
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

pySpatial: GENERATING 3D VISUAL PROGRAMS FOR
ZERO-SHOT SPATIAL REASONING

Anonymous authors
Paper under double-blind review

1 2

ViewsQuery

Spatial Mental Models pySpatial (Ours)

From the viewpoint presented in image 3, what 

is to the left of the office chair with blue seat?

3D Visual Program

A. Table and microwave

C. Blue rubbish bin D. Kitchenette

B. Sofa and table

3D Reconstruction

Looking left from the chair’s cell, 

the nearest object along that side is 

C. Blue rubbish bin.

From this synthesized novel view, 

the answer is B. Sofa and table.

First, I will construct a 2D cognitive 

map to conceptualize the scene…
Let us consider directly in 3D space... 

3 4

Now I execute the visual program… 

To find what is to the left, we can 

simulate a novel view by rotating the 

camera to the left from the viewpoint 

of image 3. By looking at this novel 

view, one can identify the objects to 

the left of the office chair. 

Here is the corresponding program:

novel_view =

Novel View Synthesis

Camera Rotation

API

Cognitive Map

3

Imagine the scene…

at view 3

What is to the left?

Figure 1: Comparing our pySpatial with spatial mental models for multi-view spatial reason-
ing tasks. Unlike spatial mental models (Yin et al., 2025), which rely on the implicit imagination of
MLLMs to construct a 2D cognitive map, we introduce pySpatial, a visual programming frame-
work that flexibly composes spatial tools (e.g., 3D reconstruction , camera movements, and novel
view synthesis) to enable MLLMs to explicitly reason in 3D space for diverse spatial reasoning tasks.

ABSTRACT

Multi-modal Large Language Models (MLLMs) have demonstrated strong capa-
bilities in general-purpose perception and reasoning, but they still struggle with
tasks that require spatial understanding of the 3D world. To address this, we in-
troduce pySpatial, a visual programming framework that equips MLLMs with
the ability to interface with spatial tools via Python code generation. Given an
image sequence and a natural-language query, the model composes function calls
to spatial tools including 3D reconstruction, camera-pose recovery, novel-view
rendering, etc. These operations convert raw 2D inputs into an explorable 3D
scene, enabling MLLMs to reason explicitly over structured spatial representa-
tions. Notably, pySpatial requires no gradient-based fine-tuning and operates in
a fully zero-shot setting. Experimental evaluations on the challenging MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that our framework pySpatial
consistently surpasses strong MLLM baselines; for instance, it outperforms GPT-
4.1-mini by 12.94% on MINDCUBE. Furthermore, we conduct real-world in-
door navigation experiments where the robot can successfully traverse complex
environments using route plans generated by pySpatial, highlighting the prac-
tical effectiveness of our approach. Our project website will be available at
https://pySpatial.github.io.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have achieved remarkable success across diverse
tasks such as image captioning (Bucciarelli et al., 2024; Wu et al., 2024), referring ground-
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ing (Kazemzadeh et al., 2014; Mao et al., 2016), video understanding (Zeng et al., 2025; Fu et al.,
2025), and document parsing (Mathew et al., 2021; 2022; Luo et al., 2024). However, this progress
has not translated into robust 3D spatial reasoning: recent studies (Wu et al., 2025; Chen et al.,
2024a; Chang et al., 2025) reveal that MLLMs still struggle with challenges spanning from basic
tasks such as judging relative object positions or estimating depth in a single image (Liu et al.,
2023; Cheng et al., 2024) to more complex reasoning over egocentric motion and multi-view rela-
tions (Yin et al., 2025; Yang et al., 2025). Such limitations pose a substantial barrier to their reliable
deployment in safety-critical applications including robotics, augmented reality, and embodied
intelligence, where tasks such as navigation, manipulation, and human–robot interaction depend on
precise spatial understanding (Li et al., 2024; Duan et al., 2024; Song et al., 2025; Qiao et al., 2025).

While recent efforts (Chen et al., 2024a; Cheng et al., 2024) have primarily targeted improving spa-
tial understanding from a single image (e.g., “Is the stool in front of the oven?”), in this work we fo-
cus on the more challenging problem of 3D spatial reasoning, where the environment is only partially
observed with limited views and models must reason across perspectives to answer queries such as
“Where should I move from view 1 to view 2?”—a setting in which state-of-the-art MLLMs perform
only slightly above random guess (Yin et al., 2025). Recent studies (Chen et al., 2024a; Ma et al.,
2025) suggest that this weakness largely stems from the training data: although MLLMs are pre-
trained on internet-scale image-caption pairs, explicit 3D supervision is sparse and costly, making
it difficult to learn reliable correspondences between language and 3D spatial structures and thereby
constraining models’ ability to reason effectively in 3D space. More recently, Yin et al. (2025)
explores the use of data structures such as 2D cognitive maps, where the model encodes object posi-
tions in a top-down view to mentally simulate spatial layouts, as shown in Figure 1. However, these
approaches still rely on implicit “imagination” mechanisms and offer only limited effectiveness.

These limitations motivate our central research question: how can we equip MLLMs with explicit
reasoning capabilities in 3D space? A natural first step toward this goal is to obtain an explicit
geometric foundation on which such reasoning can take place. Recent advances in feed-forward
3D reconstruction (Wang et al., 2024b; 2025a) makes this feasible by recovering scene geometry
directly from sparse 2D views, including camera parameters, depth maps, and scene-level point
clouds. Such representations transform limited 2D views into an explorable 3D scene, within which
models can perform spatial transformations (hereafter referred to as spatial tools) such as camera
translation, rotation, and viewpoint shifts to enrich visual context and build interactive reasoning
chains. For instance, given the query “what is behind me if I am at view 3,” the model could rotate the
virtual camera by 180° at the specified viewpoint within the reconstructed scene, thereby uncovering
previously occluded regions and grounding its reasoning in geometric evidence.

However, how to enable MLLMs to flexibly compose spatial tools and seamlessly interact with 3D
environments in a context-aware manner remains a critical challenge. To address this, inspired by
pioneering works on visual programming (Gupta & Kembhavi, 2023; Surís et al., 2023), we intro-
duce pySpatial, a framework that employs MLLMs like GPT-4o as Python code generation agents
to invoke function calls for tools such as 3D reconstruction, natural language description of move-
ments, and novel view synthesis. As illustrated in Figure 1, pySpatial leverages a well-defined API
to automatically select and compose the appropriate tools to solve diverse spatial reasoning tasks.
Notably, pySpatial operates fully in a zero-shot setting and serves as a plug-and-play framework
applicable to both open-source and closed-source MLLMs, offering interpretable solutions and reli-
able responses that make it well-suited for diverse real-world tasks.

We evaluate the effectiveness of our approach on the MINDCUBE and OMNI3D-BENCH bench-
marks, where results demonstrate that pySpatial consistently outperforms strong MLLM baselines
by substantial margins (e.g., achieving a 12.94% improvement over GPT-4.1-mini on MINDCUBE).
Qualitative analyses further verify that our approach can generate high-quality executable and in-
terpretable visual programs that can effectively solve complex spatial reasoning tasks in a zero-shot
manner. Furthermore, we apply pySpatial to real-world indoor navigation, where it successfully
enables a quadrupedal robot to traverse complex environments using generated route plans.

Our contributions can be summarized as follows:

• We present pySpatial, a novel zero-shot framework that enables MLLMs to reason explicitly
in 3D space by generating and executing visual programs that leverage various spatial tools in a
structured, compositional manner to solve diverse spatial reasoning tasks.
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• We evaluate pySpatial on MINDCUBE and OMNI3D-BENCH, where it demonstrates superior
performance over strong MLLM baselines. Qualitative analysis validates that pySpatial reliably
generates executable and interpretable visual programs for diverse spatial reasoning tasks.

• We further assess the practical effectiveness of pySpatial on indoor navigation tasks, showing
that it can generate route plans that enable a quadrupedal robot to traverse complex environments,
demonstrating strong potentials for practical use cases.

2 RELATED WORK

MLLMs for Spatial Reasoning. Recent MLLMs have demonstrated remarkable performance on
multi-modal tasks such as image captioning and visual grounding (Liu et al., 2024a; Alayrac et al.,
2022; Bai et al., 2025; Chen et al., 2024b). However, studies have shown that these models exhibit
significant limitations in interpreting spatial relations (Yu et al., 2024; Kamath et al., 2023; Wang
et al., 2024a; Tong et al., 2024), a critical precursor to a wide range of practical applications, includ-
ing robotic manipulation (Huang et al., 2022; Shridhar et al., 2023) and embodied navigation (Qiao
et al., 2025; Huang et al., 2023). To address this, recent works such as SpatialVLM (Chen et al.,
2024a) and SpatialRGPT (Cheng et al., 2024) typically propose scalable data synthesis and curation
pipelines to strengthen single-view spatial reasoning capabilities through large-scale pre-training.
Despite these advances, more recently, Yin et al. (2025) demonstrates that current MLLMs and such
approaches still struggle with geometric understanding and perspective-taking in multi-view settings.
In this work, we are among the first to tackle this challenge, and we propose a novel zero-shot visual
programming framework called pySpatial that systematically combines and applies various spatial
tools, enabling models to explicitly reason in 3D and solve diverse spatial tasks.

3D Reconstruction. Classical 3D reconstruction methods, such as Structure-from-Motion (Schon-
berger & Frahm, 2016), typically involve multiple stages and often rely on time-consuming
optimization pipelines. More recently, feed-forward 3D reconstruction approaches such as
DUSt3R (Wang et al., 2024b), MASt3R (Leroy et al., 2024), CUT3R (Wang et al., 2025b) and
VGGT (Wang et al., 2025a) leverage large-scale 3D pre-training and vision transformers to directly
predict pixel-aligned 3D point maps. These data-driven methods demonstrate strong generalizabil-
ity, even in scenarios without overlapping views. Building on this progress, subsequent works have
extended feed-forward 3D reconstruction to applications in neural rendering (Charatan et al., 2024),
SLAM (Maggio et al., 2025), and dynamic reconstruction (Lin et al., 2025).

Modular Visual Reasoning. To enhance compositional multi-modal understanding, recent ad-
vances treats vision specialists (such as GroundingDINO (Liu et al., 2024b) and SAM (Ravi et al.,
2025)) as symbolic operators and composes them to solve complex reasoning problems. Represen-
tative works such as Visual ChatGPT (Wu et al., 2023), MM-REACT (Yang et al., 2023), and Hug-
gingGPT (Shen et al., 2023) follow this direction by integrating LLMs with predefined toolchains
to process multi-modal inputs. Building on this idea, VisProg (Gupta & Kembhavi, 2023) and
ViperGPT (Surís et al., 2023) introduce visual programming that extends this paradigm by prompt-
ing MLLMs to generate executable Python programs that call a set of visual parsers through pre-
defined APIs. More recently, VADAR (Marsili et al., 2025) introduces the visual programming
paradigm for single-view spatial reasoning tasks with an adaptive API design. In contrast, our
pySpatial introduces a framework explicitly designed for multi-view spatial reasoning, equipping
models with compositional 3D tools to handle diverse and complex spatial scenarios.

3 METHOD

In this section, we present pySpatial, a visual programming framework that enables MLLMs to
reason explicitly in 3D space by generating and executing visual programs that orchestrate multiple
spatial tools to address diverse spatial reasoning tasks. We also describe the framework design,
including the pySpatial API signatures and the spatial tools it employs.

3.1 PROBLEM FORMULATION

We consider a setting where an MLLM M is provided with an image sequence I = {In}Nn=1,
where each view has resolution H ×W and captures partial observations of a 3D scene, along with
a natural-language query q concerning spatial relations between objects or camera movements. The
objective is to produce the correct response r∗ from the answer space A that answers the query.

3
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As introduced in Section 1, we convert the limited 2D views into an explorable 3D scene via feed-
forward reconstruction. This yields consistent depth estimates D, camera intrinsics K ∈ R3×3, and
extrinsics G ∈ SE(3) for each frame. Together, these quantities define a point cloud P in world
coordinates, which serves as the geometric basis for downstream reasoning.

In addition, we adopt a program synthesis-perspective following Surís et al. (2023). Given an input
of an image sequence and a query (I, q), a code agent F generates a Python program z that invokes
a set of spatial tools through a well-defined API. The program is executed by an interpreter E to
produce an intermediate output O, which may take the form of text, a single image, or a list of images
depending on the program z. This output provides direct visual evidence to support answering the
query. For instance, when the query asks, “what is behind me if I am at view 3,” the program renders
a new view by rotating the camera 180° at the specified viewpoint. Finally, the MLLM M integrates
both the original visual inputs and the program outputs to generate the final response r ∈ A.

3.2 SPATIAL TOOLS AND API

To guide the MLLMs to explicitly reason in 3D space, we introduce various spatial tools such as
3D reconstruction, camera description, and novel view synthesis. We provide the pySpatial API
signatures in Code 1 and the details of each tool are described in the following sections.

class pySpatial:
"""pySptial interface for 3D vision tools."""

def reconstruct(scene: Scene):
# 3D reconstruction from scene images.

def describe_camera_motion(recon:
Reconstruction):

# Describe camera motion from
reconstruction results.

def synthesize_novel_view(recon: Reconstruction
, new_camera_pose):

# Generate novel view synthesis from
reconstruction results.

def rotate_right(extrinsic , angle =45):
# Rotate camera pose to the right , rotate

45 degree by default

def rotate_left(extrinsic , angle =45):
# Rotate camera pose to the left rotate 45

degree by default

def move_forward(extrinsic , distance =0.3):
# Move camera pose forward , a default

distance is provided

def move_backward(extrinsic , distance =0.3):
# Move camera pose backward , a default

distance is provided

def turn_around(extrinsic):
# Turn camera pose around 180 degrees

Code 1: pySpatial API signatures.

3D Reconstruction. We adopt two feed-
forward reconstructions depending on the
specific task requirement. For metric-scale
scenes, we use CUT3R (Wang et al., 2025b),
which returns depth in real-world units. When
relative distance in normalized unit space
suffices, we adopt VGGT (Wang et al., 2025a)
for its generalizability.

Formally, each pixel pi ∈ R2 in a view In with
predicted depth Dn(pi) is back-projected into
the camera coordinate system using the intrin-
sics K, and then transformed into world coor-
dinates via the estimated pose Gn ∈ SE(3):

Xi = G−1
n π−1

(
pi, Dn(pi),K

−1
)
, (1)

where π−1 denotes the back-projection from
image coordinates to the 3D point in the
camera frame. We get the point cloud P in the
world space by concatenating Xi for all pixels
in all frames.

Camera Description. We translate raw
camera pose matrices into natural language
labels to make egocentric motion interpretable
to the language model. Each pose is represented by an extrinsic matrix G = [R | t] ∈ R3×4,
which maps world points into the camera frame. The corresponding camera center in world
coordinates is C = −R⊤t. Given two poses (R1, t1) and (R2, t2), the displacement in world
coordinates is ∆Cw = C2 − C1. We then express this displacement in the first camera’s frame
as ∆C1 = R1 ∆Cw. Restricting the displacement to the horizontal plane, we compute the yaw
angle θ = atan2(dx, dz) · 180/π, where (dx, dz) are the x and z components of ∆C1. The
angle is discretized into eight canonical motion categories (forward, backward, left, right, and four
diagonals), yielding a compact natural-language description of egocentric movement.

Novel View Synthesis. To facilitate active exploration of the reconstructed 3D scene, we enable
the agent to render novel views from arbitrary camera poses. Given a point cloud P and a
world-to-camera transformation G = [R | t] ∈ R3×4, we rasterize P into an RGB image with
respect to G and the corresponding camera intrinsics K. The agent can then issue high-level
actions such as rotate_left and turn_around, which are implemented as yaw rotations about
the world y-axis by angle ϕ. The updated camera pose G′ is obtained by applying the rotation to the
camera-to-world transform and inverting back to world-to-camera form. This operation provides
interactive visual feedback that supports explicit spatial reasoning.

4
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3.3 3D VISUAL PROGRAMMING

Program Generation. Given a query q, the code agent F synthesizes a Python program z = F(q)
that composes function calls specified in the pySpatial API. By default, we use GPT-4o, a strong
MLLM baseline that has demonstrated effectiveness in code generation, as it has been trained on
Internet-scale Python code data. Note that the agent interacts only with the public interface (e.g.,
reconstruct, rotate_right, synthesize_novel_view) and has no access to internal imple-
mentation details such as model weights, file I/O, or rendering backends. This abstraction separates
high-level reasoning from low-level execution. We also provide default parameters for public inter-
face regarding rotation and movement, i.e. 45 for rotation, and 0.3 for movement, as specified in
Code 1. We guide program synthesis using in-context examples, where the prompts include inter-
face documentation and query–code pairs without ground-truth answers. In addition, we leverage
structured outputs to first enable free-form natural language reasoning, followed by the synthesis of
Python code. The generated Python code, or visual program, acts as an explicit intermediate repre-
sentation that encodes a sequence of tool invocations. It is inherently interpretable, as researchers
can readily inspect, debug, or modify the generated program, and composable, enabling seamless
integration with additional tools or downstream reasoning modules. Once constructed, the program
is executed by the interpreter to produce concrete spatial operations.

Program Execution. At execution time, the synthesized program z is executed by a Python inter-
preter E over the input image sequence I, yielding an intermediate output O = E(z, I). Depending
on the query, the output O may take the form of text, a single image, or a sequence of rendered
views. This intermediate output provides an explicit grounding of the program’s reasoning steps in
observable evidence. In the final stage, a MLLM M integrates the original image sequence I, the
program output O, and the natural language query q to generate the final response r = M(I, O, q).

4 EXPERIMENTS

In this section, we assess the effectiveness of pySpatial on MINDCUBE (Yin et al., 2025) and
OMNI3D-BENCH (Marsili et al., 2025), comparing it with existing state-of-the-art approaches.

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We mainly evaluate our framework on the MINDCUBE (Yin et al., 2025), which is
designed to probe the spatial reasoning capabilities of MLLMs under limited views. Specifically,
MINDCUBE contains over 21,000 spatial question–answer pairs grounded in 3,268 multi-view in-
door scenes, spanning three canonical camera motion types: rotation, around, and among. We also
evaluate on MINDCUBE-1k, a subset of MINDCUBE with 1,050 questions, specifically designed for
evaluation purposes. In addition, following prior work (Marsili et al., 2025), we also evaluate our
framework on OMNI3D-BENCH, a single-view spatial reasoning benchmark, to examine whether
our visual programming approach can generalize beyond multi-view settings.

Baselines. We compare the performance of pySpatial against four categories of existing baselines:
(1) open-weight multi-image MLLMs, such as LLaVA-OneVision-7B (Li et al., 2025) and Qwen2.5-
VL-3B-Instruct (Bai et al., 2025); (2) proprietary MLLMs, including GPT-4o, GPT-4.1-mini, and
Claude-4-Sonnet; (3) specialized spatial models, such as Space-Qwen (Chen et al., 2024a) and
VLM-3R (Fan et al., 2025), and (4) prior visual programming approaches such as ViperGPT (Surís
et al., 2023), VisProg (Gupta & Kembhavi, 2023), and VADAR (Marsili et al., 2025).

Implementation Details. By default, we follow prior visual programming work (Marsili et al.,
2025) to leverage GPT-4o as the code agent to generate Python programs and produce final responses
to queries. We use VGGT (Wang et al., 2025a) as 3D reconstruction model on the MINDCUBE and
OMNI3D-BENCH benchmarks. For real-world navigation, we use CUT3R (Wang et al., 2025b),
which provides metric-scale reconstructions rather than normalized outputs. For point cloud rasteri-
zation, we use Open3D (Zhou et al., 2018) to render novel views. All experiments are conducted on
a single NVIDIA A6000 Ada GPU. We provide full implementation details of pySpatial, along
with the prompts used, in Appendix B and C. Code will be made publicly available upon acceptance.

4.2 QUANTITATIVE RESULTS

Results on MINDCUBE. We first perform comprehensive evaluations of pySpatial on the chal-
lenging MINDCUBE benchmark to rigorously assess its effectiveness in multi-view spatial reason-
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Table 1: Performance comparison on the full MINDCUBE (Yin et al., 2025) dataset. The best
results are shown in bold, and the second-best are underlined. Note that we implement pySpatial
using GPT-4.1-mini as the code agent for this dataset due to budget constraints.

Method Reference Overall Rotation Among Around

Baseline
Random (chance) - 32.35 36.36 32.29 30.66
Random (frequency) - 33.02 38.30 32.66 35.79

Open-Weight Multi-Image Models
LLaVA-OneVision-7B Li et al. (2025) 47.43 36.45 48.42 44.09
LLaVA-Video-Qwen-7B Zhang et al. (2025) 41.96 35.71 43.55 30.12
mPLUG-Owl3-7B-241101 Ye et al. (2025) 44.85 37.84 47.11 26.91
InternVL2.5-8B Chen et al. (2024b) 18.68 36.45 18.20 13.11
Qwen2.5-VL-7B-Instruct Bai et al. (2025) 29.26 38.76 29.50 21.35
Qwen2.5-VL-3B-Instruct Bai et al. (2025) 33.21 37.37 33.26 30.34
DeepSeek-VL2-Small Lu et al. (2024) 47.62 37.00 50.38 26.91

Proprietary Models
GPT-4o OpenAI (2024) 38.81 32.65 40.17 29.16
GPT-4.1-mini OpenAI (2025) 45.62 37.84 47.22 34.56
Claude-4-Sonnet Anthropic (2025) 44.75 48.42 44.21 47.62

Specialized Spatial Models
RoboBrain Ji et al. (2025) 37.38 35.80 38.28 29.53
SpaceMantis Chen et al. (2024a) 22.81 37.65 21.26 29.32
Spatial-MLLM Wu et al. (2025) 32.06 38.39 20.92 32.82
Space-Qwen Chen et al. (2024a) 33.28 38.02 33.71 26.32
VLM-3R Fan et al. (2025) 42.09 36.73 44.22 24.45

pySpatial (Ours) - 58.56 43.20 60.54 48.10

Table 2: Performance comparison on the MINDCUBE-1k (Yin et al., 2025) dataset. The eval-
uated mental models (Yin et al., 2025) are based on Qwen2.5-VL-3B-Instruct (Bai et al., 2025).
VADAR w/ Recon. denotes that we implement VADAR with our 3D reconstruction module. The
best results are highlighted in bold, and the second-best are underlined.

Method Reference Overall Rotation Among Around

Baseline Models
Qwen2.5-VL-3B-Instruct Bai et al. (2025) 37.81 34.00 36.00 45.20
GPT-4o OpenAI (2024) 42.29 35.00 43.00 46.40

Spatial Mental Models
Chain-of-Thought 40.48 32.00 36.00 58.00
View Interpolation Yin et al. (2025) 37.81 35.50 36.50 42.80
Cognitive Map 41.43 37.00 41.67 44.40

Visual Programming Approaches
ViperGPT Surís et al. (2023) 36.95 20.50 41.00 40.40
VADAR Marsili et al. (2025) 40.76 33.50 40.67 46.80
VADAR w/ Recon. - 35.62 31.00 36.83 36.40
pySpatial (Ours) - 62.35 ± 1.18 41.83 ± 2.34 64.89 ± 2.60 72.67 ± 3.30

ing. Table 1 summarizes the results in comparison with baseline approaches. Overall, pySpatial
achieves a clear performance margin over all categories of baselines. Specifically, it reaches an
overall accuracy of 58.56%, outperforming the best open-weight model DeepSeek-VL2-Small by
10.94%, and surpassing the strongest proprietary model GPT-4.1-mini by 12.94%. On the Among
category, which requires reasoning over how the central object relates to all surrounding objects,
pySpatial achieves 60.54%, substantially outperforming all baselines, none of which exceed
50%. Remarkably, pySpatial also outperforms VLM-3R (Fan et al., 2025), which leverages
CUT3R (Wang et al., 2025b) as the 3D encoder and is fine-tuned on synthetic spatial reasoning
data, by 16.5%, despite operating entirely in a zero-shot setting. These results demonstrate that
pySpatial generalizes well across diverse task categories on MINDCUBE. By explicitly decom-
posing spatial reasoning into modular tool calls, our approach provides a stronger inductive bias
than both open-weight and proprietary MLLMs, including those specialized for spatial reasoning.

Results on MINDCUBE-1k. Table 2 compares pySpatial against approaches based on implicit
mental modeling (Yin et al., 2025) (e.g., chain-of-thought reasoning, cognitive maps) and prior
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Table 3: Performance comparison on OMNI3D-BENCH. Following VADAR (Marsili et al.,
2025), We report mean relative accuracy (Yang et al., 2025) for the numeric (other) and accuracy
for the other category. The best results are shown in bold, and the second-best are underlined.

Method Reference numeric (ct) numeric (other) y/n multi-choice Total

Baseline Models
GPT-4o OpenAI (2024) 28.1 35.5 66.7 57.2 42.9
Claude3.5-Sonnet Anthropic (2024) 22.4 20.6 62.2 50.6 32.2
Llama-3.2 Meta (2024) 24.3 19.3 47.5 27.4 25.6
Gemini1.5-Pro Google (2024) 25.2 28.1 46.2 37.6 32.0
SpaceMantis Chen et al. (2024a) 20.0 21.7 50.6 48.2 30.3

Visual Programming Approaches
ViperGPT Surís et al. (2023) 20.0 15.4 56.0 42.4 26.7
VisProg Gupta & Kembhavi (2023) 2.9 0.9 54.7 25.9 13.5
VADAR Marsili et al. (2025) 21.7 35.5 56.0 57.6 40.4
pySpatial (Ours) - 22.9 38.6 72.0 54.7 44.2

visual programming agents (e.g., ViperGPT, VADAR) on MINDCUBE-1k. We have the following
key observations: (1) Spatial mental models (Yin et al., 2025), which rely on the implicit imagina-
tion mechanisms of MLLMs for spatial reasoning, yield only limited performance gains, whereas
pySpatial outperforms each of them by roughly 20%; (2) Our pySpatial substantially outper-
forms existing visual programming approaches, achieving, for example, a 21.9% improvement over
VADAR. Notably, pySpatial also surpasses VADAR w/ Recon., where we re-implement VADAR
using our 3D reconstruction module. This result demonstrates that even when equipped with 3D
information, VADAR’s adaptive API design remains unreliable and lacks robustness for reasoning
in 3D space. These results validate the superior effectiveness of pySpatial over existing baselines,
demonstrating the advantages of enabling explicit 3D reasoning for multi-view spatial reasoning.

Results on OMNI3D-BENCH. We further evaluate pySpatial on the recent single-view spatial
reasoning benchmark OMNI3D-BENCH, demonstrating that our framework generalizes effectively
to single-view settings and provides consistent improvements across task categories. Table 3 shows
results on OMNI3D-BENCH, where we follow the evaluation protocol of VADAR (Marsili et al.,
2025): mean relative accuracy (MRA) is reported for the numeric (other) subtask, and standard ac-
curacy is used for the remaining categories. Our pySpatial outperforms prior visual programming
approaches, achieving gains of 3.8% over VADAR and 17.5% over ViperGPT, and sets a new over-
all state-of-the-art on OMNI3D-BENCH. Notably, pySpatial also surpasses GPT-4o on the total
score, underscoring that our visual programming framework provides benefits even over advanced
proprietary MLLMs. This result highlights the broad generalizability of pySpatial: even in single-
view settings where geometric cues are less apparent, explicitly invoking 3D functions through the
code agent continues to enhance spatial reasoning.

4.3 QUALITATIVE RESULTS

To further illustrate the capabilities of our pySpatial framework, we conduct qualitative experi-
ments on representative examples from the MINDCUBE benchmark. As shown in Figure 2, each
query is paired with the generated 3D visual program, the reconstructed 3D scene, the program out-
puts, and the final response produced by pySpatial. These examples highlight how pySpatial
enables MLLMs to reason explicitly within an explorable 3D scene reconstructed from sparse 2D
inputs. By synthesizing executable and interpretable visual programs that perform operations such
as camera translation, rotation, and novel view synthesis, the framework provides interpretable out-
puts that ground the reasoning process in geometric evidence. Across diverse spatial reasoning
tasks, pySpatial produces responses that closely align with ground-truth annotations, highlight-
ing the effectiveness of our approach. It is worth noting that the generated 3D visual programs
include well-structured comments that capture the reasoning process of pySpatial, thereby pro-
viding transparency and interpretability that researchers can readily verify, debug, or modify.

4.4 REAL-WORLD ROBOT NAVIGATION

To test the potential of real-world deployment using purely MLLMs, we employ a quadrupedal robot
with a velocity-tracking controller in a 50 m2 two-room laboratory. In this setup, the MLLM gener-
ates high-level position commands, which are manually converted into temporal velocity targets that
the controller tracks, enabling the robot to navigate from an initial pose to a target object (a mush-
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def program(input_scene: Scene):
# Reconstruct the 3D scene from the four images
reconstructed_scene = pySpatial.reconstruct(input_scene)
# Get the camera extrinsic for image 3 (index 2)
viewpoint_3 = reconstructed_scene.extrinsics[2]
# Rotate the camera right from viewpoint 3 to see what is 
# to the right of the blue bag
viewpoint_right_of_3 = pySpatial.rotate_right(viewpoint_3)
# Synthesize the novel view from the rotated camera pose
novel_view = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_right_of_3)
# Return the novel view image for visual inspection to identify 
# what is to the right of the blue bag
return novel_view

def program(input_scene: Scene):

# Reconstruct the 3D scene from input images
reconstructed_scene = pySpatial.reconstruct(input_scene)

# Get the camera extrinsics of image 4 (index 3)

base_viewpoint = reconstructed_scene.extrinsics[3]
# Turn left from the base viewpoint

viewpoint_turn_left = pySpatial.rotate_left(base_viewpoint)

# Move forward from the turned left viewpoint
viewpoint_move_forward = pySpatial.move_forward(viewpoint_turn_left)

# Synthesize novel views for the turned left and moved forward viewpoints

image_turn_left = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_turn_left)

image_move_forward = pySpatial.synthesize_novel_view(reconstructed_scene, viewpoint_move_forward)

# Return the two images for visual comparison to check if closer to the sofas

return [image_turn_left, image_move_forward]

3D Reconstruction:

def program(input_scene: Scene):

# Step 1: reconstruct the 3D scene from the input images
reconstruction3D = pySpatial.reconstruct(input_scene)

# Step 2: get the camera extrinsic for the second viewpoint (index 1)

viewpoint_2 = reconstruction3D.extrinsics[1]
# Step 3: rotate the camera to the right from viewpoint 2 to see what is on the 

# right side of the black chair

novel_viewpoint = pySpatial.rotate_right(viewpoint_2)
# Step 4: synthesize the novel view from the rotated camera pose

novel_view = pySpatial.synthesize_novel_view(reconstruction3D, novel_viewpoint)

# Step 5: return the novel synthesized view for visual inspection 
# to answer the question

return novel_view

3D Reconstruction:

def program(input_scene: Scene):
# Step 1: reconstruct the 3D scene from the input images
reconstruction3D = pySpatial.reconstruct(input_scene)

# Step 2: describe the camera motion between the two views using extrinsics
camera_motion_description = pySpatial.describe_camera_motion(reconstruction3D)
# Return the description which should match one of the answer choices
return camera_motion_description

Query: In which direction did I move from the first view to the second view?

image_turn_first

Ground Truth: Diagonally forward and left.

1

2

3D Reconstruction:

Final Response:  The visual clue explicitly states the camera moved from pose 1 to pose 2 diagonally forward and left. Therefore, the 

direction of the camera movement is diagonally forward and left.

Program Output:

From image 1 to 

image 2, the camera 

move diagonally 

forward and left.

Query: From the viewpoint 2, what is on to the right of the black chair? Ground Truth: Grey Sofa.

Final Response:  From the rendered point cloud image, we can see a large grey sofa. Its shape, cushion structure, and placement 

along the wall make it clearly identifiable as a sofa rather than a table, cabinet, or office setup. 

1 2

3 4

Program Output:

Query: From viewpoint 4, if I turn left and move forward, will I get closer to the two single sofas? Ground Truth: Yes.

1 2

3 4

Final Response:  The second view shows the two single sofas prominently and larger, suggesting a closer distance.

3D Reconstruction:

Program Output:
image_move_forward

Query: From viewpoint 3, what is to the right of the blue bag? Ground Truth: Black sofa.

1 2

3 4

Final Response:  The novel view synthesized by rotating the camera to the right of the viewpoint 3 shows a black sofa point cloud.  The shape, color, and 

texture in that part align well with the appearance of a black sofa rather than a window, plush toy, or display shelves. 

Program Output:

Figure 2: Qualitative results on four examples from MINDCUBE. We show that pySpatial
enables MLLMs to explicitly reason within the reconstructed explorable 3D scene, effectively
addressing diverse spatial reasoning tasks through interpretable and executable 3D visual programs.

room toy). From limited 2D views, pySpatial reconstructs an explorable 3D scene, infers camera
poses via visual programming, and generates a structured motion plan for the robot to execute.

As shown in Figure 3, our pySpatial successfully guides the robot through doorways, make correct
turns, and finally toward the correct goal location. Notably, the MLLM baseline GPT-4.1 struggles
to resolve relative direction such as left–right and fails to provide absolute metric distance estimates,
leading to navigation errors. In contrast, our agent outputs precise rotations and translations that
align with real-world execution, resulting in reliable task completion. This experiment demonstrates
that our approach not only produces coherent spatial reasoning in question answering benchmarks,
but also transfers effectively to physical robotic platforms for complex indoor navigation tasks.

4.5 DISCUSSIONS

Table 4: Ablation study on the code agent. We
report the accuracy on the MINDCUBE-1k dataset.

Method Overall Rotation Among Around

GPT-4o 42.29 35.00 43.00 46.40
+ pySpatial 62.67 41.00 65.00 66.33

GPT-4.1-mini 43.34 36.00 45.00 44.80
+ pySpatial 58.19 37.50 62.00 65.60

GPT-4.1 44.67 35.50 45.33 50.40
+ pySpatial 63.42 42.00 66.33 73.60

Ablation Study on the Code Agent. To ab-
late the effect of our code agent, we con-
duct experiments on the MINDCUBE-1k bench-
mark by comparing the performance of vari-
ous MLLM baselines with and without integra-
tion of pySpatial. As summarized in Table 4,
augmenting models with pySpatial consis-
tently leads to substantial improvements across
all tested MLLMs, including GPT-4o, GPT-4.1-
mini, and GPT-4.1. For instance, GPT-4o im-
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Query:  Given a quadrupedal robot initialized at the pose corresponding to image 1, generate a task specification and motion 

plan for navigating to the mushroom toy at Image 4.

1 2 3 4

Input Limited Views Reconstructed 3D Scene & Motion Plan

Ours

GPT-4.1

Real-World Robot Navigation

Start

Goal

1. Go through the office door into the next room (straight ahead, 

3.09m).

2. Turn right 78.8°, move alongside the white table toward the back 

right corner and large brown box (4.23m).

3. From there, turn left 89.9°, move past the black chair with 

mushroom toy, straight to the door at the far wall (2.23m).

1. Move forward 2.2m to exit the office through the doorway into the 

larger room. Then turn left 35° to directly face the white table.

2. Move forward 1.3m toward the near edge of the table (center 

position), and then turn left 40° to align with the long left wall.

3. Move diagonally forward-left 2.6m along the table’s side, stopping 

near the far corner by the whiteboards and then turn right 30° to 

face the mushroom toy on the chair.

Proposed Motion Plan from GPT-4.1 Proposed Motion Plan from pySpatial (Ours)

Figure 3: Qualitative results on real-world robot navigation. We deploy pySpatial on a Unitree-
Go1 robot to navigate toward a target object (mushroom toy) using limited views as input. The figure
shows the reconstructed 3D scene, motion plans, and physical execution. Compared to the GPT-
4.1 baseline, which fails due to an incorrect initial turn and produces a collision-prone trajectory,
pySpatial generates a geometrically consistent plan that successfully reaches the goal.

proves from 42.3% to 62.7% overall accuracy, indicating that pySpatial generalizes across differ-
ent MLLMs and effectively enhance spatial reasoning.

61%

6%

20%

13%

Correct
Program Error
Response Error
Recon. Error

Figure 4: Failure case study.
We manually examine the er-
ror sources in about 100 sam-
ples from MINDCUBE.

Failure Case Analysis. From the MINDCUBE benchmark, we se-
lect a representative subset of about 100 samples and conduct a
manual analysis to identify the underlying sources of error in cases
where the final response is incorrect. As shown in Figure 4, among
the 39% of failure cases, only 6% are attributable to incorrectly gen-
erated visual programs that fail to address the query, validating the
effectiveness of our overall programming pipeline. Beyond this,
20% of errors arise from the MLLMs at the final reasoning step,
while 13% stem from limitations in the 3D reconstruction models,
where the generated visual programs are correct but the program
outputs do not provide useful information. These results also sug-
gest that advances in 3D reconstruction and code generation models
hold the potential to further enhance our performance.

Remarks on Efficiency. Our pySpatial completes the MINDCUBE-1k benchmark in 2.17 hours
on a single GPU using a single thread for 1,050 queries, averaging 7.45 seconds per query. As the
breakdown, code generation requires 2.41 seconds, program execution 2.14 seconds, and answer
generation 2.90 seconds. For comparison, VADAR (Marsili et al., 2025) requires 17.25 seconds per
query on average. These results demonstrate that our visual programming framework enhances the
spatial reasoning capabilities of MLLMs while remaining efficient to deploy without excessive cost.

5 CONCLUSION

In this work, we present pySpatial, a visual programming framework that enhance spatial rea-
soning capabilities of MLLMs through zero-shot Python code generation. By composing functions
such as 3D reconstruction and novel-view synthesis, pySpatial converts 2D image sequences into
explorable 3D scenes, enabling explicit reasoning in 3D space. Experiments on the MINDCUBE
and OMNI3D-BENCH benchmarks demonstrate that pySpatial consistently outperforms strong
MLLM baselines, with gains of up to 12.94% on MINDCUBE compared to GPT-4.1-mini. Beyond
benchmarks, real-world indoor navigation experiments further validate its practicality, showing that
robots can successfully traverse complex environments using route plans generated by pySpatial.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All the spatial tools used in this
work are open-sourced, and the benchmark datasets we evaluate on are publicly available. We have
provided detailed descriptions of our experimental setup and implementation details in Section 4 and
Appendix to facilitate reproducibility. Code will be publicly available upon acceptance to enable the
community to reproduce our experiments and build upon our work.
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Generating 3D Visual Programs for Zero-Shot Spatial Reasoning
Appendix

In the appendix, we provide additional experimental results and implementation details of our
pySpatial framework. The appendix is organized as follows:

• Section A provides more experimental results.

• Section B shows the API specification for pySpatial.

• Section C presents the prompt implementation for our agent.

• Section D disclosures the use of large language models.

A MORE EXPERIMENTAL RESULTS

A.1 RESULTS ON MMSI-BENCH

We further evaluate our approach on MMSI-Bench and report the results in Table A1. We observe
that pySpatial improves the overall MMSI-Bench performance by 6.4% on average, further demon-
strating the effectiveness of our approach.

Table A1: Evaluation results on MMSI-Bench. Our pySpatial is based on GPT-4o.

Models Positional Relationship Attribute Motion MSR Avg.
Cam.–Cam.Obj.–Obj. Reg.–Reg. Cam.–Obj. Obj.–Reg. Cam.–Reg. Meas. Appr. Cam. Obj. –

Proprietary
GPT-5 43.0 35.1 32.1 48.8 42.4 51.8 60.9 36.4 32.4 36.8 42.0 41.9
o3 45.2 39.4 37.0 44.2 47.1 62.6 54.7 28.8 31.1 32.9 34.9 41.0
GPT-4.5 34.4 29.8 39.5 51.2 47.1 55.4 39.1 33.3 41.9 40.8 36.4 40.3
GPT-4.1 36.6 26.6 27.2 29.1 36.5 27.7 37.5 24.2 36.5 32.9 28.8 30.9
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.3
Gemini-2.5-Pro 39.7 31.9 39.5 45.3 35.2 43.3 51.5 21.2 36.4 30.2 34.3 36.9

Open-source
InternVL3-78B 34.4 23.4 32.1 12.8 37.6 26.5 37.5 19.7 28.4 31.6 29.3 28.5
InternVL2.5-78B 23.7 22.3 39.5 29.1 31.8 42.2 35.9 19.7 17.6 26.3 27.3 28.5
Qwen2.5-VL-72B 25.8 34.0 34.6 23.3 34.1 36.1 45.3 27.3 27.0 30.3 27.3 30.7
LLaVA-OneVision-72B 43.0 31.9 33.3 30.2 37.6 38.6 28.1 19.7 13.5 32.9 15.7 28.4

Baseline
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.3
+ pySpatial (Ours) 51.6 28.7 27.2 20.9 41.2 38.6 46.9 39.4 46.0 38.2 36.4 37.3

A.2 MORE ABLATION STUDIES

Code Agents. In Table A2, we compare the performance of our pySpatial framework when
paired with different code agents. Across all categories, pySpatial consistently improves upon
the base GPT-4o model, regardless of the underlying LLM used for code generation. Among the
evaluated agents, GPT-4o achieves the strongest overall performance, reaching 62.67% accuracy,
while Qwen3-Coder and DeepSeek-v3 deliver comparable results at 62.10% and 61.05%, respec-
tively. Notably, Qwen3-Coder performs best on the Around category, whereas GPT-4o provides the
most balanced improvements across all task types. These findings indicate that our framework is
robust to the choice of code agent and that most of the performance gains stem from the 3D visual
programming paradigm rather than the specific code LLM used.

3D Reconstruction Backbones. In Table A3, we compare the impact of different 3D reconstruc-
tion backbones on the performance of our pySpatial framework. All three backbones, including
VGGT, Pi3, and CUT3R, lead to substantial improvements over the GPT-4o baseline, indicating
that our 3D visual programming paradigm is robust to the choice of reconstruction method. Among
them, Pi3 achieves the best overall performance (63.33%), with notable gains in the Rotation and
Among categories. VGGT provides similarly strong results, while CUT3R performs slightly lower
but still significantly surpasses the base model. These findings suggest that pySpatial can effec-
tively leverage a range of modern reconstruction backbones, and its spatial reasoning improvements
are not tied to a specific reconstruction architecture.
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Table A2: Performance comparison of our pySpatial framework with different code agents.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ GPT-4o 62.67 41.00 66.33 71.20
pySpatial w/ Qwen3-Coder 62.10 40.00 64.50 74.00
pySpatial w/ DeepSeek-v3 61.05 40.50 65.33 64.80

Table A3: Performance comparison of pySpatial using different 3D reconstruction backbones.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ VGGT 62.67 41.00 66.33 71.20
pySpatial w/ Pi3 63.33 43.50 65.66 72.33
pySpatial w/ CUT3R 61.05 40.50 64.33 69.60

Table A4: Comparison of pySpatial with different numbers of in-context learning examples.

Method Overall Rotation Among Around
GPT-4o 42.29 35.00 43.00 46.20
pySpatial w/ 0 examples 53.62 32.50 55.16 66.80
pySpatial w/ 2 examples 62.67 41.00 66.33 71.20
pySpatial w/ 4 examples 63.14 46.00 64.50 73.60

In-Context Learning Examples for Code Agents. In Table A4, we examine how the number
of in-context learning examples influences the performance of our pySpatial framework. We
observe a clear upward trend: providing even a small number of examples substantially improves
performance across all categories. Using 0 examples already offers a strong boost over the base
GPT-4o model (53.62% vs. 42.29%), demonstrating that pySpatial can operate effectively even
without demonstration guidance. Adding 2 examples leads to a significant further gain, reaching
62.67% overall accuracy. Increasing to 4 examples yields the best performance (63.14%), with
notable improvements particularly in the Rotation and Around categories. These results suggest that
pySpatial benefits from additional examples, but even minimal in-context supervision is sufficient
to unlock strong spatial reasoning capabilities.

A.3 ADDITIONAL QUALITATIVE RESULTS

We present more qualitative results from MINDCUBE in Figure A1. Beyond the linear program flow
demonstrated in Figure 2, pySpatial is also capable of executing more expressive control-flow
operations, including for-loops, conditionals, and lambda-style functional compositions, allowing it
to construct complex multi-step 3D operations. These richer program structures enable pySpatial
to iteratively explore candidate viewpoints, selectively apply geometric predicates, and adapt its
reasoning based on scene-dependent constraints. Across the presented examples, the 3D visual
programs generated by our code agent consistently guide pySpatial toward responses that closely
align with the ground-truth spatial relationships, further validating the correctness, interpretability,
and robustness of our 3D reasoning framework.

A.4 ADDITIONAL REAL-WORLD EXPERIMENTS

We also include an additional qualitative example in a challenging dynamic scene, where the views
are captured at different times and a person is moving through the environment, as shown in Fig-
ure A2. Despite the temporal inconsistency and the presence of dynamic elements, pySpatial
remains effective: the reconstruction module robustly integrates the multi-view observations and
preserves the stable structural cues needed for accurate spatial reasoning. In contrast, GPT-5 contin-
ues to struggle in this scenario, failing to generate a safe or correct navigation trajectory and often
producing instructions that are incompatible with the underlying scene geometry. These extended
real-world experiments further validate the robustness and practical effectiveness of our approach.
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Figure A1: More qualitative examples from MINDCUBE. We show that pySpatial enables
MLLMs to explicitly reason within a reconstructed, explorable 3D scene, allowing the model not
only to interpret spatial structure but also to compose executable 3D visual programs with control
flow, such as for-loops to robustly solve diverse spatial reasoning tasks.

Start

Goal

Query:  Suppose you are looking at the viewpoint corresponding to Image 1, generate a task specification and motion plan for 

navigating to the goal destination at Image 4.

3

Input Limited Views

Ours

GPT-5

1.  Turn 45° to your right and walk 4 meters forward toward the 

space beside the foosball table.

2. Turn 35° to your left and walk 2 meters forward toward the corner 

near the red pool table.

3. Turn 80° to your right and walk 2 meters forward toward the area 

with the guitar and chairs.

Proposed Motion Plan from GPT-5

1. Turn left 37.6°, orienting yourself slightly toward the foosball table and 

white barstools, then walk forward 7.543 m, passing the ping-pong table 

on your right.

2. Turn right 84.2° so that you face toward the red-felt pool table beyond 

the foosball area, then walk forward 7.011 m, moving between the foosball 

table and the couch area.

3. Turn right 72.8°, aligning your view with the yellow ottoman, then walk 

forward 4.573 m to arrive at the goal.

Proposed Motion Plan from pySpatial (Ours)

Reconstructed 3D Scene & Motion Plan

1 2

4

Figure A2: An additional qualitative real-world example in a challenging dynamic scene.
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B IMPLEMENTATION FOR pySpatial

A complete description of the API interface is provided in Code 2.

import os
import glob
from typing import List , Union
from pathlib import Path

from tool.recontruct import reconstruct_3d
from tool.segment import segment_image , segment_automatic
from tool.estimate_depth import estimate_depth
from tool.camera_understanding import analyze_camera_trajectory
from tool.novel_view_synthesis import novel_view_synthesis , rotate_right , rotate_left ,

move_forward , move_backward , turn_around
import re

class Reconstruction:
def __init__(self , point_cloud , extrinsics , intrinsics , colors=None):

self.point_cloud = point_cloud
self.extrinsics = extrinsics # list of 4 *4 numpy array
self.intrinsics = intrinsics
self.colors = colors # Add colors attribute

class Scene:
"""Simple scene class that holds image data."""

def __init__(self , path_to_images: Union[str , List[str]], question: str = "",
scene_id: str = None):

self.question = question
self.scene_id = scene_id
self.original_path = path_to_images # Store original path for reconstruction
self.images = self._load_images(path_to_images)
self.reconstruction : Reconstruction = None
self.code : str = None
self.visual_clue = None

def _load_images(self , path_to_images: Union[str , List[str]]) -> List[str]:
"""Load image paths from directory or list."""
if isinstance(path_to_images , str):

if os.path.isdir(path_to_images):
# Check if this is a demo directory (contains .glb files)
demo_path = Path(path_to_images)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:
# This is a demo directory , load images from color/ subdirectory
color_dir = demo_path / "color"
if color_dir.exists ():

image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(str(color_dir), ext)))
return sorted(images)

else:
print(f"Warning: Demo directory detected but no color/

subdirectory found in {path_to_images}")
return []

else:
# Regular directory , load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(path_to_images , ext)))
return sorted(images)

else:
# Single image file
return [path_to_images]

else:
# List of image paths
return list(path_to_images)

class pySpatial:
"""Simple interface for 3D vision tools."""
# we disable other function for now

@staticmethod
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def reconstruct(scene: Scene):
"""3D reconstruction from scene images."""

# Check if this is a demo directory (contains .glb files)
if isinstance(scene.original_path , str) and os.path.isdir(scene.original_path):

demo_path = Path(scene.original_path)
glb_files = list(demo_path.glob("*.glb"))

if glb_files:
# This is a demo directory , pass the directory path for demo data loading
result = reconstruct_3d(scene.original_path , scene_id=scene.scene_id)

else:
# Regular reconstruction with image paths
result = reconstruct_3d(scene.images , scene_id=scene.scene_id)

else:
# Regular reconstruction with image paths
result = reconstruct_3d(scene.images , scene_id=scene.scene_id)

# Convert the raw result dictionary to a Reconstruction object
point_cloud = result.get('points ', None)
cameras = result.get('cameras ', None)
colors = result.get('colors ', None) # Get colors from result

# Convert point cloud to numpy if it's a tensor
if point_cloud is not None:

if hasattr(point_cloud , 'cpu'): # PyTorch tensor
point_cloud = point_cloud.cpu().numpy()

elif hasattr(point_cloud , 'numpy'): # Other tensor types
point_cloud = point_cloud.numpy ()

# Convert colors to numpy if it's a tensor
if colors is not None:

if hasattr(colors , 'cpu'): # PyTorch tensor
colors = colors.cpu().numpy ()

elif hasattr(colors , 'numpy '): # Other tensor types
colors = colors.numpy()

# Extract extrinsics and intrinsics from cameras if available
extrinsics = None
intrinsics = None

if cameras is not None:
# Assume cameras contains extrinsic matrices
extrinsics = cameras.cpu().numpy() if hasattr(cameras , 'cpu') else cameras

# Create and return Reconstruction object with colors
reconstruction = Reconstruction(point_cloud , extrinsics , intrinsics , colors)

# Store the raw result for debugging
reconstruction._raw_result = result

return reconstruction

@staticmethod
def describe_camera_motion(recon: Reconstruction):

"""Describe camera motion from reconstruction results.
Args:
"""
extrinsics = recon.extrinsics
return analyze_camera_trajectory(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction , new_camera_pose , width =512, height
=512, out_path=None):

"""Generate novel view synthesis from reconstruction results.
Args:

recon: Reconstruction object with point_cloud , extrinsics , intrinsics
new_camera_pose: 3x4 or 4x4 extrinsic matrix for the new viewpoint
width: output image width (default: 512)
height: output image height (default: 512)
out_path: output image path (default: None , returns image object if not

provided)
Returns:

str or image: path to the rendered image if out_path provided , otherwise
image object

"""
return novel_view_synthesis(recon , new_camera_pose , width , height , out_path)

@staticmethod
def rotate_right(extrinsic , angle=None):

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"""Rotate camera pose to the right"""
return rotate_right(extrinsic , angle)

@staticmethod
def rotate_left(extrinsic , angle=None):

"""Rotate camera pose to the left"""
return rotate_left(extrinsic , angle)

@staticmethod
def move_forward(extrinsic , distance=None):

"""Move camera pose forward"""
return move_forward(extrinsic , distance)

@staticmethod
def move_backward(extrinsic , distance=None):

"""Move camera pose backward"""
return move_backward(extrinsic , distance)

@staticmethod
def turn_around(extrinsic):

"""Turn camera pose around 180 degrees"""
return turn_around(extrinsic)

class Agent:
def __init__(self , api_key: str = None):

self.api_key = api_key or os.getenv('OPENAI_API_KEY ')

def generate_code(self , scene: Scene):
from agent.codeAgent.query import generate_code_from_query
return generate_code_from_query(scene , self.api_key)

def parse_LLM_response(self , scene: Scene , response: str):
"""
Extracts the first python code block (```python ... ```) from text.
Returns the code as a string , or "" if not found.
"""
from agent.codeAgent.execute import parse_LLM_response
code = parse_LLM_response(response)
scene.code = code
return code

def execute(self , scene: Scene):
"""
Execute a code string with a scene and return the visual clue result.
"""
# try:
# from agent.codeAgent.execute import execute_code
# program = execute_code(scene.code)

# visual_clue = program(scene)
# return visual_clue
# except Exception as e:
# import traceback
# error_details = f"Execution failed: {str(e)}\ nTraceback: {traceback.

format_exc ()}"
# # Store the error for detailed reporting
# self.last_execution_error = error_details
# return f"there is an error during code generation , no visual clue provided.

Error: {str(e)}"

from agent.codeAgent.execute import execute_code
program = execute_code(scene.code)

visual_clue = program(scene)
return visual_clue

def answer(self , scene: Scene , visual_clue):
# answer the question with visual clue
from agent.anwer import answer

# Set the visual clue in the scene
scene.visual_clue = visual_clue

# Call the answer function with API key
return answer(scene , self.api_key)

Code 2: Full pySpatial API specification.
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C IMPLEMENTATION DETAILS OF THE AGENT PROMPT IN pySpatial

We present the prompts used in our experiments in the box below.

AGENT PROMPT IN pySpatial

task_description = """
You are now asked to solve a spatial reasoning related problem.
The input are image(s) and a natural langugae question that
specifically designed to test your spatial reasoning ability.
It is not trivial to solve these tasks directly as a vision
langugae model. However, You have access to the following Python API:

"""

api_specification = """
In the PySpatial API, we explicitly introduce the 3D inductive bias.
We provide a Scene class that contains the image(s) and a question.
Further, we also provide a 3D reconstruction process that can be
used to generate a 3D point cloud and camera parameters.

class Reconstruction:
def __init__(self, point_cloud, extrinsics, intrinsics):

self.point_cloud = point_cloud
self.extrinsics = extrinsics
self.intrinsics = intrinsics

class Scene:
"Simple scene class that holds image data."
def __init__(self, path_to_images: Union[str, List[str]],

question: str = ""):
self.question = question
self.images = self._load_images(path_to_images)
self.reconstruction : Reconstruction = None

def _load_images(self, path_to_images: Union[str, List[str]])
-> List[str]:

"Load image paths from directory or list."
if isinstance(path_to_images, str):

if os.path.isdir(path_to_images):
# Load all images from directory
image_extensions = ['*.png', '*.jpg', '*.jpeg']
images = []
for ext in image_extensions:

images.extend(glob.glob(os.path.join(
path_to_images, ext)))

return sorted(images)
else:

# Single image file
return [path_to_images]

else:
# List of image paths
return list(path_to_images)

class pySpatial:
"Simple interface for 3D vision tools."
# we disable other function for now
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@staticmethod
def reconstruct(scene: Scene):

"3D reconstruction from scene images."

return reconstruct_3d(scene.images)

@staticmethod
def describe_camera_motion(recon: Reconstruction):

"Describe camera motion from reconstruction results.
Args:
"
extrinsics = recon.extrinsics
return describe_camera_motion(extrinsics)

@staticmethod
def synthesize_novel_view(recon: Reconstruction,

new_camera_pose):
"Generate novel view synthesis from reconstruction results.
Args:
"
return novel_view_synthesis(recon)

# methods to manipulate camera pose
def rotate_right(extrinsic, angle=np.pi/2):

def rotate_left(extrinsic, angle=np.pi/2):

def move_forward(extrinsic, distance=0.1):

def move_backward(extrinsic, distance=0.1):

def turn_around(extrinsic):

@staticmethod
def estimate_depth(image):

return estimate_depth(image)
"""

# in-context learning exmaples
example_problems = """

Problem 1:
Question: "Based on these two views showing the same scene:
in which direction did I move from the first view to the
second view?
A. Diagonally forward and left
B. Directly right
C. Directly left
D. Diagonally forward and right"

How to solve this problem?
Step 1: we can easily find the ansewr with camera extrinsics.
Step 2: therefore, we should first reconstruct the scene,
and then use the camera extrinsics to find the answer.
Step 3: it is still not trivial to directly get the answer
from extrinsic matrix.
Step 4: we can use the pySpatial.describe_camera_motion
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to get the answer.
Next, write python code within the pySpatial API provided,
then an agent will automatically collect the code
I wrote and execute it.

```python
def program(input_scene: Scene):

reconstruction3D = pySpatial.reconstruct(input_scene)
camera_motion = pySpatial.describe_camera_motion(

reconstruction3D)
return camera_motion

```
Step 5: After I get the visual clue from execution,
I can easily match the answer:

Problem 2:
Based on these four images (image 1, 2, 3, and 4)
showing the pink bottle from different viewpoints (front, left, back,
and right),with each camera aligned with room walls and partially
capturing the surroundings: If I am standing at the same spot and
facing the same direction as shown in image 1, then I turn right
and move forward, will I get closer to the pink plush toy
and headboard?

since we do not have the way to compare distance in 3D space,
we can render two images, and use these two images as visual clue.
```python

def program(input_scene: Scene):

reconstructed_scene = pySpatial.reconstruct(input_scene)
base_viewpoint = reconstructed_scene.extrinsics[0]
# the image 1 indicates the 0th index in the array

viewpoint_turn_right = pySpatial.rotate_right
(base_viewpoint)

viewpoint_move_forward = pySpatial.move_forward
(viewpoint_turn_right)

image_right = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_turn_right)

image_forward = pySpatial.synthesize_novel_view
(reconstructed_scene, viewpoint_move_forward)

# we should compare these two images, check if the object
exists and if the distance is closer.

visual_clue = [image_right, image_forward]
return visual_clue

```
"""

code_generation_prompt = f"""
Now please utilize the PySpatial API and write a python function
to solve the problem.
Noted that you can first do reasoning and then write the code.
But the code should be wrapped in the ```python ``` block.
Write a compact code block
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Also, the function written should be named as program
and the input parameter should be a Scene object.
for example,
```python
def program(input_scene: Scene):

...
return ...

```
try to add simple comments to the code to explain your logic.

Make sure to first reasoning, why we write program like this,
becuase we have a pySpatial API that allows us to explore the 3D
space, please first do a reasoning like (I want to know what is
to the right of something, therefore I just render a novel view
from that).

"""

# Prompt template for ReAct: ReAct: Synergizing Reasoning and Acting
in Language Models https://arxiv.org/abs/2210.03629

answer_background = f"""
We are now solving a spatial reasoing problem.
It is not trivial to solve these tasks directly as a vision language
model.
However, We have access to the following PySpatial API:
{api_specification}

We generate a python code based on the PySpatial API to solve
this problem.

"""

answer_prompt = """
Based on the code and the visual clue from the execution, answer
the question.

"""

# Prompt for the answer without visual clue
without_visual_clue_background = """

Solve this spatial reasoning problem based on the question
and the image input.

First, analyze the question, extract useful information from
the question description, then try to answer it based on the
useful visual information.

Give your best guess if you cannot find the best answer.
"""

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs solely as an auxiliary tool to polish the writing of this manuscript. They were
used to improve grammar, clarity, and readability, but no LLMs were involved in ideation, data
analysis, experiment design, or result interpretation.
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