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ABSTRACT

Despite significant recent progress of Multimodal Large Language Models
(MLLMs), current MLLMs are challenged by “spatio-temporal” prompts, i.e.,
prompts that refer to 1) the entirety of an environment encoded in a point cloud
that the MLLM should consider; and simultaneously also refer to 2) actions that
happened in part of the environment and are encoded in a short ego-centric video
clip. However, such a holistic spatio-temporal understanding is important for
agents operating in the real world. To address this challenge, we first develop a
framework to collect a large-scale dataset. Using the collected “Reasoning about
Environments and Actions” (REA) dataset, we show that recent MLLMs indeed
struggle to correctly answer “spatio-temporal” prompts. Building on this dataset,
we study two spatio-temporal LLM (STLLM) baselines: 1) STLLM-3D, which
directly fuses point cloud, video, and text representations as inputs to the LLM; and
2) STLLM-Aligner, which aligns spatial context with video and text before LLM
decoding. Both baselines aim to enhance spatial understanding of environments
and temporal grounding of egocentric observations. On REA, the STLLM baselines
outperform existing models, demonstrating the effectiveness of our designs.

1 INTRODUCTION

Despite significant advances, current Multimodal Large Language Models (MLLMs) struggle to
combine 3D spatial understanding with temporal reasoning in video data. While MLLMs have
addressed multi-view understanding (Yeh et al., 2025) and other spatial reasoning tasks (Cheng et al.,
2024a; Yang et al., 2025), and while some MLLMs exhibit strong spatial understanding, they are
often trained solely on static image-text data. They hence lack the ability to model temporal dynamics,
such as action progression, causal dependencies, or event ordering. This reveals a fundamental gap,
motivating the need to develop a comprehensive spatio-temporal understanding.

To develop this, recent efforts by Zhu et al. (2025) utilize 3D positional embeddings to enhance the
2D features with spatial context. Further, Liu et al. (2025); Liu et al. (2024a); Li et al. (2024) have
enabled models to reason beyond 2D images and toward richer spatial representations by extending
existing datasets to incorporate spatial data. Despite these advances, existing MLLMs see the world
one frame at a time, i.e., grounded in the moment, and remain blind to the surrounding space. Notable
exceptions (Man et al., 2024; Huang et al., 2024; Ma et al., 2023) extend Vision-Language Models
for 3D situational awareness. These works incorporate additional 3D representations such as a point
cloud or depth as an input. This enables agents to localize themselves in a scene and respond to spatial
queries. However, these methods rely solely on static scene observations and do not incorporate
temporal understanding, limiting their ability to reason about dynamic events or evolving interactions.

In contrast, we envision a model that not only reasons about an unfolding event observed from an
egocentric perspective, but also understands it from an allocentric view, anchoring temporal local
motion in a broader world context. This is crucial for embodied AI, situational awareness, and spatio-
temporal question answering. E.g., robots interacting in the real world must interpret observations,
not only by recognizing the current action, but by situating it within the surrounding context.

To study joint spatial and temporal reasoning within a specified environment, we first develop a
Spatio-Temporal Understanding Question Answering (QA) data collection pipeline. It is built upon
work by Damen et al. (2018), a widely recognized benchmark for temporal understanding. Using
our pipeline, we collect the “Reasoning about Environments and Actions” (REA) data shown in
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Q We are performing a cooking 
     task as follows: close 
cupboard, open drawer, take 
knife, close tap, put down 
vegetables. Based on the video, 
what should I do next, and how 
can I get to the place where the 
next step takes place?

A You have already closed the cupboard and opened 
    the drawer to take the knife. Next, you should 
close the tap. To do this, move right to the sink 
and turn off the water.

…

sink

Q During closing the tap, would 
  it be easier to access the
oven or the washing machine?

A the oven is closer than the washing 
machine.

Q Does the hand closer to the 
    microwave oven change during 
the current action?

A Yes, the hand changes when operating the electric kettle.

…

Q Which of the following 
    objects does the person 
interact with next, given their 
previous actions and current 
motion? A. fridge, B. hob, C. 
oven, D. ladder.

A
The hob: they have just finished stirring the 

    vegetables in the pan and are approaching the hob.

…

Q Would it be closer for the 
    person now to bring the knife 
to the fridge or the oven?

A Right now, the oven is nearer given 
    the person is near the sink.

oven

washing 
machine

hob

fridge

…
…
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Figure 1: Spatial and temporal reasoning is needed to answer prompts in “Reasoning about Environ-
ments and Actions” (REA). Ego-centric videos only show part of the point cloud environment.

Fig. 1: it includes five tasks—relative direction, relative distance, find-my-item, furniture affordance
prediction, action planning—each designed to test different aspects of spatio-temporal reasoning.
We also study two “Spatio-Temporal LLM” (STLLM) baselines which enhance spatio-temporal
understanding by incorporating structured spatial knowledge into a video-language model.

On REA data, we show: 1) spatio-temporal understanding remains a challenge for current MLLMs,
as existing models achieve an overall ChatGPT-4o (OpenAI, 2024) LLM Judge accuracy of only
23.85% to 31.46% across tasks; and 2) our STLLM baselines reach 41.89% overall accuracy and
47.32% average categorical accuracy, highlighting that spatial and temporal cues are important.

In summary, our contributions are as follows: 1) we develop a dataset collection pipeline and
collect REA (see Sec. 3 for more); and 2) we study STLLM baselines to enhance spatio-temporal
understanding in language models (see Sec. 4 for more). Code and data will be released.

2 RELATED WORK

Image LLM. Recent commercial LLMs (OpenAI, 2024; Meta, 2024; Anthropic, 2024) have demon-
strated strong results across a range of image-language tasks, including image understanding and
chart and task-based question answering. To mimic, most modern, open-source image-language
models (Deitke et al., 2025; Bai et al., 2023; Wang et al., 2024a; Bai et al., 2025; Shi et al., 2025; Li
et al., 2025; Tong et al., 2024) adopt a common architecture: an image encoder, a connector module
that pools and projects visual features into the LLM’s embedding space, and a language decoder.
Post-training techniques such as visual instruction tuning (Liu et al., 2023) are often applied to further
enhance these models’ ability to understand and follow natural language instructions.

Video LLM. Early video-language models (Zhang et al., 2023; Cheng et al., 2024b) adopt the
image LLMs architecture: encode video frame features and connect them to an instruction-tuned
language model via a projection layer. Recent efforts pursue long-form videos (Wu et al., 2025; Chen
et al., 2025; Xu et al., 2025), improve streaming efficiency for real-time applications (Qian et al.,
2024; Zhang et al., 2025b; Chen et al., 2024b), and introduce memory to enable effective long-term
grounding and downstream question answering (Wang et al., 2024b; Mangalam et al., 2024).

3D LLM. Recent works (Hong et al., 2023; Chen et al., 2024a) also inject 3D information directly
into LLMs. Due to the limited availability of 3D datasets aligned with text, models are typically not
trained from scratch. Instead, most approaches extract 2D visual features and project them back into
3D representations, which are then aligned with an LLM’s embedding space for spatial reasoning.

Image+3D LLM. Extending beyond text-only reasoning with 3D inputs, recent works (Linghu et al.,
2024; Huang et al., 2024) interleave multimodal queries. When the images in the query are captured
from egocentric viewpoints of an agent in a 3D environment, these queries offer a more grounded
and accurate depiction of the agent’s surroundings and help the downstream task.

Video+3D LLM. A natural extension of Image+3D LLMs is reasoning over both egocentric video
and 3D environments. Towards this, recent models such as Video-3D LLM (Zheng et al., 2025) and
LLaVA-3D (Zhu et al., 2025) treat videos as sets of multi-view images, largely ignoring the temporal
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dynamics inherent in video data. As a result, they are naturally ill-suited for tasks that require
fine-grained spatial-temporal reasoning, such as ours. Moreover, many of these approaches require
extra information such as per-frame depth maps, which are not available in our dataset, making them
incompatible with our evaluation setting. Thus, these methods aren’t part of our baselines.

Data for spatial understanding. Several recent benchmarks assess spatial understanding in mul-
timodal vision-language models (Yeh et al., 2025; Fu et al., 2025; Yang et al., 2025; Zhang et al.,
2025c; Cheng et al., 2024a). While these datasets provide important testbeds for spatial reasoning,
and some take videos as input to evaluate cross-frame spatial relationships, they are not grounded in
human actions, limiting their relevance for tasks involving human-object interactions. In contrast,
we introduce a setting that requires two streams of visual input: one capturing the holistic structure
of the environment, and the other encoding local, dynamic changes within the scene, linking global
spatial context with fine-grained temporal cues essential for real-world embodied QA.

3 REASONING ABOUT ENVIRONMENTS AND ACTIONS (REA)

Our goal: equip MLLMs with spatial and temporal understanding. As shown in Fig. 1, the model
should answer prompts that require 1) spatial understanding about a global 3D environment, repre-
sented via a point cloud; and 2) local temporal understanding, represented via an egocentric video
that covers part of the environment. For this we first develop a dataset collection pipeline benefitting
from existing data: 1) dense action annotations from EPIC-KITCHENS (Damen et al., 2018); 2)
object segmentation annotations by VISOR (Darkhalil et al., 2022); and 3) sparse point clouds from
EPIC-FIELDS (Tschernezki et al., 2023). Using the pipeline, we collect the “Reasoning about
Environments and Actions” (REA) data: question-answer pairs partitioned into five tasks that
can be used to equip a MLLM with spatio-temporal understanding. Answering prompts requires to
understand global scene context from a 3D scene and localized temporal cues from an egocentric
video. Next, we first introduce the five tasks that form the REA dataset as shown in Fig. 2, followed
by details of the data collection pipeline (Sec. 3.1).

Figure 2: Training data statistics.

Relative Direction. This task requires to analyze relative direction
transitions of an object in the 3D scene during a series of actions
performed by the person recording the egocentric video. The ques-
tion asks to infer how the person’s body orientation changes w.r.t. an
object across two actions, such as inferring whether the hand closer
to an object differs for two consecutive actions. The task can involve
a single object or multiple objects. In the single-object setting, the
question asks whether the person’s movement or change in body
orientation across a sequence of actions has resulted in a shift in
the object’s relative direction w.r.t. the person. In the multi-object
setting, the question asks about the spatial relationship between mul-
tiple objects and the person, assessing whether their relative position
or the person’s viewpoint toward them remains consistent.

Relative Distance. This task evaluates the ability to reason about how the person’s proximity to
one or more objects changes over time, requiring spatial awareness across two query actions in the
single-object setting and comparative distance understanding in the multi-object setting. Specifically,
we ask questions such as “Does the person move closer to the query object between the query action
1 and query action 2?” (single-object), and “During the first query action, is the person closer to the
query object than to the reference object?” (multi-object).

Find My Item. The task assesses the ability to localize an object and infer spatial steps to reach it,
requiring integration of scene understanding and movement planning. An example question is: “After
performing the query action, where did the person leave the query object and how to reach it?”. The
model must identify the object’s placement from the video and reason about the spatial path an agent
would take to reach it.

Furniture Affordance Prediction. This task requires to predict which static furniture object the
person is likely to interact with next, based on visual observations from the input video and spatial
cues about the surrounding environment. The model must infer the recent action sequence, movement
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5) Point cloud reconstruction 6) Frame to point cloud registration
query frame 
other frames from reconstruction
frames for local registration 
local registration
 

4) Navigation   
 movement  
  estimation

Distance: 
[1.5, 1.5, 0]

VideoLLM

Navigation 
Plan

1) Query video 
sampling

…

2,3) 3D position and spatial relationship estimation
five person poses and their average
five object poses and their average
decreasing distances
frame order

Figure 3: Dataset generation pipeline. Note, in 2&3), camera poses (in green), sampled across
the action interval, are used to compute the relative direction and distance between the person
(moving along the arrow) and the object. To obtain per-frame camera poses for the query video, we
first use VGGT (Wang et al., 2025) to re-compute the point cloud (step 5) and subsequently apply
Reloc3r (Dong et al., 2025) (step 6).

trend, and nearby layout. E.g., a question reads as “Based on what the person has done so far and
how they’re moving now, which nearby object is the person preparing to interact with?”

Action Planning. This task evaluates the ability to anticipate the next action in a task sequence and
provide a navigation instruction to reach the location where the next step will occur.

To collect data for all tasks, as illustrated in Fig. 3, we first sample a video clip containing past actions
(Step 1) and compute the relative direction and distance to the anticipated next step (Step 2,3). To
refine this spatial prediction, we include the video transition from the current action to the next (Step
4), allowing the model to reason about both motion and intent. Steps 5 and 6 incorporate 3D spatial
cues by grounding video frames within the point cloud, enabling spatially-aware predictions of the
next interaction location. We describe the six steps in Sec. 3.1.

3.1 DATA COLLECTION PIPELINE

We obtain suitable question-answer (QA) pairs (Sec. 3.1.1) and point cloud representations (Sec. 3.1.2)
in six steps as illustrated in Fig. 3. To ensure quality of the dataset, manual quality control was
performed as discussed in Appendix A.1.

3.1.1 QUESTION-ANSWER (QA) GENERATION

To generate diverse question-answer pairs, we start with 3–5 question templates for each task
which are rephrased via an LLM upon completion. To ensure that answering a question needs
spatio-temporal understanding, completing a template requires the use of four steps: 1) query video
sampling; 2) 3D position estimation; 3) spatial relationship estimation; and 4) navigation movement
estimation.

1) Query Video Sampling. We begin by sampling 20-40 second clips, which serve as the visual
input to the MLLM during training or inference. Clips are sampled from longer recordings in the
EPIC-KITCHENS (Damen et al., 2018) data. Benefiting from the dense action annotations provided
by EPIC-KITCHENS (Damen et al., 2018), we partition a sampled clip into a series of fine-grained
action intervals, each approximately 3-5 seconds long. We then sample action intervals from the
clip. To be eligible, the selected actions must meet task-specific criteria. E.g., for Relative Direction
and Relative Distance, we select two non-consecutive actions from the clip with a sufficiently long
interval between them, ensuring a high likelihood of a shift in relative angle or distance between the
query object and the person. In contrast, for Furniture Affordance Prediction, where the goal is to
infer which piece of furniture the person will interact with, the query actions are selected as the next
action following the video clip. This ensures that the ground-truth interaction occurs after the clip
ends, allowing the MLLM to predict the affordance without directly observing the final interaction.

2) 3D Position Estimation. Next, we compute the 3D locations of both the person and query
objects. Given the short duration of each action interval and the typically small movements in kitchen
scenarios, we assume that the person’s location does not change significantly during a single action.
To estimate the person’s location during an action, we leverage the sparse image registration provided
by EPIC-FIELD (Tschernezki et al., 2023) and use the mean camera pose of the registered frames
within the action interval as a proxy for the person’s 3D location.

4
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To determine the 3D location of a query object, we utilize the 2D segmentation masks from VI-
SOR (Darkhalil et al., 2022), along with the estimated human pose at the moment the person is
interacting with the object. Assuming the object remains in close proximity to the person during
the interaction, we project the 2D segmentation mask onto the COLMAP (Schönberger & Frahm,
2016) point cloud and compute the average 3D position of the projected points using a frame near the
middle of the interaction. This average serves as the estimated 3D location of the query object.

3) Spatial Relationship Estimation. After estimating the ground-truth 3D poses of the person and
the objects, we compute the spatial relationship between the object and the person’s movement as
observed in the query video. To simplify the analysis, we constrain the object to remain stationary
throughout the movement by ensuring that the person interacts with the object at most once.

For the Relative Direction task, computations are performed in the person’s camera coordinate frame.
By transforming the object’s 3D location from world coordinates into the person’s egocentric frame,
we determine whether the object is positioned to the left, right, front, or back of the person.

For the Relative Distance task, we calculate the change in distance between the person and the object
over time using their world-coordinate poses. Specifically, we sample five poses of the person across
the action interval, compute the L2 distances to the object in world coordinates, and fit a linear
regression to these values. A positive slope indicates the person is moving away from the object,
while a negative slope indicates movement toward it. We apply a threshold of ±0.05 to classify
whether the person is moving relative to the object or remains relatively stationary.

4) Navigation Movement Estimation. To estimate navigational movement and direction in the
Action Planning task, we begin by measuring displacement in world coordinates. Specifically, we
apply a threshold of 1.5 meters to distinguish meaningful movement from minor body shifts or
wobbling. We then compute the relative direction between the person’s current location and the
destination to infer the intended navigation direction.

After obtaining this preliminary ground-truth estimate, we refine it using a VideoLLM (Zhang et al.,
2024). The model is prompted with both the initial estimation and a reference video containing
the ground-truth navigation sequence. The VideoLLM (Zhang et al., 2024) is asked to observe the
person’s movement in the video and assess whether the preliminary result accurately reflects the true
navigational behavior. This refinement step is crucial, as navigation involves not only directional
displacement but also obstacle avoidance and complex scene understanding.

3.1.2 POINT CLOUD RECONSTRUCTION

Although EPIC-FIELDS (Tschernezki et al., 2023) provides 3D reconstructions for each scene in
EPIC-KITCHENS (Damen et al., 2018), it only offers sparse COLMAP (Schönberger & Frahm,
2016) models, containing limited camera poses sampled across full-length recordings. However,
dense and accurate camera poses are crucial for complex question-answer tasks to capture both spatial
layout and temporal context. To address this, we construct dense 3D models in two steps: first, we
recompute point clouds using pose-free reconstruction methods (Tang et al., 2025; Wang et al., 2025);
then, we register dense camera poses from each query video using Reloc3r (Dong et al., 2025). This
approach significantly reduces the time required for dense image-to-scene registration compared to
COLMAP-based pipelines, while enabling high-fidelity scene grounding for downstream tasks.

5) Point Cloud Reconstruction. Careful selection of images is essential when generating point
clouds from egocentric videos. To avoid introducing noise in the point cloud, we filter frames that
contain hands using Grounded SAM2 (Jiang et al., 2024; Kirillov et al., 2023; Ren et al., 2024b;a; Liu
et al., 2024b). To enhance coverage of the reconstruction while maintaining computational efficiency,
we apply K-Means clustering on the camera poses of the filtered frames and select 25 representative
frames per recording for point cloud generation. Quality of the point clouds was manually verified.

6) Frame to Point Cloud Registration. To obtain the camera pose for each video frame, we
follow Reloc3r (Dong et al., 2025). For each scene, we construct a database containing the 25
frames used during point cloud reconstruction, along with their camera poses in the scene coordinate
system. These poses are obtained from VGGT (Wang et al., 2025) reconstruction. Given a new
video frame, we retrieve the two spatially closest images from the database via image features and
use VGGT (Wang et al., 2025) to predict the relative camera poses between the video frame and the
retrieved images. Hence, the video frame’s camera pose is registered to the reconstructed point cloud.

5
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Figure 4: Architectures of STLLM-3D and STLLM-Aligner.

4 SPATIO-TEMPORAL LLMS (STLLMS)

To handle spatio-temporal reasoning, we want spatio-temporal LLMs to process a global 3D point
cloud P, a video V, a textual instruction T, and camera parameters for each video frame, including
intrinsics and extrinsics. Importantly, the point cloud P offers a global 3D context, and the video
input V records egocentric human actions situated locally within this environment. Concretely, the
point cloud is defined as P = {[pxyz, frgb]} ∈ RN×6, where pxyz ∈ R3 are the 3D coordinates of
each point and frgb ∈ R3 are the corresponding RGB colors. The video is represented as a set of T
image frames V = {I1, I2, . . . , IT }, where each frame It ∈ RH×W×3 is associated with its own
intrinsic and extrinsic matrices Kt ∈ R4×4 and Et ∈ R4×4.

Since the study of integration of both spatial and temporal data into LLMs is in its infancy, we assess
two complementary baselines: 1) STLLM-3D directly concatenates 3D features with video and
text inputs for decoding; 2) STLLM-Aligner extracts spatial queries via a cross-modal alignment
module, which results in a compact spatial representation that is used as LLM input. Both baselines
aim to capture global scene context while following fine-grained temporal dynamics for spatio-
temporal reasoning. Architectures of STLLM-3D and STLLM-Aligner are illustrated in Fig. 4.
Both baselines are based on LLaVA-Video-Qwen2 (Zhang et al., 2024), but extend it to handle
3D spatial information in addition to video and text. Both share the same vision and point cloud
encoder. For the vision encoder, following LLaVA-Video-Qwen2 (Zhang et al., 2024), we adopt
SigLip (Zhai et al., 2023) as our vision encoder. For the point cloud encoder, given a dense point
cloud P, we first apply voxel-based downsampling to obtain a reduced set of representative points P̃
before extracting point-wise feature embeddings fpcd using a masked transformer decoder Tpcd, i.e.,
fpcd = Tpcd(P̃) ∈ RN×768 (Peng et al., 2023). See Appendix D for training details.

STLLM-3D. The STLLM-3D baseline directly integrates 3D information with video and text. After
extracting point-wise features fpcd, we apply Farthest Point Sampling and grouping to form a set of
compact spatial features. These features are projected into the language space via an MLP layer
and concatenated with the image and text embeddings, which are then fed directly into the LLM
decoder. Beneficially, STLLM-3D adopts a straightforward design that concatenates spatial, visual,
and textual features for direct decoding. This simplicity makes the architecture easy to implement
and computationally lightweight. However, given large and complex scenes, more token embeddings
are required, which increases the LLM input and its computational cost. In other words, while
STLLM-3D is effective at direct integration, it struggles with scalability. This limitation motivates the
design of STLLM-Aligner, which seeks to compress spatial features into a compact representation.

STLLM-Aligner. The STLLM-Aligner baseline introduces a cross-modal alignment module to
bridge frozen pointcloud features, video, and text. A set of learnable queries are used to attend
to image and text features, and spatial context from the point cloud is incorporated through cross-
attention. The resulting spatial queries, together with the image and text embeddings, are passed
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Table 1: Comparison of models on various evaluation metrics. Sim = Sentence Similarity.

Model Sim (%) ↑ CIDEr ↑ BLEU (%) ↑ METEOR (%) ↑ ROUGE (%) ↑
LLaVA-Video-7B-Qwen2 (Zhang et al., 2024) 65.83 20.79 10.25 19.68 23.71

LLaVA-OV-Qwen2-7B (Li et al., 2024) 64.51 3.34 11.22 19.53 23.84

Qwen2-VL-7B-Instruct (Wang et al., 2024a) 52.99 35.08 19.11 17.38 25.37

VideoLLaMa3 (Zhang et al., 2025a) 39.14 10.85 2.15 7.85 14.12

Finetuned on REA dataset

LLaVA-Video-7B-Qwen2† 85.26 387.72 60.34 43.18 72.09

LLaVA-OneVision-Qwen-7B† 85.09 400.23 61.90 42.41 71.11

STLLM-Aligner‡ (w Pos.Enc.) 71.34 170.63 39.46 28.54 50.02

STLLM-Aligner (w Pos. Enc.) 85.70 406.54 61.90 44.16 72.09

STLLM-Aligner 85.58 406.68 62.01 43.94 72.03

STLLM-3D 85.99 405.48 61.99 44.04 72.07

Note. † indicates the existing model is finetuned on our REA dataset. ‡ LLM layers are not finetuned.

into the LLM decoder. This design provides a compact yet informative representation of the 3D
scene. However, the token compression introduced by the alignment mechanism is harder to interpret.
Hence, STLLM-Aligner trades the efficiency challenge of STLLM-3D with its own limitations. To
understand the trade-offs, we study both baselines.

For the STLLM-Aligner, we also study use of a high-frequency positional encoding in the alignment
module as a complementary enhancement. The positional encoding provides geometric cues beyond
raw coordinates. Concretely, for each video frame, we back-project pixels using camera intrinsics and
extrinsics to obtain per-pixel ray directions, which are then normalized and downsampled to match
the patch-level tokens from the vision encoder. For the point cloud, each 3D point is transformed into
the first camera frame, and its normalized direction from the camera origin is taken as its ray vector.
These ray directions are then mapped through a high-frequency encoding function and projected with
a lightweight MLP to align dimensions with the modality features. The resulting position-aware
features are fused with the original image and point cloud embeddings before entering the alignment
module. This design complements the frozen encoders with explicit geometric cues.

5 EXPERIMENTS

We now examine the effectiveness of our dataset and the baselines: 1) We compare to several
state-of-the-art VideoLLMs, including the base model we pretrained from. For a fair comparison,
we feed the global scene context to existing models in a multi-view image format, as they cannot
directly process point cloud inputs. 2) We evaluate using standard question answering metrics and
two LLM-Judges (Zheng et al., 2023) to ensure consistency in reasoning and correctness.

Dataset Statistics. We construct the REA dataset using our proposed data generation pipeline. After
manual validation, we obtain 24,371 training samples and 1,757 validation samples. The dataset
inherits the action classes and over 300 annotated objects from EPIC-KITCHENS (Damen et al.,
2018) and EPIC-FIELDS (Tschernezki et al., 2023), covering a wide range of kitchen activities. It
features strong long-tail distributions in both training and test splits (e.g., 4,759 unique actions in
training with over 20% appearing only once), highlighting its richness and diversity.

Metrics. We adopt SenSim (Reimers & Gurevych, 2019), CIDEr (Vedantam et al., 2015), BLEU-
4 (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), and ROUGE-L (Lin, 2004) fol-
lowing standard question answering and captioning evaluation protocols. We also employ LLM
Judges (Zheng et al., 2023) to better capture reasoning correctness. To better assess results, we em-
ploy two LLM judges ChatGPT-4o (C) (OpenAI, 2024) and Gemini 2.0 Flash (G) (Google
DeepMind, 2025) which both assign discrete correctness labels (“Correct”/“Wrong”). Task-oriented
prompts are carefully designed to explicitly instruct the judge to assess the validity of the underlying
reasoning (Appendix B). Importantly, the LLM Judges are not solving the spatio-temporal reasoning
tasks themselves, but simply verify whether a model’s prediction semantically matches the ground
truth answer, which is a substantially simpler objective. Reliability of the judges is discussed in
Appendix A.2.
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Table 2: LLM-Judge accuracy (%, higher is better, C = ChatGPT-4o, G = Gemini 2.0 Flash).

Model Rel. Dir. Rel. Dist. Find My Item Affordance Action Plan. Overall / Avg.

LLaVA-Video-7B-Qwen2 (Zhang et al., 2024) C 36.67 43.00 28.06 53.05 13.17 30.96 / 34.79
G 46.00 42.67 38.49 56.27 27.33 39.50 / 42.15

LLaVA-OV-Qwen2-7B (Li et al., 2024) C 15.33 36.00 25.54 50.18 9.00 23.85 / 27.21
G 36.67 40.00 40.65 51.61 23.50 35.74 / 38.49

Qwen2-VL-7B-Instruct (Wang et al., 2024a) C 38.33 9.67 15.47 40.50 15.00 24.38 / 23.68
G 36.67 10.00 23.02 41.22 33.67 29.94 / 27.90

VideoLLaMa3 (Zhang et al., 2025a) C 57.00 42.00 20.86 39.43 10.00 31.46 / 35.86
G 70.33 38.33 42.45 39.07 13.33 36.03 / 40.70

Finetuned on REA dataset

LLaVA-Video-7B-Qwen2† C 40.67 61.00 36.69 61.65 11.83 36.99 / 42.37
G 44.00 61.00 56.12 57.35 20.50 42.92 / 47.79

LLaVA-OV-Qwen-7B† C 41.00 66.00 32.73 59.86 15.33 38.19 / 42.98
G 47.00 66.00 47.12 55.91 23.50 43.65 / 47.91

STLLM-Aligner‡ (w Pos.Enc.)
C 56.67 49.67 28.78 63.80 7.50 35.38 / 41.26
G 39.67 48.33 48.20 55.91 14.17 36.37 / 41.26

STLLM-Aligner (w Pos.Enc.) C 49.00 69.00 38.13 59.50 17.00 41.43 / 46.53
G 50.00 69.00 55.40 53.41 24.33 45.87 / 50.43

STLLM-Aligner C 50.67 70.67 36.69 62.72 15.83 41.89 / 47.32
G 51.33 70.67 55.04 55.56 23.83 46.50 / 51.29

STLLM-3D C 48.00 68.00 35.61 65.69 14.83 40.94 / 46.43
G 51.00 68.00 56.47 58.06 23.17 46.39 / 51.34

Model Implementation. STLLM-3D and STLLM-Aligner baselines are built upon LLaVA-Video-
7B-Qwen2 (Zhang et al., 2024). They are finetuned on our REA dataset for one epoch using
AdamW (Loshchilov & Hutter, 2019) with a cosine learning rate scheduler and a max learning rate
of 1e−4 (training details in Appendix D). Finetuning is conducted on four NVIDIA H200 GPUs.

Results on Standard QA Metrics. Table 1 reports sentence-level and n-gram metrics. Despite
straightforward handling of scene and video data, STLLM baselines improve upon existing models,
including those finetuned on REA. This shows: spatio-temporal reasoning is yet unsolved.

Results on LLM-Judge. Table 2 reports LLM-Judge accuracy across the five tasks of the REA
test set. As shown, off-the-shelf MLLMs are challenged by spatio-temporal reasoning, with overall
accuracy below 31.46%/39.50% (C/G). Interestingly, VideoLLaMA3 (Zhang et al., 2025a) achieves
superior performance on the Relative Direction task, likely due to exposure to spatially-grounded data
during pretraining. But it does not show consistent advantages on the other tasks. While finetuning
on REA brings noticeable gains for all models, our STLLM baselines achieve noticeably higher
performance. In particular, STLLM-Aligner attains 41.89%/46.50%, outperforming the directly
finetuned LLaVA-Video-7B-Qwen† (36.99%/42.37%). This shows that developing spatio-temporal
LLM architectures is beneficial and can yield gains over REA-finetuned 2D counterparts. We also
assess use of additional positional encoding in the alignment module, but find little performance
difference, likely because REA emphasizes question answering rather than explicit 3D grounding.
Hence, positional encodings offer limited benefits. We provide additional analyses in Appendix E.

Task difficulty. Tasks such as Find My Item and Action Planning are generally more challenging, as
they require open-ended answers and involve both spatial and temporal reasoning. Meanwhile, both
Relative Direction and Relative Distance demand strong spatial understanding. Our STLLM baselines
demonstrate superior overall performance with well-balanced results across tasks, highlighting their
robust spatial-temporal reasoning capabilities.

Judge comparison. We observe that predictions evaluated by ChatGPT-4o and Gemini 2.0
Flash follow consistent overall trends. While Gemini 2.0 Flash reports higher absolute
scores in more open-ended tasks such as Find My Item and Action Planning (around ∼1.5× that of
ChatGPT-4o), the relative ordering across models remains largely stable. This indicates that both
judges agree on the comparative ranking of methods, supporting the robustness of our evaluation.

Cross-Dataset Evaluation. Our REA dataset provides effective supervision that significantly
boosts the generalization of MLLMs on diverse 3D-related tasks. In particular, we conduct zero-
shot evaluation on SQA3D (Ma et al., 2023), a situated QA benchmark designed to assess scene
understanding for embodied agents. As shown in Table 3, our STLLM baselines consistently
outperform strong existing models, highlighting the effectiveness of spatio-temporal LLM designs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: SQA3D Test Set - Correct Rate (%) per Question Type (GPT / Gemini).
Model What Is How Can Which Other Average

LLaVA-Video-7B-Qwen2 (Zhang et al., 2024) 41.68 / 45.34 53.66 / 52.61 20.62 / 22.16 53.29 / 49.70 40.12 / 48.84 46.61 / 47.88 43.04 / 45.04

LLaVA-OV-Qwen2-7B (Li et al., 2024) 39.49 / 44.79 59.93 / 59.93 25.26 / 31.44 49.70 / 53.89 36.05 / 41.86 52.12 / 57.20 43.98 / 41.86

Qwen2-VL-7B-Instruct (Wang et al., 2024a) 33.82 / 34.37 51.92 / 51.92 21.65 / 17.53 52.69 / 49.70 38.37 / 41.28 50.00 / 50.85 40.42 / 40.24

VideoLLaMa3 (Zhang et al., 2025a) 38.76 / 39.85 56.10 / 63.07 39.69 / 38.66 47.31 / 55.69 33.14 / 34.88 52.54 / 54.66 44.29 / 47.16

Finetuned on REA dataset

LLaVA-Video-7B-Qwen† 48.26 / 50.82 65.51 / 65.51 45.36 / 46.91 60.48 / 61.08 44.19 / 40.70 49.58 / 51.27 52.03 / 53.03

LLaVA-OV-Qwen2-7B† 38.76 / 47.53 56.10 / 62.72 39.69 / 39.18 47.31 / 49.10 33.14 / 40.12 52.54 / 50.00 44.29 / 48.97

STLLM-Aligner‡ 46.25 / 44.79 56.79 / 62.37 47.42 / 50.52 52.10 / 73.05 47.09 / 39.53 47.03 / 50.00 49.10 / 51.78

STLLM-Aligner (w Pos. Enc.) 49.17 / 50.55 63.93 / 65.51 51.31 / 50.00 56.02 / 58.08 46.20 / 45.35 55.17 / 58.90 53.32 / 54.62

STLLM-Aligner 49.73 / 51.74 65.16 / 64.46 50.52 / 48.97 58.68 / 58.08 50.00 / 50.00 55.51 / 55.51 54.40 / 54.71

STLLM-3D 50.27 / 51.92 66.55 / 66.90 53.09 / 52.06 60.48 / 62.28 46.51 / 43.02 57.20 / 58.05 55.21 / 55.65

Note. The models do not generate exact-match answers by design. We incorporate LLM judges for evaluation,
where an answer is considered correct if it expresses the same meaning as the ground truth.

We also observe that models finetuned on REA (marked with †) achieve clear improvements compared
to their vanilla counterparts, demonstrating the transferability of our dataset to downstream 3D
reasoning tasks. For instance, LLaVA-Video-7B-Qwen (Zhang et al., 2024) improves its average
accuracy from 43–45% to 52–53%, and LLaVA-OV-Qwen2-7B (Li et al., 2024) improves from
42–44% to 44–49%. These gains highlight that REA training substantially enhances cross-dataset
generalization, even for strong existing video-language models.

Figure 5: Furniture Affordance Prediction example.

Qualitative results. Fig. 5 presents a
query video for a case from the Furni-
ture Affordance Prediction task, where
the query asks: Which object will the
person interact with next, the oven or
the fridge? The video shows the per-
son completing an action at the sink,
and the model must anticipate the next likely interaction. STLLM models correctly predict that “The
person is preparing to interact with the oven, as they are moving closer to it,” capturing the spatial
intention toward a valid future object. In contrast, LLaVA-Video-7B-Qwen2 (Zhang et al., 2024)
incorrectly responds that the person is “preparing to interact with the sink,” a response grounded in
the current frame rather than a forward-looking prediction. This highlights a key limitation of existing
models: they often rely on immediate visual context without reasoning about temporal progression.
In contrast, as intended spatio-temporal LLMs demonstrate compelling spatio-temporal reasoning.

6 CONCLUSION

Joint spatio-temporal reasoning about an unfolding event given egocentric observations as well as a
predicted allocentric environment representation, which permits to ground temporal local motion
in a global context, is a crucial task for embodied AI. To study this capability, we collect the
“Reasoning about Environments and Actions” (REA) data, consisting of five tasks, via a developed
dataset collection pipeline. We show that classic multi-modal language models (MLLMs) struggle to
correctly answer spatio-temporal prompts. We also show that results improve significantly when an
MLLM is equipped with pointcloud understanding.

Limitations and broader impact. While we present a first step towards joint spatio-temporal
reasoning, much more work is needed to better understand 1) the type of training data that is most
helpful for improving spatio-temporal reasoning of MLLMs; 2) the MLLM components that best
extract meaningful information from the data. As a starting point for item 1 we present REA. As a
starting point for item 2 we study two complementary baselines that highlight different trade-offs in
extracting spatial information for multimodal reasoning. We envision significant positive broader
impacts as spatio-temporal reasoning is a crucial component for embodied AI. However, successful
spatio-temporal reasoning can also be abused for unnoticed mass surveillance. Hence, deployment of
such technology requires great care.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Regarding the REA dataset, we describe the procedure of our data generation pipeline in Sec. 3.1 and
Fig. 3, with additional discussion of data reliability in Appendix A.1. Appendix G further provides the
detailed dataset statistics, runtime analysis, and QA templates used in our pipeline. Hyperparameters,
computational resources, and training settings for STLLM baselines are summarized in Appendix D,
while experimental configurations of existing models are detailed in Appendix E, with instruction
prompts listed in Appendix C. Evaluation metrics and LLM Judge prompts are described in Sec. 5
and Appendix B. Code and data will be released.
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APPENDIX: SPATIO-TEMPORAL LLM: REASONING ABOUT ENVIRONMENTS
AND ACTIONS

This appendix is organized as follows: Sec. A discusses the reliability of our dataset and the LLM-
Judge metrics. Sec. B provides the LLM Judge prompts used for evaluation. In Sec. C, we include
the inference instruction prompts used for baseline video models. Sec. D outlines training details.
Sec. E contains additional experiments and analyses. Sec. F showcases additional qualitative results.
Sec. G provides further details about the REA dataset. Sec. H discusses limitations. Finally, Sec. I
discusses the LLM usage in this work.

A DATASET AND METRICS RELIABILITY

A.1 DATASET
Table 4: Human Evaluation on a Subset of the Test Split (values are accuracy in %).

Task PCD Quality QA Quality Spatio-Temporal Spatial Relation Temporal Logic Semantic Correctness Clarity of Question

Relative Direction 80.00 80.00 80.00 85.00 100.00 95.00 100.00

Relative Distance 90.00 80.00 95.00 80.00 100.00 100.00 100.00

Find My Item 100.00 80.00 65.00 75.00 100.00 100.00 90.00

Furniture Affordance 85.71 80.95 85.71 90.48 100.00 90.48 100.00

Action Planning 100.00 85.00 75.00 95.00 85.00 90.00 100.00

Overall 91.09 81.19 80.20 85.15 97.03 95.05 98.02

We implemented manual quality control during dataset collection to ensure the reliability of both
the QA pairs and the VideoLLM-based refinement process. Specifically, we performed human
verification and evaluation on the generated VQA pairs in the test set. We conducted the human
evaluation on 100 samples (20 per task), where two expert annotators independently reviewed each
sample. A score was marked as 1 only if both annotators agreed it was correct. We evaluate the test
set using the following criteria:

• Point Cloud Quality: Does the point cloud accurately capture the positions of the reference
objects?

• QA Quality: Scored as 1 only if all of the following five sub-criteria are rated 1: spatial
relation, temporal logic, semantic correctness, and clarity of the question; otherwise, 0.

• Spatio-Temporal Reasoning: Does the question require understanding of both spatial layout
and temporal action sequence? Does the answer demonstrate such reasoning?

• Spatial Relation: Is the spatial relationship between the query object and the person accu-
rately described in the answer?

• Temporal Logic: Does the video contain the actions mentioned in the question in a temporally
coherent manner?

• Semantic Correctness: Does the answer correctly and clearly explain the reason behind the
movement or action?

• Clarity of Question: Is the question phrased clearly, fluently, and naturally, as if written by a
human?

The REA dataset is specifically designed so that the query video often does not directly show the
query objects, making point cloud information essential for spatial reasoning. As shown in Table 4,
to answer correctly, 80% of the questions require access to the point cloud.

A.2 LLM-JUDGE

We have incorporated human evaluation to refine the LLM Judge prompts. Specifically, after each
prompt update, we randomly sampled 40 examples per task and compared the LLM Judge’s verdicts
with human judgments. We iteratively refined the prompt until the agreement between the LLM
Judge and human evaluation exceeded 97%. Please refer to Appendix B for the final LLM Judge
prompt. We note that the LLM Judge is particularly strict on tasks such as Find My Item and Action
Planning as these involve open-ended question answering. This strictness helps ensure consistent
and high-quality evaluation for tasks with less constrained answers. Also note that the LLM judge is
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asked to compare a given answer predicted by the models we study to the given ground truth answer.
Hence, the LLM judge is not required to solve the spatio-temporal reasoning task. Instead, the LLM
judge is tasked to assess the equivalence of the provided statements.

B LLM JUDGE PROMPT

We design task-specific prompts for the LLM Judge. The prompt is the same for ChatGPT-4o and
Gemini 2.0 Flash.

Relative Direction

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for a relative direction query. This task involves
reasoning about the directional relationship between the person and a referenced object during
two different actions, based on the scene.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with “Correct” or “Wrong”, based on the following criteria:
- Mark as “Correct” if the predicted answer accurately reflects the relative direction of the
object (e.g., left, right, forward, behind) in relation to the person across both mentioned
actions, even if the wording differs.
- Directional terms may vary slightly (e.g., “in front” vs. “forward”) but must preserve spatial
meaning.
- The answer must address both actions in the query.
- If the prediction misidentifies one or both relative directions, or skips one, mark it as
“Wrong”.
Only reply with one word: “correct” or “wrong” — no explanation or extra text. If the
prediction matches the ground truth, reply “correct”. Otherwise, reply “wrong”.

Relative Distance

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for a relative distance query. This task involves
comparing the person’s distance to a specific object during two different actions, based on the
scene.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with “Correct” or “Wrong”, based on the following criteria:
- Mark as “Correct” if the predicted answer accurately conveys the relative distance relation-
ship described in the ground truth, even if expressed with different wording.
- The prediction must clearly indicate which action places the person closer (or if the distances
are about the same).
- Minor wording variations or additional clarifications are acceptable as long as the core
spatial relationship is preserved.
- If the prediction contradicts or misses the comparison stated in the ground truth, mark it as
“Wrong”.
- Move closer and move further sometimes can be similar to remain the same distance, based
on the context of the prediction, give reasonable judgement.
Only reply with one word: “correct” or “wrong” — no explanation or extra text. If the
prediction matches the ground truth, reply “correct”. Otherwise, reply “wrong”.
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Find My Item

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for a ‘Find My Item’ query. This task requires
identifying the location of a target object and describing how the person can get to it, based
on the scene.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with “Correct” or “Wrong”, based on the following criteria:
- Mark as “Correct” if the predicted answer matches the essential intent and meaning of the
ground truth, even if phrased differently.
- The answer must correctly identify the item’s location and provide a reasonable description
of how to reach it.
- Minor differences in language, additional helpful navigation details, or alternative phrasing
are acceptable if the overall meaning is consistent with the ground truth.
- If the predicted answer omits key information, misidentifies the item’s location, or gives an
implausible or unrelated navigation instruction, mark it as “Wrong”.
Only reply with one word: “correct” or “wrong” — no explanation or extra text. If the
prediction matches the ground truth, reply “correct”. Otherwise, reply “wrong”.

Furniture Affordance

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for a furniture affordance query. This task involves
reasoning about the person’s past actions and current movement to infer which nearby object
they are most likely preparing to interact with.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with “Correct” or “Wrong”, based on the following criteria:
- Mark as “Correct” if the prediction correctly identifies the most likely object of interaction
based on the query and provides a valid rationale aligned with the ground truth.
- The predicted object must match the correct option (e.g., “oven” or “fridge”).
- Minor differences in phrasing or additional reasoning are acceptable as long as the predicted
object is the same and the rationale is plausible.
- If the prediction identifies the wrong object or gives an unreasonable explanation, mark it as
“Wrong”.
Only reply with one word: “correct” or “wrong” — no explanation or extra text. If the
prediction matches the ground truth, reply “correct”. Otherwise, reply “wrong”.

Action Planning

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for an action planning query. The action planning
task involves reasoning about sequences of actions in a cooking or assembly video, and
determining what to do next and how to get there.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with “Correct” or “Wrong”, based on the following criteria:
- Mark as Correct if the predicted answer matches the intent and content of the ground truth,
even if the wording is different. Reasonable paraphrasing is acceptable.
- The answer must identify the correct next step in the sequence, based on the context.
- It must also provide a plausible description of how to reach the location of the next step.
- Minor differences in phrasing or additional helpful details are acceptable, as long as the core
actions are logically consistent with the ground truth.
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- Avoid over-penalizing answers for surface-level differences if they preserve the meaning
and ordering of actions.
Only reply with one word: “correct” or “wrong” — no explanation or extra text. If the
prediction matches the ground truth, reply “correct”. Otherwise, reply “wrong”.

SQA3D

You are a helpful and fair evaluator. Your task is to determine whether the predicted answer
correctly follows the ground truth answer for a furniture affordance query. This task involves
reasoning about the person’s past actions and current movement to infer which nearby object
they are most likely preparing to interact with.
Predicted Result: {pred}
Ground Truth Result: {gt}
Query: {query}
Please answer only with "Correct" or "Wrong", based on the following criteria:
- Mark as "Correct" if the predicted answer expresses or implies the correct object or direction
mentioned in the ground truth, even if phrased as a sentence, includes assistant prefixes, or
contains extra context.
- Slight mismatches, rephrasings, or formatting issues (e.g., "The suitcase is under the bed."
vs. "suitcase") are acceptable as long as the prediction clearly reflects the correct meaning.
- Mark as "Wrong" only if the answer refers to an entirely different object, contradicts the
spatial context, or fails to address the question meaningfully.
Only reply with one word: "correct" or "wrong" — no explanation or extra text. If the
prediction matches the ground truth, reply "correct". Otherwise, reply "wrong".

C INFERENCE INSTRUCTION PROMPTS FOR VIDEOLLMS

As the existing VideoLLMs cannot take the point cloud as input, we use the 25 multi-view images
(used for point cloud reconstruction) as a static scene description, and then input the same 32 query
video frames as in our models.

To enable fair evaluation by an LLM judge, we prompt these models to generate full-sentence
explanations rather than short answers like “yes” or “no”. This ensures that the judge assesses
answers based on reasoning rather than matching surface-level correctness.

Additionally, since these existing models were not trained to interpret the input as two separate
streams (i.e., a static scene and a dynamic query video), we explicitly include this structure in the
prompt to guide their attention accordingly.

Instruction Prompts

The first 25 images provide multi-view observations of the current scene the person is in, while
the next 32 frames depict egocentric actions—please refer to both to answer the question.
<Image> {question}
Give explanations and reasoning for your answer. Answer in detail, and be specific. Do not
random guess. If you don’t know, say ‘I don’t know’.

D TRAINING DETAILS

Our training follows the standard next-token prediction objective, optimizing the token-wise cross-
entropy loss over the LLM outputs. During training, modality-specific encoders remain frozen. We
finetune the modality projectors and the LLM decoder (adapted with LoRA (Hu et al., 2022)), with
STLLM-Aligner additionally updating the alignment module (see Fig. 4).

All training was conducted using four NVIDIA H200 GPUs. The models were trained on the REA
dataset for one epoch, which took approximately 6 hours. We adopt single-epoch training to balance
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efficiency and generalization. The LLM decoder is adapted using LoRA (Hu et al., 2022) finetuning,
enabling efficient parameter updates while mitigating overfitting to fixed answer templates and
preserving the ability to generalize beyond rigid output structures.

For both models, the point cloud encoder is executed in float32 precision, whereas the remaining
components are trained in bfloat16 for efficiency. Nquery stands for the number of learnable
embeddings in the alignment module.

Table 5: Training hyperparameters for STLLM-Aligner and STLLM-Aligner (w Pos. Enc.) model.
Parameter Value

Gradient Accumulation Steps 8
Learning Rate 1× 10−4

Weight Decay 0
Precision∗ bfloat16
Max Frames 32
Voxel Size 0.06
Nquery 1024

In Tab. 5, Nquery denotes the number of tokens in the learnable query.

Table 6: Training hyperparameters for STLLM-3D.
Parameter Value

Gradient Accumulation Steps 8
Learning Rate 1× 10−4

Weight Decay 0
Precision∗ bfloat16
Max Frames 32
Voxel Size 0.06
Npoint 1024
Radius 0.2
Nsample 64

In Tab. 6, Npoint denotes the number of center points sampled from the point cloud features. For
each center point, a local neighborhood is defined by a specified Radius, and up to Nsample
points are gathered within this radius to form a group.

D.1 SYSTEM PROMPT

We explicitly inform the model that the first Nquery visual tokens encode global spatio-temporal
context, which it should pay special attention to during reasoning.

Instruction Prompts for REA

The first 1024 tokens encode learnable queries representing objects and locations in the 3D
scene. The following tokens represent egocentric video of recent actions. Use both to reason
about spatial references and temporal context when answering.

E QUANTITATIVE RESULTS

Finetuned Existing Models. We pool the multi-view images in LLaVA-Video-7B-Qwen2† and
LLaVA-OV-Qwen-7B† into token sequences similar in length to our model’s spatial queries (36
tokens per image) for a fair comparison.

Additional Experiments. We conduct additional experiments to explore two factors: 1) the number of
learnable spatial queries (Nquery), and 2) the number of trainable parameters. For a fair comparison
with a smaller number of spatial queries (32 Nquery), we also finetune strong baseline models,
namely LLaVA-Video-7B-Qwen†‡(25 spatial tokens) and LLaVA-OV-Qwen-7B†‡(25 spatial tokens),
both of which represent spatial information using one token per multi-view image (25 multi-view

18
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Table 7: LLM-Judge accuracy (%, higher is better, C = ChatGPT-4o, G = Gemini 2.0 Flash).

Model Rel. Dir. Rel. Dist. Find My Item Affordance Action Plan. Overall / Avg.

LLaVA-Video-7B-Qwen2 (Zhang et al., 2024) C 36.67 43.00 28.06 53.05 13.17 30.96 / 34.79
G 46.00 42.67 38.49 56.27 27.33 39.50 / 42.15

LLaVA-OV-Qwen2-7B (Li et al., 2024) C 15.33 36.00 25.54 50.18 9.00 23.85 / 27.21
G 36.67 40.00 40.65 51.61 23.50 35.74 / 38.49

Qwen2-VL-7B-Instruct (Wang et al., 2024a) C 38.33 9.67 15.47 40.50 15.00 24.38 / 23.68
G 36.67 10.00 23.02 41.22 33.67 29.94 / 27.90

VideoLLaMa3 (Zhang et al., 2025a) C 57.00 42.00 20.86 39.43 10.00 31.46 / 35.86
G 70.33 38.33 42.45 39.07 13.33 36.03 / 40.70

LLaVA-Video-7B-Qwen2† C 40.67 61.00 36.69 61.65 11.83 36.99 / 42.37
G 44.00 61.00 56.12 57.35 20.50 42.92 / 47.79

LLaVA-Video-7B-Qwen2†‡(25 spatial tokens) C 29.33 53.67 29.50 61.29 8.33 31.42 / 36.42
G 31.86 53.67 46.04 56.63 19.33 37.48 / 41.52

LLaVA-OV-Qwen-7B† C 41.00 66.00 32.73 59.86 15.33 38.19 / 42.98
G 47.00 66.00 47.12 55.91 23.50 43.65 / 47.91

LLaVA-OV-Qwen2-7B†‡(25 spatial tokens) C 33.00 47.00 33.09 54.84 10.17 31.08 / 35.62
G 35.67 47.33 49.64 48.75 20.00 36.60 / 40.28

STLLM-3D‡ (32 Nquery)
C 44.67 32.67 26.62 63.44 12.17 31.65 / 35.91
G 46.33 39.67 40.29 62.37 22.33 38.59 / 42.40

STLLM-Aligner‡ (w Pos. Enc., 32 Nquery)
C 40.33 46.00 34.89 60.22 13.83 34.55 / 39.05
G 45.00 47.67 48.20 60.22 19.00 39.50 / 44.02

STLLM-Aligner‡ (w Pos. Enc.)
C 56.67 49.67 28.78 63.80 7.50 35.38 / 41.26
G 39.67 48.33 48.20 55.91 14.17 36.37 / 41.26

STLLM-Aligner (w Pos.Enc.) C 49.00 69.00 38.13 59.50 17.00 41.43 / 46.53
G 50.00 69.00 55.40 53.41 24.33 45.87 / 50.43

STLLM-Aligner C 50.67 70.67 36.69 62.72 15.83 41.89 / 47.32
G 51.33 70.67 55.04 55.56 23.83 46.50 / 51.29

STLLM-3D C 48.00 68.00 35.61 65.69 14.83 40.94 / 46.43
G 51.00 68.00 56.47 58.06 23.17 46.39 / 51.34

Note. † indicates the existing model is finetuned on our REA dataset. ‡ LLM layers are not finetuned.

Table 8: Comparison of models on various evaluation metrics. Sim = Sentence Similarity.
Model Sim (%) ↑ CIDEr ↑ BLEU (%) ↑ METEOR (%) ↑ ROUGE (%) ↑
LLaVA-Video-7B-Qwen2 (Zhang et al., 2024) 65.83 20.79 10.25 19.68 23.71

LLaVA-OV-Qwen2-7B (Li et al., 2024) 64.51 3.34 11.22 19.53 23.84

Qwen2-VL-7B-Instruct (Wang et al., 2024a) 52.99 35.08 19.11 17.38 25.37

VideoLLaMa3 (Zhang et al., 2025a) 39.14 10.85 2.15 7.85 14.12

LLaVA-Video-7B-Qwen2†‡(25 spatial tokens) 81.76 304.05 48.63 34.45 59.55

LLaVA-Video-7B-Qwen2† 85.26 387.72 60.34 43.18 72.09

LLaVA-OneVision-Qwen-7B†‡(25 spatial tokens) 81.06 297.79 45.43 33.94 58.45

LLaVA-OneVision-Qwen-7B† 85.09 400.23 61.90 42.41 71.11

STLLM-3D‡ (32 Nquery) 73.27 141.29 37.65 28.87 48.78

STLLM-Aligner‡ (w Pos.Enc.) 71.34 170.63 39.46 28.54 50.02

STLLM-Aligner (w Pos. Enc.) 85.70 406.54 61.90 44.16 72.09

STLLM-Aligner 85.58 406.68 62.01 43.94 72.03

STLLM-3D 85.99 405.48 61.99 44.04 72.07

images in total). As shown in Table 7, STLLM-Aligner‡ (w/ Pos. Enc.), which uses 1024 Nquery,
outperforms STLLM-Aligner‡ (w/ Pos. Enc., 32 Nquery), demonstrating that a larger number of
spatial queries leads to better performance. However, the improvement is relatively modest. This
motivates us to increase the number of trainable parameters. By further adapting the LLM layers with
LoRA (Hu et al., 2022), performance improves substantially: overall accuracy rises from 35.38% /
36.37% (C/G) for STLLM-Aligner‡ (w/ Pos. Enc.) to 41.43% / 45.87% for STLLM-Aligner (w/ Pos.
Enc.). Under all settings, as shown in both Table 7 and Table 8, our STLLM baselines outperform the
direct finetuned counterparts, which showcase the effectiveness of our model designs.
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F QUALITATIVE RESULTS

In the qualitative results below, ✓ and ✗ indicate whether the prediction was marked as correct or
incorrect by ChatGPT-4o, which serves as our LLM judge. Each figure shows two representative
frames sampled from the query video, rendered below the reconstructed point cloud of the scene to
provide spatial context for the queried actions.

Relative Direction

Question: Is the microwave to the left of the person
when the person is performing ‘put down knives’ and
also to the left of the person when performing ‘pick up
plate’?
Ground-truth: The microwave remains to the left of
the person during both ‘put down knives’ and ‘pick up
plate’.
Ours: The microwave is to the left of the person before
and after both ‘put down knives‘ and ‘pick up plate‘. ✓
LLaVA-OV-Qwen2-7B: The microwave is not to the
left of the person when they perform “put down knives”
and “pick up plate.” The sequence shows that the person
stands in front of the counter where the microwave is located, and they are not interacting
with it during those specific actions. ✗
LLaVA-Video-7B-Qwen2: The microwave is not to the left of the person when they are
performing the action of putting down knives, as there are no knives visible in the images
provided. The microwave is also not to the left of the person when they pick up a plate, as the
person is seen reaching towards the sink area where the plate is located. ✗
Qwen2-VL-7B-Instruct: No, the microwave is not to the left of the person when the person
is performing ‘put down knives’ and to the left of the person when ‘pick up plate’. ✗

Relative Distance

Question: Does the person move closer to the hob
between ‘turn off rice cooker’ and ‘serve curry’?
Ground-truth: The person remains at about the same
distance from the hob when performing both ‘turn off
rice cooker’ and ‘serve curry’.
Ours: The person remains at about the same distance
from the hob when performing both ‘turn off rice
cooker’ and ‘serve curry’. ✓
LLaVA-OV-Qwen2-7B: The person does not move
closer to the hob between “turn off rice cooker” and
“serve curry”. The sequence of actions shows that after
turning off the rice cooker, the person moves towards the sink area. The focus then shifts back
to the countertop where the rice and curry are being served, but there is no direct interaction
with the hob during these transitions. ✗
LLaVA-Video-7B-Qwen2: Yes, the person moves closer to the hob between ‘turn off rice
cooker’ and ‘serve curry’. The sequence of actions suggests that after turning off the rice
cooker, the person is likely to be preparing to serve the dish. Moving closer to the hob implies
that they are in the process of transferring the cooked curry onto the rice plates. ✗
Qwen2-VL-7B-Instruct: Yes, the person moves closer to the hob between ‘turn off rice
cooker’ and ‘serve curry’. In the first image, the person is standing further away from the
hob, while in the second image, the person is standing closer to the hob. This can be inferred
from the relative positions of the objects in the images. ✗

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Find My Item

Question: Where is the tarragon, and how can the
person get to it?
Ground-truth: The tarragon is located on the coun-
tertop to the right of the person. The person can reach
it by turning to their right and walking towards the
countertop.
Ours: The tarragon is on the countertop to the right of
the person. The person can reach it by turning to their
right and walking towards the countertop. ✓
LLaVA-OV-Qwen2-7B: The tarragon appears to be on
the countertop, specifically on a plate or tray with other
chopped vegetables. To get to it, the person would need to move around the kitchen counter
and reach towards the area where the tarragon is placed. ✗
LLaVA-Video-7B-Qwen2: The tarragon is on the counter in front of the person. The person
can get to it by moving closer to the counter and picking up the bowl containing the tarragon.
✗
Qwen2-VL-7B-Instruct: The tarragon is located on the kitchen counter. The person can get
to it by walking towards the counter and reaching for the tarragon. ✓

Furniture Affordance

Question: Which of the following objects does the
person interact with next, given their previous actions
and current motion?
A. hob, B. oven, C. fridge
Ground-truth: The person is most likely to interact
with the hob next because they have just finished clean-
ing the sink and are now moving towards the hob, which
suggests they might need to use it for cooking or clean-
ing purposes.
Ours: The person is most likely to interact with the hob
next because they have just finished washing dishes and
are now moving towards the hob, which is typically used for cooking. ✓
LLaVA-OV-Qwen2-7B: B. oven. ✗
LLaVA-Video-7B-Qwen2: B. oven ✗
Qwen2-VL-7B-Instruct: I don’t know. ✗
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Action Planning

Question: We are performing a cooking/assembly
task with the following sequence of actions: put down
tray, put down sponge, take glass, wash knife.. Based
on the video, what should I do next, and how can I
get to the place where the next step takes place?
Ground-truth: You have already completed the ac-
tions of putting down the tray and the sponge. Now,
you are about to take the glass and wash the knife. To
do this, move right to the sink and start washing the
knife.
Ours: You have already completed the actions of
putting down the tray and the sponge, and taking the
glass. Now, you need to wash the knife. To do this, move right to the sink and wash the knife
there. ✓
LLaVA-OV-Qwen2-7B: Based on the video, it appears that the person is in the process
of cleaning up and preparing for another task. The sequence of actions you’ve mentioned
suggests that the person has already put down a tray and a sponge, taken a glass, and washed a
knife. The next step would likely involve using the washed knife to prepare food or assemble
something. To determine the next step and where it takes place, let’s analyze the last few
frames: 1. The person is standing near the sink area. 2. There is a wooden table with a glass
and a can nearby. 3. A hand wearing a watch is visible, which might belong to the person
performing these tasks. Considering these details, the next logical action could be to use the
knife to cut or chop ingredients, which would typically be done on a cutting board. Since the
person is already near the sink, they might move towards the wooden table where there is a
glass and a can, possibly to find additional ingredients or tools needed for the task. Given the
context, the next step would likely involve placing the knife on the table, perhaps on a cutting
board if one is available, and then preparing food or assembling an item using the knife. If a
cutting board is not present, the person might need to locate one. ✗
LLaVA-Video-7B-Qwen2: The next step in the cooking/assembly task should be to put the
washed knife back into the sink or a designated storage area. To get to the place where this
step takes place, the person should move towards the sink area where the knife was washed
earlier. The sink is located on the left side of the frame, adjacent to the countertop with
the red plate and the pizza. The person can then reach into the sink to place the knife back,
ensuring it is properly cleaned and stored. ✗
Qwen2-VL-7B-Instruct: Based on the sequence of actions provided, the next step after
washing the knife is to put down the sponge. The reasoning is that after washing the knife, it
is typically appropriate to clean the hands or other utensils used, which would involve using
the sponge. To get to the place where the next step takes place, you should head towards the
sink area. In the video, the person is seen washing the knife in the sink, and then putting
down the sponge. Therefore, you should move towards the sink to continue with the cleaning
process. ✗

F.1 LLM JUDGE FAILURE CASE

We use ChatGPT-4o and Gemini 2.0 Flash as automatic judges to evaluate model predictions.
However, in some cases, the judges produce incorrect judgments due to rigid comparisons. The
example below is marked as incorrect by ChatGPT-4o, even though the prediction and ground truth
both correctly identify the fridge as the next object of interaction and provide reasonable justifications.

The only difference lies in the explanation detail: the ground truth states the person placed cheese
into the fridge, while the prediction assumes they took cheese and are moving toward the fridge. This
type of reasoning difference is speculative and acceptable, as the core intent and predicted outcome
remain the same.
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Furniture Affordance

Question: Which of the following objects does the person interact with next, given their
previous actions and current motion?
A. fridge, B. oven
Ground-truth: The person is most likely to interact with the fridge next because they
have just placed the mozzarella inside it, and their current movement is towards the fridge,
indicating they are likely to retrieve or interact with something else from it.
Ours: The person is most likely to interact with the fridge next because they have just taken
a piece of cheese and are now moving towards the fridge, which is a common place to store
cheese. ✗

F.2 MODEL FAILURE PREDICTION

Relative Direction

Question: Are the hob and freezer on the same side of the person when performing ‘open
drawer’?
Ground-truth: No, the hob is in front of the person, while the freezer is to the left of the
person when the person performing ‘open drawer’.
Ours: Yes, both the hob and freezer are to the left of the person when performing ‘open
drawer’. ✗

G DATASET DETAILS

G.1 DATASET STATISTICS

We provide detailed statistics of our REA dataset. Table 9 reports dataset statistics by tasks, showing
the number of question-answer pairs for each task across training and validation splits. Table 10
presents the dataset overview, including video duration, QA counts, average video length, and the
number of unique objects and actions.

Table 9: REA dataset statistics by tasks.
Task Train Validation
Relative Distance 4,796 300
Relative Direction 4,765 300
Furniture Affordance 4,192 279
Action Planning 6,500 600
Find My Item 4,118 278

Total 24,371 1,757

Table 10: Dataset Overview.
Split Video Duration (hrs) # Video IDs* # QAs Avg Video Duration (sec) # Unique Objects # Unique Actions

Train 221.80 152 24,371 32.76 299 4,759
Test 23.16 71 1,757 47.46 94 1,309

* We refer to the video_id in EPIC-KITCHENS (Damen et al., 2018).
Dataset comparison. Table 11 compares our REA dataset with several related datasets. We include
Nymeria (Ma et al., 2024) and HD-EPIC (Perrett et al., 2025), as well as two additional spatial
reasoning benchmarks, VSI-Bench (Yang et al., 2025) and All-Angles Bench (Yeh et al., 2025).
This comparison provides context for the scale and unique properties of our REA dataset, which
emphasizes joint spatio-temporal reasoning grounded in both 3D scene structure and egocentric
action video.
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Table 11: Comparison of Spatial Understanding Datasets.
Dataset Total Video Duration (hrs) QA Pairs RGB Video 3D Modality Camera Pose Labelled 3D Environment
REA (Ours) 238.33 26.2K ✓ Point Cloud + Multi-view Images ✓ ✓
HD-EPIC (Perrett et al., 2025) 41.3 26.5K ✓ 3D Mesh ✓ ✓
Nymeria (Ma et al., 2024) 300 310.5K ✓ 3D Point Cloud + Sensors ✓ ✓
VSI-Bench (Yang et al., 2025) N/A 5K ✓ × ✓ ✓
All-Angles Bench (Yeh et al., 2025) N/A 2.1K × Multi-view Images ✓ ×

G.2 DATASET GENERATION PIPELINE RUNTIME

We report the runtime required to generate 5,000 VQA samples for each step in our pipeline, using a
single NVIDIA RTX 4090 GPU:

• Query Video Sampling:
– Relative Direction, Relative Distance: 1.5 hours
– Action Planning, Furniture Affordance, Find My Item: 3 hours (requires 7B VLM in

the loop)

• 3D Position Estimation: 10 minutes

• Spatial Relationship Estimation: 10 minutes

• Navigation Movement Extraction: 20 minutes

• Scene Reconstruction: 5 seconds per scene, including saving the output as a .glb file

• Frame-to-Point Cloud Registration: Under 4 hours total for 5,000 query videos (batch
size = 1) to retrieve corresponding frames from the database.

G.3 QA TEMPLATES

In this section, we present the QA templates we adopt in our data generation pipeline. Note, the
curly-braced values (e.g., {object_1}, {a1}, {direction}) are placeholders. See details in Sec. 3.1.

Relative Direction

Single-object:

Q: Does the hand closer to the {object_1} differ when performing ‘{a1}’ and ‘{ak}’?
A: No, the same hand remains closer to the {object_1} during both ‘{a1}’ and ‘{ak}’.
A: Yes, the hand closer to the {object_1} changes from the {direction} of the person to the
{direction} of the person between ‘{a1}’ and ‘{ak}’.

Q: Is the {object_1} to the {direction} of the person when the person is performing ‘{a1}’,
and {format_direction(direction_at_ak)} when ‘{ak}’?
A: The {object_1} remains {format_direction(direction_at_a1)} during both ‘{a1}’ and
‘{ak}’.
A: Initially, the {object_1} is to the {direction} of the person, but as the person moves, it is
to the {direction} of the person.
A: At first, the {object_1} appears to the {direction} of the person, but after performing
‘{ak}’, due to the person’s movement, it appears to the {direction} of the person.
A: Relative to the person, the {object_1} changes from being to the {direction} of the person
to the {direction} of the person between ‘{a1}’ and ‘{ak}’.

Multi-object:

Q: Are the {object_1} and {object_2} on the same side of the person when performing
‘{a1}’?
Q: Is the person facing both the {anchor_object_1} and {anchor_object_2} from the same
side when performing ‘{ak}’?
A: Yes, both the {object_1} and {object_2} are to the {direction} of the person during ‘{a1}’.
A: No, the {object_1} is to the {direction} of the person, while the {object_2} is to the
{direction} of the person during ‘{a1}’.
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Relative Distance

Single-object:

Q: Does the person move closer to the {object_1} between ‘{a1}’ and ‘{ak}’?
Q: Does the person move away from the {object_1} between ‘{a1}’ and ‘{ak}’?
Q: Does the person end up closer to the {object_1} after performing ‘{ak}’?
Q: Is the person closer to the {object_1} when ‘{a1}’ or when ‘{ak}’?
Q: During which action is the person closest to the {object_1}?
A: The person moves closer to the {object_1} from ‘{a1}’ to ‘{ak}’.
A: The person starts off farther from the {object_1} at ‘{a1}’, but ends up closer to it after
‘{ak}’.
A: The person approaches the {object_1} while moving from ‘{a1}’ to ‘{ak}’.
A: The person moves further away from the {object_1} from ‘{a1}’ to ‘{ak}’.
A: The person starts off closer to the {object_1} at ‘{a1}’, but ends up farther from it after
‘{ak}’.
A: The person moves away from the {object_1} while moving from ‘{a1}’ to ‘{ak}’.

Multi-object:

Q: During ‘{a1}’, is the person closer to the {object_1} than to the {object_2}?
Q: During ‘{a1}’, would it be easier for the person to access the {object_1} or the {object_2}?
A: Yes, the person is closer to the {object_1} than to the {object_2} when performing ‘{a1}’.
A: No, the person is closer to the {object_2} than to the {object_1} when performing ‘{a1}’.
A: The person is at a similar distance from both the {object_1} and the {object_2} when
performing ‘{a1}’.
A: The person’s relative distance to {object_1} and {object_2} is unclear when performing
‘{a1}’.

Find My Item

Q: Where is the {object_1}, and how can the person get to it?
Q: After performing {action_name}, where did the person leave the {object_1}, and how can
it be reached?
Q: Would it be closer for the person to bring the {object_1} to the {anchor_object_1} or to
the {anchor_object_2}?

A: Answers for this task are free-form generations produced by a VideoLLM. Responses
may describe the object’s location, surrounding context, and suggested navigation steps,
depending on the scene and queried action. See Sec. G.4 for more details.

Furniture Affordance Prediction

Q: Considering the person’s previous actions and current movement, which object will they
most likely interact with next?
Q: Which of the following objects does the person interact with next, given their previous
actions and current motion?
Q: Based on what the person has done so far and how they are moving now, which nearby
object is the person preparing to interact with?

A: Answers are free-form generations from a VideoLLM, typically referring to a plausible
next object interaction such as “fridge,” “microwave,” “sink,” or “hob.” These responses
are selected based on the temporal progression and motion cues present in the scene. See
Sec. G.4 for more details.
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Action Planning

Q: We are performing a cooking or assembly task with the following sequence of actions:
<action_1>, <action_2>, ..., <action_i>. Based on the video, what should I do next, and how
can I get to the place where the next step takes place?

A: Answers are free-form generations from a VideoLLM, which may describe the predicted
next action (e.g., “close salt,” “put down spatula”) and the spatial guidance for reaching the
appropriate location (e.g., “move to the stove,” “turn toward the counter on the left”). These
answers require reasoning over the temporal context and understanding of task progression.
See Sec. G.4 for more details.

G.4 ANSWER GENERATION PROMPTS

In this section, we present the instructions we use to prompt the VideoLLM to construct free-form
ground-truth answers during QA generation.

Find My Item

If question_type is “location”:

<images> You are given a short video showing the action: {action_name}. In the video, the
person places the object: {object_1}.

• The video only shows the past action — the moment the object was last placed.
• You, the assistant, are not in the video, and the person’s current position is unknown.
• You are told the object is now located {direction_phrase} from the person’s current

position. This direction is accurate and must be used in the response.

Question: Where is the {object_1}, and how can the person get to it?
Your answer must:

• Describe the surroundings around the object at the last moment it was visible (based
only on the video)

• Use the known direction “{direction_phrase}” to state where the object is now and
how the person can reach it

• Not guess or infer directions from the video
• Not mention the video directly
• Not invent room layouts or paths
• Be one fluent, natural English sentence

If question_type is “after action”:

<images> You are given a short video showing the action: {action_name}. In this video, the
person places the object: {object_1}.

• The video shows only the past action of placing the object.
• You are not currently in the video.
• The person’s current position is after the video ends and not visible.
• You are told the object is now located at: {direction_phrase}, and this direction

must be used exactly as given.

Question: After performing {action_name}, where did the person leave the {object_1} and
how to reach it?
Your answer must:

• Describe the surroundings where the object was placed at the end of the action
(based only on the video)
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• Use the known direction “{direction_phrase}” to describe where the object is now
and how the person can reach it

• Not infer direction from the video
• Not use generic phrases like “to the right” unless they match “{direction_phrase}”
• Not mention the video directly or invent room layouts
• Be one fluent and natural English sentence

Furniture Affordance

<images> You are given information about a person and their surroundings:

• Previous actions performed by the person: {previous_actions_text}
• Movement relative to nearby objects: {movement_text}
• Available object options: {options_text}

Your task is to generate a fluent, natural English sentence that answers the following question:
“Which object will the person most likely interact with next?”

• The answer should indicate that the person is most likely to interact with the
{groundtruth_anchor_object}.

• Do not mention the list of options directly in your answer.
• Explain naturally why the person is approaching or likely to interact with the

{groundtruth_anchor_object}, based on their actions and movement.
• Keep the response concise and human-like.
• Do not repeat the question or include unrelated commentary.

Action Planning

<images> You are an assistant that generates a detailed, natural-language answer in the
second person, describing progress and the next step in an egocentric video. The data you
have is:

• Video ID: {video_id}
• Video Frames Range: from {start_frame} to {end_frame}
• Two key frames for reference: {", ".join(img_input_list)}
• Actions in the overall sequence: {", ".join(all_actions)}
• Actions completed in the video so far: {", ".join(completed_actions)}
• Next action to perform: {next_action}
• Motion data for how to perform the next action: {movement_type}

Your task:
1. Acknowledge which actions have already been completed, based on the video.
2. Infer the user’s immediate next step from the provided next_action.
3. Describe how the user will physically carry out this next action, considering:

• Movement type (e.g., forward, backward, left, right, or stand still if movement
is minimal)

• {extra_rotation_instruction}
4. Respond in a single, natural-sounding sentence or short paragraph, addressing the

user as “you” (second-person perspective), like an on-the-spot assistant.
5. If the location for the next action is not evident from the video, reference the point

cloud to determine where the user needs to go. Then provide navigation instructions
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(e.g., “move right” or “turn left toward the counter”) so the user can reach the correct
spot and perform the action.

Please generate a concise, coherent answer that incorporates these details, focusing on telling
the user what they have already done and how to perform the next action.

G.5 LICENSES

EPIC-KITCHENS (Damen et al., 2018), EPIC-FIELDS (Tschernezki et al., 2023), VISOR (Darkhalil
et al., 2022) are licensed under CC BY-NC 4.0. We thank the authors of these datasets for providing
high-quality annotations, which form the basis of our work.

H EXTENDED LIMITATIONS

For tasks such as Relative Direction and Relative Distance, we adopt fixed templates to generate
candidate answers. While this enables efficient evaluation, it introduces a risk of overfitting to the
specific answer formats rather than encouraging diverse and natural responses. To mitigate this, future
work could incorporate LLM in the loop to paraphrase or refine the answer templates, promoting
more robust generation and improving generalization to non-templated question-answer pairs.

I LLM USAGE

While preparing this work, we used a large language model (LLM) to assist with language editing. The
core research, experimental design, and all scientific claims remain our original work. Beyond editing,
LLMs were also employed in the data generation pipeline to generate and refine question–answer
pairs, and further served as automated judges for the evaluation of results.
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