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ABSTRACT

Voice assistants, such as Siri and Google Assistant, typically model audio and text
separately, resulting in lost speech information and increased complexity. Recent
efforts to address this with end-to-end Speech Large Language Models (LLMs)
trained with supervised finetuning (SFT) have led to models “forgetting” capabili-
ties from text-only LLMs. Our work proposes an alternative paradigm for training
Speech LLMs without instruction data, using the response of a text-only LLM to
transcripts as self-supervision. Importantly, this process can be performed without
annotated responses. We show that our Distilled Voice Assistant (DiVA) general-
izes to Spoken Question Answering, Classification, and Translation. Furthermore,
we show that DiVA better meets user preferences, achieving a 72% win rate com-
pared with state-of-the-art models like Qwen 2 Audio, despite using >100x less
training compute.
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Figure 1: Training Pipeline for Distilled Voice Assistant (DiVA), Red indicates trainable components
while Blue indicates frozen pretrained modules. DiVA modifies a text-only LLM into a general
purpose Speech LLM by using the model’s own responses to transcribed speech as self-supervision.

1 INTRODUCTION

As Large Language Models (LLMs) capabilities increase, so does the value of bringing these capa-
bilities to new modalities, including audio and speech (Shu et al., 2023; Wang et al., 2023; Gong
et al., 2023). Speech is a natural interaction surface for language technology (Murad et al., 2019),
offering measurable efficiency gains for users (Ruan et al., 2018). One straightforward method of in-
tegrating speech with LLMs is to feed audio to an Automatic Speech Recognition (ASR) model and
produce a text transcription for the LLM to use. However, this process loses meaningful information
carried through tone, pacing, and accent (Upadhyay et al., 2023) regardless of the transcription ac-
curacy. Furthermore, finetuning these pipelined systems requires supervision for both transcription
and response generation, increasing annotation complexity and costs.
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Table 1: High-Level comparison with state-of-the-art open-access Speech & Audio LLMs which we
compare to. DiVA offers an entirely different approach to training using context distillation.

Model Base LLM Training Method # Tasks # Hours

SALMONN Alpaca SFT 12 4400
Qwen Audio Chat Qwen Chat SFT 31 ∼50k

Qwen 2 Audio Instruct Qwen2 Instruct SFT, DPO Unreported >370k

DiVA (Ours) Llama 3 Distillation N/A 3.5k

As such, LLMs that interface with speech directly have the potential to accelerate inference, reduce
annotation costs, and capture the rich information inevitably lost by ASR. In this pursuit, a variety of
works have trained audio-encoders on top of LLMs (Ao et al., 2021; Chen et al., 2021b; Deshmukh
et al., 2023; Chu et al., 2023; Wu et al., 2023a), many of which utilize the same well-established
approach: large-scale multi-task supervised finetuning (SFT).

Models using SFT face several challenges. First, without a large degree of task diversity in their
training data, they often fail to generalize capabilities from the text-only LLM to speech. As ob-
served in Tang et al. (2023), freezing the weights of the text-only LLM is insufficient to prevent this
“forgetting”. In order to generalize well, SFT must be trained with labeled data from a wide range
of tasks and domains, with minimal imbalance between tasks. However, broad annotated speech
instruction training data does not currently exist.

The limited instruction data that does exist is often collected from a small pool of speakers (Kim
et al., 2021; Tomasello et al., 2023) or intended for evaluation rather than training (Faisal et al.,
2021; Eisenstein et al., 2023). This lack of representation of speech from the wider population is
likely to exacerbate biases in speech processing (Koenecke et al., 2020; Mengesha et al., 2021; Chan
et al., 2022; Javed et al., 2023; Brewer et al., 2023). At present, Speech LLMs appear fundamentally
limited by existing instruction data.

In this work, however, we argue that these “limitations” of existing data are artificially imposed
by SFT. The speech community has already invested in large-scale data collection from the inter-
net (Radford et al., 2023; Chen et al., 2021a; Li et al., 2023b), audiobooks (Panayotov et al., 2015;
Pratap et al., 2020), and public archives (Galvez et al., 2021). Furthermore, several datasets have
been explicitly gathered to represent diverse demographics (Porgali et al., 2023; Garg et al., 2023).
However, these large-scale and diverse datasets are dominated by data in just one task: Automatic
Speech Recognition (ASR). This means that models trained with SFT cannot make use of the en-
tirety of this data without “forgetting” non-ASR capabilities.

We solve the “forgetting” problem by training a model that generalizes well despite using only ASR
data. Rather than relying on external labels, our Distilled Voice Assistant (DiVA) self-supervises
learning using the output distribution of an LLM in response to transcripts as a target, a cross-modal
form of context distillation (Snell et al., 2022; Mu et al., 2024). We test our approach by training
on just a single corpus, the CommonVoice, consisting of speech and transcriptions contributed by
volunteers around the world and recorded on their own devices (Ardila et al., 2019).

Despite this data simplicity, DiVA generalizes to Spoken Question Answering, Classification, and
Translation. Furthermore, DiVA is preferred by users to our most competitive baseline Qwen 2
Audio in 72% of trials despite DiVA using over 100x less training compute. Beyond contributing a
new Speech LLM, DiVA creates a new approach to Speech LLMs that trains more efficiently and
generalizes better without requiring investment in new speech instruction data.

2 RELATED WORK

LLMs have been extended to both audio and image inputs using cross-modal encoders. For example,
LLaVA (Liu et al., 2023b) enables image understanding by connecting CLIP (Radford et al., 2021)
to Vicuna (Chiang et al., 2023) through an MLP layer. Several recent works (Zhang et al., 2023;
Gong et al., 2023; Tang et al., 2023; Chu et al., 2023; 2024) have connected audio-encoders (Gong
et al., 2021; Hsu et al., 2021) to LLMs. There are two critical questions in this space.
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How can audio features be transformed into a reasonable number of LLM input embeddings?
Audio comes at high sample rates, and therefore, audio encoders often have a large number of
outputs. For these features to be usable by the LLM, the dimensionality must be reduced, either
by stacking consecutive features (Wu et al., 2023a; Fathullah et al., 2024) or learning an adapter-
module, such as an MLP (Liu et al., 2023b; Gong et al., 2023), or Q-Former (Dai et al., 2023; Tang
et al., 2023).

While learned approaches are more flexible, allowing for an adaptive reduction, they generally re-
quire learning a cross-attention mechanism, which generally requires significant training (Li et al.,
2023a). In this work, we find the best of both worlds by leveraging the Whisper decoder (Radford
et al., 2023) to initialize the text-audio cross-attention mechanism of a Q-Former.

How can speech LLMs be trained to achieve instruction following abilities using existing data?
Prior work has explored two routes for creating instruction data without major financial investment.
The first approach is to transform many existing datasets into an instruction-following format (Dai
et al., 2023; Chu et al., 2023; Tang et al., 2023; Dai et al., 2023; Liu et al., 2023a). In this case,
limitations are often set by datasets that are not aligned with intended LLM usage and imbalances
across tasks. The second approach is to train on synthetic responses to text representations of the
new modality from commercial models (Liu et al., 2023b; Gong et al., 2023).

Our approach is most related to the latter. Rather than generating data with an external model, we
capitalize on the idea that instruction-tuned language models can provide valuable learning signals
as long as the input is within the textual modality. Using the output distribution in response to
text transcripts, we can more strongly guarantee the transfer of existing capabilities using context
distillation (Snell et al., 2022; Mu et al., 2024).

How can we train foundation models for speech using open and permissively licensed data?
Recently, frontier LLMs have begun integrating native speech capabilities. Unlike prior speech
foundation models (Baevski et al., 2020; Hsu et al., 2021; Chen et al., 2022; Kim et al., 2021; Peng
et al., 2023; 2024), these models offer virtual assistant capabilities rather than self-supervised audio
representations or transcriptions. It is unclear to what degree these results are dependent on internal
datasets, especially since even the state-of-the-art open-access Speech LLM with such capabilities
reports no training data details other than size (Chu et al., 2024).

Similar to the Open Whisper-style Speech Model (OWSM) initiative (Peng et al., 2024), we use only
open and permissively-licensed data. Furthermore, unlike the baselines we compare to in Table 1,
we release the training code, rather than just the inference code, which can help reproduce a DiVA-
style model easily. Beyond our novel method, we believe this too broadens the ability to train and
understand Speech LLMs.

3 METHOD

DiVA is an end-to-end voice and text assistant, trained using the process shown in Figure 1. We focus
heavily on effectively using pretrained models in each domain. Similar to prior works, we initialize
the audio encoder from the 1.5B parameter Whisper-Large-v3 model. Unlike prior works, we use
all components of Whisper: not only reusing the encoder but also initializing a Q-Former from the
decoder. We train this architecture using distillation loss on the input and output distribution of the
text-only LLM, which we discuss in Section 3.2.

3.1 MODEL INITIALIZATION

When adding multimodal capabilities to an existing language model, the new modality must be
represented as embeddings that can used in place of text token embeddings. Achieving this goal
has two steps. First, meaningful features must be extracted from the input modality. Second, these
features must be aggregated to be in-distribution for the downstream language model.

Audio Feature Extraction We follow prior works (Chu et al., 2023; Tang et al., 2023) and use the
Whisper encoder (Radford et al., 2023). Whisper first transforms the raw audio signal into a 128-
channel time-frequency domain Mel-spectrogram. This is then passed through two 1D convolutions
and used as embeddings fed to an unmodified Transformer architecture (Vaswani et al., 2023).

3
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Audio-Text Feature Alignment While the Whisper encoder extracts meaningful audio features,
they are encoded at high granularity, with one token for every 40 milliseconds of input audio.
By comparison, humans speak around one syllable every 150 milliseconds on average across lan-
guages (Coupé et al., 2019), and most tokens in an LLM vocabulary are made up of several sylla-
bles. This creates a mismatch between the granulatity between the Whisper encoder outputs and the
downstream LLMs input distribution.

Prior work (Tang et al., 2023) addresses this using a Querying Transformer (Q-Former, Li et al.
2023a), which learns static query embeddings with cross-attention to keys and values features from
another modality. Given audio embeddings A, the Q-Former learns a transformer with a cross
attention mechanism σ(Q(KA⊺)√

dk
)(V A) where Q is a static set of query vectors, while K and V

are projection matrices for the audio tokens. Conceptually, this cross-attention mechanism learns to
dynamically aggregate information from the audio tokens into text-like tokens. This comes at the
cost of significant training required to train the transformer from scratch.

The Whisper decoder, which prior work discards, is trained with a similar goal for ASR: mapping
audio embeddings to discrete text tokens. Therefore, rather than learning Q-Former parameters from
scratch, we initialize K and V from Whisper’s cross-attention mechanism. We adapt the model to
a Q-Former by replacing the inputs with static query tokens Q. Finally, we project the output from
the hidden dimension h of Whisper to the hidden dimension H of the LLM. This results in a set of
{taudioq ∈ RH×|Q|} output tokens representing the audio.

Text Decoding For language processing and instruction following capabilities, we use Llama
3 (Dubey et al., 2024)1 and leave its weight frozen throughout training.

3.2 DISTILLATION LOSSES

We optimize two loss functions based on audio recordings and corresponding text transcripts from
ASR data. First, we minimize the distance between embeddings of audio and text on the input side
of the LLM, similar to prior work for Vision-LMS (Radford et al., 2021; Li et al., 2023a). Then, we
minimize the KL Divergence between the output distribution in response to audio and text as a form
of cross-modal context distillation (Mu et al., 2024; Snell et al., 2022).

3.2.1 CROSS-MODAL TOKEN ALIGNMENT LOSS

To capture the mutual information between recordings and text transcripts, for a given ASR example
(a text transcript and an audio recording), we align speech and text tokens as follows: The text
transcript is embedded as N text tokens ttexti ∈ RH×N . The model produces |Q| tokens from the
audio recording where |Q| > N . We align these representations by minimizing the L2 distance
between the text embeddings and the final i audio embeddings:

Lcon =

N∑
n=0

|ttextn − taudioQ−N+n|2 (1)

We use the final N tokens of the audio embedding rather than the initial N tokens due to the causal
attention in Whisper’s decoder. Since the final tokens can attend to all preceding tokens, aligning
the representations of the final tokens backpropagates signal to every token in the sequence. On the
other hand, the additional Q−N tokens provide information bandwidth for other information, such
as sociophonetic cues, to be passed to the LLM.

Empirically, as we explore in Section 6, training with only token alignment leads to poor model
quality, even when low loss is achieved. However, token alignment appears to enable reasoning
between text and audio tokens, vastly improving text instruction adherence.

1Training was performed before the release of Llama 3.1.
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3.2.2 DISTILLATION FROM OUTPUT EMBEDDING DISTANCE

Voice assistant models should give coherent, helpful, and harmless responses to user speech. Thank-
fully, many openly accessible text-only LLMs have been extensively refined for these objectives. As
such, our challenge is not to learn these behaviors but instead to transfer them to the audio modal-
ity. While, in theory, input token alignment could achieve this, even minor differences in input
embeddings can significantly affect model behavior in practice (Cai et al., 2022).

Distillation loss, on the other hand, directly optimizes for the similarity of the output distribu-
tion (Hinton et al., 2015). Rather than distilling a large model into a smaller model, recent work has
applied to distilling useful context into model weights, a process termed context distillation (Snell
et al., 2022; Mu et al., 2024). Here, we apply context distillation across modalities, aiming to distill
a text context into the audio modality under the assumption that the model should respond similarly
to audio and text for most inputs.

In prior context distillation works, the full Kullback–Leibler (KL) Divergence has been shown to be
prohibitively expensive at training time due to the large vocabulary of modern LLMs. Therefore, the
KL Divergence is instead approximated by sampling random tokens (Snell et al., 2022). In our case,
where the output embedding matrix is frozen, we show that there is an objective function easier to
optimize:
Lemma 1. Given the probability Pt from a teacher model and the probability Ps from a student
model, the KL Divergence is defined as KL(Pt, Ps) = Pt · (logPt − logPs). For a transformer
language model, Ps = σ(Oshs) where hs is the final hidden state, Os is the output embedding
matrix, and σ is the softmax function. Let θs be the student weights which we are trying to train to
minimize the KL Divergence, then

argθs min ||hs − ht||2 ⊂ argθs minKL(Pt, Ps)

Proof. The KL divergence is minimized when Ps = Pt. Based on our definition of LM probability,
this is equivalent to achieving σ(Oshs) = σ(Otht). In the special case we consider, where the
teacher and student are initialized from the same weights, and Os is held constant, we know that
Os = Ot. Thus, a non-unique global minimum will be achieved when hs = ht, where the non-
uniqueness comes from the softmax function σ, which is not injective.

More importantly, we find that: (1) The gradient for L2 loss is much smoother than minimizing
the KL divergence empirically2. (2) Since the vocabulary size of most modern LLMs is far larger
than the hidden dimension, the distance between hidden states can be computed using far fewer
operations than the KL divergence. In practice, we optimize the similarity of only the first predicted
next token (after all I text tokens/all Q audio tokens) for efficiency, as Morris et al. (2023) has shown
that just a single token probability encodes significant information, both for prior and future tokens.

Notably, training with this loss only guarantees that the output distribution is well aligned in response
to audio. However, our intuition is that this loss alone is likely to be less robust to input distribution
shift without our token alignment loss, which we explore in Section 6.

4 EXPERIMENTAL SETUP

4.1 TRAINING DATA

We utilize the English subsection of CommonVoice 17 (Ardila et al., 2019) as the dataset for all
DiVA training runs. The dataset comprises just over 3.5 thousand hours of read text that has been
crowdsourced and validated on the CommonVoice website. We select the CommonVoice for three
reasons. Firstly, it is permissively licensed for commercial and research use. Secondly, it contains
speech recorded in realistic settings on an individual’s device rather than in a professional studio.
Finally, it includes speech from 93,725 speakers from a global pool of volunteers3. The first factor
means that the resulting DiVA models we release can be adopted for use broadly, while the latter
two help make the training data more representative of real users.

2We explore this with an isolated small-scale experiment in Appendix A.2
3Statistics drawn from the official CommonVoice tracker
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Figure 2: Results across our two Question Answering benchmarks covering both standard evaluation
and robustness to regional accents. Model correctness is assessed using the PANDA metric, which is
tuned for strong correlation with human judgments of correctness (Li et al., 2024), and significance
is from a paired bootstrap test (Dror et al., 2018).

4.2 TRAINING HYPERPARAMETERS

We train for 4300 steps and a batch size of 512 using the AdamW Optimizer, a learning rate of 5E-5,
and a weight decay of 0.1. This amounts to roughly two epochs over the data. We linearly warm up
the learning rate for the first 1% of steps and then follow a cosine learning rate learning rate schedule
which decays the learning rate to 0 over the course of the training run. The training run completes
in approximately 12 hours on on a TPU v4-256 pod.

5 QUANTITATIVE AND QUALITATIVE EVALUATIONS

We first assess how DiVA compares to baseline models for various spoken language benchmarks
SFT models target. We evaluate on benchmarks for spoken question answering, speech classifica-
tion, and speech translation. This provides a quantitative validation of DiVA’s generalization.

However, these benchmarks were all designed to test single task systems focused on each individ-
ual task. It is unclear whether these benchmarks capture the capabilities users expect from virtual
assistants that speech LLMs are now powering commercially. To assess this, we run a further side-
by-side comparison of DiVA with the best performing model on the benchmark evaluation Qwen 2
Audio (Chu et al., 2024).

Baselines We compare our results to three openly available Speech Language Models:
SALMONN, Qwen Audio Chat, and Qwen 2 Audio Instruct. Notably, all the baseline models
utilize SFT covering these benchmark tasks. This makes them strong baselines: they all use similar
scale base LLMs to DiVA, all make use of the Whisper encoder, and all have received direct super-
vision on the evaluated tasks. For our user study, we compare with Qwen 2 Audio, which reports
state-of-the-art numbers and achieves the best average performance in our benchmarks.

5.1 BENCHMARKING

For question answering, we use HeySquad (Wu et al., 2024) and SDQA (Faisal et al., 2021), testing
on 4,000 and 494 question-answer pairs, respectively. Classification is broken down into emotion
recognition, sarcasm detection, and humor recognition. Emotion recognition is assessed on IEMO-
CAP (Busso et al., 2008) and MELD (Poria et al., 2019), with 1,241 and 2,608 utterances. We
evaluate sarcasm detection on MUSTARD’s 690 clips (Castro et al., 2019) and humor recognition
on URFunnyV2’s 7,614 examples. Finally, speech translation is tested on CoVoST 2, translating

6
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Figure 3: Results across Emotion, Humor, and Sarcasm classification tasks. We measure class-
weighted F1 for multi-class classification and accuracy for binary classification. Significance com-
puted using a paired bootstrap test.

15,500 English examples into seven commonly-tested typologically diverse languages (Clark et al.,
2020). These datasets cover a wide range of traditionally benchmarked speech tasks drawn from
prior work, which we cover in greater depth in Appendix A.3.

5.1.1 SPOKEN QUESTION ANSWERING

We evaluate all models on zero-shot spoken question answering by prompting them with recorded
audio of a speaker asking a question and the prompt: You are a helpful assistant. Give answers as
a simple single sentence. The underlying LLMs for all baseline models are capable of question-
answering, meaning that the audio encoder only needs to learn to map audio to the correct corre-
sponding text to achieve strong results. This is a case where we expect DiVA to perform particularly
well despite never having been explicitly trained on spoken questions.

Empirically, this expectation is met as shown in Figure 2. DiVA significantly (P<0.05) over the
baselines by at least 10% (+5 PANDA) across both benchmarks and all accents.

However, it’s unclear whether lower accuracy can be directly attributable to “forgetting”. We quali-
tatively explore this question by labeling a sample of 50 responses from the HeySQUAD dataset for
whether the responses include even an attempted answer relevant to the task. Qwen Audio shows
signs of severe forgetting, with 30% of responses ignoring the prompt instructions entirely and in-
stead transcribing the question e.g. ”The citation for the Pearson v. Society of Sisters case is What is
the citation for the Pearson v. Society of Sisters case?”. By comparison, SALMONN, which takes
inference time interventions to reduce overfitting by partially ablating the LoRA modules learned for
the base LLM, sees reduced overfitting with only 8% of model responses ignoring the prompt and
instead transcribing. Qwen 2 Audio sees further reduced overfitting, likely due to its DPO process
using unreleased data, with only 4% instances where the instruction is ignored. DiVA, despite being
trained only on transcription data, is the only model adheres to the instruction consistently.

5.1.2 SPEECH CLASSIFICATION

One possible downside of our distillation approach is that the loss function contains minimal super-
vision for tasks where the audio of speech itself contains rich information through tone. However,
tone is frequently correlated with the semantics of the text itself. We hypothesize this may enable
the audio encoder to transfer some amount of this tone information based on weak supervision from
text. To assess this, we evaluate on speech classification tasks where tone is likely to play a major
role: Sarcasm Detection, Humor Detection, and Emotion Recognition.

Emotion Recognition For emotion classification, we prompt each model with the instructions
Respond in a single word what emotion the input exhibits. If there is no clear emotion, respond

7
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Figure 4: Results for Speech Translation across 7 typologically diverse languages. We evaluate
using SacreBLEU and compute confidence intervals using a Paired Bootstrap.

’Neutral’. To use each model as a classifier, we follow prior work (Hendrycks et al., 2021) and use
the log-probabilities assigned to each possible label as classifier scores.

DiVA performs significantly better than both baselines on both the MELD benchmark, sourced from
television, and IEMOCAPS, which operates over recorded conversations. In comparison to DiVA,
both baseline models struggle to predict a diverse array of labels. Qwen Audio predicts the emotion
as Sadness for greater than 90% of inputs for both MELD and IEMOCAPS, while SALMONN and
Qwen 2 Audio behaves similar with Neutral predictions.

These results are quite surprising given that DiVA is trained without explicit emotion supervision.
However, many examples in both IEMOCAPS and MELD communicate emotion through both text
and audio signals which may confound how well these evaluations capture true sociophonetic signal.

Sarcasm & Humor Detection We also evaluate on two tasks where communicative intent is ex-
pressed largely through tone. For Sarcasm Detection, we prompt each model to Respond whether
the input is sarcastic. Answer with a simple yes or no for sarcasm detection and Respond whether
the input is intended to be humorous. Answer with a simple yes or no. In both cases, we compare
the log-probability assigned to either the token ”Yes” or the token ”No.

No model performs particularly well in these tasks. None of the evaluated models perform signif-
icantly (P > 0.05) better than chance on sarcasm detection and only Qwen Audio Chat performs
better than chance on Humor Detection. This suggests there is significant progress to be made in
enabling speech-oriented language models to understand more complex social signals in speech.

These tasks also highlight a shortcoming of distillation – namely, that DiVA inherits even non-
desirable behaviors from the base LLM. Even when asked whether obviously very serious text is
humorous or sarcastic, Llama 3 will almost always find a way to argue that it is humorous. DiVA
inherits this behavior, predicting the ”Yes” label in both tasks over 90% of the time.

5.1.3 SPEECH TRANSLATION

Finally, we assess the speech-to-text translation capabilities of each model from English Speech
to text in another language. We prompt each model with the instruction Translate the input from
{input lang} to {output lang}.

Results on this benchmark are far more mixed. The original Qwen Audio performs best on Chinese
and Japanese, Qwen 2 Audio performs best on Arabic, German and Indonesian, and DiVA performs
best on Tamil and Turkish. Notably, the original Qwen trains with more than 3700 hours of speech-
to-text translation data from CoVost2. While Qwen 2 does not report which tasks it trains on, it is
likely it trains on similar or increased volumes of data from CoVost2 as the original Qwen. This
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Use via API · Built with Gradio

Click to compare models!

This response is best This response is best

0/10 Preferences Submitted

Audio Input

0:00 0:07

1x

Training large language models is like planting a tree. First, you gather

the best seeds, carefully selecting each one for its potential to grow into

a strong, healthy tree. These seeds represent your training data, which

can come from a variety of sources such as books, articles, and websites.

Next, you prepare the soil, ensuring it has the right nutrients and

conditions for growth. This step involves preprocessing your training

data, cleaning it, and formatting it in a way that the model can

What a unique request! Here's a haiku about training large language

models:

Text �ows like a stream

Model's mind absorbs and grows

Wisdom in its depths

Model 1 Model 2

Figure 5: Example of the double-blind interface for the user study with responses (Left: Qwen 2,
Right: DiVA) to the speech Can you tell me about Large Language Models in the style of a haiku?.

DiVA
72% Win Rate

(374 Votes)

Qwen 2 Audio
28% Win Rate

(148 Votes)

Difference 
Significant at 

P<0.001

Figure 6: Win-rate between models in our 522 preferences from 53 Prolific users.

highlights the data and compute efficient transfer of the DiVA approach, as both of these models
trained on more translation specific data than DiVA used for it’s entire training.

DiVA’s most notable underperformance is in Chinese and Japanese, where it underperforms both
other models. Inspecting DiVA’s outputs and comparing them to translations from Llama 3 in re-
sponse to text, we again find that our distillation loss leads us to preserve a negative behavior — for
both Chinese and Japanese, Llama 3 has a strong bias towards generating translations in the Latin
alphabet (Pinyin and Romanji) rather than the expected native script. This leads to especially poor
results in these languages.

5.2 QUALITATIVE USER STUDY

Finally, to get a sense of how well suited the resulting models are to user preferences, which may
or may not be well captured in existing benchmarks, we recruit participants to compare DiVA to the
top performing baseline, Qwen 2 Audio.

5.2.1 RECRUITMENT & STUDY DESIGN

We recruit 53 participants on the Prolific platform to provide preference ratings. Each user was
allowed to contribute a maximum of 10 ratings, but able to opt-out at any time, resulting in 522
preference ratings comparing the models. We paid users 2.50$ per 10 ratings, which took fewer than
10 minutes of active time for all annotators involved, for an effective pay rate of 15$ per hour. We
report annotator demographics in Appendix A.5.

We pre-screened for users who report familiarity with existing LLM chatbots and virtual assistants
(e.g. ChatGPT, Gemini, Claude and others). In order to avoid biasing our participants, we prompt
them without reference to specific tasks to Record something you’d say to an AI Assistant! Think
about what you usually use Siri, Google Assistant, or ChatGPT for. Users were then shown re-
sponses from each model, without knowledge of which model was which. To avoid any positional
bias, we shuffle the order which users were shown model responses for each recording submitted.

5.2.2 RESULTS

Despite no clear winner on all benchmarks for Qwen 2 and DiVA, DiVA generally is strongly pre-
ferred by users, with a 72% win rate at the preference level. At the user level, 41/53 (77%) of users
preferred DiVA for the majority of their inputs. Beyond showing that DiVA improves preference
alignment, this indicates that benchmarks may not correlate with practical usage.
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6 LOSS ABLATION
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Figure 7: Ablation of the loss components from Section 3.
Distillation leads to a capable audio-only model, but token-
alignment improves instruction adherence.

To better understand each component
of our distillation loss, we investi-
gate the influence of each loss com-
ponent independently. In Figure 7,
we compare results between the com-
plete DiVA method, using just the
output distillation loss, and using just
the input token alignment loss.

Impacts of KL Divergence Loss
The most clear necessity for DiVA
is the KL Divergence loss on the
output distribution. Using token-
alignment only does not simply lead
to marginally worse results, it causes
generations to be often incoherent.
For generative tasks, the model of-
ten outputs sentences which are only
vaguely semantically related to the
input or unrelated markdown head-
ers. In classification tasks, the token-
alignment only model never per-
forms significantly better than ran-
dom guessing.

Impacts of Token Alignment Loss This might raise the question: why use the token-alignment
loss if it performs so poorly? In evaluations on question answering, this is certainly reasonable since
using the KL Divergence loss alone already leads to stronger performance than the SFT baselines.

However, for translation and emotion recognition tasks, we see near-zero results from KL Diver-
gence loss alone. Qualitatively, we observe that the distillation only model replies directly to the
speech regardless of the text instructions.

We quantify this failure to adhere to instructions for the translation task using FastText Language
ID (Joulin et al., 2017) on the outputs, under the assumption that outputs which are not in the correct
target language are the result of ignored instructions. DiVA outputs the correct language 74% of the
time while the distillation only model outputs the correct language only 1.4% of the time4.

This indicates that the token-alignment loss is key to achieving a model using distillation that can
follow both audio instructions and text instructions such as a system prompt.

7 CONCLUSION

In summary, we release DiVA, an end-to-end Voice Assistant model capable of processing text
and audio natively. Our cross-modal distillation loss from text to speech showcases a promising
direction for cost-effective capabilities transfer from one modality to another. Our Distilled Voice
Assistant generalizes to Spoken Question Answering, Classification, and Translation despite only
being trained on transcription data. Furthermore, DiVA is preferred by users to our most competitive
baseline Qwen 2 Audio in 72% of instances despite DiVA taking over 100x less training compute.
Together, these contributions highlight a path forward for rapid adaptation of LLMs to Speech,
without large investments in new training datasets5.

4We include LID results for all models in Appendix A.4
5We include anonymized links to training and evaluation code in Appendix A.1
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Annual Meeting of the Association for Computational Linguistics, pp. 527–536, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1050. URL
https://aclanthology.org/P19-1050.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. MLS: A
Large-Scale Multilingual Dataset for Speech Research. InterSpeech, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

15

https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://aclanthology.org/P19-1050
https://arxiv.org/abs/2103.00020


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Sherry Ruan, Jacob O Wobbrock, Kenny Liou, Andrew Ng, and James A Landay. Comparing speech
and keyboard text entry for short messages in two languages on touchscreen phones. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4):1–23, 2018.

Yu Shu, Siwei Dong, Guangyao Chen, Wenhao Huang, Ruihua Zhang, Daochen Shi, Qiqi Xiang,
and Yemin Shi. Llasm: Large language and speech model. arXiv preprint arXiv:2308.15930,
2023.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context, 2022.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. arXiv
preprint arXiv:2310.13289, 2023.

Paden Tomasello, Akshat Shrivastava, Daniel Lazar, Po-Chun Hsu, Duc Le, Adithya Sagar, Ali
Elkahky, Jade Copet, Wei-Ning Hsu, Yossi Adi, et al. Stop: A dataset for spoken task oriented
semantic parsing. In 2022 IEEE Spoken Language Technology Workshop (SLT), pp. 991–998.
IEEE, 2023.

Pooja Upadhyay, Sharon Heung, Shiri Azenkot, and Robin N Brewer. Studying exploration & long-
term use of voice assistants by older adults. In Proceedings of the 2023 CHI conference on human
factors in computing systems, pp. 1–11, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Changhan Wang, Anne Wu, and Juan Pino. CoVoST 2: A Massively Multilingual Speech-to-Text
Translation Corpus, 2020.

Mingqiu Wang, Wei Han, Izhak Shafran, Zelin Wu, Chung-Cheng Chiu, Yuan Cao, Nanxin Chen,
Yu Zhang, Hagen Soltau, Paul K Rubenstein, et al. Slm: Bridge the thin gap between speech
and text foundation models. In 2023 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 1–8. IEEE, 2023.

Jian Wu, Yashesh Gaur, Zhuo Chen, Long Zhou, Yimeng Zhu, Tianrui Wang, Jinyu Li, Shujie Liu,
Bo Ren, Linquan Liu, et al. On decoder-only architecture for speech-to-text and large language
model integration. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 1–8. IEEE, 2023a.

Yijing Wu, SaiKrishna Rallabandi, Ravisutha Srinivasamurthy, Parag Pravin Dakle, Alolika Gon,
and Preethi Raghavan. HeySQuAD: A Spoken Question Answering Dataset. arXiv preprint
arXiv:2304.13689, 2023b.

Yijing Wu, SaiKrishna Rallabandi, Ravisutha Srinivasamurthy, Parag Pravin Dakle, Alolika Gon,
and Preethi Raghavan. Heysquad: A spoken question answering dataset, 2024. URL https:
//arxiv.org/abs/2304.13689.

Shuwen Yang, Heng-Jui Chang, Zili Huang, Andy T. Liu, Cheng-I Lai, Haibin Wu, Jiatong Shi,
Xuankai Chang, Hsiang-Sheng Tsai, Wen-Chin Huang, Tzu hsun Feng, Po-Han Chi, Yist Y.
Lin, Yung-Sung Chuang, Tzu-Hsien Huang, Wei-Cheng Tseng, Kushal Lakhotia, Shang-Wen Li,
Abdelrahman Mohamed, Shinji Watanabe, and Hung yi Lee. A Large-Scale Evaluation of Speech
Foundation Models, 2024. URL https://arxiv.org/abs/2404.09385.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational
Abilities, 2023.

16

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2304.13689
https://arxiv.org/abs/2304.13689
https://arxiv.org/abs/2404.09385


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We release our training code, as well as evaluation code, demo code & raw outputs at Anonymized
links for the purpose of review. All dataset processing details are included in Appendix A.3.

A.2 TOY EXPERIMENT ON KL DIVERGENCE VERSUS HIDDEN STATE ALIGNMENT

Beyond being a valid and efficient approximate of the KL Divergence, the L2 loss should offer a
more stable gradient, especially early in training when the output distributions are extremely differ-
ent. When Pt is positive and Ps is near zero, the KL divergence explodes to extremely large values
which can make optimization difficult and subject to significant numerical error.

In order to test this intuition, we set up a toy experiment where the student model outputs a single
hidden state hs and the teacher model outputs a single hidden state ht. In this highly simplified
space, each model is fully parameterized by the these hidden states. We initialize and output vo-
cabulary from the normal distribution with 32, 000 vocabulary items. Then, we optimize hs based
on either the L2 distance with ht or the KL Divergence with the output probabilities. Finally, for
both procedures, we optimize for 100 steps with stochastic gradient descent, running the experiment
100 times at logarithmically increasing embedding dimensions, and plot the final KL divergence
achieved under each loss function.
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Figure 8: Empirical Comparison of the KL Divergence with our Proxy L2 loss in a toy experimental
setup. Optimizing the KL Divergence directly leads to worse KL Divergence than optimizing the
L2 loss. This gap increases as the hidden dimension becomes larger.

We see that, as the embedding dimension grows, optimizing the L2 loss actually achieves lower KL
divergence in this setup than optimizing the KL Divergence directly. To some extent, this makes
sense as the L2 loss is an incredibly simple convex function to optimize in this setting, while the
KL divergence introduces significant additional complexity and a much sharper loss landscape early
in optimization. We used this setup early in model design phases to help validate the choice of this
approximation empirically, without training full scale models.
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A.3 IN-DEPTH EVALUATION DESCRIPTION

A.3.1 SPOKEN QUESTION ANSWERING

HeySquad HeySquad Wu et al. (2023b) is a spoken question answering (QA) dataset that aims to
measure the QA ability of digital agents. It is based on the SQuAD dataset Rajpurkar et al. (2016)
with 76K human-spoken and 97K machine-generated questions, and the corresponding answers. We
evaluate the models on the open-source validation set with around 4K QA pairs.

Spoken Dialect Question Answering (SDQA) SDQA Faisal et al. (2021) assesses the robustness
of Spoken Language Understanding to global phonological variation in English. The dataset is made
up of the same 1000 questions spoken and recorded by speakers in 10 accent regions where English
is frequently spoken. We evaluate on the 494 of these questions which contain ground truth answers.

A.3.2 SPEECH CLASSIFICATION

Emotion Recognition Interactive Emotional Dyadic Motion Capture (IEMOCAP) IEMO-
CAP Busso et al. (2008) is a dataset of ∼12 hours of videos, audio, motion capture, and transcripts of
actors performing both improvised and scripted scenes. The seven professional and three student ac-
tors perform emotionally expressive scenes. Each conversation turn in each scene was labeled by six
evaluators as demonstrating “happiness,” “sadness,” “anger,” “surprise,” “fear,” “disgust,” “frustra-
tion,” “excitement,” “neutral state,” or “other.” We follow Yang et al. (2024) and remove unbalanced
class labels, resulting in 1241 audio utterances in the fifth fold used by Tang et al. (2023).

Multimodal EmotionLines Dataset (MELD) MELD Poria et al. (2019) contains 13,708 utterances
labeled by emotion and collected from the sitcom Friends. MELD builds on EmotionLines Hsu
et al. (2018); however, the authors of MELD ask annotators to watch the videos instead of simply
reading the transcripts to produce labels. Three graduate student annotators labeled all utterances
for emotions: “anger,” “disgust,” “fear,” “joy,” “neutral,” “sadness,” and “surprise,” as well as for
sentiments “positive,” “negative,” “neutral.” We evaluate on the test set of 2608 utterances.

Communicative Intent Recognition Multimodal Sarcasm Dataset (MUSTARD) MUS-
TARD Castro et al. (2019) is a collection of 690 clips from the TV shows Friends, The Golden
Girls, The Big Bang Theory, and Sarcasmaholics Anonymous, labeled as sarcastic or non-sarcastic
by three annotators. The clips were collected primarily from YouTube using keywords like Chandler
sarcasm, Friends sarcasm, etc. and sampled from MELD Poria et al. (2019). The final dataset was
filtered to have an even number of labels of sarcastic and non-sarcastic clips. We evaluate on all 690
clips to test the models’ capability in understanding intended sarcasm.

URFunny URFunny (Hasan et al., 2019) is a multimodal humor recognition benchmark constructed
from 90.23 hours of TED talk recordings, spanning 1741 speakers and 417 topics. TED produces
transcripts for the talks, which contain ”[laughter]” markers that show when the audience laughs.
The authors sampled the context and punchline before laughter markers for 8257 positive examples
and random parts of the transcript without laughter markers for 8257 negative examples. URFun-
nyV2 filters out noise and reduces overlap in examples. We evaluate 7614 examples from the train
split of URFunnyV2 to evaluate the models’ ability to understand speakers’ humorous intents.

A.3.3 SPEECH TRANSLATION

CoVoST 2 CoVoST 2 (Wang et al., 2020) is a speech-to-text translation benchmark to and from
English. The speech inputs are sourced from the CommonVoice and professional translators are
hired to translate the recording into a target language. The test dataset is large, made up of 15,500
examples translated from English to each target language. We evaluate on 7 target languages selected
for their typological diversity in prior work (Clark et al., 2020).
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A.4 LANGUAGE ID OUTPUTS FOR ALL MODELS

Table 2: Percentage of outputs for which Language ID matches the target language

Language DiVA KL Only Token Alignment Qwen Qwen 2 SALMONN

Arabic 84% 2% 0% 95% 90% 19%

German 90% 1% 0% 99% 98% 77%

Indonesian 85% 1% 0% 97% 97% 77%

Japanese 28% 2% 0% 100% 99% 67%

Tamil 96% 1% 0% 60% 79% 8%

Turkish 74% 1% 0% 93% 92% 28%

Mandarin 60% 2% 0% 91% 83% 93%

A.5 PROLIFIC USER DEMOGRAPHICS

Table 3: Aggregate Metrics for Age, Gender Identity, and High-Level Ethnicity Information from
our User Study. Our participants cover a wide range of ages, are gender balanced, and have a similar
distribution of ethnicities as reported in the United States Census.

Age Gender Identity Ethnicity (Simplified)

Median Age 34 Man 50.9% White 59.2%
Max Age 69 Woman 49.1% Black 16.3%
Minimum Age 19 Other 0% Asian 12.2%

Mixed 4.1%
Other 8.2%
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