
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

pySpatial: GENERATING 3D VISUAL PROGRAMS FOR
ZERO-SHOT SPATIAL REASONING

Anonymous authors
Paper under double-blind review

1 2

ViewsQuery

Spatial Mental Models pySpatial (Ours)

From the viewpoint presented in image 3, what

is to the left of the office chair with blue seat?

3D Visual Program

A. Table and microwave

C. Blue rubbish bin D. Kitchenette

B. Sofa and table

3D Reconstruction

Looking left from the chair’s cell,

the nearest object along that side is

C. Blue rubbish bin.

From this synthesized novel view,

the answer is B. Sofa and table.

First, I will construct a 2D cognitive

map to conceptualize the scene…
Let us consider directly in 3D space...

3 4

Now I execute the visual program…

To find what is to the left, we can

simulate a novel view by rotating the

camera to the left from the viewpoint

of image 3. By looking at this novel

view, one can identify the objects to

the left of the office chair.

Here is the corresponding program:

novel_view =

Novel View Synthesis

Camera Rotation

API

Cognitive Map

3

Imagine the scene…

at view 3

What is to the left?

Figure 1: Comparing our pySpatial with spatial mental models for multi-view spatial reason-
ing tasks. Unlike spatial mental models (Yin et al., 2025), which rely on the implicit imagination of
MLLMs to construct a 2D cognitive map, we introduce pySpatial, a visual programming frame-
work that flexibly composes spatial tools (e.g., 3D reconstruction , camera movements, and novel
view synthesis) to enable MLLMs to explicitly reason in 3D space for diverse spatial reasoning tasks.

ABSTRACT

Multi-modal Large Language Models (MLLMs) have demonstrated strong capa-
bilities in general-purpose perception and reasoning, but they still struggle with
tasks that require spatial understanding of the 3D world. To address this, we in-
troduce pySpatial, a visual programming framework that equips MLLMs with
the ability to interface with spatial tools via Python code generation. Given an
image sequence and a natural-language query, the model composes function calls
to spatial tools including 3D reconstruction, camera-pose recovery, novel-view
rendering, etc. These operations convert raw 2D inputs into an explorable 3D
scene, enabling MLLMs to reason explicitly over structured spatial representa-
tions. Notably, pySpatial requires no gradient-based fine-tuning and operates in
a fully zero-shot setting. Experimental evaluations on the challenging MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that our framework pySpatial
consistently surpasses strong MLLM baselines; for instance, it outperforms GPT-
4.1-mini by 12.94% on MINDCUBE. Furthermore, we conduct real-world in-
door navigation experiments where the robot can successfully traverse complex
environments using route plans generated by pySpatial, highlighting the prac-
tical effectiveness of our approach. Our project website will be available at
https://pySpatial.github.io.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have achieved remarkable success across diverse
tasks such as image captioning (Bucciarelli et al., 2024; Wu et al., 2024), referring ground-

1

https://pySpatial.github.io

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing (Kazemzadeh et al., 2014; Mao et al., 2016), video understanding (Zeng et al., 2025; Fu et al.,
2025), and document parsing (Mathew et al., 2021; 2022; Luo et al., 2024). However, this progress
has not translated into robust 3D spatial reasoning: recent studies (Wu et al., 2025; Chen et al.,
2024a; Chang et al., 2025) reveal that MLLMs still struggle with challenges spanning from basic
tasks such as judging relative object positions or estimating depth in a single image (Liu et al.,
2023; Cheng et al., 2024) to more complex reasoning over egocentric motion and multi-view rela-
tions (Yin et al., 2025; Yang et al., 2025). Such limitations pose a substantial barrier to their reliable
deployment in safety-critical applications including robotics, augmented reality, and embodied
intelligence, where tasks such as navigation, manipulation, and human–robot interaction depend on
precise spatial understanding (Li et al., 2024; Duan et al., 2024; Song et al., 2025; Qiao et al., 2025).

While recent efforts (Chen et al., 2024a; Cheng et al., 2024) have primarily targeted improving spa-
tial understanding from a single image (e.g., “Is the stool in front of the oven?”), in this work we fo-
cus on the more challenging problem of 3D spatial reasoning, where the environment is only partially
observed with limited views and models must reason across perspectives to answer queries such as
“Where should I move from view 1 to view 2?”—a setting in which state-of-the-art MLLMs perform
only slightly above random guess (Yin et al., 2025). Recent studies (Chen et al., 2024a; Ma et al.,
2025) suggest that this weakness largely stems from the training data: although MLLMs are pre-
trained on internet-scale image-caption pairs, explicit 3D supervision is sparse and costly, making
it difficult to learn reliable correspondences between language and 3D spatial structures and thereby
constraining models’ ability to reason effectively in 3D space. More recently, Yin et al. (2025)
explores the use of data structures such as 2D cognitive maps, where the model encodes object posi-
tions in a top-down view to mentally simulate spatial layouts, as shown in Figure 1. However, these
approaches still rely on implicit “imagination” mechanisms and offer only limited effectiveness.

These limitations motivate our central research question: how can we equip MLLMs with explicit
reasoning capabilities in 3D space? A natural first step toward this goal is to obtain an explicit
geometric foundation on which such reasoning can take place. Recent advances in feed-forward
3D reconstruction (Wang et al., 2024b; 2025a) makes this feasible by recovering scene geometry
directly from sparse 2D views, including camera parameters, depth maps, and scene-level point
clouds. Such representations transform limited 2D views into an explorable 3D scene, within which
models can perform spatial transformations (hereafter referred to as spatial tools) such as camera
translation, rotation, and viewpoint shifts to enrich visual context and build interactive reasoning
chains. For instance, given the query “what is behind me if I am at view 3,” the model could rotate the
virtual camera by 180° at the specified viewpoint within the reconstructed scene, thereby uncovering
previously occluded regions and grounding its reasoning in geometric evidence.

However, how to enable MLLMs to flexibly compose spatial tools and seamlessly interact with 3D
environments in a context-aware manner remains a critical challenge. To address this, inspired by
pioneering works on visual programming (Gupta & Kembhavi, 2023; Surís et al., 2023), we intro-
duce pySpatial, a framework that employs MLLMs like GPT-4o as Python code generation agents
to invoke function calls for tools such as 3D reconstruction, natural language description of move-
ments, and novel view synthesis. As illustrated in Figure 1, pySpatial leverages a well-defined API
to automatically select and compose the appropriate tools to solve diverse spatial reasoning tasks.
Notably, pySpatial operates fully in a zero-shot setting and serves as a plug-and-play framework
applicable to both open-source and closed-source MLLMs, offering interpretable solutions and reli-
able responses that make it well-suited for diverse real-world tasks.

We evaluate the effectiveness of our approach on the MINDCUBE and OMNI3D-BENCH bench-
marks, where results demonstrate that pySpatial consistently outperforms strong MLLM baselines
by substantial margins (e.g., achieving a 12.94% improvement over GPT-4.1-mini on MINDCUBE).
Qualitative analyses further verify that our approach can generate high-quality executable and in-
terpretable visual programs that can effectively solve complex spatial reasoning tasks in a zero-shot
manner. Furthermore, we apply pySpatial to real-world indoor navigation, where it successfully
enables a quadrupedal robot to traverse complex environments using generated route plans.

Our contributions can be summarized as follows:

• We present pySpatial, a novel zero-shot framework that enables MLLMs to reason explicitly
in 3D space by generating and executing visual programs that leverage various spatial tools in a
structured, compositional manner to solve diverse spatial reasoning tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We evaluate pySpatial on MINDCUBE and OMNI3D-BENCH, where it demonstrates superior
performance over strong MLLM baselines. Qualitative analysis validates that pySpatial reliably
generates executable and interpretable visual programs for diverse spatial reasoning tasks.

• We further assess the practical effectiveness of pySpatial on indoor navigation tasks, showing
that it can generate route plans that enable a quadrupedal robot to traverse complex environments,
demonstrating strong potentials for practical use cases.

2 RELATED WORK

MLLMs for Spatial Reasoning. Recent MLLMs have demonstrated remarkable performance on
multi-modal tasks such as image captioning and visual grounding (Liu et al., 2024a; Alayrac et al.,
2022; Bai et al., 2025; Chen et al., 2024b). However, studies have shown that these models exhibit
significant limitations in interpreting spatial relations (Yu et al., 2024; Kamath et al., 2023; Wang
et al., 2024a; Tong et al., 2024), a critical precursor to a wide range of practical applications, includ-
ing robotic manipulation (Huang et al., 2022; Shridhar et al., 2023) and embodied navigation (Qiao
et al., 2025; Huang et al., 2023). To address this, recent works such as SpatialVLM (Chen et al.,
2024a) and SpatialRGPT (Cheng et al., 2024) typically propose scalable data synthesis and curation
pipelines to strengthen single-view spatial reasoning capabilities through large-scale pre-training.
Despite these advances, more recently, Yin et al. (2025) demonstrates that current MLLMs and such
approaches still struggle with geometric understanding and perspective-taking in multi-view settings.
In this work, we are among the first to tackle this challenge, and we propose a novel zero-shot visual
programming framework called pySpatial that systematically combines and applies various spatial
tools, enabling models to explicitly reason in 3D and solve diverse spatial tasks.

3D Reconstruction. Classical 3D reconstruction methods, such as Structure-from-Motion (Schon-
berger & Frahm, 2016), typically involve multiple stages and often rely on time-consuming
optimization pipelines. More recently, feed-forward 3D reconstruction approaches such as
DUSt3R (Wang et al., 2024b), MASt3R (Leroy et al., 2024), CUT3R (Wang et al., 2025b) and
VGGT (Wang et al., 2025a) leverage large-scale 3D pre-training and vision transformers to directly
predict pixel-aligned 3D point maps. These data-driven methods demonstrate strong generalizabil-
ity, even in scenarios without overlapping views. Building on this progress, subsequent works have
extended feed-forward 3D reconstruction to applications in neural rendering (Charatan et al., 2024),
SLAM (Maggio et al., 2025), and dynamic reconstruction (Lin et al., 2025).

Modular Visual Reasoning. To enhance compositional multi-modal understanding, recent ad-
vances treats vision specialists (such as GroundingDINO (Liu et al., 2024b) and SAM (Ravi et al.,
2025)) as symbolic operators and composes them to solve complex reasoning problems. Represen-
tative works such as Visual ChatGPT (Wu et al., 2023), MM-REACT (Yang et al., 2023), and Hug-
gingGPT (Shen et al., 2023) follow this direction by integrating LLMs with predefined toolchains
to process multi-modal inputs. Building on this idea, VisProg (Gupta & Kembhavi, 2023) and
ViperGPT (Surís et al., 2023) introduce visual programming that extends this paradigm by prompt-
ing MLLMs to generate executable Python programs that call a set of visual parsers through pre-
defined APIs. More recently, VADAR (Marsili et al., 2025) introduces the visual programming
paradigm for single-view spatial reasoning tasks with an adaptive API design. In contrast, our
pySpatial introduces a framework explicitly designed for multi-view spatial reasoning, equipping
models with compositional 3D tools to handle diverse and complex spatial scenarios.

3 METHOD

In this section, we present pySpatial, a visual programming framework that enables MLLMs to
reason explicitly in 3D space by generating and executing visual programs that orchestrate multiple
spatial tools to address diverse spatial reasoning tasks. We also describe the framework design,
including the pySpatial API signatures and the spatial tools it employs.

3.1 PROBLEM FORMULATION

We consider a setting where an MLLM M is provided with an image sequence I = {In}Nn=1,
where each view has resolution H ×W and captures partial observations of a 3D scene, along with
a natural-language query q concerning spatial relations between objects or camera movements. The
objective is to produce the correct response r∗ from the answer space A that answers the query.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

As introduced in Section 1, we convert the limited 2D views into an explorable 3D scene via feed-
forward reconstruction. This yields consistent depth estimates D, camera intrinsics K ∈ R3×3, and
extrinsics G ∈ SE(3) for each frame. Together, these quantities define a point cloud P in world
coordinates, which serves as the geometric basis for downstream reasoning.

In addition, we adopt a program synthesis-perspective following Surís et al. (2023). Given an input
of an image sequence and a query (I, q), a code agent F generates a Python program z that invokes
a set of spatial tools through a well-defined API. The program is executed by an interpreter E to
produce an intermediate output O, which may take the form of text, a single image, or a list of images
depending on the program z. This output provides direct visual evidence to support answering the
query. For instance, when the query asks, “what is behind me if I am at view 3,” the program renders
a new view by rotating the camera 180° at the specified viewpoint. Finally, the MLLM M integrates
both the original visual inputs and the program outputs to generate the final response r ∈ A.

3.2 SPATIAL TOOLS AND API

To guide the MLLMs to explicitly reason in 3D space, we introduce various spatial tools such as
3D reconstruction, camera description, and novel view synthesis. We provide the pySpatial API
signatures in Code 1 and the details of each tool are described in the following sections.

class pySpatial:
"""pySptial interface for 3D vision tools."""

def reconstruct(scene: Scene):
3D reconstruction from scene images.

def describe_camera_motion(recon:
Reconstruction):

Describe camera motion from
reconstruction results.

def synthesize_novel_view(recon: Reconstruction
, new_camera_pose):

Generate novel view synthesis from
reconstruction results.

def rotate_right(extrinsic , angle =45):
Rotate camera pose to the right , rotate

45 degree by default

def rotate_left(extrinsic , angle =45):
Rotate camera pose to the left rotate 45

degree by default

def move_forward(extrinsic , distance =0.3):
Move camera pose forward , a default

distance is provided

def move_backward(extrinsic , distance =0.3):
Move camera pose backward , a default

distance is provided

def turn_around(extrinsic):
Turn camera pose around 180 degrees

Code 1: pySpatial API signatures.

3D Reconstruction. We adopt two feed-
forward reconstructions depending on the
specific task requirement. For metric-scale
scenes, we use CUT3R (Wang et al., 2025b),
which returns depth in real-world units. When
relative distance in normalized unit space
suffices, we adopt VGGT (Wang et al., 2025a)
for its generalizability.

Formally, each pixel pi ∈ R2 in a view In with
predicted depth Dn(pi) is back-projected into
the camera coordinate system using the intrin-
sics K, and then transformed into world coor-
dinates via the estimated pose Gn ∈ SE(3):

Xi = G−1
n π−1

(
pi, Dn(pi),K

−1
)
, (1)

where π−1 denotes the back-projection from
image coordinates to the 3D point in the
camera frame. We get the point cloud P in the
world space by concatenating Xi for all pixels
in all frames.

Camera Description. We translate raw
camera pose matrices into natural language
labels to make egocentric motion interpretable
to the language model. Each pose is represented by an extrinsic matrix G = [R | t] ∈ R3×4,
which maps world points into the camera frame. The corresponding camera center in world
coordinates is C = −R⊤t. Given two poses (R1, t1) and (R2, t2), the displacement in world
coordinates is ∆Cw = C2 − C1. We then express this displacement in the first camera’s frame
as ∆C1 = R1 ∆Cw. Restricting the displacement to the horizontal plane, we compute the yaw
angle θ = atan2(dx, dz) · 180/π, where (dx, dz) are the x and z components of ∆C1. The
angle is discretized into eight canonical motion categories (forward, backward, left, right, and four
diagonals), yielding a compact natural-language description of egocentric movement.

Novel View Synthesis. To facilitate active exploration of the reconstructed 3D scene, we enable
the agent to render novel views from arbitrary camera poses. Given a point cloud P and a
world-to-camera transformation G = [R | t] ∈ R3×4, we rasterize P into an RGB image with
respect to G and the corresponding camera intrinsics K. The agent can then issue high-level
actions such as rotate_left and turn_around, which are implemented as yaw rotations about
the world y-axis by angle ϕ. The updated camera pose G′ is obtained by applying the rotation to the
camera-to-world transform and inverting back to world-to-camera form. This operation provides
interactive visual feedback that supports explicit spatial reasoning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 3D VISUAL PROGRAMMING

Program Generation. Given a query q, the code agent F synthesizes a Python program z = F(q)
that composes function calls specified in the pySpatial API. By default, we use GPT-4o, a strong
MLLM baseline that has demonstrated effectiveness in code generation, as it has been trained on
Internet-scale Python code data. Note that the agent interacts only with the public interface (e.g.,
reconstruct, rotate_right, synthesize_novel_view) and has no access to internal imple-
mentation details such as model weights, file I/O, or rendering backends. This abstraction separates
high-level reasoning from low-level execution. We also provide default parameters for public inter-
face regarding rotation and movement, i.e. 45 for rotation, and 0.3 for movement, as specified in
Code 1. We guide program synthesis using in-context examples, where the prompts include inter-
face documentation and query–code pairs without ground-truth answers. In addition, we leverage
structured outputs to first enable free-form natural language reasoning, followed by the synthesis of
Python code. The generated Python code, or visual program, acts as an explicit intermediate repre-
sentation that encodes a sequence of tool invocations. It is inherently interpretable, as researchers
can readily inspect, debug, or modify the generated program, and composable, enabling seamless
integration with additional tools or downstream reasoning modules. Once constructed, the program
is executed by the interpreter to produce concrete spatial operations.

Program Execution. At execution time, the synthesized program z is executed by a Python inter-
preter E over the input image sequence I, yielding an intermediate output O = E(z, I). Depending
on the query, the output O may take the form of text, a single image, or a sequence of rendered
views. This intermediate output provides an explicit grounding of the program’s reasoning steps in
observable evidence. In the final stage, a MLLM M integrates the original image sequence I, the
program output O, and the natural language query q to generate the final response r = M(I, O, q).

4 EXPERIMENTS

In this section, we assess the effectiveness of pySpatial on MINDCUBE (Yin et al., 2025) and
OMNI3D-BENCH (Marsili et al., 2025), comparing it with existing state-of-the-art approaches.

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We mainly evaluate our framework on the MINDCUBE (Yin et al., 2025), which is
designed to probe the spatial reasoning capabilities of MLLMs under limited views. Specifically,
MINDCUBE contains over 21,000 spatial question–answer pairs grounded in 3,268 multi-view in-
door scenes, spanning three canonical camera motion types: rotation, around, and among. We also
evaluate on MINDCUBE-1k, a subset of MINDCUBE with 1,050 questions, specifically designed for
evaluation purposes. In addition, following prior work (Marsili et al., 2025), we also evaluate our
framework on OMNI3D-BENCH, a single-view spatial reasoning benchmark, to examine whether
our visual programming approach can generalize beyond multi-view settings.

Baselines. We compare the performance of pySpatial against four categories of existing baselines:
(1) open-weight multi-image MLLMs, such as LLaVA-OneVision-7B (Li et al., 2025) and Qwen2.5-
VL-3B-Instruct (Bai et al., 2025); (2) proprietary MLLMs, including GPT-4o, GPT-4.1-mini, and
Claude-4-Sonnet; (3) specialized spatial models, such as Space-Qwen (Chen et al., 2024a) and
VLM-3R (Fan et al., 2025), and (4) prior visual programming approaches such as ViperGPT (Surís
et al., 2023), VisProg (Gupta & Kembhavi, 2023), and VADAR (Marsili et al., 2025).

Implementation Details. By default, we follow prior visual programming work (Marsili et al.,
2025) to leverage GPT-4o as the code agent to generate Python programs and produce final responses
to queries. We use VGGT (Wang et al., 2025a) as 3D reconstruction model on the MINDCUBE and
OMNI3D-BENCH benchmarks. For real-world navigation, we use CUT3R (Wang et al., 2025b),
which provides metric-scale reconstructions rather than normalized outputs. For point cloud rasteri-
zation, we use Open3D (Zhou et al., 2018) to render novel views. All experiments are conducted on
a single NVIDIA A6000 Ada GPU. We provide full implementation details of pySpatial, along
with the prompts used, in Appendix B and C. Code will be made publicly available upon acceptance.

4.2 QUANTITATIVE RESULTS

Results on MINDCUBE. We first perform comprehensive evaluations of pySpatial on the chal-
lenging MINDCUBE benchmark to rigorously assess its effectiveness in multi-view spatial reason-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on the full MINDCUBE (Yin et al., 2025) dataset. The best
results are shown in bold, and the second-best are underlined. Note that we implement pySpatial
using GPT-4.1-mini as the code agent for this dataset due to budget constraints.

Method Reference Overall Rotation Among Around

Baseline
Random (chance) - 32.35 36.36 32.29 30.66
Random (frequency) - 33.02 38.30 32.66 35.79

Open-Weight Multi-Image Models
LLaVA-OneVision-7B Li et al. (2025) 47.43 36.45 48.42 44.09
LLaVA-Video-Qwen-7B Zhang et al. (2025) 41.96 35.71 43.55 30.12
mPLUG-Owl3-7B-241101 Ye et al. (2025) 44.85 37.84 47.11 26.91
InternVL2.5-8B Chen et al. (2024b) 18.68 36.45 18.20 13.11
Qwen2.5-VL-7B-Instruct Bai et al. (2025) 29.26 38.76 29.50 21.35
Qwen2.5-VL-3B-Instruct Bai et al. (2025) 33.21 37.37 33.26 30.34
DeepSeek-VL2-Small Lu et al. (2024) 47.62 37.00 50.38 26.91

Proprietary Models
GPT-4o OpenAI (2024) 38.81 32.65 40.17 29.16
GPT-4.1-mini OpenAI (2025) 45.62 37.84 47.22 34.56
Claude-4-Sonnet Anthropic (2025) 44.75 48.42 44.21 47.62

Specialized Spatial Models
RoboBrain Ji et al. (2025) 37.38 35.80 38.28 29.53
SpaceMantis Chen et al. (2024a) 22.81 37.65 21.26 29.32
Spatial-MLLM Wu et al. (2025) 32.06 38.39 20.92 32.82
Space-Qwen Chen et al. (2024a) 33.28 38.02 33.71 26.32
VLM-3R Fan et al. (2025) 42.09 36.73 44.22 24.45

pySpatial (Ours) - 58.56 43.20 60.54 48.10

Table 2: Performance comparison on the MINDCUBE-1k (Yin et al., 2025) dataset. The eval-
uated mental models (Yin et al., 2025) are based on Qwen2.5-VL-3B-Instruct (Bai et al., 2025).
VADAR w/ Recon. denotes that we implement VADAR with our 3D reconstruction module. The
best results are highlighted in bold, and the second-best are underlined.

Method Reference Overall Rotation Among Around

Baseline Models
Qwen2.5-VL-3B-Instruct Bai et al. (2025) 37.81 34.00 36.00 45.20
GPT-4o OpenAI (2024) 42.29 35.00 43.00 46.40

Spatial Mental Models
Chain-of-Thought 40.48 32.00 36.00 58.00
View Interpolation Yin et al. (2025) 37.81 35.50 36.50 42.80
Cognitive Map 41.43 37.00 41.67 44.40

Visual Programming Approaches
ViperGPT Surís et al. (2023) 36.95 20.50 41.00 40.40
VADAR Marsili et al. (2025) 40.76 33.50 40.67 46.80
VADAR w/ Recon. - 35.62 31.00 36.83 36.40
pySpatial (Ours) - 62.35 ± 1.18 41.83 ± 2.34 64.89 ± 2.60 72.67 ± 3.30

ing. Table 1 summarizes the results in comparison with baseline approaches. Overall, pySpatial
achieves a clear performance margin over all categories of baselines. Specifically, it reaches an
overall accuracy of 58.56%, outperforming the best open-weight model DeepSeek-VL2-Small by
10.94%, and surpassing the strongest proprietary model GPT-4.1-mini by 12.94%. On the Among
category, which requires reasoning over how the central object relates to all surrounding objects,
pySpatial achieves 60.54%, substantially outperforming all baselines, none of which exceed
50%. Remarkably, pySpatial also outperforms VLM-3R (Fan et al., 2025), which leverages
CUT3R (Wang et al., 2025b) as the 3D encoder and is fine-tuned on synthetic spatial reasoning
data, by 16.5%, despite operating entirely in a zero-shot setting. These results demonstrate that
pySpatial generalizes well across diverse task categories on MINDCUBE. By explicitly decom-
posing spatial reasoning into modular tool calls, our approach provides a stronger inductive bias
than both open-weight and proprietary MLLMs, including those specialized for spatial reasoning.

Results on MINDCUBE-1k. Table 2 compares pySpatial against approaches based on implicit
mental modeling (Yin et al., 2025) (e.g., chain-of-thought reasoning, cognitive maps) and prior

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on OMNI3D-BENCH. Following VADAR (Marsili et al.,
2025), We report mean relative accuracy (Yang et al., 2025) for the numeric (other) and accuracy
for the other category. The best results are shown in bold, and the second-best are underlined.

Method Reference numeric (ct) numeric (other) y/n multi-choice Total

Baseline Models
GPT-4o OpenAI (2024) 28.1 35.5 66.7 57.2 42.9
Claude3.5-Sonnet Anthropic (2024) 22.4 20.6 62.2 50.6 32.2
Llama-3.2 Meta (2024) 24.3 19.3 47.5 27.4 25.6
Gemini1.5-Pro Google (2024) 25.2 28.1 46.2 37.6 32.0
SpaceMantis Chen et al. (2024a) 20.0 21.7 50.6 48.2 30.3

Visual Programming Approaches
ViperGPT Surís et al. (2023) 20.0 15.4 56.0 42.4 26.7
VisProg Gupta & Kembhavi (2023) 2.9 0.9 54.7 25.9 13.5
VADAR Marsili et al. (2025) 21.7 35.5 56.0 57.6 40.4
pySpatial (Ours) - 22.9 38.6 72.0 54.7 44.2

visual programming agents (e.g., ViperGPT, VADAR) on MINDCUBE-1k. We have the following
key observations: (1) Spatial mental models (Yin et al., 2025), which rely on the implicit imagina-
tion mechanisms of MLLMs for spatial reasoning, yield only limited performance gains, whereas
pySpatial outperforms each of them by roughly 20%; (2) Our pySpatial substantially outper-
forms existing visual programming approaches, achieving, for example, a 21.9% improvement over
VADAR. Notably, pySpatial also surpasses VADAR w/ Recon., where we re-implement VADAR
using our 3D reconstruction module. This result demonstrates that even when equipped with 3D
information, VADAR’s adaptive API design remains unreliable and lacks robustness for reasoning
in 3D space. These results validate the superior effectiveness of pySpatial over existing baselines,
demonstrating the advantages of enabling explicit 3D reasoning for multi-view spatial reasoning.

Results on OMNI3D-BENCH. We further evaluate pySpatial on the recent single-view spatial
reasoning benchmark OMNI3D-BENCH, demonstrating that our framework generalizes effectively
to single-view settings and provides consistent improvements across task categories. Table 3 shows
results on OMNI3D-BENCH, where we follow the evaluation protocol of VADAR (Marsili et al.,
2025): mean relative accuracy (MRA) is reported for the numeric (other) subtask, and standard ac-
curacy is used for the remaining categories. Our pySpatial outperforms prior visual programming
approaches, achieving gains of 3.8% over VADAR and 17.5% over ViperGPT, and sets a new over-
all state-of-the-art on OMNI3D-BENCH. Notably, pySpatial also surpasses GPT-4o on the total
score, underscoring that our visual programming framework provides benefits even over advanced
proprietary MLLMs. This result highlights the broad generalizability of pySpatial: even in single-
view settings where geometric cues are less apparent, explicitly invoking 3D functions through the
code agent continues to enhance spatial reasoning.

4.3 QUALITATIVE RESULTS

To further illustrate the capabilities of our pySpatial framework, we conduct qualitative experi-
ments on representative examples from the MINDCUBE benchmark. As shown in Figure 2, each
query is paired with the generated 3D visual program, the reconstructed 3D scene, the program out-
puts, and the final response produced by pySpatial. These examples highlight how pySpatial
enables MLLMs to reason explicitly within an explorable 3D scene reconstructed from sparse 2D
inputs. By synthesizing executable and interpretable visual programs that perform operations such
as camera translation, rotation, and novel view synthesis, the framework provides interpretable out-
puts that ground the reasoning process in geometric evidence. Across diverse spatial reasoning
tasks, pySpatial produces responses that closely align with ground-truth annotations, highlight-
ing the effectiveness of our approach. It is worth noting that the generated 3D visual programs
include well-structured comments that capture the reasoning process of pySpatial, thereby pro-
viding transparency and interpretability that researchers can readily verify, debug, or modify.

4.4 REAL-WORLD ROBOT NAVIGATION

To test the potential of real-world deployment using purely MLLMs, we employ a quadrupedal robot
with a velocity-tracking controller in a 50 m2 two-room laboratory. In this setup, the MLLM gener-
ates high-level position commands, which are manually converted into temporal velocity targets that
the controller tracks, enabling the robot to navigate from an initial pose to a target object (a mush-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

def program(input_scene: Scene):
Reconstruct the 3D scene from the four images
reconstructed_scene = pySpatial.reconstruct(input_scene)
Get the camera extrinsic for image 3 (index 2)
viewpoint_3 = reconstructed_scene.extrinsics[2]
Rotate the camera right from viewpoint 3 to see what is
to the right of the blue bag
viewpoint_right_of_3 = pySpatial.rotate_right(viewpoint_3)
Synthesize the novel view from the rotated camera pose
novel_view = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_right_of_3)
Return the novel view image for visual inspection to identify
what is to the right of the blue bag
return novel_view

def program(input_scene: Scene):

Reconstruct the 3D scene from input images
reconstructed_scene = pySpatial.reconstruct(input_scene)

Get the camera extrinsics of image 4 (index 3)

base_viewpoint = reconstructed_scene.extrinsics[3]
Turn left from the base viewpoint

viewpoint_turn_left = pySpatial.rotate_left(base_viewpoint)

Move forward from the turned left viewpoint
viewpoint_move_forward = pySpatial.move_forward(viewpoint_turn_left)

Synthesize novel views for the turned left and moved forward viewpoints

image_turn_left = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_turn_left)

image_move_forward = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_move_forward)

Return the two images for visual comparison to check if closer to the sofas

return [image_turn_left, image_move_forward]

3D Reconstruction:

def program(input_scene: Scene):

Step 1: reconstruct the 3D scene from the input images
reconstruction3D = pySpatial.reconstruct(input_scene)

Step 2: get the camera extrinsic for the second viewpoint (index 1)

viewpoint_2 = reconstruction3D.extrinsics[1]
Step 3: rotate the camera to the right from viewpoint 2 to see what is on the

right side of the black chair

novel_viewpoint = pySpatial.rotate_right(viewpoint_2)
Step 4: synthesize the novel view from the rotated camera pose

novel_view = pySpatial.synthesize_novel_view(reconstruction3D, novel_viewpoint)

Step 5: return the novel synthesized view for visual inspection
to answer the question

return novel_view

3D Reconstruction:

def program(input_scene: Scene):
Step 1: reconstruct the 3D scene from the input images
reconstruction3D = pySpatial.reconstruct(input_scene)

Step 2: describe the camera motion between the two views using extrinsics
camera_motion_description = pySpatial.describe_camera_motion(reconstruction3D)
Return the description which should match one of the answer choices
return camera_motion_description

Query: In which direction did I move from the first view to the second view?

image_turn_first

Ground Truth: Diagonally forward and left.

1

2

3D Reconstruction:

Final Response: The visual clue explicitly states the camera moved from pose 1 to pose 2 diagonally forward and left. Therefore, the

direction of the camera movement is diagonally forward and left.

Program Output:

From image 1 to

image 2, the camera

move diagonally

forward and left.

Query: From the viewpoint 2, what is on to the right of the black chair? Ground Truth: Grey Sofa.

Final Response: From the rendered point cloud image, we can see a large grey sofa. Its shape, cushion structure, and placement

along the wall make it clearly identifiable as a sofa rather than a table, cabinet, or office setup.

1 2

3 4

Program Output:

Query: From viewpoint 4, if I turn left and move forward, will I get closer to the two single sofas? Ground Truth: Yes.

1 2

3 4

Final Response: The second view shows the two single sofas prominently and larger, suggesting a closer distance.

3D Reconstruction:

Program Output:
image_move_forward

Query: From viewpoint 3, what is to the right of the blue bag? Ground Truth: Black sofa.

1 2

3 4

Final Response: The novel view synthesized by rotating the camera to the right of the viewpoint 3 shows a black sofa point cloud. The shape, color, and

texture in that part align well with the appearance of a black sofa rather than a window, plush toy, or display shelves.

Program Output:

Figure 2: Qualitative results on four examples from MINDCUBE. We show that pySpatial
enables MLLMs to explicitly reason within the reconstructed explorable 3D scene, effectively
addressing diverse spatial reasoning tasks through interpretable and executable 3D visual programs.

room toy). From limited 2D views, pySpatial reconstructs an explorable 3D scene, infers camera
poses via visual programming, and generates a structured motion plan for the robot to execute.

As shown in Figure 3, our pySpatial successfully guides the robot through doorways, make correct
turns, and finally toward the correct goal location. Notably, the MLLM baseline GPT-4.1 struggles
to resolve relative direction such as left–right and fails to provide absolute metric distance estimates,
leading to navigation errors. In contrast, our agent outputs precise rotations and translations that
align with real-world execution, resulting in reliable task completion. This experiment demonstrates
that our approach not only produces coherent spatial reasoning in question answering benchmarks,
but also transfers effectively to physical robotic platforms for complex indoor navigation tasks.

4.5 DISCUSSIONS

Table 4: Ablation study on the code agent. We
report the accuracy on the MINDCUBE-1k dataset.

Method Overall Rotation Among Around

GPT-4o 42.29 35.00 43.00 46.40
+ pySpatial 62.67 41.00 65.00 66.33

GPT-4.1-mini 43.34 36.00 45.00 44.80
+ pySpatial 58.19 37.50 62.00 65.60

GPT-4.1 44.67 35.50 45.33 50.40
+ pySpatial 63.42 42.00 66.33 73.60

Ablation Study on the Code Agent. To ab-
late the effect of our code agent, we con-
duct experiments on the MINDCUBE-1k bench-
mark by comparing the performance of vari-
ous MLLM baselines with and without integra-
tion of pySpatial. As summarized in Table 4,
augmenting models with pySpatial consis-
tently leads to substantial improvements across
all tested MLLMs, including GPT-4o, GPT-4.1-
mini, and GPT-4.1. For instance, GPT-4o im-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Query: Given a quadrupedal robot initialized at the pose corresponding to image 1, generate a task specification and motion

plan for navigating to the mushroom toy at Image 4.

1 2 3 4

Input Limited Views Reconstructed 3D Scene & Motion Plan

Ours

GPT-4.1

Real-World Robot Navigation

Start

Goal

1. Go through the office door into the next room (straight ahead,

3.09m).

2. Turn right 78.8°, move alongside the white table toward the back

right corner and large brown box (4.23m).

3. From there, turn left 89.9°, move past the black chair with

mushroom toy, straight to the door at the far wall (2.23m).

1. Move forward 2.2m to exit the office through the doorway into the

larger room. Then turn left 35° to directly face the white table.

2. Move forward 1.3m toward the near edge of the table (center

position), and then turn left 40° to align with the long left wall.

3. Move diagonally forward-left 2.6m along the table’s side, stopping

near the far corner by the whiteboards and then turn right 30° to

face the mushroom toy on the chair.

Proposed Motion Plan from GPT-4.1 Proposed Motion Plan from pySpatial (Ours)

Figure 3: Qualitative results on real-world robot navigation. We deploy pySpatial on a Unitree-
Go1 robot to navigate toward a target object (mushroom toy) using limited views as input. The figure
shows the reconstructed 3D scene, motion plans, and physical execution. Compared to the GPT-
4.1 baseline, which fails due to an incorrect initial turn and produces a collision-prone trajectory,
pySpatial generates a geometrically consistent plan that successfully reaches the goal.

proves from 42.3% to 62.7% overall accuracy, indicating that pySpatial generalizes across differ-
ent MLLMs and effectively enhance spatial reasoning.

61%

6%

20%

13%

Correct
Program Error
Response Error
Recon. Error

Figure 4: Failure case study.
We manually examine the er-
ror sources in about 100 sam-
ples from MINDCUBE.

Failure Case Analysis. From the MINDCUBE benchmark, we se-
lect a representative subset of about 100 samples and conduct a
manual analysis to identify the underlying sources of error in cases
where the final response is incorrect. As shown in Figure 4, among
the 39% of failure cases, only 6% are attributable to incorrectly gen-
erated visual programs that fail to address the query, validating the
effectiveness of our overall programming pipeline. Beyond this,
20% of errors arise from the MLLMs at the final reasoning step,
while 13% stem from limitations in the 3D reconstruction models,
where the generated visual programs are correct but the program
outputs do not provide useful information. These results also sug-
gest that advances in 3D reconstruction and code generation models
hold the potential to further enhance our performance.

Remarks on Efficiency. Our pySpatial completes the MINDCUBE-1k benchmark in 2.17 hours
on a single GPU using a single thread for 1,050 queries, averaging 7.45 seconds per query. As the
breakdown, code generation requires 2.41 seconds, program execution 2.14 seconds, and answer
generation 2.90 seconds. For comparison, VADAR (Marsili et al., 2025) requires 17.25 seconds per
query on average. These results demonstrate that our visual programming framework enhances the
spatial reasoning capabilities of MLLMs while remaining efficient to deploy without excessive cost.

5 CONCLUSION

In this work, we present pySpatial, a visual programming framework that enhance spatial rea-
soning capabilities of MLLMs through zero-shot Python code generation. By composing functions
such as 3D reconstruction and novel-view synthesis, pySpatial converts 2D image sequences into
explorable 3D scenes, enabling explicit reasoning in 3D space. Experiments on the MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that pySpatial consistently outperforms strong
MLLM baselines, with gains of up to 12.94% on MINDCUBE compared to GPT-4.1-mini. Beyond
benchmarks, real-world indoor navigation experiments further validate its practicality, showing that
robots can successfully traverse complex environments using route plans generated by pySpatial.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All the spatial tools used in this
work are open-sourced, and the benchmark datasets we evaluate on are publicly available. We have
provided detailed descriptions of our experimental setup and implementation details in Section 4 and
Appendix to facilitate reproducibility. Code will be publicly available upon acceptance to enable the
community to reproduce our experiments and build upon our work.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022. 3

Anthropic. Claude 3.5 sonnet, October 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet. 7

Anthropic. Claude 4 sonnet system card, May 2025. URL https://www-cdn.anthropic.com/
6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf. 6

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923,
2025. 3, 5, 6

Davide Bucciarelli, Nicholas Moratelli, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Per-
sonalizing multimodal large language models for image captioning: an experimental analysis. In
European Conference on Computer Vision, pp. 351–368. Springer, 2024. 1

Chun-Peng Chang, Alain Pagani, and Didier Stricker. 3d spatial understanding in mllms: Disam-
biguation and evaluation. In IEEE International Conference on Robotics and Automation, pp.
13537–13544. IEEE, 2025. 2

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelSplat: 3d gaus-
sian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467, 2024. 3

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14455–14465,
2024a. 2, 3, 5, 6, 7

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024b. 3, 6

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. Advances in
Neural Information Processing Systems, 37:135062–135093, 2024. 2, 3

Jianguo Duan, Liwen Zhuang, Qinglei Zhang, Ying Zhou, and Jiyun Qin. Multimodal perception-
fusion-control and human–robot collaboration in manufacturing: A review. The International
Journal of Advanced Manufacturing Technology, 132(3):1071–1093, 2024. 2

Zhiwen Fan, Jian Zhang, Renjie Li, Junge Zhang, Runjin Chen, Hezhen Hu, Kevin Wang, Huaizhi
Qu, Dilin Wang, Zhicheng Yan, et al. Vlm-3r: Vision-language models augmented with
instruction-aligned 3d reconstruction. arXiv preprint arXiv:2505.20279, 2025. 5, 6

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalu-
ation benchmark of multi-modal llms in video analysis. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 24108–24118, 2025. 2

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf
https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Google. Our next-generation model: Gemini 1.5, February 2024. URL https://blog.google/
technology/ai/google-gemini-next-generation-model-february-2024/. 7

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023. 2, 3, 5, 7

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
navigation. In IEEE International Conference on Robotics and Automation, pp. 10608–10615.
IEEE, 2023. 3

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022. 3

Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipu-
lation from abstract to concrete. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 1724–1734, 2025. 6

Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s “up” with vision-language models? inves-
tigating their struggle with spatial reasoning. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 9161–9175, 2023. 3

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
objects in photographs of natural scenes. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pp. 787–798, 2014. 2

Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
In European Conference on Computer Vision, pp. 71–91. Springer, 2024. 3

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer.
Transactions on Machine Learning Research, 2025. URL https://openreview.net/forum?
id=zKv8qULV6n. 5, 6

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-
centric robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18061–18070, 2024. 2

Chenguo Lin, Yuchen Lin, Panwang Pan, Yifan Yu, Honglei Yan, Katerina Fragkiadaki, and
Yadong Mu. Movies: Motion-aware 4d dynamic view synthesis in one second. arXiv preprint
arXiv:2507.10065, 2025. 3

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the Associ-
ation for Computational Linguistics, 11:635–651, 2023. 2

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a. 3

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European Conference on Computer Vision, pp. 38–55. Springer,
2024b. 3

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024. 6

Chuwei Luo, Yufan Shen, Zhaoqing Zhu, Qi Zheng, Zhi Yu, and Cong Yao. Layoutllm: Layout
instruction tuning with large language models for document understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15630–15640, 2024. 2

11

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://openreview.net/forum?id=zKv8qULV6n
https://openreview.net/forum?id=zKv8qULV6n

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wufei Ma, Yu-Cheng Chou, Qihao Liu, Xingrui Wang, Celso de Melo, Jianwen Xie, and Alan
Yuille. Spatialreasoner: Towards explicit and generalizable 3d spatial reasoning. arXiv preprint
arXiv:2504.20024, 2025. 2

Dominic Maggio, Hyungtae Lim, and Luca Carlone. Vggt-slam: Dense rgb slam optimized on the
sl (4) manifold. arXiv preprint arXiv:2505.12549, 2025. 3

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 11–20, 2016. 2

Damiano Marsili, Rohun Agrawal, Yisong Yue, and Georgia Gkioxari. Visual agentic ai for spatial
reasoning with a dynamic api. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 19446–19455, 2025. 3, 5, 6, 7, 9

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 2200–2209, 2021. 2

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1697–1706, 2022. 2

Meta. Llama 3.2: Revolutionizing edge ai and vision with open, cus-
tomizable models, September 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/. 7

OpenAI. Hello gpt-4o, August 2024. URL https://openai.com/index/hello-gpt-4o/. 6, 7

OpenAI. Introducing gpt-4.1 in the api, April 2025. URL https://openai.com/index/
gpt-4-1/. 6

Yanyuan Qiao, Haodong Hong, Wenqi Lyu, Dong An, Siqi Zhang, Yutong Xie, Xinyu Wang, and
Qi Wu. Navbench: Probing multimodal large language models for embodied navigation. arXiv
preprint arXiv:2506.01031, 2025. 2, 3

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. SAM 2: Segment anything in images and videos. In International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=Ha6RTeWMd0. 3

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113, 2016. 3

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023. 3

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023. 3

Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stan Birchfield. Ro-
bospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 15768–15780,
2025. 2

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11888–11898, 2023. 2, 3, 4, 5, 6, 7

Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
open, vision-centric exploration of multimodal llms. Advances in Neural Information Processing
Systems, 37:87310–87356, 2024. 3

12

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openreview.net/forum?id=Ha6RTeWMd0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 5294–5306, 2025a. 2, 3, 4, 5

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Sharon Li, and Neel Joshi. Is
a picture worth a thousand words? delving into spatial reasoning for vision language models.
Advances in Neural Information Processing Systems, 37:75392–75421, 2024a. 3

Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
tinuous 3d perception model with persistent state. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 10510–10522, 2025b. 3, 4, 5, 6

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
ometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20697–20709, 2024b. 2, 3

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023. 3

Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
in visual-based spatial intelligence. arXiv preprint arXiv:2505.23747, 2025. 2, 6

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, Zhaoyang Liu, Zhe Chen, Wenhai Wang,
Xizhou Zhu, Lewei Lu, Tong Lu, et al. Visionllm v2: An end-to-end generalist multimodal
large language model for hundreds of vision-language tasks. Advances in Neural Information
Processing Systems, 37:69925–69975, 2024. 1

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 10632–10643, 2025. 2, 7

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal
reasoning and action. arXiv preprint arXiv:2303.11381, 2023. 3

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
Jingren Zhou. mPLUG-owl3: Towards long image-sequence understanding in multi-modal large
language models. In International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=pr37sbuhVa. 6

Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, et al. Spatial mental modeling
from limited views. arXiv preprint arXiv:2506.21458, 2025. 1, 2, 3, 5, 6, 7

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
International Conference on Machine Learning, pp. 57730–57754. PMLR, 2024. 3

Xiangyu Zeng, Kunchang Li, Chenting Wang, Xinhao Li, Tianxiang Jiang, Ziang Yan, Songze
Li, Yansong Shi, Zhengrong Yue, Yi Wang, Yali Wang, Yu Qiao, and Limin Wang. Time-
suite: Improving MLLMs for long video understanding via grounded tuning. In International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
nAVejJURqZ. 2

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun MA, Ziwei Liu, and Chunyuan Li. LLaVA-
video: Video instruction tuning with synthetic data. Transactions on Machine Learning Research,
2025. URL https://openreview.net/forum?id=EElFGvt39K. 6

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing.
arXiv preprint arXiv:1801.09847, 2018. 5

13

https://openreview.net/forum?id=pr37sbuhVa
https://openreview.net/forum?id=pr37sbuhVa
https://openreview.net/forum?id=nAVejJURqZ
https://openreview.net/forum?id=nAVejJURqZ
https://openreview.net/forum?id=EElFGvt39K

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Generating 3D Visual Programs for Zero-Shot Spatial Reasoning
Appendix

In the appendix, we provide additional experimental results and implementation details of our
pySpatial framework. The appendix is organized as follows:

• Section A provides more experimental results.

• Section B shows the API specification for pySpatial.

• Section C presents the prompt implementation for our agent.

• Section D disclosures the use of large language models.

A MORE EXPERIMENTAL RESULTS

A.1 RESULTS ON MMSI-BENCH

We further evaluate our approach on MMSI-Bench and report the results in Table A1. We observe
that pySpatial improves the overall MMSI-Bench performance by 6.4% on average, further demon-
strating the effectiveness of our approach.

Table A1: Evaluation results on MMSI-Bench. Our pySpatial is based on GPT-4o.

Models Positional Relationship Attribute Motion MSR Avg.
Cam.–Cam.Obj.–Obj. Reg.–Reg. Cam.–Obj. Obj.–Reg. Cam.–Reg. Meas. Appr. Cam. Obj. –

Proprietary
GPT-5 43.0 35.1 32.1 48.8 42.4 51.8 60.9 36.4 32.4 36.8 42.0 41.9
o3 45.2 39.4 37.0 44.2 47.1 62.6 54.7 28.8 31.1 32.9 34.9 41.0
GPT-4.5 34.4 29.8 39.5 51.2 47.1 55.4 39.1 33.3 41.9 40.8 36.4 40.3
GPT-4.1 36.6 26.6 27.2 29.1 36.5 27.7 37.5 24.2 36.5 32.9 28.8 30.9
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.3
Gemini-2.5-Pro 39.7 31.9 39.5 45.3 35.2 43.3 51.5 21.2 36.4 30.2 34.3 36.9

Open-source
InternVL3-78B 34.4 23.4 32.1 12.8 37.6 26.5 37.5 19.7 28.4 31.6 29.3 28.5
InternVL2.5-78B 23.7 22.3 39.5 29.1 31.8 42.2 35.9 19.7 17.6 26.3 27.3 28.5
Qwen2.5-VL-72B 25.8 34.0 34.6 23.3 34.1 36.1 45.3 27.3 27.0 30.3 27.3 30.7
LLaVA-OneVision-72B 43.0 31.9 33.3 30.2 37.6 38.6 28.1 19.7 13.5 32.9 15.7 28.4

Baseline
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.3
+ pySpatial (Ours) 51.6 28.7 27.2 20.9 41.2 38.6 46.9 39.4 46.0 38.2 36.4 37.3

A.2 MORE ABLATION STUDIES

Code Agents. In Table A2, we compare the performance of our pySpatial framework when
paired with different code agents. Across all categories, pySpatial consistently improves upon
the base GPT-4o model, regardless of the underlying LLM used for code generation. Among the
evaluated agents, GPT-4o achieves the strongest overall performance, reaching 62.67% accuracy,
while Qwen3-Coder and DeepSeek-v3 deliver comparable results at 62.10% and 61.05%, respec-
tively. Notably, Qwen3-Coder performs best on the Around category, whereas GPT-4o provides the
most balanced improvements across all task types. These findings indicate that our framework is
robust to the choice of code agent and that most of the performance gains stem from the 3D visual
programming paradigm rather than the specific code LLM used.

3D Reconstruction Backbones. In Table A3, we compare the impact of different 3D reconstruc-
tion backbones on the performance of our pySpatial framework. All three backbones, including
VGGT, Pi3, and CUT3R, lead to substantial improvements over the GPT-4o baseline, indicating
that our 3D visual programming paradigm is robust to the choice of reconstruction method. Among
them, Pi3 achieves the best overall performance (63.33%), with notable gains in the Rotation and
Among categories. VGGT provides similarly strong results, while CUT3R performs slightly lower
but still significantly surpasses the base model. These findings suggest that pySpatial can effec-
tively leverage a range of modern reconstruction backbones, and its spatial reasoning improvements
are not tied to a specific reconstruction architecture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table A2: Performance comparison of our pySpatial framework with different code agents.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ GPT-4o 62.67 41.00 66.33 71.20
pySpatial w/ Qwen3-Coder 62.10 40.00 64.50 74.00
pySpatial w/ DeepSeek-v3 61.05 40.50 65.33 64.80

Table A3: Performance comparison of pySpatial using different 3D reconstruction backbones.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ VGGT 62.67 41.00 66.33 71.20
pySpatial w/ Pi3 63.33 43.50 65.66 72.33
pySpatial w/ CUT3R 61.05 40.50 64.33 69.60

Table A4: Comparison of pySpatial with different numbers of in-context learning examples.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ 0 examples 53.62 32.50 55.16 66.80
pySpatial w/ 2 examples 62.67 41.00 66.33 71.20
pySpatial w/ 4 examples 63.14 46.00 64.50 73.60

In-Context Learning Examples for Code Agents. In Table A4, we examine how the number
of in-context learning examples influences the performance of our pySpatial framework. We
observe a clear upward trend: providing even a small number of examples substantially improves
performance across all categories. Using 0 examples already offers a strong boost over the base
GPT-4o model (53.62% vs. 42.29%), demonstrating that pySpatial can operate effectively even
without demonstration guidance. Adding 2 examples leads to a significant further gain, reaching
62.67% overall accuracy. Increasing to 4 examples yields the best performance (63.14%), with
notable improvements particularly in the Rotation and Around categories. These results suggest that
pySpatial benefits from additional examples, but even minimal in-context supervision is sufficient
to unlock strong spatial reasoning capabilities.

A.3 ADDITIONAL QUALITATIVE RESULTS

We present more qualitative results from MINDCUBE in Figure A1. Beyond the linear program flow
demonstrated in Figure 2, pySpatial is also capable of executing more expressive control-flow
operations, including for-loops, conditionals, and lambda-style functional compositions, allowing it
to construct complex multi-step 3D operations. These richer program structures enable pySpatial
to iteratively explore candidate viewpoints, selectively apply geometric predicates, and adapt its
reasoning based on scene-dependent constraints. Across the presented examples, the 3D visual
programs generated by our code agent consistently guide pySpatial toward responses that closely
align with the ground-truth spatial relationships, further validating the correctness, interpretability,
and robustness of our 3D reasoning framework.

A.4 ADDITIONAL REAL-WORLD EXPERIMENTS

We also include an additional qualitative example in a challenging dynamic scene, where the views
are captured at different times and a person is moving through the environment, as shown in Fig-
ure A2. Despite the temporal inconsistency and the presence of dynamic elements, pySpatial
remains effective: the reconstruction module robustly integrates the multi-view observations and
preserves the stable structural cues needed for accurate spatial reasoning. In contrast, GPT-5 contin-
ues to struggle in this scenario, failing to generate a safe or correct navigation trajectory and often
producing instructions that are incompatible with the underlying scene geometry. These extended
real-world experiments further validate the robustness and practical effectiveness of our approach.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A1: More qualitative examples from MINDCUBE. We show that pySpatial enables
MLLMs to explicitly reason within a reconstructed, explorable 3D scene, allowing the model not
only to interpret spatial structure but also to compose executable 3D visual programs with control
flow, such as for-loops to robustly solve diverse spatial reasoning tasks.

Start

Goal

Query: Suppose you are looking at the viewpoint corresponding to Image 1, generate a task specification and motion plan for

navigating to the goal destination at Image 4.

3

Input Limited Views

Ours

GPT-5

1. Turn 45° to your right and walk 4 meters forward toward the

space beside the foosball table.

2. Turn 35° to your left and walk 2 meters forward toward the corner

near the red pool table.

3. Turn 80° to your right and walk 2 meters forward toward the area

with the guitar and chairs.

Proposed Motion Plan from GPT-5

1. Turn left 37.6°, orienting yourself slightly toward the foosball table and

white barstools, then walk forward 7.543 m, passing the ping-pong table

on your right.

2. Turn right 84.2° so that you face toward the red-felt pool table beyond

the foosball area, then walk forward 7.011 m, moving between the foosball

table and the couch area.

3. Turn right 72.8°, aligning your view with the yellow ottoman, then walk

forward 4.573 m to arrive at the goal.

Proposed Motion Plan from pySpatial (Ours)

Reconstructed 3D Scene & Motion Plan

1 2

4

Figure A2: An additional qualitative real-world example in a challenging dynamic scene.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION FOR pySpatial

A complete description of the API interface is provided in Code 2.

import os
import glob
from typing import List , Union
from pathlib import Path

from tool.recontruct import reconstruct_3d
from tool.segment import segment_image , segment_automatic
from tool.estimate_depth import estimate_depth
from tool.camera_understanding import analyze_camera_trajectory
from tool.novel_view_synthesis import novel_view_synthesis , rotate_right , rotate_left ,

move_forward , move_backward , turn_around
import re

class Reconstruction:
def __init__(self , point_cloud , extrinsics , intrinsics , colors=None):

self.point_cloud = point_cloud
self.extrinsics = extrinsics # list of 4 *4 numpy array
self.intrinsics = intrinsics
self.colors = colors # Add colors attribute

class Scene:
"""Simple scene class that holds image data."""

def __init__(self , path_to_images: Union[str , List[str]], question: str = "",
scene_id: str = None):

self.question = question
self.scene_id = scene_id
self.original_path = path_to_images # Store original path for reconstruction
self.images = self._load_images(path_to_images)
self.reconstruction : Reconstruction = None
self.code : str = None
self.visual_clue = None

def _load_images(self , path_to_images: Union[str , List[str]]) -> List[str]:
"""Load image paths from directory or list."""
if isinstance(path_to_images , str):

if os.path.isdir(path_to_images):
Check if this is a demo directory (contains .glb files)
demo_path = Path(path_to_images)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:
This is a demo directory , load images from color/ subdirectory
color_dir = demo_path / "color"
if color_dir.exists ():

image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(str(color_dir), ext)))
return sorted(images)

else:
print(f"Warning: Demo directory detected but no color/

subdirectory found in {path_to_images}")
return []

else:
Regular directory , load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(path_to_images , ext)))
return sorted(images)

else:
Single image file
return [path_to_images]

else:
List of image paths
return list(path_to_images)

class pySpatial:
"""Simple interface for 3D vision tools."""
we disable other function for now

@staticmethod

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

def reconstruct(scene: Scene):
"""3D reconstruction from scene images."""

Check if this is a demo directory (contains .glb files)
if isinstance(scene.original_path , str) and os.path.isdir(scene.original_path):

demo_path = Path(scene.original_path)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:
This is a demo directory , pass the directory path for demo data loading
result = reconstruct_3d(scene.original_path , scene_id=scene.scene_id)

else:
Regular reconstruction with image paths
result = reconstruct_3d(scene.images , scene_id=scene.scene_id)

else:
Regular reconstruction with image paths
result = reconstruct_3d(scene.images , scene_id=scene.scene_id)

Convert the raw result dictionary to a Reconstruction object
point_cloud = result.get('points ', None)
cameras = result.get('cameras ', None)
colors = result.get('colors ', None) # Get colors from result

Convert point cloud to numpy if it's a tensor
if point_cloud is not None:

if hasattr(point_cloud , 'cpu'): # PyTorch tensor
point_cloud = point_cloud.cpu().numpy()

elif hasattr(point_cloud , 'numpy'): # Other tensor types
point_cloud = point_cloud.numpy ()

Convert colors to numpy if it's a tensor
if colors is not None:

if hasattr(colors , 'cpu'): # PyTorch tensor
colors = colors.cpu().numpy ()

elif hasattr(colors , 'numpy '): # Other tensor types
colors = colors.numpy()

Extract extrinsics and intrinsics from cameras if available
extrinsics = None
intrinsics = None

if cameras is not None:
Assume cameras contains extrinsic matrices
extrinsics = cameras.cpu().numpy() if hasattr(cameras , 'cpu') else cameras

Create and return Reconstruction object with colors
reconstruction = Reconstruction(point_cloud , extrinsics , intrinsics , colors)

Store the raw result for debugging
reconstruction._raw_result = result

return reconstruction

@staticmethod
def describe_camera_motion(recon: Reconstruction):

"""Describe camera motion from reconstruction results.
Args:
"""
extrinsics = recon.extrinsics
return analyze_camera_trajectory(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction , new_camera_pose , width =512, height
=512, out_path=None):

"""Generate novel view synthesis from reconstruction results.
Args:

recon: Reconstruction object with point_cloud , extrinsics , intrinsics
new_camera_pose: 3x4 or 4x4 extrinsic matrix for the new viewpoint
width: output image width (default: 512)
height: output image height (default: 512)
out_path: output image path (default: None , returns image object if not

provided)
Returns:

str or image: path to the rendered image if out_path provided , otherwise
image object

"""
return novel_view_synthesis(recon , new_camera_pose , width , height , out_path)

@staticmethod
def rotate_right(extrinsic , angle=None):

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"""Rotate camera pose to the right"""
return rotate_right(extrinsic , angle)

@staticmethod
def rotate_left(extrinsic , angle=None):

"""Rotate camera pose to the left"""
return rotate_left(extrinsic , angle)

@staticmethod
def move_forward(extrinsic , distance=None):

"""Move camera pose forward"""
return move_forward(extrinsic , distance)

@staticmethod
def move_backward(extrinsic , distance=None):

"""Move camera pose backward"""
return move_backward(extrinsic , distance)

@staticmethod
def turn_around(extrinsic):

"""Turn camera pose around 180 degrees"""
return turn_around(extrinsic)

class Agent:
def __init__(self , api_key: str = None):

self.api_key = api_key or os.getenv('OPENAI_API_KEY ')

def generate_code(self , scene: Scene):
from agent.codeAgent.query import generate_code_from_query
return generate_code_from_query(scene , self.api_key)

def parse_LLM_response(self , scene: Scene , response: str):
"""
Extracts the first python code block (```python ... ```) from text.
Returns the code as a string , or "" if not found.
"""
from agent.codeAgent.execute import parse_LLM_response
code = parse_LLM_response(response)
scene.code = code
return code

def execute(self , scene: Scene):
"""
Execute a code string with a scene and return the visual clue result.
"""
try:
from agent.codeAgent.execute import execute_code
program = execute_code(scene.code)

visual_clue = program(scene)
return visual_clue
except Exception as e:
import traceback
error_details = f"Execution failed: {str(e)}\ nTraceback: {traceback.

format_exc ()}"
Store the error for detailed reporting
self.last_execution_error = error_details
return f"there is an error during code generation , no visual clue provided.

Error: {str(e)}"

from agent.codeAgent.execute import execute_code
program = execute_code(scene.code)

visual_clue = program(scene)
return visual_clue

def answer(self , scene: Scene , visual_clue):
answer the question with visual clue
from agent.anwer import answer

Set the visual clue in the scene
scene.visual_clue = visual_clue

Call the answer function with API key
return answer(scene , self.api_key)

Code 2: Full pySpatial API specification.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS OF THE AGENT PROMPT IN pySpatial

We present the prompts used in our experiments in the box below.

AGENT PROMPT IN pySpatial

task_description = """
You are now asked to solve a spatial reasoning related problem.
The input are image(s) and a natural langugae question that
specifically designed to test your spatial reasoning ability.
It is not trivial to solve these tasks directly as a vision
langugae model. However, You have access to the following Python API:

"""

api_specification = """
In the PySpatial API, we explicitly introduce the 3D inductive bias.
We provide a Scene class that contains the image(s) and a question.
Further, we also provide a 3D reconstruction process that can be
used to generate a 3D point cloud and camera parameters.

class Reconstruction:
def __init__(self, point_cloud, extrinsics, intrinsics):

self.point_cloud = point_cloud
self.extrinsics = extrinsics
self.intrinsics = intrinsics

class Scene:
"Simple scene class that holds image data."
def __init__(self, path_to_images: Union[str, List[str]],

question: str = ""):
self.question = question
self.images = self._load_images(path_to_images)
self.reconstruction : Reconstruction = None

def _load_images(self, path_to_images: Union[str, List[str]])
-> List[str]:

"Load image paths from directory or list."
if isinstance(path_to_images, str):

if os.path.isdir(path_to_images):
Load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(
path_to_images, ext)))

return sorted(images)
else:

Single image file
return [path_to_images]

else:
List of image paths
return list(path_to_images)

class pySpatial:
"Simple interface for 3D vision tools."
we disable other function for now

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

@staticmethod
def reconstruct(scene: Scene):

"3D reconstruction from scene images."

return reconstruct_3d(scene.images)

@staticmethod
def describe_camera_motion(recon: Reconstruction):

"Describe camera motion from reconstruction results.
Args:
"
extrinsics = recon.extrinsics
return describe_camera_motion(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction,

new_camera_pose):
"Generate novel view synthesis from reconstruction results.
Args:
"
return novel_view_synthesis(recon)

methods to manipulate camera pose
def rotate_right(extrinsic, angle=np.pi/2):

def rotate_left(extrinsic, angle=np.pi/2):

def move_forward(extrinsic, distance=0.1):

def move_backward(extrinsic, distance=0.1):

def turn_around(extrinsic):

@staticmethod
def estimate_depth(image):

return estimate_depth(image)
"""

in-context learning exmaples
example_problems = """

Problem 1:
Question: "Based on these two views showing the same scene:
in which direction did I move from the first view to the
second view?
A. Diagonally forward and left
B. Directly right
C. Directly left
D. Diagonally forward and right"

How to solve this problem?
Step 1: we can easily find the ansewr with camera extrinsics.
Step 2: therefore, we should first reconstruct the scene,
and then use the camera extrinsics to find the answer.
Step 3: it is still not trivial to directly get the answer
from extrinsic matrix.
Step 4: we can use the pySpatial.describe_camera_motion

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

to get the answer.
Next, write python code within the pySpatial API provided,
then an agent will automatically collect the code
I wrote and execute it.

```python
def program(input_scene: Scene):

reconstruction3D = pySpatial.reconstruct(input_scene)
camera_motion = pySpatial.describe_camera_motion(

reconstruction3D)
return camera_motion

```
Step 5: After I get the visual clue from execution,
I can easily match the answer:

Problem 2:
Based on these four images (image 1, 2, 3, and 4)
showing the pink bottle from different viewpoints (front, left, back,
and right),with each camera aligned with room walls and partially
capturing the surroundings: If I am standing at the same spot and
facing the same direction as shown in image 1, then I turn right
and move forward, will I get closer to the pink plush toy
and headboard?

since we do not have the way to compare distance in 3D space,
we can render two images, and use these two images as visual clue.
```python

def program(input_scene: Scene):

reconstructed_scene = pySpatial.reconstruct(input_scene)
base_viewpoint = reconstructed_scene.extrinsics[0]
# the image 1 indicates the 0th index in the array

viewpoint_turn_right = pySpatial.rotate_right
(base_viewpoint)

viewpoint_move_forward = pySpatial.move_forward
(viewpoint_turn_right)

image_right = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_turn_right)

image_forward = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_move_forward)

# we should compare these two images, check if the object
exists and if the distance is closer.

visual_clue = [image_right, image_forward]
return visual_clue

```
"""

code_generation_prompt = f"""
Now please utilize the PySpatial API and write a python function
to solve the problem.
Noted that you can first do reasoning and then write the code.
But the code should be wrapped in the ```python ``` block.
Write a compact code block

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Also, the function written should be named as program
and the input parameter should be a Scene object.
for example,
```python
def program(input_scene: Scene):

...
return ...

```
try to add simple comments to the code to explain your logic.

Make sure to first reasoning, why we write program like this,
becuase we have a pySpatial API that allows us to explore the 3D
space, please first do a reasoning like (I want to know what is
to the right of something, therefore I just render a novel view
from that).

"""

Prompt template for ReAct: ReAct: Synergizing Reasoning and Acting
in Language Models https://arxiv.org/abs/2210.03629

answer_background = f"""
We are now solving a spatial reasoing problem.
It is not trivial to solve these tasks directly as a vision language
model.
However, We have access to the following PySpatial API:
{api_specification}

We generate a python code based on the PySpatial API to solve
this problem.

"""

answer_prompt = """
Based on the code and the visual clue from the execution, answer
the question.

"""

Prompt for the answer without visual clue
without_visual_clue_background = """

Solve this spatial reasoning problem based on the question
and the image input.

First, analyze the question, extract useful information from
the question description, then try to answer it based on the
useful visual information.

Give your best guess if you cannot find the best answer.
"""

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs solely as an auxiliary tool to polish the writing of this manuscript. They were
used to improve grammar, clarity, and readability, but no LLMs were involved in ideation, data
analysis, experiment design, or result interpretation.

23

	Introduction
	Related Work
	Method
	Problem Formulation
	Spatial Tools and API
	3D Visual Programming

	Experiments
	Experimental Settings
	Quantitative Results
	Qualitative Results
	Real-World Robot Navigation
	Discussions

	Conclusion
	More Experimental Results
	Results on MMSI-Bench
	More Ablation Studies
	Additional Qualitative Results
	Additional Real-World Experiments

	Implementation for pySpatial
	Implementation Details of the Agent Prompt in pySpatial
	The Use of Large Language Models (LLMs)

