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Privacy-Friendly Cross-Domain Recommendation via Distilling
User-irrelevant Information

Anonymous Author(s)

ABSTRACT
Privacy-preserving Cross-Domain Recommendation (CDR) has

been extensively studied to address the cold-start problem using

auxiliary source domains while simultaneously protecting sensitive

information. However, existing privacy-preserving CDR methods

rely heavily on transferring sensitive user embeddings or behaviour

logs, which leads to adopt privacy methods to distort the data pat-

terns before transferring it to the target domain. The distorted

information can compromise overall performance during the knowl-

edge transfer process. To overcome these challenges, our approach

differs from existing privacy-preserving methods that focus on

safeguarding user-sensitive information. Instead, we concentrate

on distilling transferable knowledge from insensitive item embed-

dings, which we refer to as prototypes. Specifically, we propose a
conditional model inversion mechanism to accurately distill pro-

totypes for individual users. We have designed a new data format

and corresponding learning paradigm for distilling transferable

prototypes from traditional recommendation models using model

inversion. These prototypes facilitate bridging the domain shift

between distinct source and target domains in a privacy-friendly

manner. Additionally, they enable the identification of top-k users

in the target domain to substitute for cold-start users prediction.

We conduct extensive experiments across large real-world datasets,

and the results substantiate the effectiveness of PFCDR. Code is

available at https://anonymous.4open.science/r/PFCDR-AE16.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Knowledge representation and reason-
ing.

KEYWORDS
Cross-Domain Recommendation; Cold-start Problem; Source-free

knowledge distillation

1 INTRODUCTION
Cross-domain Recommendation (CDR), aimed at transferring pref-

erence knowledge from an auxiliary source domain to the target

domain, has shown powerful ability in mitigating the data spar-

sity challenge inherent in traditional Recommender Systems (RS)

[20, 35]. Since CDR scenario has a necessary knowledge trans-

fer process [5], most recent CDR research primarily emphasizes

user embeddings and their mapping relationships, relying on a

bridge function in the latent space to transfer user preferences

[9, 16, 23, 39]. However, sharing original plaintext embeddings or

interaction data has become unacceptable due to new privacy reg-

ulations such as GDPR [5] being enacted worldwide. Therefore,

devising CDR models that safeguard data privacy, including behav-

ior logs and user embeddings, has become an urgent problem.

We focus in this work specifically on realizing the privacy-
preserving knowledge transfer between the source and target do-

mains. Following previous CDR settings [16, 20, 41], we consider the

two domains are partially overlapped in user sets but no intersec-

tion in items. Recently, many privacy-preserving CDR [4, 5, 18, 20]

adopts the differential privacy mechanism to protect either shared

user embeddings or interaction matrices with the target domain.

However, it is commonly understood in the field of differential

privacy [4, 20] that reducing the privacy budget diminishes the

effectiveness of transferred knowledge, while increasing the budget

raises privacy risks. Therefore, existing privacy-preserving CDR

inevitably face the balance between utility and privacy, which easily

incur the suboptimal solutions than traditional CDR. Safeguard-

ing user privacy while maintaining satisfactory performance still

remains a substantial challenge in current CDR.

In this work, we identify that the primary cause of privacy leak-

age in CDR resides in the sharing of original user embeddings or

raw user rating information during the knowledge transfer process.

This discovery has inspired us to delve into a less-discussed yet

intriguing solution: utilizing only the knowledge embedded in item
embeddings instead of users information for CDR to mitigate the risk
of compromising user-sensitive privacy while achieving satisfactory
performance. In this context, sharing user-sensitive data, including

both user-item interactions and trained user embeddings, is strictly

prohibited. Therefore, the privacy-preserving CDR problem has

shifted to overcoming the challenge of extracting valuable collab-

orative filtering signals solely from item embeddings to achieve

effective recommendations. For more details about these challenges,

please refer to Section 3.2.

To explore this idea, we propose a Privacy-friendly Cross-domain

Recommendation model (PFCDR) for privacy-preserving cross-

domain recommendation. PFCDR transfers only insensitive pro-

totypes to promote target domain. In this paper, the prototype
is only distilled from item embeddings, serving as the transfer-

able collaborative filtering signals (For mathematical definition,

please refer to Section 4.2). We employ the conditional model in-

version mechanism [7, 33] to generate prototypes in a data-free

manner. However, implementing model inversion in CDR tasks

poses challenges due to the specific nature of the RS model. Firstly,

the discrete one-hot representation of RS data hinders gradient

calculation. Additionally, a universal learning paradigm is required

to accommodate various recommendation models. To address these

challenges, we innovatively design a continuous and dense data

format to guarantee gradient calculation. Simultaneously, we intro-

duce a new learning paradigm tailored to the new data format to

accommodate distinct RS models. Then, we can successfully adopt

model inversion on both source and target domains to generate

overlapped users’ prototypes respectively and capture the nonlin-

ear relationship of prototypes across domains by a bridge function.

Finally, for a cold-start user in target domain, we transfer the user

prototype from source domain via the pretrained bridge function

1
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and search the top-k users who are well-matched on the transferred

prototype for cold-start predicting in the target domain.

The main contributions of our work are summarized as follows.

• We propose a novel Privacy-friendly Cross-domain Recommen-

dation (PFCDR) system that only transfers users’ prototypes

across different domains without any user-sensitive information.

• We first propose a model inversion mechanism to distil the trans-

ferable prototypes by defining a new data format and a new

learning paradigm, which can be optimized in the source model

instead of using the one-hot RS data. Then, the users’ prototypes

of the overlapping users are leveraged to generate the bridge

function to capture the relationship across domains. Finally, we

search top-k users who are well-matched with the transferred

prototype for further prediction.

• We establish a theoretical analysis proving that our proposed

PFCDR can efficiently protect user privacy. Further, we con-

ducted extensive experiments over three popular cross-domain

tasks to evaluate the effectiveness and robustness of PFCDR in

cold-start settings. The results consistently show that PFCDR

outperforms existing CDR/privacy-preserving CDR baselines.

2 RELATEDWORKS
2.1 Cross-domain Recommendation
CDRwithout Privacy Concern. At the very beginning, CMF [27]

assumes the overlapping users’ embedding matrix is shared among

domains, and the training of overlapping users adopts the data from

all domains. Then, researchers proposed neural network-basedmod-

els to further enhance knowledge transfer ability [11, 15, 30, 32, 42].

To be specific, DDTCDR [17] proposes a latent orthogonal mapping

to extract user preferences across several domains while retain-

ing user relationships across distinct latent spaces. In recent years,

several CDR methods have been proposed to model different cor-

relations between source and target domains via bridge functions

[16, 23, 26, 36, 37, 40, 41]. EMCDR [23] and SSCDR [16] proposed a

general CDR framework to learn a user bridge function between the

source and target domain. PTUPCDR [41] involved a meta network

to learn the personalized bridge function by extra user interactions

in the source domain as prior, which gains significant improvement.

CDRwith PrivacyConcern.However, the conventional bridge-
based approaches ignore the impracticality of direct access to user-

sensitive information in the source domain. Therefore, some re-

searchers focus on privacy-preserving CDR problem. Recent privacy-

preserving CDR predominantly fall into two categories, i.e., federated-

based [19, 24] and differential private-based[4, 5, 20]. The former

employs a federated learning framework to safeguard user infor-

mation at the client side and constructs a cross-domain embedding

transformation model at the server side. The latter adopts a dif-

ferential privacy mechanism to securely share either user embed-

dings [20] or interaction matrices [4] with the target domain. These

methods inevitably involve transferring sensitive user information

perturbed by noise, leading to a dilemma between utility and pri-

vacy, which may incur the suboptimal solutions than traditional

CDR. The work in [10] shares a similar idea with ours by utilizing

item embeddings for CDR. However, it assumes that the two do-

mains have overlapping item sets, which is inconsistent with the

most common CDR setting, where there are no overlapping items

between the distinct domains. The paper [18] employs generative

adversarial networks (GANs) to generate synthetic rating matrices

as a means of protecting the original rating matrix. However, GANs

are notoriously difficult to train and are prone to mode collapse.

In summary, the traditional CDR cannot guarantee the privacy of

user sensitive information, while privacy-preserving CDR struggles

to achieve satisfactory performance. In this paper, we introduce

a privacy-friendly knowledge distillation framework to meet the

privacy requirements while achieving SoTA performance.

2.2 Data-free Knowledge Distillation
Knowledge distillation (KD) is the technique to compress knowl-

edge from one or multi-teacher models into an initialized student

[1, 14]. The data-driven KD methods are challenging to practice if

the training data is not accessible. Then, to overcome the barrier

of large datasets or privacy concerns, data-free KD [7, 21, 43] has

been proposed to deal with knowledge transfer via pseudo-data

synthesis to train students without using any real data. The interest

in data-free KD has grown exponentially in the CV [28] and NLP

[22] research community due to their more practical setting and

satisfying performance. However, a topic of high practical value

but has yet to be explored in the recommendation community.

Model Inversion. Model inversion was first proposed by [8],

aiming to steal recognizable images from models, especially when

attackers lack training data information. Subsequent works found

that it can recover training data information starting from random

noise with the additional image prior [25] and statistical regular-

ization [33], which highly fulfil the data-free setting. Nowadays,

model inversion has become a vital strategy for data-free knowl-

edge distillation. It aims to ’invert’ a pretrained model to recover

training data 𝑥 ′ starting from random noise as an alternative to

inaccessible original data 𝑥 [33].

To our knowledge, this paper is the first to utilize themodel inver-

sion paradigm for Cross-Domain Recommendation (CDR) without

transferring any user-sensitive information.

3 PRELIMINARIES AND CHALLENGES
3.1 Problem Setting
Considering a general CDR scenario that two domains have a par-

tially shared user set, but there is no item intersection. Each domain

has a user set 𝑈 = {𝑢1, 𝑢2, ...} and item set 𝑉 = {𝑣1, 𝑣2, ...} and a

rating matrix R |𝑈 |× |𝑉 | . 𝑟𝑖 𝑗 ∈ R denotes the interaction of user 𝑢𝑖
to the item 𝑣 𝑗 . To distinguish the source and target domains, we

denote the user and item sets of the source domain as 𝑈 𝑠 and 𝑉 𝑠 ,

with the rating matrix represented as R𝑠 . Similarly, for the target

domain, we have 𝑈 𝑡 , 𝑉 𝑡 , and R𝑡 . Finally, the set of overlapping

users between two domains by𝑈 𝑜 = 𝑈 𝑠 ∩𝑈 𝑡 .
Suppose we have a one-hot interaction instance 𝑥 = (u𝑖 , v𝑗 ),

where u𝑖 ∈ {0, 1} |𝑈 | and v𝑗 ∈ {0, 1} |𝑉 | . In this representation, only

the element corresponding to that index is 1 and all others are 0.

Then, in latent factor models, the one-hot representation of an input

instance is mapped into low-dimensional dense vectors through

embeddings techniques as follows:

(u𝑖 , v𝑗 )E = (U𝑖 ,V𝑗 ), (1)

2
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where E = {U,V} is the embedding matrix, U𝑑×|𝑈 | denotes the
user embedding matrix where the 𝑖-th column U𝑖 represents the
embedding vector of user 𝑢𝑖 , and V𝑑×|𝑉 | denotes the item embed-

ding matrix where the 𝑗-th column V𝑗 represents the embedding

vector of item 𝑣 𝑗 . 𝑑 is the dimension size of embedding.

3.2 Challenges
In this paper, our objective is to extract informative knowledge

for CDR without transmitting any user-sensitive data to the tar-

get domain. Therefore, it is natural to leverage the item embed-

dings, which encapsulate rich collaborative filtering signals within

their parameters. However, solely relying on item embeddings for

privacy-preserving CDR presents several challenges:

CH1: How can we extract transferable knowledge from
the item embedding matrix to improve recommendations
for cold-start users, particularly in scenarios where there
is no overlap in item sets between the two domains? The

collaborative training mechanism of RS encodes latent item knowl-

edge and collaborative filtering knowledge in item embeddings

[29]. Hence, extracting personalized and transferable knowledge

from information-coupled item embeddings for each cold-start user

poses a significant challenge.

Our Solution: We propose a simple but efficient conditional

model inversionmechanism to directly distill the transferable knowl-

edge, while we unify the format of the transferable knowledge and

name it as prototype.
CH2: How to address the domain shift between source and

target domains without the help of overlapped user embed-
ding or behavior logs? In CDR scenarios, overlapping users are

often used to bridge the domain shift. At the same time, the source

and target domains typically cater to different tasks and lack over-

lapping item sets. Therefore, effectively bridging the domain shift

solely based on prototypes presents considerable challenges.

Our Solution: We simultaneously distill overlapping users pro-

totypes in the source and target domains and introduce a prototype

bridge function to address the domain shift problem.

CH3. How to predict the preferences of cold-start users
in the target domain using transferred prototypes from the
source domain? Existing methods transfer user embeddings from

the source domain to predict the rating preferences of cold-start

users in the target domain. It poses a challenge to adopt prototype,

the item side knowledge distilled from the item embedding matrix,

to predict the cold-start user’s preference.

Our Solution: Since one user typically has similar preferences

across different domains, we adopt the transferred prototype from

the source domain to identify the top-k similar users in the target

domain, thereby predicting the preferences of cold-start users.

4 METHOD
The workflow (Figure 1) of the proposed PFCDR is the following:

We first rely on the model inversion mechanism to distil the users’

prototypes in both the source and target domains (Section 4.2).

Then, a bridge function is trained with users’ prototypes to align

the gap across domains (Section 4.3). Finally, we adopt the trained

bridge function to transfer the user prototype from source to target,

and then we search the top-k matched users in target domain for

further prediction (Section 4.4).

4.1 New Data Format and Learning Paradigm
for Adopting Model Inversion

Model inversion typically involves class-conditional generation to

extract data information from a pretrained model. For example,

given a randomly initialized input 𝑥 ′ and a randomly assigned

target label 𝑟 , the random input 𝑥 ′ is optimized by:

(𝑥∗ |𝑟 ) = min

𝑥 ′
L(𝑓𝜃 (𝑥 ′), 𝑟 ), (2)

where 𝑓𝜃 denotes the pretrained model parameterized by 𝜃 , L is

predefined error function and 𝑥∗ is the optimal solution.

In a recommendation scenario, model inversion seeks to mini-

mize the loss function as follows:

(u∗𝑖 , v
∗
𝑗 |𝑟 ) = min

(u𝑖 ,v𝑗 )
L(𝑓𝜃 (u𝑖 , v𝑗 ), 𝑟 ), (3)

where an interaction instance (u𝑖 , v𝑗 ) is optimized to match the ran-

domly assigned preference rating 𝑟 under the constraints imposed

by the pretrained recommendation model 𝑓𝜃 .

Discussion: Conventional recommendation models typically

adopt a lookup embedding table to return embeddings based on in-

dices. However, this process prevents the input data from receiving

gradients for optimization. To enable the calculated gradients to

propagate back to the input, we have designed a new data format

and corresponding learning paradigm for distilling transferable

knowledge using model inversion.

4.1.1 The new data format. The new data format should fulfil the

following constraints: (1) It should be in a differentiable manner to

be successfully optimized during inversion. (2) Considering the gen-

erality of the proposed PFCDR, the new data format should adapt

to different recommendation models. Inspired by the embedding-

based recommendation model, which adopts an embedding matrix

to map the one-hot representation of inputs into low-dimensional

embeddings. We define the dimension of each new data format as

identical to the one-hot representation of the original real data. The

new data format can be recognized as:

a = (𝑤𝑢
1
,𝑤𝑢

2
, ...,𝑤𝑢|𝑈 | ), b = (𝑤𝑣

1
,𝑤𝑣

2
, ...,𝑤𝑣|𝑉 | ). (4)

Unlike the one-hot representation of the original data, where

only the element corresponding to the index is 1 and all others are

0, the new data format assigns a random weight to each element.

The initialization of this new data format for user and item fields is

defined by the following formula:

𝑤𝑢
𝑖 =

𝑒𝑥𝑝(𝑤′
𝑖
)∑|𝑈 |

𝑖=1
𝑒𝑥𝑝(𝑤

′
𝑖
)

, 𝑤𝑣
𝑗 =

𝑒𝑥𝑝(𝑤
′
𝑗
)∑|𝑉 |

𝑗=1
𝑒𝑥𝑝(𝑤′

𝑗
)

,where 𝑤′ ∼ U(0, 1). (5)

Each𝑤 ′ is sampled from the Normal distribution for initializa-

tion. Then, we adopt softmax to normalize the random sampled𝑤 ′

as the initial form of our new data format to be optimized during

inversion. The softmax normalization ensures that the initialized

new data format is on the same scale as the original recommenda-

tion data, which helps stabilize the optimization process. With our

3
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Figure 1: PFCDR utilizes model inversion on both the source and target domains to distil users’ prototypes for CDR without
transferring any user-sensitive data. Then, we employ a bridge function to overcome the domain shift problem across domains.
Finally, when we provide a recommendation for a cold user in the target domain, we transfer the prototype P𝑠

𝑖
to target domain

and search the top-k users who are well-matched with the transferred prototype ˆP𝑡
𝑖
for the prediction propose.

new data format, implementing model inversion on the pretrained

RS model proceeds as follows:

(a∗, b∗ |𝑟 ) = min

(a,b)
L(𝑓𝜃 (a, b), 𝑟 ), (6)

where (a∗, b∗) is the optimal solution on the pretrained RS.

4.1.2 The additional learning paradigm for adopting new data for-
mat. The existing learning paradigm of the RS model does not

support the new data format. Consider MF, which is the corner-

stone of embedding-based RS models, as an example. When original

RS data (u𝑖 , v𝑗 , 𝑟𝑖 𝑗 ) enters the forward process, MF will transform

it into the representation (𝑢𝑖 , 𝑣 𝑗 )E = (U𝑖 ,V𝑗 ). With this mapped

representation, MF can be trained using the following:

min

E

∑︁
(𝑢𝑖 ,𝑣𝑗 )∈𝐷

1

2|𝐷 | (𝑟𝑖 𝑗 − U
⊺
𝑖
V𝑗 )2 . (7)

Where 𝐷 is the dataset. |𝐷 | denotes the number of training samples.

When the input data is our new data format (a, b), the feed-forward
procedure will assign weight to all item embeddings, and the inter-

mediate representation is the following form:

(a, b)E = (𝑤𝑢
1
U1,𝑤

𝑢
2
U2, ...𝑤

𝑢
|𝑈 |U |𝑈 | ,𝑤

𝑣
1
V1,𝑤

𝑣
2
V2, ...𝑤

𝑣
|𝑉 |V |𝑉 | ). (8)

For user field, we obtain (𝑤𝑢
1
U1,𝑤

𝑢
2
U2, ...𝑤

𝑢
|𝑈 |U |𝑈 | ), a 𝑑 × |𝑈 | em-

bedding matrix. For item field, we obtain (𝑤𝑣
1
V1,𝑤𝑣

2
V2, ...𝑤𝑣|𝑉 |V |𝑉 | ),

a 𝑑 × |𝑉 | embedding matrix. The obtained embedding matrix from

data (a, b) cannot be directly used in the subsequent feed-forward

process due to dimensional inconsistency. To enable end-to-end

optimization with new data format during inversion, we add an

additional computation module that compresses the entire user em-

bedding matrixU and item embedding matrix V through a weighted

sum using the data vectors a and b, respectively. The final learning
paradigm of model inversion on pretrained MF is defined as follows:

(a∗, b∗ |𝑟 ) = min

(a∗,b∗)
(

1

2

(𝑟 − (
|𝑈 |∑︁
𝑖=1

𝑤𝑢𝑖 U𝑖 )
⊺
(

|𝑉 |∑︁
𝑗=1

𝑤𝑣𝑗 V𝑗 ))
2
). (9)

Like in MF, other embedding-based RS models can optimize the

new data format using the same operation without altering the

original model architecture.

4.2 The Generation of Users’ Prototypes
In this section, we define the term prototype in the context of our

PFCDR and provide a detailed explanation of how users’ prototypes

are generated using conditional model inversion.

Definition 4.1 (User Prototype). Let b∗
𝑖
∈ R1×|𝑉 | be the optimized

weight vector distilled from pretrained item embedding matrix

through model inversion conditioned on user 𝑢𝑖 . The user 𝑢𝑖 ’s

prototype is the compression of entire item embeddingsV ∈ R𝑑×|𝑉 |

through a weighted sum by the distilled b∗
𝑖
, i.e., P𝑖 =

∑ |𝑉 |
𝑗=1

𝑤∗
𝑗,𝑖
V𝑗 .

Equation 6 shows an potential solution to generate users’ proto-

types by distilling informative knowledge from a pretrained model.

However, with only a predefined rating 𝑟 as a constraint, the dis-

tilled information is unpredictable and may mix different users’ or

items’ knowledge. Hence, providing a more instructive strategy

4
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to distil the transferable characteristics of each user is essential to

further construct users’ prototypes.

Intuitively, a user’s rating preference is suitable to represent the

main characteristics of that user. For example, in [41], the rating

preference of user 𝑢𝑖 is the weight sum of item embeddings that

rated by this user. In this study, we utilize a pretrained model

conditioned on a particular user and a chosen target rating to extract

user-related knowledge via model inversion. This process involves

freezing the gradient of u𝑖 , and the chosen target rating 𝑟 , while

solely optimizing the randomly initialized vector b:

(b∗𝑖 |u𝑖 , 𝑟 ) = min

b
L(𝑓𝜃 (u𝑖 , b), 𝑟 ) = min

b
(

1

2

(𝑟−𝑈 ⊺
𝑖
(

|𝑉 |∑︁
𝑗=1

𝑤𝑣𝑗,𝑖V𝑗 ))
2
). (10)

The optimized b∗
𝑖
= (𝑤∗

1,𝑖
,𝑤∗

2,𝑖
, ...,𝑤∗|𝑉 |,𝑖 ) is a weight vector that is

distilled from the pretrained item embedding V. We name it the "the

rating preference of user 𝑢𝑖 " since each element𝑤∗
𝑗,𝑖

is a distilled

weight from item embedding V that is optimized under the condi-

tion of fixed u𝑖 . It may raise concerns that most users only rate a few

items. Why do we directly inverse the weight vectors b about all
items? Intuitively, while an individual user might overlook numer-

ous items, many other users have rated these neglected items. As a

result, these ratings contribute to the creation of well-generalized

item embeddings. The overall item embedding embodies enriched

knowledge, thereby facilitating the creation of informative user

characteristics.

Suppose we obtain user 𝑢𝑖 ’s rating preference b∗,𝑠𝑖 from source

domain, directly transferring the distilled b∗,𝑠
𝑖

to the target domain

is deemed inappropriate due to the absence of item intersection

and the distinct item embedding sizes between the two domains. To

render the distilled b∗,𝑠
𝑖

transferable, we compress the entire item

embeddings by performing a weighted sum on the distilled b∗,𝑠
𝑖
.

Our inspiration is drawn from the attention mechanism [31, 38],

which enables each component to contribute distinctively when

compressing various elements into a singular representation. In our

approach, the distinctive contribution is assigned by the distilled

b∗,𝑠
𝑖

= (𝑤
∗,𝑠
1,𝑖
,𝑤
∗,𝑠
2,𝑖
, ...,𝑤

∗,𝑠
|𝑉 |,𝑖 ) as follows:

P𝑠𝑖 =

|𝑉 |∑︁
𝑗=1

𝑤
∗,𝑠
𝑗,𝑖
V𝑗 . (11)

Here, P𝑠
𝑖
represents the prototype of user 𝑢𝑖 in source domain,

which is prepared for transfer to the target domain. In this work,

the only transferred knowledge from the source domain is the

prototype, which is a single representation compressed from the

weighted sum of the item embedding matrixV. This approach avoids
using any user sensitive information, thereby mitigating the potential
risk of compromising user privacy during knowledge transfer across
domains. The backpropagation mechanism with conditional model

inversion on pretrained MF can be viewed on Appendix A.

4.3 User Prototype Mapping
The CDR scenario has a necessary knowledge transfer process. Pre-

vious methods [34, 41] commonly use overlapping user embeddings

to establish a mapping function that facilitates domain alignment.

In our study, we aim to mitigate the risk of user-sensitive data leak-

age by exclusively utilizing prototypes derived from overlapping

users in both domains. To effectively address domain shifts, we

implement a prototype mapping function. This learning procedure

is formalized as a supervised regression problem, where we aim to

minimize the following mapping loss:

min

𝜙

∑︁
𝑢𝑖 ∈𝑈 𝑜

L𝑚𝑎𝑝 (𝑓𝑚𝑎𝑝 (P𝑠𝑖 ;𝜙),P
𝑡
𝑖 ). (12)

Where P𝑠
𝑖
and P𝑡

𝑖
denote the users’ prototypes distilled from source

and target domains. 𝜙 is the parameter of the mapping function,

and the mapping function can be defined as any structure. For

simplicity, we adopt a linear layer 𝑓𝑚𝑎𝑝 (·) as in [23, 41]. L𝑚𝑎𝑝 is

the mean square error loss.

4.4 Search top-k Similar users for Prediction
In existing methods [23, 41], transferred user embeddings from the

source domain are often utilized to predict the rating preferences

of cold-start users in target domain. In our work, the transfered

prototype
ˆP𝑡
𝑖
= 𝑓𝑚𝑎𝑝 (P𝑠𝑖 ;𝜃 ), is an item side knowledge distilled

from the item embedding matrix. It cannot be directly applied for

prediction purposes. Fortunately, as demonstrated by Equation 10,

the optimized prototype for user𝑢𝑖 has a potential relationship with

its user embedding, i.e., fulfilling the minimal error on (𝑟−(U𝑠
𝑖
)
⊤P𝑠

𝑖
).

Hence, for cold-start user 𝑢𝑖 in the target domain, we conduct a

search for the top-k users who exhibit strong alignment with the

transferred prototype
ˆP𝑡
𝑖
,

M = 𝑡𝑜𝑝_𝑘(min

U𝑡
𝑖

(|𝑟 − (U𝑡𝑖 )
⊤ ˆP𝑡𝑖 |). (13)

WhereM ∈ R𝑑×𝐾 is the matrix where each column is a searched

user embedding in target domain. 𝐾 is a hyperparameter that de-

notes the number of collected users. We denote the final prediction

of the cold-start user 𝑢𝑖 on item 𝑣 𝑗 by averaging the ratings that

are predicted by those top-k users, i.e.,

𝑟 =
1

𝐾

𝐾∑︁
𝑘=1

M⊺
𝑘
V𝑡𝑗 . (14)

𝑟 is the predicted rating. Algorithm is summarized in Appendix B.

4.5 Privacy Analysis
In this section, we take a deep analysis on PFCDR framework about

the potential privacy leakage problem.

In our proposed PFCDR, user-sensitive data (e.g., user embedding

and behaviour logs) never leave the source domain. The only trans-

ferred knowledge is the prototype, which is the linear combination

of the column vectors of item embedding V using the elements of

b∗𝑖 as the coefficients. According to Equation 10, when target rating

𝑟 is known for attackers, user 𝑢𝑖 ’s prototype and its embedding

fulfil U⊤
𝑖
P𝑖 ≈ 𝑟 . Therefore, the task of inferring the original user

embedding U𝑖 can be understood as solving the problem of one

line linear equation with multiple variables, where the number of

variables is the dimension size 𝑑 of embeddings.

Theorem 4.1 (Privacy-preserving using prototype). Consider
the attacker knows the target rating 𝑟 . Further, suppose the embedding
size 𝑑 of source domain satisfies 𝑑 ≥ 2, and the number of non-zero
elements within the prototype is larger than or equal to 2. Then, the
attacker is unable to infer the user embedding U𝑖 .

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SIGKDD’25, Aug 3-7,2025, Toronto, Canada Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Cold-start results over 3 cross-domain tasks. We report the mean results over ten runs. Boldface denotes the best result,
and the underline is secondary. ∗ indicates significant 0.05 levels, paired t-test of PFCDR vs. the best baselines.

CDR Tasks 𝛽 Metric

SDR CDR with transferring of user-sensitive data Privacy-preserving CDR

TGT LightGCN CMF EMCDR SSCDR PTUPCDR FedCDR P2FCDR PriCDR-S PPGenCDR PFCDR

Book→Movie

20%

MAE 4.1831 1.4845 1.3632 1.1651 1.2390 0.9970 1.3265 1.2847 1.2947 1.2735 0.9579
RMSE 4.7536 2.0537 1.7918 1.4548 1.6526 1.3317 1.5922 1.5538 1.5541 1.5293 1.2437*

50%

MAE 4.2288 1.7643 1.5813 1.1798 1.2137 1.0894 1.4783 1.3467 1.3216 1.3103 0.9742*
RMSE 4.7920 2.2216 2.0886 1.4933 1.5602 1.4395 1.6742 1.4812 1.5893 1.5547 1.3113*

80%

MAE 4.2123 2.3512 2.1577 1.3248 1.3172 1.1999 1.5151 1.3705 1.4413 1.3865 1.0689*
RMSE 4.8149 2.8149 2.6777 1.6737 1.7024 1.5916 1.7963 1.6996 1.7317 1.6420 1.4779*

Book→Music

20%

MAE 4.4873 1.9585 1.8284 1.3524 1.5414 1.2286 1.7328 1.7281 1.6835 1.6611 1.0717*
RMSE 5.1672 2.5714 2.3829 1.6737 1.9283 1.6085 2.0632 1.9899 1.9503 1.8457 1.4548*

50%

MAE 4.5073 2.3725 2.1282 1.4723 1.4739 1.3764 2.4577 2.2653 2.3169 2.1832 1.2386*
RMSE 5.1727 2.9012 2.7275 1.8000 1.8441 1.7447 2.6190 2.4891 2.5834 2.4794 1.7167

80%

MAE 4.5204 3.1243 3.0130 1.7191 1.6414 1.5784 2.5833 2.4432 2.5178 2.3594 1.4947*
RMSE 5.2308 3.8677 3.6948 2.1119 2.1403 2.0510 3.0674 2.8115 2.9376 2.7783 2.1358

Music→Movie

20%

MAE 4.1077 1.5233 1.3856 1.1669 1.2143 0.9881 1.3290 1.1937 1.2510 1.1958 0.9865
RMSE 4.7057 1.8104 1.7753 1.4910 1.5231 1.3046 1.6807 1.4648 1.5715 1.4746 1.2658

50%

MAE 4.1232 1.8793 1.6265 1.2114 1.2398 1.0352 1.354 1.2267 1.2937 1.2602 1.1014

RMSE 4.6848 2.2358 2.0613 1.5332 1.5617 1.3566 1.7268 1.5814 1.6271 1.5531 1.3262

80%

MAE 4.1381 2.8828 2.6971 1.2373 1.2564 1.1223 1.4005 1.2763 1.3418 1.3274 1.0712*
RMSE 4.7436 3.3547 3.1641 1.6013 1.7176 1.5251 1.7685 1.5966 1.7044 1.6921 1.4285*

The proof can be found in Appendix C.

5 EXPERIMENTS
We conduct multiple experiments to evaluate the performance of

PFCDR and to answer the following research questions: RQ1 How

well does PFCDR perform compared to the state-of-the-art bridge-

based CDR approaches in cold-start scenarios? RQ2 How well does

PFCDR perform in more practical scenarios of real-world recom-

mendations?RQ3What are the effects of different hyperparameters,

and why might PFCDR perform better?

5.1 Experimental Setup
Datasets. Following the most existing works [16, 37, 41], we use

the real-world public dataset for experiments, namely the Amazon

review dataset
1
. Specifically, we adopt the Amazon 5-cores dataset,

where each user or item has at least five ratings. Following [16, 41],

we choose the three commonly used categories: movies_and_tv

(Movie), cds_and_vinyl (Music), and books (Book). Then, we define

three CDR scenarios: Task 1: Book→Movie, Task 2: Book→Music,

and Task 3: Music→Movie. The detailed statistics of datasets are

shown in Appendix D.

Task Settings. Following [23, 41], to evaluate the effectiveness

of PFCDR on cold-start scenario, we randomly remove all ratings

of partially overlapping users in the target domain as the test set

and the other overlapping users are used for training the prototype

bridge function. We assign the test (cold-start) users proportions 𝛽

as 20%, 50%, and 80% of total overlapping users, respectively.

Evaluation Metrics. For easy comparison, we follow [23, 41]

to adopt Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE) as the metrics.

Baselines. Note that PFCDR is a bridge-based method that

transfers insensitive information for CDR tasks to protect sensi-

tive user information. To emphasize that we not only meet the

privacy requirements but also achieving significant performance

1
http://jmcauley.ucsd.edu/data/amazon/

gain. We compare PFCDR with the following three categories of

methods: Single-Domain Recommendation, Cross-Domain Recom-

mendation with user-sensitive information from the source domain,

and Privacy-Preserving Cross-Domain Recommendation.

Single-Domain Recommendation(SDR): TGT denotes the target

MF model, which is training with only target domain data. Light-

GCN [12] is a graph convolution method, which ignores the nonlin-

ear activation function and the convolution filter parameter matrix

to capture the collaborative signal.

CDR with user-sensitive information: CMF [27] is an extension

of Matrix Factorization (MF), which shares the latent factors of

entities across the source and target domains. EMCDR [23] is a

popular embedding-and-mapping framework for handling CDR.

SSCDR [16] is a CDR framework for cold-start problems based on

a semi-supervised approach, which utilizes both source and target

data for training metric space. PTUPCDR [41] adopts the sequential

interaction items in the source domain to train a meta network to

achieve personalized transfer of user preferences.

Privacy-Preserving CDR: FedCDR [24] is a privacy-preserving

federated CDR model designed for individual customer scenarios.

It builds a cross-domain embedding transformation model on the

server side. P2FCDR [5] is a privacy-preserving CDR framework

that enhances information fusion at the feature level. PriCDR-S

[4] is a two-stage based privacy-preserving CDR framework to

protect user-sensitive data leakage. PPGenCDR [18] devotes to

stably modeling the distribution of private data in source domain

by stable privacy-preserving generator module.

Parameter Settings. We implement all algorithms in PyTorch

and train on a single NVIDIA Quadro RTX5000 (16GB memory).

The parameter settings of PFCDR are of four stages: 1) Pretraining
stage is to learn latent spaces for source and target domain. In

this stage, the learning rate for the Adam optimizer is tuned by

grid search within {0.001, 0.005, 0.01, 0.02, 0.1}. The dimension of

embedding is 10. For fair comparisons, baselines and PFCDR share

the parameter of source and target models. 2) Inversion stage is
6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Privacy-Friendly Cross-Domain Recommendation via Distilling User-irrelevant Information SIGKDD’25, Aug 3-7,2025, Toronto, Canada

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Task1 Task2 Task3
0.8

1.0

1.2

1.4

1.6

1.8

M
A

E

1.
29

5

1.
68

4

1.
25

1

1.
16

5

1.
56

8

1.
16

7

1.
07

1.
22

2

0.
98

8

0.
95

8 1.
07

2

0.
98

6

PriCDR-S EMCDR PTUPCDR PFCDR(ours)

(a) MF based

Task1 Task2 Task3
0.8

1.0

1.2

1.4

1.6

1.8

M
A

E

1.
21

4

1.
51

7

1.
29

3

0.
98

8

1.
41

2

1.
01

1

0.
90

1 1.
09

1

0.
89

3

0.
86

7 1.
06

9

0.
86

1

PriCDR-S EMCDR PTUPCDR PFCDR(ours)

(b) GMF based

Task1 Task2 Task30.6

0.7

0.8

0.9

1.0

1.1

M
A

E 0.
88

7

0.
79

9

0.
91

9

0.
82

6

0.
75

5 0.
81

3

0.
82

0.
74

3 0.
80

7

0.
80

2

0.
73

9 0.
79

8

PriCDR-S EMCDR PTUPCDR PFCDR(ours)

(c) DNN based

Figure 2: Applying PriCDR-S, EMCDR, PTUPCDR, and PFCDR upon three base models (a) MF, (b) GMF and (c) YouTube DNN.

to distil the prototypes from the source and target domains. In this

stage, we optimize the random initialized v∗ with Binary Cross

Entropy (BCE) loss and Adam [5] optimizer with learning rate 1𝑒-4

and weight decay 1𝑒-4. The target label is 5 during the optimizing

process. 3) Prototype mapping stage trains bridge functions via
the prototypes from both domains. Note that the architecture of the

bridge function for prototypes is a one-layer MLP which is the same

as the other bridge based-methods (EMCDR, DCDCSR, and SSCDR)

for a fair comparison. Then, we employ the same fully connected

layer for the remaining bridge-based methods. 4) Top-k matching
stage is to search the well-matched 𝑘 users in target domain for

further prediction propose. The only hyperparameter is 𝐾 which

denotes the number of selected users for prediction. We find it is

an important parameter that needs to be tuned, and details about

𝐾 has discussed in Section 5.4.1.

5.2 Performance Comparison (RQ1)
We conduct a quantitative experiment of PFCDR’s cross-domain

performance, focusing on three CDR tasks within cold-start scenar-

ios. This evaluation involves comparing PFCDR against three es-

tablished categories of methods: SDR [12], CDR incorporating user-

sensitive information [16, 23, 27, 39, 41], and privacy-preserving

CDR [4, 5, 24]. Table 1 shows the results with different 𝛽 values,

which are the test fractions of the overlapping users. The best per-

formance is shown in boldface, and the underline is denoted as

secondary. ∗ is the 0.05 level paired t-test of PFCDR vs. the best

baseline. According to the experimental results, we have the fol-

lowing observations: (1) The performance of TGT is unsatisfying

since it is a MF-based single-domain model which only uses data

from the target source. Compared with the TGT and LightGCN

methods, although LightGCN adopts a more sophisticated archi-

tecture, all other MF-based cross-domain methods can adopt an

auxiliary domain to mitigate the data sparsity problem. (2) CMF

directly fuses the data of the two domains for training, while CDR

methods design different bridge functions to bridge domains. It

is shown that CDR methods outperform CMF in most cases. The

reason lies in the fact that the CMF disregards the possibility of do-

main shift by simply merging data from different domains into one

domain, whereas CDR methods utilize a bridge function to convert

the source user embedding to the target feature space. (3) Although

PFCDR transfers prototypes from source domain to target domain

without any user-sensitive data, it outperforms the best baseline

PTUPCDR, which utilizes both user-item interactions and trained

user embeddings for transferring. In contrast to traditional methods

such as PTUPCDR or privacy-preserving approaches like PriCDR

and P2FCDR, which heavily depend on user embeddings or user

rating information for knowledge transfer, PFCDR maximizes the

utilization of model knowledge contained within item embeddings

to distill transferable information.

5.3 Generalization Experiments (RQ2)
The majority of bridge-based CDR literature [23, 39] mainly fo-

cuses on the bridge function and primarily tests it on MF. Hence, to

testify the generality of our proposed PFCDR and other baselines,

we implement PriCDR-S, PFCDR, PTUPCDR, and EMCDR upon

two more complicated neural models. In this paper, We adopt GMF

[13] and YouTube DNN [6] to replace MF to train source and target

domain. GMF is a generalized version of MF since it assigns various

weights to different dimensions for the dot-product prediction func-

tion. YouTobe DNN is a two-tower neural model. In order to more

effectively compare the user embedding in various models, both

GMF and YouTobe DNN directly adopt the user embedding to train

the bridge functions. We conduct evaluations on both non-neural

(MF) and neural models (GMF and YouTobe DNN) with 𝛽 = 20%,

while other experimental settings are consistent with Section 5.1.

As shown in Figure 2, we have the following observations: (1) All

bridge-based methods can be smoothly implemented on different

models, while the PriCDR-S, EMCDR and PTUPCDR effectively

improve the performance in GMF and YouTube DNN. At the same

time, the GMF and YouTube DNN are two advanced neural models

for sophisticated industrial recommendations, and they outperform

the MF. (2) As we can see, the PFCDR still achieve the best perfor-

mance among different CDR methods. Specifically, without relying

on source data information, the PFCDR approach is a more suitable

choice for real-world commercial corporations.

5.4 Hyperparameters and Visualization (RQ3)
In this section, we conduct extensive experiments to analyze the

impact of various hyperparameters and to explore the performance

improvements from a visualization perspective.

5.4.1 Parameter 𝐾 . Parameter 𝐾 is a hyperparameter that needs

to be tuned in the Top-k matching stage. We analyze how it affects

the final performance on different models (MF, GMF, and YouTube

DNN) with different tasks (as shown in Figure 3(a)-(c)). The x-axis

denotes the selected user numbers for predicting, and the y-axis

denotes the MAE on different tasks. According to the experimental

results, we have the following observations: (1) For task 1 (book

→Movie) and task 3 (Music→Movie) the more selected user for
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Figure 3: (a)-(c) is ablation study on parameter 𝐾 , and (d) is ablation study on distinct target label.

(a) EMCDR

Target Emb
Transformed Emb

(a) PPGenCDR

(b) SFCDR

(b) PFCDR

Figure 4: t-SNE visualization of randomly sampled user em-
beddings from target-domain feature space and transformed
user embeddings.

predicting the better performance while the task2 (Book→ Music)

reaches its best performance between 10k and 30k users. This is

because the domain includes domain-shared and domain-specific

knowledge [3]. The source and target domains in task1 and task3

have more domain-shared knowledge. For task 1 (book→ Movie),

we know that manymovies are remade from books, and some books

are inspired by movies. For task 3 (Music→ Movie), we know that

plenty of classical music is the episode in movies. (2) The impact of

𝐾 on final performance is more obvious on MF-based PFCDR, but

with a more sophisticated base model such as GMF and DNN, the

impact is reduced.

5.4.2 Robustness under Variant Target Ratings in Inversion Stage.
Whenwe distil the user prototype with conditional model inversion,

the selection of target ratings is a tuneable parameter. Hence, to

verify how the target rating impacts the generated prototypes and

finally change the prediction results of CDR (as shown in Figure

3(d)).We generate users’ prototypes under variant target labels from

1-5, while the other experimental settings are the same as in Section

5.1. From the observation of Figure 3(d), we have the following

insightful observation: (1) With different target labels as conditions,

the inversion stage can provide well and similar performance in the

final CDR, which shows the robustness of our proposed PFCDR. (2)

With the target rating enlargement(from dislike to like), the overall

performance is gradually improved. The main reason would be that

a more positive rating can reflect a more precise user’s prototype

about what he/she is most interested in.

5.4.3 Latent Factor Visualization. We analyze the embeddings on

the target domain feature space to further investigate why PFCDR

outperforms the PPGenCDR. But in our PFCDR, we do not trans-

fer the user embeddings to the target domain. To further compare

in a visual latent space, we average sum the Top-k selected user

embeddings into one representation. We employ t-distributed Sto-

chastic Neighbor Embedding (t-SNE) in Scikit-learn to visualize the

transferred user embedding learned by PFCDR and PPGenCDR on

Task 1 with 𝛽 = 20%. Figure 4 (a) and (b) denote the embedding

visualization of EMCDR and PFCDR. The blue points are the target

embeddings learned with both training and test users and are re-

garded as the ground truth, while the orange point is the transferred

user embeddings mapping from PPGenCDR and PFCDR, respec-

tively. We random sample 1000 points of the test users to illustrate

the visualization.

In general, the closer the distance between transferred embed-

ding and target embedding (ground truths), the better. From the

Figure 4, we have the following observations: (1) The transformed

embeddings from PFCDR are closer to the target embeddings, in-

dicating that the average of the selected top-k user embeddings

in PFCDR aligns well with the target embeddings. (2) The trans-

formed embeddings from PFCDR are more scattered across the tar-

get domain than PPGenCDR. This difference is primarily because

GAN-based methods often generate a limited subset of possible

outputs, failing to capture the diversity of the target distribution.

6 CONCLUSION
This paper presents a novel PFCDR system to realize cross-domain

recommendation without transferring any user-sensitive data in

the source domain. To the best of our knowledge, we are the first

to apply the data-free knowledge distillation in CDR tasks. We pro-

pose a new data format and a new learning paradigm to overcome

the inconsistent gradient optimization process. Simultaneously, the

conditional model inversion is proposed to distil the user’s pro-

totype. Then, we train a bridge function to alleviate the domain

shift problem across domains. Finally, a search mechanism has been

leveraged to select top-k well-matched users in the target domain,

and we use their average behaviors to predict a new cold-start user.

We conducted extensive experiments on real-world datasets to eval-

uate the proposed PFCDR, and the results successfully demonstrate

the effectiveness of PFCDR in dealing with the cold-start problem.
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A BACKPROPAGATION ON NEW DATA
FORMAT

Suppose we learn b∗ with Stochastic Gradient Descent (SGD) [2],

under the new learning paradigm introduced in Equation 9, each

element of b∗ can be updated using the following formula:

(𝑤𝑙 )𝑡+1 = (𝑤𝑙 )𝑡 − 𝜂∇L(𝑓𝜃 (𝑢𝑖 , 𝑏), 𝑟 )

= (𝑤𝑙 )𝑡 − 𝜂∇(
1

2

(𝑟 − U⊺
𝑖
(

|𝑉 |∑︁
𝑗=1

V𝑗𝑤
𝑣
𝑗 ))

2
)

= (𝑤𝑙 )𝑡 − 𝜂[(𝑟 − U⊺
𝑖
(

|𝑉 |∑︁
𝑗=1

V𝑗𝑤
𝑣
𝑗 ))(−U

⊺
𝑖
V𝑙 )]

= (𝑤𝑙 )𝑡 − 𝜂[(𝑟 − U⊺
𝑖
(

|𝑉 |∑︁
𝑗=1, 𝑗 ̸=𝑙

V𝑗𝑤
𝑣
𝑗 + V𝑙𝑤𝑣

𝑙
))(−U⊺

𝑖
V𝑙 )],

(15)

where 𝑡 is current epoch and 𝜂 is the learning rate. The U⊺
𝑖
V𝑙 is a

constant. The update of𝑤𝑣
𝑙
in one epoch is dominated by the prede-

fined target rating, user 𝑢𝑖 ’s embedding vector, and pretrained item

embedding matrix in the source model. Thus, when we utilize dif-

ferent user𝑢𝑖 ’s embedding vectors as constraints, the weight vector

b is changed to match the embedding vector U𝑖 by monotonically

decreasing the loss.

B ALGORITHM
As illustrated in Algorithm.1, the overall training Algorithm of

PFCDR can be divided into four steps: the inversion stage, proto-

type mapping stage, top-k matching and prediction stage. After

training, our method can significantly alleviate the cold-start rec-

ommendation problem in the target domain without leakage of any

user-sensitive information from the source domain.

Inversion stage: Most existing CDR methods [4, 24] highly

depend on transferring user-sensitive knowledge (user behaviors

log or pretrained user embedding) from the source domain. There-

fore, their main contributions are adopting some privacy-preserving

strategies to minimize the risk of leaking user-sensitive information.

However, in our proposed framework, user-sensitive information

is never been used. Since we adopt conditional model inversion on

both the source and target domains to distil the rating preference

v∗ from the item embedding (line 1-7), and then compress the item

embedding matrix by performing weighted sum on v∗ to generate

and save the users’ prototypes (line 8-9). In this stage, we adopt

mini-batch training from the memory-economic perspective.

Prototype mapping stage: After obtaining the users’ proto-

types P𝑠𝑜 and P𝑡𝑜 from source and target domain, we adopt the a

linear layer mapping function to bridge the domain shift across

domains (line 15).

Top-k matching stage: When an extreme cold-start user 𝑢𝑖
comes into the target domain (in our CDR assumption, the new

user has interactions in the source domain), we transfer the user

prototype P𝑠
𝑖
from source domain to target domain

ˆP𝑡
𝑖
via the

mapping function (line 18) and search the top-k well-matched users

in target domain (line 19).

Prediction stage: We predict the interactions of cold-start user

𝑢𝑖 in target domain by the averaging rating of those collected topk

users in target domain (line 20).

Algorithm 1: PFCDR
input :Pretrained source domain 𝑓𝜃𝑠 , pretrained target

domain 𝑓𝜃𝑡 ; overlapped user set𝑈 𝑜 ; the threshold 𝜖 for

stopping the optimization of v∗; randomly initialize a

batch of target rating 𝑟 ; 𝐿 is the training epochs for

mapping function;

output :The prediction of item V𝑡
𝑗
;

/* Inversion stage */

1 Randomly initialize |𝑈 𝑜 | number of v with Eq.(5);

2 while True do
3 𝑟 ← 𝑓𝜃𝑠 (ui, v𝑛);
4 𝑙𝑜𝑠𝑠𝑛 ← L(𝑟, 𝑟 );
5 if 𝑙𝑜𝑠𝑠𝑛 ≥ 𝜖 then
6 v𝑛+1 = v𝑛 − 𝜂 𝛼𝑙𝑜𝑠𝑠𝑛𝛼v𝑛 ;

7 else
8 v∗ ← v𝑛 ;
9 save prototype P𝑠

𝑖
with Eq.(11);

10 break;
11 end
12 end
13 Same operation (from line 1-11) on target domain to

generate prototype P𝑡
𝑖
;

/* Protopype mapping stage */

14 for 𝑒𝑝𝑜𝑐ℎ ← 0 to 𝐿 do
15 Training prototype mapping function with Eq.(12);

16 end
/* Top-k matching stage */

17 A cold-start user 𝑢𝑖 (𝑢𝑖 ∈ 𝑈 𝑠 & 𝑢𝑖 /∈ 𝑈 𝑡 ) comes into target

domain;

18 ˆP𝑡
𝑖
← 𝑓𝑚𝑎𝑝 (P𝑠𝑖 );

19 Select top-k users with Eq.(13);

/* Prediction stage */

20 predicted rating 𝑟 of item V𝑡
𝑗
with Eq.(14);

C PRIVACY ANALYSIS
Theorem 4.1 (PRIVACY-PRESERVING USING PROTOTYPE). Consider
the attacker knows the target rating 𝑟 . Further, suppose the embedding
size 𝑑 of source domain satisfies 𝑑 ≥ 2, and the number of non-zero
elements within the prototype is larger than or equal to 2. Then, the
attacker is unable to infer the user embedding U𝑖 .

Proof. For ease of exposition, we prove the theorem in two

cases:1) 𝑑 = 2; and 2) 𝑑 > 2.

Case 1. Given the embedding size 𝑑 = 2 of source domain, we

have U⊤
𝑖
P𝑖 = 𝑤1P𝑖,1 +𝑤2P𝑖,2 = 𝑟 . Hence, the analytic expression

of𝑤1 and𝑤2 are𝑤1 =
𝑟−𝑤2P𝑖,2
P𝑖,1 and𝑤2 =

𝑟−𝑤1P𝑖,1
P𝑖,2 . So value of one

variable𝑤1/𝑤2 decides the value of the other variable𝑤2/𝑤1. We

can put infinitely many values for one variable which will result in

infinitely many values for the second variable.

Case 2.Given the embedding size𝑑 = 𝑁 of source domain, where

𝑁 > 2, we have U⊤
𝑖
P𝑖 = 𝑤1P𝑖,1 +𝑤2P𝑖,2 + ... +𝑤𝑁P𝑖,𝑁 = 𝑟 . Hence,

the analytic expression of𝑤𝑛 is𝑤𝑛 =

𝑟−(∑1≤𝑚≤𝑁𝑎𝑛𝑑𝑚 ̸=𝑛 𝑤𝑚P𝑖,𝑚 )

P𝑖,𝑛 . We
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Table 2: The statistic of cross-domain tasks, overlap denotes the number of overlapping users.

CDR Tasks Domain Item User Rating
Source Target Source Target Overlap Source Target Source Target

Book→Movie Book Movie 367,982 50,052 37,388 603,668 123,960 8,898,041 1,697,533

Book→Music Book Music 367,982 64,443 16,738 603,668 75,258 8,898,041 1,097,592

Music→Movie Music Movie 64,443 50,052 18,031 75,258 123,960 1,097,592 1,697,533

Table 3: Computation complexity and storage usage.

Metrics EMCDR PriCDR PF2CDR FedCDR PFCDR
Training Time (Min.) 3 16 35 43 19

Testing Time (Sec.) 37 1749 45 59 149

Storage Usage (Mega Byte) 5 768 243 419 5

can put infinitelymany values for variable𝑤𝑛 whichwill result in in-

finitely many values for the other variables {𝑤1,𝑤2, ...,𝑤𝑁 }\{𝑤𝑛}.
Therefore, Theorem 4.1 holds. □

Hence, the risk of leakage the user embedding is kept to a mini-

mum in source domain when the dimension of user embedding is

equal or greater than 2.

D DATASET DESCRIPTION
We adopt the Amazon 5-cores dataset, where each user or item

has at least five ratings. Following [16, 41], we choose the three

commonly used categories: movies_and_tv (Movie), cds_and_vinyl

(Music), and books (Book). Then, we define three CDR scenarios:

Task 1: Book→Movie, Task 2: Book→Music, and Task 3: Music

→Movie. We list details in Table 2.

Unlike existing works that typically assume the data size in the

source domain to be significantly larger than that in the target

domain, we also consider scenarios where the target domain has

fewer ratings compared to the source domain. While many prior

studies only evaluate a subset of the dataset, we utilize the entire

dataset to simulate a more practical scenario.

E COMPUTATION COMPLEXITY AND
STORAGE USAGE ANALYSIS

To systematically analyze the computation complexity and storage

consumption of the PFCDR method, we compare it with existing

baseline methods on the music→movie task, where 𝛽 = 20%. To

compare the temporal and spatial advantages of PFCDR with the

baseline methods throughout the entire lifecycle, we select training

time, testing time, and storage usage as the comparison metrics.

The conclusions based on Table 3 are as follows:

(1) In terms of training time, the EMCDR method, which directly

transfers user embeddings from the source domain to the target

domain without employing any privacy protection techniques and

only requires training a one-layer MLP as the mapping function,

has the shortest training time. In contrast, the PriCDR method

introduces additional time consumption by converting the source

domain’s rating matrix into a noisy matrix using differential privacy

techniques. Both the PF2CDR and FedCDR methods, based on the

federated learning framework, require joint training of the source

and target domains, leading to a longer convergence process and the

longest training times. Our PFCDR only needs to extract prototype

knowledge from the pretrained model, resulting in a training time

that is shorter than PF2CDR and FedCDR but longer than EMCDR

and PriCDR.

(2) In terms of testing time, the PriCDR method takes the longest.

This is because the target domain needs to use the noisy matrix

obtained during the training phase to train the target model. Since

the noisy rating matrix is in floating-point format, it significantly

increases the training time of the target model. The EMCDRmethod

has the shortest testing time because it directly uses the user em-

beddings transferred from the source domain for testing in the

target domain. The PFCDR method requires matching top-k users

in the target domain. Although this matching process extends the

testing time, each cold-start user only needs to be matched once,

after which the recorded top-k users can be used for predictions.

(3) In terms of storage requirements, the PFCDR and EMCDR

methods have the lowest storage demands. PFCDR only needs

to store prototype vectors that have identical dimension of the

user embeddings and additionally trains a one-layer MLP model

as the prototype mapping fuction. The PriCDR method has the

highest storage usage due to the need to store the noisy floating-

point rating matrix. Both PF2CDR and FedCDR methods require

retraining the model, so their main storage consumption comes

from the model parameters. The FedCDR method, which uses a

graph neural network, also needs to store the graph’s node and

edge information. Due to the more complex network structure, its

storage usage is slightly higher than that of PF2CDR.
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