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Abstract

Transformer-based deep learning methods have emerged as the standard approach to model
diverse data such as sequences, images, and graphs. These methods rely on self-attention,
which treats data as an unordered set of elements. This ignores the neighborhood structure
or graph topology of the data and requires the use of inductive biases, such as position
embeddings in sequences and images, and random walks in graphs, to incorporate topology.
However, developing bespoke inductive biases for each task requires significant effort
and can also introduce side-effects hindering generalization. In this work, we introduce
Chimera, a unified model that directly incorporates the data topology in a principled way,
obviating the need for domain-specific biases. Central to Chimera is the observation that
state-space models—which naturally do not require position embeddings—can be generalized
to capture any general graph topology. Our experiments demonstrate the versatility of our
approach—Chimera achieves strong performance across the domains of language, vision,
and graphs, outperforming BERT on GLUE by 0.7 points, ViT on ImageNet-1k by 2.6%,
and all the baselines on the Long Range Graph Benchmark. Our results validate Chimera’s
principled methodological contributions and affirm the long-held belief that data topology is
a powerful inductive bias across modalities. We further propose algorithmic optimizations to
improve Chimera’s efficiency while maintaining performance: 1) For the subclass of Directed
Acyclic Graphs we show that Chimera can be implemented as a linear time recurrence.
2) For general graphs, we relax the method with a simple mathematical approximation,
achieving Transformer’s quadratic complexity without relying on domain-specific biases.

1 Introduction

Real-world data, ranging from sequential language and audio to high-dimensional images and structured
molecule data, often exhibit some notion of neighborhood, or graph topology, among its constituent elements.
For instance, language and audio have a directed line graph topology; Images possess an undirected grid-graph
topology; Structured molecule data has predefined nodes (atoms) and edges (bonds) that constitute its
topology. More recently, Transformer-based (Vaswani et al., 2017) methods, with self-attention at their core,
are are increasingly being used to model such data (Devlin et al., 2019; Dosovitskiy et al., 2021; Rampášek
et al., 2022). However, self-attention is permutation invariant and treats data as an unordered set of elements,
disregarding its topology. Consequently, significant research effort has focused on developing domain-specific
inductive biases, such as position embeddings (Su et al., 2023; Devlin et al., 2019), and random walks (Behrouz
and Hashemi, 2024; Wang et al., 2024), to incorporate data topology into the model.

However, designing these inductive biases requires navigating a large search space for each domain. For
instance, RoPE embeddings (Su et al., 2023) work well in language (Touvron et al., 2023); in vision, absolute
and 2D-RoPE embeddings are widely used (Dosovitskiy et al., 2021; Heo et al., 2024); while Laplacian
embeddings or random walks are used in graphs (Rampášek et al., 2022). Moreover, these techniques can
produce undesirable side effects, such as poor out-of-domain generalization—RoPE struggles to generalize to
sequences longer than the training lengths (Kazemnejad et al., 2024), while absolute position embeddings
have inherently constrained context sizes due to their design. Furthermore, it is unclear how effectively these
techniques capture the underlying graph topology.
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In this paper, we introduce Chimera, a unified framework that directly incorporates data topology—i.e., the
underlying graph structure—in a principled way. Chimera is motivated by the observation that State Space
Models (SSMs) for causal language modeling—Mamba-2 (Dao and Gu, 2024), RetNet (Sun et al., 2023), and
Linear Attention (LA) (Katharopoulos et al., 2020)—naturally capture the sequence order through recurrence,
without position embeddings. We formalize this property and generalize it beyond causal sequences to any
graph topology. This approach is in contrast with existing methods that instead apply attention or SSMs as a
black box to “flattened data” augmented with heuristics to compensate for loss of topological information (Liu
et al., 2024; Dosovitskiy et al., 2021). We validate our methodological innovation with empirical results that
demonstrate strong performance across diverse domains. This affirms the long-held belief that topology is a
powerful inductive bias, while providing a principled way to incorporate it into the modeling process.

We first formally show how SSMs capture the underlying directed line graph topology of language data
through recurrence (Sec 3). For this, we leverage the Structured Masked Attention (SMA) representation (Dao
and Gu, 2024) of SSMs: methods such as Mamba-2, RetNet, and Linear Attention are equivalent to the
matrix M = L ⊙ (QKT ) multiplied with the input, where Q, K are the query and key matrices, respectively,
and L is the (data-dependent) mask matrix analogous to the causal mask in attention. We show that the
mask matrix fully encodes the topology of the underlying graph structure by acting as the resolvent of the
adjacency matrix, A, of a directed line graph, i.e. L = (I − A)−1 =

∑
Ai, where I is the identity matrix.

This result allows us to generalize to any graph topology. Specifically, for an “appropriately parameterized”
adjacency matrix, A, of the graph topology, we compute the matrix multiplication of M = L ⊙ (QKT ), where
L = (I − A)−1, with the input. Intuitively, Aij captures the “influence” between neighbors i and j, while
the resolvent aggregates this influence over all paths, thus capturing the underlying topology. In Section
3.3, we present the detailed parameterization scheme used in Chimera which is important for both empirical
performance and numerical stability.

The main bottleneck lies in the computation of the mask matrix, whose naive implementation incurs a cubic
cost. We propose two algorithmic optimizations to mitigate this cost while maintaining performance:

1. We specialize the method for the subclass of directed acyclic graphs (DAGs). This is motivated by the
fact that many graph topologies can be canonically decomposed into multiple DAGs. For example, an
undirected line graph can be decomposed into two directed line graphs (Fig 2), while a grid graph can
be divided into four directed grid graphs (Fig 3). We prove that for this subclass, the resolvent can be
computed by running a recurrence that is linear in the number of nodes and edges. We further propose a
squaring technique to compute the resolvent efficiently on modern hardware accelerators by leveraging
matrix multiplications, at a quadratic cost in the number of vertices. This cost is optimal in the worst
case, it can be improved when the underlying graph is“structured”—line graphs can computed in linear
time via existing Mamba-2 kernels

2. We relax the exact computation of the resolvent for general graphs with a finite sum approximation of
the Neumann series, i.e. (I − A)−1 =

∑d
i=0 Ai, where d is the diameter of the graph. We can efficiently

compute this approximation with a squaring technique, capturing the global topological structure. We
further show that the finite sum approximation performs as well as the method with the sum of infinte
terms.

Overall, we make the following contributions:

• We propose Chimera, a unified model that directly incorporates graph topology in a principled way by
generalizing SSMs. This is in contrast with existing approaches that apply attention or SSMs as a black
box on “flattened data” with additional heuristics.

• We introduce algorithmic optimizations to improve the method’s efficiency by specializing it to DAGs and
approximating the resolvent using a finite sum, while preserving performance. We show that for canonical
modalities such as images and language, where data can be decomposed into DAGs, this finite-sum
approximation becomes exact.

• We demonstrate that Chimera consistently achieves strong performance across diverse domains including
language, images, and graphs—outperforming BERT (Devlin et al., 2019) with a GLUE score (Wang et al.,
2019) of 0.7, surpasses ViT (Dosovitskiy et al., 2021) on ImageNet-1k (Deng et al., 2009) classification
by 2.6%. Furthermore, our method outperforms strong baselines on the Long Range Graph Benchmark
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(LRGB) (Dwivedi et al., 2022), where we show that our model is capable of modeling both long and short
range interactions nodes, while respecting the graph structure.

2 Preliminaries

We introduce State Space Models (SSMs), which are recurrent models designed to process sequential data,
such as language and audio. We formulate SSMs in their recurrent form and then introduce the Structured
Masked Attention (SMA) (Dao and Gu, 2024) representation that unrolls and vectorizes this recurrence as a
matrix M acting on the input X. This SMA representation would allow us to show that SSMs inherently
operate on a directed line graph topology.

2.1 Overview of State Space Models

SSMs, such as Mamba-2 (Dao and Gu, 2024), Linear Attention (LA) (Katharopoulos et al., 2020), RetNet (Sun
et al., 2023), are recurrent sequence-to-sequence models that feature a linear hidden-state transition function.
This function is typically data-dependent which is known to improve model performance (Hwang et al., 2024).

Formally, let X ∈ RT ×D denote the input sequence of T tokens, where each token has D channels. Let the
size of the hidden state be d. Let Y ∈ RT ×D be the output of the sequence-to-sequence model. Then, SSMs
first compute the following matrices:

B = fB(X), C = fC(X), V = fV (X) ∈ RT ×d, (1)

where fB, fC , fV are model specific data dependent functions. For instance, in Mamba-2 each of these
functions is a composition of a linear projection of X along the channel dimension, followed by a short
convolution layer along the sequence dimension and a Swish activation function (Ramachandran et al., 2017).
In Dao and Gu (2024), it was shown that we can view the B, C, V matrices as analogs of the key, query,
value matrices in self-attention, respectively.

Let vi = V [:, i] ∈ RT denote the input corresponding to channel i. Let Bt = B[t, :], Ct = C[t, :] for any
time t. Let yi

t = Y [t, i] and vi
t = vi[t]. Then, the model computes the following recurrence, starting with the

hidden state vector hi
−1 = 0 ∈ Rd:

hi
t = ath

i
t−1 + btBtv

i
t, (2)

yi
t = CT

t hi
t, (3)

where at, bt are model-specific parameters that characterize the SSM. LA sets at = bt = 1, RetNet sets
at = γ, bt = 1 for a learnable parameter γ. In contrast, Mamba-2 sets at, bt in a data-dependent manner that
implicitly encodes a gated memory mechanism known as selectivity or the selection mechanism. This allows
the model to select and propagate important tokens across long sequences. Specifically,

∆ = f∆(X) ∈ RT ; at = exp(−∆t), bt = ∆t ∈ R, (4)

where ∆ is the selectivity matrix, ∆t is the tth element of the vector, and f∆ like fB, fC , fV is a data-
dependent function. Selectivity works by assigning larger values ∆t to important tokens, amplifying their
contribution to the previous hidden state, while assigning smaller values ∆t to unimportant tokens, which
preserve the past hidden state with minimal influence from these tokens.

2.2 The Structured Masked Attention Representation

Dao and Gu (2024) introduced the Structured Masked Attention (SMA) representation for SSMs, which
vectorizes the time-stepped recurrence (Eq. 3) as a matrix multiplication, Y = MV . 1 Here, M depends on
the data-driven matrices B, C, and ∆, and can be expressed as M = L ◦

(
CBT

)
, where L is a mask derived

from ∆. One can obtain this formulation by unrolling the recurrence across all time steps.
1Not all SSMs admit an SMA representation. We focus on those that do, such as LA, RetNet, and Mamba-2. In this work,

we use the term “SSMs” specifically to refer to this restricted class.
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Figure 1: SSMs inherently operate on a directed line graph topology: SSMs modeling a sequence of tokens
in the recurrent representation (left), the structured mask matrix from the SMA representation of SSMs
(center), The underlying directed line graph topology (right).

Formally, define B̄t = btBt, and recall from Section 2.1 that bt = ∆t, at = exp(−∆t) for Mamba-2; bt = 1,
at = γ for RetNet; and bt = 1, at = 1 for Linear Attention. Then the output Y of the recurrence (Eq. 3) can
be vectorized as,

Y = MV = (L ⊙ CB̄T )V , (5)

where the mask matrix Lij = 1[i ≥ j] Πj<k≤iak,

L =


1 0 · · · 0
a1 1 · · · 0

a1a2 a2 · · · 0
...

... . . . ...
a1a2 · · · aT −1 a2a3 · · · aT −1 · · · 1

 . (6)

The SMA representation of the recurrence (Eq. 3) is useful because it neatly isolates the effect of the
underlying topology within the recurrence computation into the mask matrix L (Sec. 3) This property will
allow us to generalize SSMs to arbitrary topologies by appropriately formulating the structured mask L.

3 Chimera: Incorporating Graph Topology

In this section, we introduce Chimera, a unified model that directly incorporates the underlying graph
topology of a domain by mathematically generalizing SSMs. This contrasts to existing methods, such as
Behrouz and Hashemi (2024); Devlin et al. (2019); Liu et al. (2021), that use attention or SSMs as a black-box
applied to ‘flattened data’ and rely on inductive biases to incorporate structural information.

Our motivation stems from the fact that SSMs on causal language modeling task do not require position
embeddings and naturally capture the sequence order with their recurrence. We seek to formalize this result
which then allows us to generalize it to arbitrary graphs. To this end, we begin by defining the resolvent of a
linear operator and interpret its action when this operator is the adjacency matrix.

3.1 Resolvent of an Adjacency Matrix Accumulates Influence Along All Paths

A graph consists of a set of nodes V that represent data elements, and edges E that encode the underlying
topological structure. We conceptualize the associated adjacency matrix A ∈ R|V|×|V| as capturing the
influence between neighboring nodes. Specifically, Aij is the influence that node j has on node i, for each edge
(i, j). The desideratum is to extend the notion of influence to all node pairs by incorporating the graph’s
structure, accounting for all possible paths between them. To model this cumulative influence, we introduce
the concept of the resolvent of a linear operator
Definition 3.1 (Resolvent of a Linear Operator (Reed and Simon, 1980)). Let A ∈ RT ×T be a linear
operator, I the identity operator, and λ a complex number. Then, the resolvent operator is defined as:

R(λ, A) = (λI − A)−1, (7)
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which exists for all complex numbers λ that are not in the spectrum of A, i.e., λ /∈ σ(A). In this work, we
set λ = 1 to remain in the field of real numbers, and this is done without loss of generality, as any choice of λ
is equivalent upto scaling of the model.

We now demonstrate how the resolvent operator captures the influence between any two nodes in the graph.
Observe that the resolvent operation can be expanded using the Liouville-Neumann series if the operator
norm of the adjacency matrix is strictly less than 1, i.e. ∥A∥ < 1,

R(1, A) = (I − A)−1 =
∞∑

k=0
Ak. (8)

Intuitively any term, Ak
ij , in this expansion represents the influence between nodes i and j accumulated

across all paths of length exactly k connecting them. We formalize this in the following Proposition 3.2.
Proposition 3.2 (Ak accumulate influence through paths of length k). Given the weighted adjacency matrix
A ∈ RT ×T of a graph G = (V, E) with |V| = T , where Aij is the weight of the (i, j) edge of the graph. Then
(i, j)th entry of Ak is given as,

(Ak)ij =
∑

p1,p2,...,pk−1

Aip1Ap1p2 · · · Apk−1j ,

where (p1, . . . , pk−1) is an ordered sequence of vertices forming a path of length k from node i to j.

Therefore, the series (I − A)−1
ij (Eq. 8) sums up the influence of node i on node j over all possible lengths.

3.2 SSMs operate on a Directed Line Graph

We now show that SSMs naturally operate on a directed line graph. Specifically, let V be the set of tokens,
and E be the edges connecting token t to the next token t + 1. Let the weighted adjacency matrix be
As,t = 1[t=s+1]at, where at is the SSM-specific parameter defined in Section 2.2.

Recall from Section 2.2 that SSMs are equivalent to the matrix action of M = L ⊙ (CBT ) on the input. We
make the key observation that L is precisely the resolvent of A, that is L = (I − A)−1. This mathematically
ties SSMs’ recurrence to the directed line graph topology, with the mask encoding the topology (Fig 1).
Proposition 3.3. Under the notation established in Section 2, consider a weighted directed graph G with nodes
V = {0, · · · , T − 1}, edges E = {(i − 1, i)|i ∈ V, i > 0}, and the edge weights W = {w(i−1,i) = ai|i ∈ V, i > 0}.
Let A be the weighted adjacency matrix of incoming edges,

A =


0 0 0 · · · 0
a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0 0 aT −1 0

 , (9)

then L =
∑∞

i=0 Ai = (I − A)−1, and consequently, y = ((I − A)−1 ⊙ CB̄T )V .

We interpret this result intuitively: In a directed line graph, there is exactly one path between the tokens
i,j with i < j, and the corresponding mask matrix entry Lij =

∏
i≥k>j ak, reflects the cumulative influence

of the intervening tokens along this path. Furthermore, Lij = 0 for i < j restricts influence in the forward
direction, ensuring causality. This shows that SSMs inherently operate on a directed line graph with the L
matrix encoding the topology.

3.3 Generalizing SSMs to Arbitrary Graph Topologies

Building on Proposition 3.3, we can generalize SSMs from causal sequences to arbitrary graph topologies.
Specifically, we compute the resolvent of the adjacency matrix, A, with output ((I − A)−1 ⊙ (CB̄T ))V .

5



Under review as submission to TMLR

We focus on the parameterization of A with the following key points: 1. It ensures the numerical stability
of the method by addressing cases of non-invertibility or poor conditioning of resolvent; 2. It generalizes
Mamba-2’s selectivity that allows for modeling long-range dependencies.2

Formally, consider a graph G = (V, E) with |V| = T nodes, where each node has D channels. Let d denote
the generalized hidden state size. For each node, we compute,

B = fB(X), C = fC(X), V = fV (X) ∈ RT ×d, (10)
∆ = f∆(X) ∈ RT , (11)

where the functions fB , fC , fV (X), f∆ are linear projections applied to the input, followed by a local graph
convolution over neighboring nodes and a Swish activation as chosen in Mamba-2. Furthermore, if the data
set features edge embeddings E ∈ R|E|×D, we define ∆′ = f∆′(Z) ∈ R|E|, where Z ∈ RD is an edge embedding,
as the selectivity matrix corresponding to the edges. Here f∆′ is computed similarly to f∆ as in equation 11.

We parameterize the A matrix for each edge (i, j) ∈ E as,

Aij = exp
(

−
∆i + ∆j + ∆′

(i,j)

3

)
, (12)

to incorporate context from both ends of the edge (i, j) as well as the edge embeddings. Here ∆i, ∆j

and ∆′
(i,j) are are the learned selectivity parameters for the nodes i, j and edge (i, j) respectively. To add

directionality to Aij and to further increase the representational power of our model, we can also maintain

two (different) ∆’s such that Aij = exp
(

− ∆(1)
i

+∆(2)
j

+∆′
(i,j)

3

)
.

Note that the matrix I − A may be non-invertible or poorly conditioned, which would inhibit inverse
computation and stable training of the model. We mitigate this issue with a data-dependent normalization
parameter Ψ = fΨ(X) ∈ RT , computed similarly to ∆, and perform a row-wise normalization of the adjacency
matrix using Ψ. Specifically, for each row i ∈ [T ], we apply:

A[i, :] = γA[i, :]
1T A[i, :] + exp(−Ψi)

,

where γ is a scaling hyperparameter. The following proposition shows that this normalization guarantees the
convergence of the Neumann series for the adjacency matrix A.
Proposition 3.4. Under Gaussian initialization, the row-wise normalization strategy ensures that ∥A∥ < 1
and ∥(I − A)−1∥ is bounded with probability > 1 − Φ( −1

2γ ).

The proof for this proposition in Appendix A.1. Finally, we compute the resolvent matrix L = (I − A)−1

and the output y as (L ⊙ CB̄T )V .

4 Chimera With Improved Efficiency

While Chimera supports arbitrary graph topologies, computing the resolvent incurs a cubic cost in the number
of nodes, which can be prohibitively expensive for large graphs.

In this section, we propose two algorithmic optimizations to mitigate this cost: First, we specialize Chimera
to a tractable yet expressive subclass of Directed Acyclic Graphs (DAGs) for which the resolvent can be
computed in linear time by running a recurrence on the topologically sorted graph. Second, for general
graphs, we relax the resolvent computation using a finite approximation, achieving quadratic complexity of
Transformers without domain-specific heuristics.

2Our approach applies to any SSM with an SMA representation and in this work, we specifically use Mamba-2.
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Figure 4: Chimera on DAGs: A visualization of the normalized recurrence. The absence of cycles in DAGs
enables a recurrent view of the method which allows for a fast linear-time computation.

Figure 2: Canonical DAG decomposition of undirected line graph topology (left) into two directed line graph
topologies (right).

Figure 3: Grid graph (left). The canonical 2D-DAG decomposition of the grid graph (right). These graphs
are sufficient to capture the influence between all pairs of nodes in the undirected grid graph.

4.1 Chimera on DAGs

In this section, we introduce a tailored normalization scheme as well as a linear-time recurrent algorithm for
Chimera on DAGs. We further propose a modern accelerator-friendly technique to compute this resolvent
efficiently by leveraging matrix multiplications, although at the cost of quadratic FLOPs.

Our choice of the DAG subclass is motivated by its expressivity. Topologies such as undirected line and grid
graphs can be canonically decomposed into DAGs: line graph divides into two directed line graphs (Fig 2)
and grid graph divides into four directed grid graphs (Fig 3). This allows for efficient Chimera that preserves
the grid topology of an image.

4.1.1 Chimera on DAGs: The method

Formally, consider a DAG, G = (V, E), with |V| = T nodes, each with D channels and a hidden state
size of d. For any node i, let p(i) be the set of its parents. Let B, C, V , ∆ be the input projections as
defined in Section 3. We define the adjacency matrix A as Aij = exp(−∆ij) for each (i, j) ∈ E , and set
B̄i = (

∑
(i,j)∈E ∆ij)Bi for each node i. In this work, we define ∆ij = (∆i + ∆j)/2, but more generally one

can take ∆ij = f(∆i, ∆j) for any suitable (e.g. symmetric) function f of the nodewise parameters. Then
the output y = (L ⊙ (CB̄T ))V .

We first show that the resolvent (I − A)−1 exists.
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Proposition 4.1. For a DAG, A is nilpotent, that is AK = 0. Therefore, the inverse (I − A)−1 exists and
is given by the finite sum:

L = (I − A)−1 =
K−1∑
k=0

Ak. (13)

While the resolvent always exists, we note that its entries can become exceedingly large which can cause
numerical instabilities. To show this, we first represent this method in its recurrent view in Prop. 4.2 (and is
visualized in Figure 4).
Proposition 4.2. Our method computes the following recurrence on each channel vi of V :

hi =
∑

j∈p(i)

Aijhj − B̄ivi, yi = CT
i hi, (14)

where hl = 0 for all leaf nodes l.

Recall from Section 3.1 that each Lij represents the cumulative sum of all paths from node j to i, and in the
worst case, the number of such paths and its resolvent entry grows exponentially with distance. To address
this, we introduce a normalization scheme built directly into the recurrence:
Proposition 4.3. The normalized method is:

hi = 1√
|p(i)|

∑
j∈p(i)

(Aijhj − ln(Aij)Bivi) , (15)

yi = CT
i hi. (16)

This normalization ensures that Var(CT
i hi) ≤ 1 under the assumption that the vectors {Bivi, Ci}i are i.i.d.

Gaussians, that is Bivi, Ci ∼ N (0, Id).

The assumption that for all i we have Bi, vi, Ci ∼ N (0, Id) is justified given that weights are usually
initialized with zero-mean and scaled-identity covariance (Xavier initialization Glorot and Bengio (2010)), in
addition to the fact that such distributions are approximately preserved throughout training via normalization
techniques. The proof follows by induction on the time step t, ensuring that the output variance is bounded
by 1, Var(CT

i hi) ≤ 1. The detailed proof in Appendix A.2. To incorporate this normalization in the SMA
representation, we define,

Ā = 1√
|p(i)|

A, B̄ = ln(Aij)√
|p(i)|

B, L = (I − Ā)−1, (17)

and compute the output y = (L ⊙ (CB̄T ))V .

4.1.2 Chimera is efficient on DAGs

Finally, we highlight that DAGs are a particularly important case of Chimera because of additional efficiency
benefits, both through recurrent and vectorized implementations.

Linear-Time Complexity in the Recurrent View The intuition for linear complexity is that the
resolvent operation for DAGs is finite because of the lack of cycles. From the adjacency matrix perspective,
A is nilpotent, i.e. Ak = 0, where k is the diameter of the graph (Prop 4.1). Thus, when running
Chimera as a recurrence on the DAG, the resolvent operation converges after one pass over the graph in the
topologically-sorted order, which takes linear time.
Proposition 4.4. The Chimera structured mask matrix L can be computed in O(|V + |E|) complexity where
|V|, |E| is the number of vertices and edges of the graph, respectively.

The proof is provided in Appendix A.3. We note that the linear-time complexity of Mamba-2 can be seen as
a special case of Theorem 4.4 specialized to the directed line graph, where both |V| and |E| is equal to the
sequence length.
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Table 1: Comparing Chimera on the undirected line graph (UG), and on DAG decomposed directed line
graphs (DAG) with other state-of-the-art models including M2 (Fu et al., 2023), MLP-Mixer (Tolstikhin et al.,
2021), FNet (Lee-Thorp et al., 2022), BERT (Devlin et al., 2019) on GLUE benchmark. Chimera outperforms
all baselines including BERT with a linear time complexity. Here the best numbers are highlighted in bold
and the second best numbers for each task are underlined.

Method #Params Pretrain GLUE Tasks GLUE
AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT-Base 110M 1.59 67.3 84.1 89.8 91.2 77.2 91.2 87.5 54.6 88.9 83.2
MLP-Mixer 112M 1.77 63.5 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5
FNet 112M 1.94 61.3 74.9 82.1 85.7 63.6 87.6 86.4 42.7 83.1 75.8
M2 116M 1.65 65.9 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9
Chimera (UG) 110M 1.49 68.5 83.63 88.98 89.32 73 93.67 89.4 56.95 88.82 82.97
Chimera (DAG) 110M 1.46 68.9 84.11 89.78 89.77 77.98 93.69 90.36 57.08 88.68 83.93

Improving Efficiency Through Matrix Multiplications Finally, we note that on modern hardware
accelerators such as GPUs and TPUs, various computational algorithms can have different efficiency tradeoffs.
For example, on directed line graphs, the naive computation of SSMs and RNNs as a recurrence is not
parallelizable and is inefficient in practice (Gu and Dao, 2023). In the case of DAGs, we present a technique
to reduce both the forward and backward pass for Chimera to leverage only matrix multiplications which are
heavily optimized on modern accelerators. Although this technique is highly parallelizable, it requires the
materialization of the adjacency matrix which is quadratic in the number of nodes, |V|. In the worst-case, i.e.
a complete transitive DAG with |E| = |V|(|V|−1)

2 ), this bound is tight. However, for specialized structured
subclasses (e.g., line graphs) where the number of edges is O(V), this cost can be significantly reduced (e.g.
via existing Mamba-2 kernels for line graphs). The proof for the following theorem is in Appendix A.4.
Theorem 4.5. In case of Chimera on DAGs, the forward pass can be computed with O(log(dia(G))) matrix
multiplications where dia(G) is the diameter of the graph (i.e. length of the longest path), and the backward
pass can be computed with O(1) matrix multiplications.

4.2 Approximate Chimera for General Topology

While DAGs allow for efficient computation in structured domains like images and language, directly computing
the resolvent L for general graph topology remains computationally expensive. To address this, we use a
finite-sum relaxation of the resolvent operator and truncate its corresponding Neumann series sum (Eq. 8)
at some maximum power k ∈ N > 0. Specifically, let A be the (weighted) adjacency matrix of the graph
topology defined in Section 3.3, then,

L =
∞∑

i=0
Ai ≈ L̂ =

k∑
i=0

Ai. (18)

We choose k = diam(G), the diameter of the graph, to ensure that L̂ has access to the global structure of the
graph, that is, it includes contributions from every edge and node in the graph.
Proposition 4.6. If k ≥ dia(G), then for any pair of nodes (i, j), if Lij > 0 in the original method, then
L̂ij > 0 in the finite-sum relaxation.

As in Section 4.1.2, we can compute this approximation efficiently using the squaring trick:

L̂ = (I + A)(I + A2)(I + A4) · · · (I + Ap), (19)

where p is the smallest power of 2 larger than or equal to the graph diameter dia(G). This reduces the
computational cost of the method to O(log(dia(G))) matrix multiplications.

For general graphs, since we cannot exploit the underlying structure of adjacency matrix A to design efficient
algorithms, the worst-case complexity of the finite sum approximation remains quadratic. This highlights a
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crucial point: as the complexity of the underlying structure increases, the computational cost of calculating
the matrix L will also grow accordingly.

5 Experiments

In this section, we will demonstrate that directly incorporating topology is a powerful inductive bias for diverse
domains such as language, images and graphs, eliminating the need for domain-specific heuristics. Chimera
consistently achieves state-of-the-art performance in these domains. On language, it outperforms BERT on
the GLUE benchmark (Wang et al., 2019) by a GLUE score of 0.7. On images, it surpasses ViT models on
the ImageNet-1k classification (Deng et al., 2009) task by 2.6%. On general graphs, Chimera outperforms
strong baselines on the Long Range Graph Benchmark (Dwivedi et al., 2021) which highlights our method’s
ability to model long range interactions on graphs.

5.1 Masked Language Modeling

We evaluate Chimera on bidirectional language modeling, which has a line graph topology (Fig. 2). We
test two Chimera variants: the general method3 (Sec. 3) applied to an undirected line graph, and the DAG
method (Sec. 4.1.1), applied to the canonical DAG decomposition of undirected line graphs into two directed
line graphs and summing the resolvents of both DAGs (Fig. 2). Both methods are trained on the Masked
Language Modeling (MLM) (Devlin et al., 2019) task on the C4 dataset (Raffel et al., 2020) for 70k steps,
following the recipe used in M2 (Fu et al., 2023). The models are then fine-tuned on the GLUE benchmark.
For baselines, we compare our methods with other sequence mixers such as M2 Fu et al. (2023), as well as
models such as MLP-Mixer Tolstikhin et al. (2021) and FNet Lee-Thorp et al. (2022), in addition to the
Transformer based BERT model Devlin et al. (2019). We choose these baselines to highlight the performance
of our model when compared to different type of sequence mixing paradigms applied to large scaled language
modeling tasks. We refer the reader to Appendix C for the architectural and hyper-parameter details.

From Table 1, observe that while BERT outperforms other linear baselines such as M2, MLP-Mixer, FNet it
does so with an additional quadratic cost. In contrast, Chimera achieves the best of both worlds, incurring a
linear time complexity while achieving strong performance. This capability arises from two key factors: first,
our parameterization of the adjacency matrix allows the model to effectively modulate the influence between
tokens in the sequence, leading to strong performance. Second, the structured nature of the adjacency matrix
enables a fast, linear-time resolvent operation, improving the method’s computational efficiency. Additionally,
note that our undirected graph (UG) variant performs competitively with BERT while surpassing other
recent linear baselines.

5.2 ImageNet-1k Classification

Table 2: Top-1, Top-5 accuracies of various meth-
ods on ImageNet-1K. Chimera outperforms the stan-
dard attention baseline ViT-B, as well as other sub-
quadratic baselines.

Method (88M) Top-1 (%) Top-5 (%)
Acc AccEMA Acc AccEMA

ViT-B 78.8 80.6 94.2 95.2
S4-ViT-B 79.4 80.4 94.2 95.1
Hyena-ViT-B 78.4 76.4 94.0 93.0
Chimera-ViT-B 81.4 82.1 95.4 95.9

Table 3: Ablation: Comparing 2D grid structure with
1D flattening of patches. We see that maintaining the
2D DAG structure outperforms method where the
underlying topological structure is flattened, showing
maintaining the topological structure matters.

Method (22M) Top-1 (%) Top-5 (%)
Acc AccEMA Acc AccEMA

Fwd (1D) 73.8 73.8 91.6 91.6
Fwd & Rev (1D) 76.5 75.6 93.4 92.8
2D DAG 77.8 76.7 93.9 93.5

We evaluate Chimera on the ImageNet-1k (Deng et al., 2009) classification task that has a grid graph topology.
We compare Chimera applied to the 2D-DAG decomposition (Figure 3) topology against state-of-the-art

3We use a slightly modified normalization scheme for the undirected line graph method to allow for larger selectivity values
in the adjacency matrix. See Appendix B.1 for details
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Figure 5: Progressively destroying the 2D grid graph topology. Fwd & Rev (top): 1D flattened grid with
bidirectional edges. Fwd (bottom): 1D flattened grid graph with only forward edges.

Table 4: Evaluation of Chimera on LRGB Tasks (Dwivedi et al., 2022). The first section shows the best
performing numbers cited in the papers that introduce the given baselines. The second section shows the
result of better hyperparameter tuned baselines introduced by Tönshoff et al. (2023). Finally, we also compare
with other baselines that use SSMs as a blackbox replacement for a Transformer. Here the best numbers are
highlighted in bold.

Method (< 500k params) Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GCN (Kipf and Welling, 2016) 0.5930±0.0023 0.3496±0.0013 0.1268±0.0060 0.0841±0.0010
GINE (Hu et al., 2019) 0.5498±0.0079 0.3547±0.0045 0.1265±0.0076 0.1339±0.0044
Gated-GCN (Bresson and Laurent, 2017) 0.5864±0.0077 0.3420±0.0013 0.2873±0.0219 0.2641±0.0045
SAN+LapPE (Kreuzer et al., 2021) 0.6384±0.0121 0.2683±0.0043 0.3230±0.0039 0.2592±0.0158
Exphormer (Shirzad et al., 2023) 0.6527±0.0043 0.2481±0.0007 0.3975±0.0037 0.3430±0.0108
GPS+BigBird (Rampášek et al., 2022) 0.5854±0.0079 0.2842±0.0130 0.2762±0.0069 0.2622±0.0008
GraphGPS+Transformer (Rampášek et al., 2022) 0.6575±0.0049 0.2510±0.0015 0.3689±0.0131 0.3774±0.0150

GCN (Tönshoff et al., 2023) 0.6860 ± 0.0050 0.2460 ± 0.0007 0.2078 ± 0.0031 0.1338 ± 0.0007
Gated-GCN (Tönshoff et al., 2023) 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3880 ± 0.0040 0.2922 ± 0.0018
GINE (Tönshoff et al., 2023) 0.6621 ± 0.0067 0.2473 ± 0.0017 0.2718 ± 0.0054 0.2125 ± 0.0009
GraphGPS+Transformer (Tönshoff et al., 2023) 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4440 ± 0.0054 0.3884 ± 0.0055

Graph-Mamba (Wang et al., 2024) 0.6739 ± 0.0087 0.2478 ± 0.0016 0.4191 ± 0.0126 0.3960 ± 0.0175
Graph Mamba (Behrouz and Hashemi, 2024) 0.7071 ± 0.0083 0.2473 ± 0.0025 0.4393 ± 0.0112 0.3974 ± 0.0101

NeuralWalker (Chen et al., 2024) 0.7096 ± 0.0078 0.2468 ± 0.0005 0.4912 ± 0.0042 0.4398 ± 0.0033

Chimera (Ours) 0.7021 ± 0.003 0.2433 ± 0.0006 0.4460 ± 0.007 0.3977 ± 0.016

ViT based models, a standard architecture that is used for ImageNet classification. Specifically we use ViT-B
which has 88M parameters as well as other SSM based baselines like Hyena (Poli et al., 2023), S4 (Gu et al.,
2022) in Table 2 to highlight how our method compares with other state-space model based architectures.
We note that all these baselines flatten the image into a 1D sequence and apply 1D sequence models, and
do not take into account the underlying topology. For our experiments, we simply replace the SSD layer
in the Mamba block introduced in Dao and Gu (2024) with Chimera, and use the ViT-B training recipe
with minimal hyperparameter tuning.

Table 2 shows that Chimera’s 2D-DAG decomposition outperforms ViT by 2.6%. We note that our method
does not require any additional position embeddings which are still an active area of research for ViT (Heo
et al., 2024). We outperform methods such as Hyena (Poli et al., 2023) by 3%, and S4 (Gu et al., 2022) by
2% that linearize the data and then apply an SSM on it.

Furthermore, to demonstrate the importance of incorporating topology, we perform an ablation where we
progressively degrade the grid-graph structure, observing a monotonic drop in performance. We consider
three topologies: 2D DAG is the 2D DAG decomposition that retains the grid structure (Fig 3, right); Fwd
& Rev (1D) flattens the grid into a 1D sequence with bidirectional edges like ViT (Fig 5, top); Fwd (1D)
is a 1D graph with only forward edges (Fig 5, bottom). We observe from Table 3 that as the topology is lost,
the accuracy drops from 77.8% (2D-DAG) to 76.5% (Fwd & Rev) to 73.8% (Fwd).

5.3 Long Range Graph Benchmark

We evaluate Chimera on the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). This benchmark
comprises tasks designed to challenge models in their ability to effectively capture both local and long-
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range interactions within graph structures. We compare against convolution-based (GCN Kipf and Welling
(2016), GatedGCN Bresson and Laurent (2017)), Transformer-based (GraphGPS Rampášek et al. (2022)) ,
Mamba-based (Graph-Mamba Wang et al. (2024), Graph Mamba Behrouz and Hashemi (2024)), and other
baselines like GINE Hu et al. (2019), as well as their hyperparameter tuned versions introduced in Tönshoff
et al. (2023). These baselines incorporate topology using a variety of techniques: convolution ones use local
aggregation, transformer ones use local and global aggregation via position embeddings, and Mamba ones use
“data flattening” along with random walks, position embeddings, and local encodings. The diversity of these
methods highlights the significant research effort dedicated to heuristics to incorporate topology, in contrast
to our unified approach.

We note that while recent methods like NeuralWalker Chen et al. (2024) achieves state-of-the-art results on
LRGB, but unlike Chimera and our chosen baselines, it modifies the graph structure by sampling subgraphs
via random walks and modeling them sequentially. As our goal is to evaluate models that operate directly
on the original graph. That said, NeuralWalker is complementary and could potentially be combined with
Chimera layers.

We show that Chimera achieves strong performance across all LRGB tasks (Table 4). Notably, we observe that
on tasks such as Peptides-Func and Peptides-Struct, where convolution-based models typically outperform
transformers, Chimera outperforms or matches their performance. Furthermore, on tasks like PascalVOC
and COCO where transformers do well, Chimera is competitive with the best baselines. This validates our
grounded approach which effectively captures both local and global information.

In Table 5, we evaluate the approximate variant of Chimera with a finite-sum relaxation (Sec 4.2) that
truncates the Neumann series at the diameter of the graph. We show that the approximation variant matches
the strong transformer baseline of GraphGPS, however fully leveraging the entire graph structure in Chimera
provides clear performance benefits.

Table 5: Ablation: Chimera with approximate resolvent is competitive with the Transformer baseline. This
alleviates the cubic cost of evaluating the exact resolvent.

Method Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GraphGPS+Transformer 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4440 ± 0.0054 0.3884 ± 0.0055
Chimera (Approx) 0.6979 ± 0.0057 0.2420 ± 0.0013 0.4353 ± 0.00307 0.3833 ± 0.0006
Chimera (Ours) 0.7021 ± 0.003 0.2433 ± 0.0006 0.446 ± 0.007 0.3977 ± 0.016

6 Limitations

Our work has a few limitations, the most significant being that for general graphs, fully capturing all node
interactions results in a cubic computational cost. This can be reduced to a quadratic cost through a
straightforward approximation that truncates the infinite sum to a finite terms—determined by the diameter
of the graph. That said, we still believe there is significant potential for hardware optimization just as
Mamba-based methods benefited greatly from dedicated CUDA kernels. Nevertheless, we note that the
current implementation of Chimera achieves a reasonable time ratio of ∼ 1.5× compared to Transformer-based
architectures which we believe provides a starting point for further exploration across novel domains.

7 Conclusion and Future Work

We propose Chimera, a unified framework that directly incorporates the underlying graph topology in a
principled way. Unlike prior approaches that apply attention or State Space Models (SSMs) by flattening the
data, we instead generalize SSMs—originally designed to operate on sequences without position embeddings—
to any graph topology. We show that Chimera achieves strong performance across domains including language,
vision, and graph tasks, consistently surpassing baselines, which validates our premise and the proposed
solution. We further show that for the subclass of graphs which can be decomposed into DAGs, the recurrent
form of Chimera affords linear complexity.
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We believe that developing optimized kernels for specific graph structures such as grid-graphs—along with
exploring graph approximations through DAG decompositions—is a promising direction for future work. We
are hopeful that the community will apply Chimera to a broader range of domains with inherent topological
structures and continues to develop more efficient and performant extensions of Chimera.
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A Deferred Proofs

A.1 Proof of Proposition 3.4

Proof. Let ϵi ∼ N (0, IT ) be T i.i.d. random Gaussian vectors. Assuming Gaussian initialization for the
adjacency matrix A, it can be expressed as:

A[i, :] = γϵi

∥ϵi∥ + exp(−Ψi)
. (20)

We first show that ∥A∥ ≤ γ < 1. From the concentration of the Gaussian random vector norm, ∥ϵi∥ ≥
√

T/2
for all tokens i, with probability ≥ 1 − exp(T/8). Since exp(−Ψi) ≥ 0, ∥ϵi∥ + exp(−Ψi) ≥

√
T/2. Consider

any unit vector u, then

∥Au∥ =
T∑

i=1

γϵT
i u

∥ϵi∥ + exp(−Ψi)
≤ γ

T∑
i=1

2ϵi√
T

≤ 2γ

√
Tϵ√
T

= 2γϵ < 1, (21)

with probability greater than 1 − Φ( −1
2γ ), were ϵi, ϵ ∼ N (0, 1). Finally, since the operator norm of ∥A∥ is less

than one, we apply Banach’s Lemma to get,

∥(I − A)−1∥ ≤ 1
1 − ∥A∥

, (22)

which implies that the inverse exists.

A.2 Proof of Proposition 4.3

Proof.

Var(CT
i hi) = 1

|p(i)|

 ∑
j∈p(i)

AijVar(CT
i hj) + ln(Aij)Var(CT

i Bivi)

 , (23)

= 1
|p(i)|

 ∑
j∈p(i)

AijVar(CT
j hj) + 2

d
ln(Aij)

 , (24)

where we have used the fact that Var(CT
j hj) = Var(CT

i hj), and that the variance of X 2 distribution with d
degrees of freedom is 2d. Let d ≥ 4, then

Var(CT
i hi) ≤ 1

|p(i)|

 ∑
j∈p(i)

Aij + 2
d

ln(Aij)

 ≤ 1
|p(i)|

∑
j∈p(i)

1 ≤ 1, (25)

where we have used the fact that Aij ∈ [0, 1].

A.3 Proof of Proposition 4.4

Proof. In the structured masked attention (SMA) framework Dao and Gu (2024), the computational complexity
is the cost of the matrix-vector multiplication by the mask matrix L = (I − A)−1. For DAGs, A is (up to
conjugation by a permutation) a lower-triangular matrix with |E| nonzero entries. Computing y = (I −A)−1x
reduces to solving the system (I − A)y = x via forward substitution.

We perform Gaussian elimination by iterating over the ordered list {0, . . . , |V| − 1} and choosing the pivots
(i, i). Since I − A is lower-triangular, each pivot operation affects only a single column rather than the
entire row, reducing the cost per step to O(nnz(A[:, i])), where nnz(·) denotes the number of non-zero entries.
Summing over columns, the complexity is,

O

 |V|∑
i

nnz(A[:, i])

 = O(nnz(A)) = O(|V| + |E|).
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For our motivating example of Mamba, I − A has exactly 2|V| nonzero entries, ensuring a linear-time
complexity.

A.4 Proof of Theorem 4.5

Proof. Backward pass. The local update rule of backpropagation requires applying the chain rule through
the matrix inverse operation, in particular, using the following identity applied to Y = (I − A),

∂Y −1

∂θ
= −Y −1 ∂Y

∂θ
Y −1 (26)

Because Y −1 is already computed in the forward pass, it can be cached, and then the marginal cost of the
local backpropagation is simply two extra matrix multiplications.

Forward pass. To compute L = (I − A)−1 more efficiently for DAGs, we leverage the equivalence of
Neumann series to the series L = I + A + A2 + · · · , which comes to a finite sum for DAGs due to the
nilpotence of A matrix. We compute this sum more efficiently using the “squaring trick” as,

(I − A)−1 = (I + A)(I + A2)(I + A4) · · · (I + Ak), (27)

where k is the smallest power of 2 larger than the graph diameter dia(G). This can be computed using
O(log(dia(G))) matrix multiplications to compute the powers of A for powers-of-two exponents, and then
O(log(dia(G))) matrix multiplications to multiply together the right-hand side.
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B Additional Experiments

B.1 MLM: Chimera on Undirected Line Graphs

For an undirected line graph (Figure 2, left), the adjacency matrix A takes the following form:

A =


0 a12 0 · · · 0

a21 0 a23 · · · 0
0 a32 0 · · · 0
...

...
... . . . ...

0 · · · 0 0 · · · 0 0 aT −1,T 0

 .

As discussed in Section 3.3, to ensure the existence of (I − A)−1, we introduced a row-wise sum normalization
strategy, wherein we normalized each row of the adjacency matrix with

∑
j Aij + Ψi. However, since this

constraint is designed for general graphs, it is not sufficiently expressive. Therefore, we instead use a strictyly
more expressive constraint for line graphs which enforces Aij · Aji + Ψi ≤ 1

4 on each simple cycle of the graph.
Proposition B.1. Under the above constraint, the inverse (I − A)−1 exists as for any two nodes, the sum
of all paths between them is upper bounded by

∑
i(1/4)i ≤ 1/3.

B.2 Imagenet: Parameter Sharing Ablation

We study the trade-off between sharing parameters for B, C across different graphs as a domain-dependent
design choice. We explore four settings: No sharing, Complete sharing, Row-wise sharing, and Diagonal
sharing across the four DAGs. From Table 6, we observe that diagonal sharing achieves the best performance,
indicating it strikes the optimal tradeoff between parameter sharing and other modes of increasing expressivity
for modeling image data.

Method (22M) Top-1 (%) Top-5 (%)
Acc AccEMA Acc AccEMA

None 77.10 76.13 93.55 93.15
Complete 77.25 76.09 93.75 93.21
Row-wise 77.46 76.57 93.76 93.37
Diagonal 77.80 76.69 93.87 93.53

Table 6: Ablation: Diagonal parameter sharing works
best.

B.3 Chimera When Both # Layers and # Parameters Are Controlled

Chimera’s architecture builds on the Mamba Block from Mamba-2, which utilizes a greater number of layers
than Transformers due to its higher parameter efficiency. In this section, we conduct an ablation study where
both the number of layers and total parameter count are controlled by adjusting the expansion factor e in
the Mamba Block to 4. Specifically, we compare three models on the bidirectional language modeling task:

• Chimera-12L: 12 layers, baseline configuration with 70M parameters.

• BERT-6L: 6-layer Transformer baseline with 70M parameters.

• Chimera-6L: 6 layers with an expansion factor of 4, maintaining the same parameter count as the
other models.

To reduce computational costs, we train these models on a reduced ablation setting with 98M steps instead
of the standard 245M steps and the results are summarized in the table below. Notably, Chimera-6L
and Chimera-12L achieve nearly identical performance, both significantly outperforming BERT-6L. This
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Table 7: Ablation: Chimera maintains strong performance when both number of layers and number of
parameters are controlled.

Model Evaluation Metrics
Masked Accuracy (↑) Cross-Entropy Loss (↓)

BERT-6L 0.6176 1.9466
Chimera-6L 0.6360 1.8108
Chimera-12L 0.6363 1.8142

demonstrates that Chimera’s improvements are not simply a result of increased depth but rather stem from
its core methodological advancements.
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C Architectural Details

Figure 6: Chimera’s Architecture: The output of the Chimera layer is embedded within the gated block
introduced in Mamba-2 (Dao and Gu, 2024). Here X matrix denotes the input to the block, and fc, fB , f∆ and
fV are data dependent projections defined in Section 2. The operator ⊙ denotes element-wise multiplications
between matrices, and ⊕ defines addition. The output from the Chimera layer is passed through a Gated-MLP,
a final projection fY , followed by a residual connection.

C.1 Masked Language Modeling

In Table 8, we provide the architectural and training details for BERT-B and Chimera on the MLM task.
For both the models, we follow the M2 recipe from Fu et al. (2023), adjusting the number of layers to 12
for BERT-B and 23 for Chimera to control for the number of parameters. We conducted a small sweep to
fine-tune the learning rate for Chimera, choosing 8e − 4 over BERT-B’s 5e − 4.

C.2 Imagenet-1k Classification

For the image classification experiments, we largely follow the ViT-B recipe with the following adjustments
as shown in Table 9, where the hyperparameters are carefully tuned—and hence different from Table 8—in
order to perform best on the image classification task. To control for the number of parameters, we adjust
the number of layers from 12 for ViT-B to 22 for Chimera. Additionally, we reduce the Cutmix augmentation
from 1.0 to 0.1, as Chimera’s stronger inductive bias mitigates the risk of overfitting.
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Table 8: Architectural and Training Details for BERT-B and Chimera on MLM

Parameter BERT-B (110M) Chimera (110M)
Model dimension (dmodel) 768 768
Layers 12 23
Max sequence length 128 128
Num Heads 12 12
Head size 64 64
Optimizer Decoupled AdamW Decoupled AdamW
Learning rate 5e − 4 8e − 4
Optimizer momentum β1 = 0.9, β2 = 0.98 β1 = 0.9, β2 = 0.98
Weight decay 1e − 5 1e − 5
Batch size 4096 4096
Learning rate schedule Linear decay with warmup Linear decay with warmup
Training steps 70k 70k
MLM Probability 0.3 0.3

In Table 10, we present the reduced setting used for our ablation studies in Tables 6 and 3, where we match
the number of parameters of ViT-S (22M).

Table 9: Hyperparameters used for ViT-B and Chimera for ImageNet-1k classification task

Parameter ViT-B (88M) Chimera (88M)
Image size 2242 2242

Optimizer AdamW AdamW
Optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
Weight init trunc. normal (std=0.02) trunc. normal (std=0.02)
Learning rate 1e − 3 1e − 3
Weight decay 0.05 0.05
Batch size 1024 1024
Training epochs 310 310
Learning rate schedule cosine decay cosine decay
Warmup epochs 10 10
Warmup schedule linear linear
Patch Size 16 16
Layers 12 22
Num Heads 12 12
Droppath 0.3 0.3
Randaugment (9,0.5,layers=2) (9,0.5,layers=2)
Mixup 0.8 0.8
Cutmix 1.0 0.1
Random erasing 0.25 0.25
Label smoothing 0.1 0.25
Stochastic depth 0.1 0.25
Exp. mov. avg (EMA) 0.99996 0.99996

C.3 Long Range Graph Benchmark

To train Chimera on the Long Range Graph Benchmark we follow a similar training recipe to that provided
in Rampášek et al. (2022) where we replace the Transformer layers with Chimera layers. Moreover, in line
with the baselines, we make sure that our models have less than 500k parameters. While training Chimera on
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Table 10: Key differences between the original and the ablation setting for Chimera

Parameter Chimera-S (2D)
Model dimension (dmodel) 384
Number of layers 22
Number of Heads 3
Droppath 0.1

graphs we remove the Gated-MLP layer Z defined in Figure 6. We did this to keep our training recipe as close
to that provided in Rampášek et al. (2022) and highlight the effectiveness of Chimera. The hyperparameters
used to train Chimera are provided in Table 11.

Table 11: Hyperparameters running Chimera on the Long Range Graph Benchmark

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP
Learning Rate 0.001 0.0015 0.0035 0.0035
Optimizer Adam Adam Adam Adam
dropout 0.1 0.1 0.05 0.05
#layers 8 8 8 8
hidden dim. 64 64 64 64
hidden state dim. 96 80 64 64
num heads 2 4 4 4
batch size 64 64 32 32
#epochs 200 200 200 200
norm LayerNorm LayerNorm LayerNorm LayerNorm
MPNN GCN GCN GCN GCN
#Param. 499k 504k 489k 489k
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