	Design Space of Canonical Approaches
	Additional Experimental Details
	Extended Results
	Sensitivity Analyses
	Runtime Analyses
	UST vs. CTNN Distortion
	Evaluation on Non-Molecular Benchmarks

