
Under review as a conference paper at ICLR 2023

SCALABLE 3D OBJECT-CENTRIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We tackle the task of unsupervised 3D object-centric representation learning on
scenes of potentially unbounded scale. Existing approaches to object-centric repre-
sentation learning exhibit significant limitations in achieving scalable inference due
to their dependencies on a fixed global coordinate system. In contrast, we propose
to learn view-invariant 3D object representations in localized object coordinate
systems. To this end, we estimate the object pose and appearance representation
separately and explicitly project object representations across views. We adopt
amortized variational inference to process sequential input and update object rep-
resentations online. To scale up our model to scenes with an arbitrary number
of objects, we further introduce a Cognitive Map that allows the registration and
querying of objects on a global map. We employ the object-centric neural radiance
field (NeRF) as our 3D scene representation, which is jointly inferred by our unsu-
pervised object-centric learning framework. Experimental results demonstrate that
our method can infer and maintain object-centric representations of unbounded 3D
scenes. Further combined with a per-object NeRF finetuning process, our model
can achieve scalable high-quality object-aware scene reconstruction.

1 INTRODUCTION

The ability to understand 3D surroundings in an object-centric way is crucial for AI agents to perform
a range of tasks including relational reasoning (Chang et al., 2017) and reinforcement learning
(Diuk et al., 2008). In recent years, 2D and 3D unsupervised object-centric learning have attracted
increasing attention in the field. Compared with 2D object-centric learning methods (Eslami et al.,
2016; Lin et al., 2020; Burgess et al., 2019; Crawford & Pineau, 2019; Locatello et al., 2020) that
focus on decomposing 2D images into objects, 3D learning methods aim to recover the complete
3D scene structures in an object-centric way using RGB or RGBD observations (Li et al., 2020;
Stelzner et al., 2021; Chen et al., 2021; Henderson & Lampert, 2020). A key limitation of existing 3D
methods is that they can only handle scenes with a scale that can fit into the field of view (FOV) of a
fixed number of cameras (Li et al., 2020; Stelzner et al., 2021; Chen et al., 2021), where the camera
coordinates are specified within a global coordinate system. The trained inference models are thus
highly dependent on the chosen global coordinate system (Li et al., 2020; Chen et al., 2021; Kabra
et al., 2021; Eslami et al., 2018; Henderson & Lampert, 2020), and cannot generalize beyond the
scale of the training sets. All of these limits the applicability of existing 3D methods to real-world
problems or even simulated reinforcement learning environments (Beattie et al., 2016), where scenes
with large or even unbounded scales are routinely encountered.

In this paper, we propose Scalable Online Object Centric network in 3D (SOOC3D). SOOC3D
addresses the problem of scalability by inferring object poses and view-invariant object representations
in localized object coordinate systems from RGBD data. To handle sequential data for large-scale
scenes, we exploit amortized variational inference for online inference. Inferred object poses allow
object representations to be explicitly projected across views with preserved identities. To keep track
of all the detected objects throughout the online update, we introduce a highly scalable external
memory mechanism named Cognitive Map,1 which can be used to dynamically register and query
detected object representations. This memory mechanism further removes a constraint in existing
works (Henderson & Lampert, 2020; Burgess et al., 2019; Locatello et al., 2020; Engelcke et al.,
2020a; Yu et al., 2022) whereby the maximum number of objects allowed in each scene is capped.

1The term cognitive map is borrowed from cognitive psychology studies on mental representations of the
spatial surroundings in animal, and human brain (Kitchin, 1994).

1

Under review as a conference paper at ICLR 2023

We adopt the 3D object-aware Neural Radiance field (NeRF) to decode such representations to 3D
geometries for training. While per-scene NeRF with direct SGD optimization can capture detailed
3D scenes (Mildenhall et al., 2021; Zhang et al., 2022; Tancik et al., 2022), the reconstruction quality
of such unsupervised object-centric NeRF learning methods commonly falls short of the per-scene
NeRF approaches as the introduced information bottlenecks filter out high-frequency information
(Engelcke et al., 2020b). To narrow the gap, we introduce the per-object NeRF finetuning process to
improve the reconstruction quality while preserving the objects’ identities.

Our contributions are summarised as follows. i) We propose, to the best of our knowledge, the first
unbounded scalable generative-model-based unsupervised 3D object-centric learning framework.
ii) We learn the explicit object poses and view-invariant object representations separately via the
amortized variational inference framework to achieve scalable online updating. iii) To store a
potentially unbounded number of objects detected for scalable inference, we introduce Cognitive
Map separating object representations management from the inference process. iv) We demonstrate
that the reconstruction quality can be further improved via our per-object NeRF finetuning process
with preserved objects’ identities.

Figure 1: Left: The interaction between the inference pipeline and the cognitive map for scene
updating (top) and novel view synthesis (bottom). Previously detected objects are registered in the
cognitive map. When a new view arrives, the representations of all objects present in the view are
retrieved. {λi} are the object representations and λs is the scene layout representation. If the number
of objects existing in the current view is less than a pre-defined value K, we add prior representations
(greyed λi). We update {λi} to integrate new information with the amortized variational inference
process and register them back into the cognitive map. For novel view synthesis, the retrieved
representations are decoded into NeRF components. By components composition, we synthesize
RGB image, depth, segmentation and uncertainty map. Right: A L-iteration amortized variational
inference process. In each iteration, the set of input representations is decoded into NeRF components.
We evaluate the likelihood of observation under the composed NeRF. The refinement network takes
the decoded NeRF, observation and likelihood to update the object-centric representation.

2 RELATED WORK

Unsupervised Generative Model-based 2D Object-centric Learning. 2D object-centric learning
aims to group pixels covering the same object under the same label and at the same time produce a
neural representation of each discovered object. At the core of those methods is the spatial mixture
model formulation that frames object-centric learning as a latent variable inference problem (Eslami
et al., 2016; Greff et al., 2019; 2017). To handle observations with a high object density, a branch
of works (Eslami et al., 2016; Crawford & Pineau, 2019; Lin et al., 2020) infers latent variables
for local regions of each 2D observation. Pipelines equipped with iterative refinement modules
(Greff et al., 2017; Locatello et al., 2020) refine the latent variable iteratively conditioned on an input
view. Particularly, IODINE (Greff et al., 2019) employs amortized variational inference (Marino
et al., 2018) that can process sequential data. However, the aforementioned methods do not infer 3D
structures. Object latents are discarded once out of view.

Unsupervised Generative Model-based 3D Object-centric Learning. 3D-aware methods not only
try to factorize observations in an object-centric manner but also infer the 3D spatial structure of
scenes, which can be examined by the means of novel views synthesis. Similar to its 2D counterpart,

2

Under review as a conference paper at ICLR 2023

3D object-centric representation learning approaches also adopt the spatial mixture model formulation.
ObSuRF (Stelzner et al., 2021) and uORF (Yu et al., 2022) introduce neural radiance fields (NeRF)
into the object-centric learning setting. Smith et al. (2022) propose to use object light field to
avoid dense sampling along rays during rendering. As an attempt to model scenes on a larger
scale, O3V (Henderson & Lampert, 2020) and SIMONe (Kabra et al., 2021) infer object-centric
representation from a video sequence. However, both O3V and SIMONe adopt a non-incremental
method and process entire video sequences before generating scene representations. MulMON (Li
et al., 2020) adopts amortized variational inference framework for 3D object-centric learning that
allows object latents to be updated by new views in an online fashion.

The methods mentioned above work well on scenes with bounded sizes that can fit into the FOV
of camera cones. One limiting factor of scaling up to larger scenes is that they take camera poses
and locations specified in a pre-defined global coordinate system as input to the network. Thus,
during test time, they cannot handle scenes larger than the ones in training sets. Our work infers
view-invariant object representations that can scale up to unboundedly large scenes.

Object-Compositional and Scalable NeRF. Object-compositional NeRF has been studied recently
to learn the 3D representation for each object and the scene for image synthesis. In particular, Yang
et al. (2021) introduced a two-pathway framework to model the foreground objects and the scene
branch, with known coarse object instance masks. Such a method cannot be directly applied to the
unsupervised scenario. To handle large scenes, block-wise NeRF has been proposed recently(Zhang
et al., 2022; Tancik et al., 2022). They can either generalize to large scene (Zhang et al., 2022)
by taking multiple images as input or train scene-specific block-wise NeRFs for large scene fast
rendering (Zhang et al., 2022). However, both Zhang et al. (2022) and Tancik et al. (2022) are not
object-centric. In this paper, we aim to combine merits from all sides and learn scalable object-centric
NeRF scene representations.

3 METHOD

With the assumption that the scene is static and there can be at most K objects in each view (but
unlimited in the entire scene), SOOC3D aims to achieve object-centric 3D scene understanding in
unbounded scale during test time from sequential RGBD inputs. This goal requires the inference
process to be online and view-invariant. In SOOC3D, the online inference is facilitated by the
recurrent variational proposal distribution (Sec. 3.1). SOOC3D ensures a view-invariant object
representation by decoding NeRF under the object coordinate system. The refinement network takes
both view-dependent observation and view-invariant object representation to update the object latent
variables (Sec. 3.2). Notably, the set of objects in view may change when we switch from one camera
to another. To keep track of all object representations and only expose those that are in view to the
inference process, we introduce a Cognitive Map for scalable learning (Sec. 3.2). The illustration
of the inference pipeline is shown in Fig. 1. Finally, we show that object reconstruction quality
can be improved with preserved identities through the per-object NeRF finetuning process with an
object-centric initialization (Sec. 3.2).

3.1 GENERATIVE MODEL FORMULATION AND THE OPTIMIZATION OBJECTIVE

Generative Model. At any time t, we have access to a set of camera views Vt = {v1, . . . , vt}
specified by their extrinsic parameters. Each camera captures a RGB cvt observation, and a depth
observation dvt . We define ovt = {cvt , dvt} and Ot = {ov1 , . . . , ovt}. Below we hide the subscript
of camera pose in equations that hold for all camera poses. We assume there are at most K objects
in one view. The K object latent representations form a set Zobjv = {zobjφv(1), . . . , z

obj
φv(K)}, where

φv(·) returns the global index of each object latent given its in-view index. The set of all object latent
variables at time t is Zobjt = {zobj1 , . . . zobjN } =

⋃
v∈Vt Z

obj
v .

The latent variable of an object is specified as zobji = {zwherei , zwhati , zpresi }, where zwherei ∈
R3 encodes object location on xz-plane and rotation around y-axis, zwhati ∈ RD encodes object
appearance. zpresi ∈ {0, 1} is a binary variable with zpresi = 0 indicating that object i does not exist
and zpresi = 1 otherwise. We further define zscenev ∈ RD as the latent variable to model the scene
layout under camera v. We assume that for each view, the scene layout component always exists and

3

Under review as a conference paper at ICLR 2023

the location of a scene layout component is always at the center of the camera view. We denote Zv as
Zobjv

⋃
zscenev . The complete data likelihood function is defined as:

L = Ev,Zv [p(ov|Zv)] (1)

Amortized Variational Inference. The exact object latent posterior p(zobji,t |Ot,Vt) is intractable.
Thus, we resort to the amortized variational inference (Greff et al., 2019; Li et al., 2020; Emami et al.,
2021). We approximate the true posteriors by a proposal distribution

q(zobji,t |Ot,Vt) =

∫
zobji,t−1

q(zobji,t |ovt , vt, z
obj
i,t−1)q(zobji,t−1|Ot−1,Vt−1)dzobji,t−1, (2)

with q(zobji,0 |O0,V0) being the variational prior. The recursive nature of the variational posterior
enables online inference with a constant memory footprint. When object i is not visible in view
vt, we define q(zobji,t |ovt , vt, z

obj
i,t−1) to be the Dirac delta function δzobji,t−1

(zobji,t). The posterior will

remain unchanged as q(zobji,t |Ot,Vt) = q(zobji,t−1|Ot−1,Vt−1).

As an approximation, we further assume that zwherei , zwhati , zpresi are independent of each other
conditioned onOt,Vt. We parameterize q(zwherei) and q(zwhati) as isotropic Gaussian with λwherei =
{µwherei , σwherei } and λwhati = {µwhati , σwhati }. q(zpresi) takes the form of Bernoulli distribution
and the λpresi is the logit. Following the amortized variational inference, for each input view vt, we
update our latent for L iterations. At the l ∈ {0, 1, · · · , L} iteration,

zobj,li,t ∼ qλli,t(z
obj,l
i,t |ovt , vt, z

obj,l−1
i,t) (3)

λli,t = λl−1i,t + fϑ(zobj,l−1i,t , ovt , vt,a) (4)

with qλ0
i,t

= qλLi,t−1
. fϑ is the refinement network and a is a collection of auxiliary input. For each

view, we compute the KL-Divergence Lklvt =
∑L
l=1DKL[qλli,t ||qλ0

i,t
]. The iteration is executed in

parallel for all object latent distributions that are detected in the current view.

During training, for each scene, in addition to T input views VT , we also sample a set of query views
Q. The final Evidence Lower Bound (ELBO) is defined as

L =
1

T

T∑
t=1

Eqλt [log p(ovt |Zvt)] +
1

|Q|
∑
v∈Q

EqλT [log p(ov|Zv)]−
1

T

T∑
t=1

Lklvt (5)

We adopt the same pre-ray likelihood function as Stelzner et al. (2021) to compute p(ov|Zv). For the
completeness of the paper, we detail the likelihood function computation in Appendix B.

3.2 MODEL IMPLEMENTATION

Coordinate System Transformation. The view-invariant inference depends heavily on the coordi-
nate system transformation between camera coordinate systems and the object coordinate systems.
For each step, our model expects an RGBD observation and latent variables Z from the previous step.
As detailed in Appendix B, along each ray r, we get the surface sample at the observed depth d, and
one air sample with a depth less than d. We specify each sample x in the camera coordinate system.

Each zwhereφv(k)
is interpreted as an object pose in the current camera coordinate system. With the object

poses specified, for each object indexed by k, we can build a projection matrix Π(zwhereφv(k)
) ∈ SE(3)

and map each point x to the object local coordinate system by xk = Π(zwhereφv(k)
) · x for decoding. The

global coordinate system is only used for object registration and query.

NeRF decoding. Following common practice, we transform the coordinates of samples into harmonic
representations (Mildenhall et al., 2021). Conditioned on zwhatφv(k)

or zscenev , a NeRF decoder σ̃θ(·)
assigns each point a raw density σ̃k(xk) = σ̃θ(xk, z

what
φv(k)

) ∈ [0, 1] and a RGB color. While the K
object components share the same NeRF decoder, the scene layout is decoded via its own decoder.

4

Under review as a conference paper at ICLR 2023

To accurately predict object location, we introduce an inductive bias in the form of Gaussian weighting.
To be more precise, we compute the weighted density log σ̂k(xk) = log σ̃k(xk) + logwg(xk) −
SG(logwg(xk)) + log zpresφv(k)

where wg(·) is a zero centered gaussian function and SG is the stop
gradient operation. By adding logwg(xk)− SG(logwg(xk)), we encourage the zwhereφv(k)

to be set at
the object center with the value of the weighted density unchanged. Weighted by zpresφv(k)

, non-existent

components are turned off. We then compute the normalized density as σ̄k(xk) = σ̂k(xk)
2∑K

i=0 σ̂i(xi)
. Note

that
∑
k σ̄k(xk) ∈ [0, 1] allowing us to represent concrete object or void space. The final NeRF

density at point x is given by σ(x) = σmax ·
∑K
k=0 σ̄k(xk) with σmax being the maximum NeRF

density of our choice.

We do not down-weight air sample densities by wg(·) and zpresk to force the model to learn the scene
voidness at all ranges. At this point, the decoding/reconstruction is complete and we can compute the
reconstruction likelihood.

Refinement Network. Following the amortized variational inference literature (Greff et al., 2019;
Li et al., 2020), a refinement network takes as input latent variables from the previous step and
a set of auxiliary data and outputs the updated proposal distributions (Eq. 4). The auxiliary data
include observation, previous reconstruction and observation likelihood. For each input view, the
above reconstruct-and-refine process is executed L times, in parallel for all components. Notably,
our objective function enforces the refinement process to preserve object identities across views
without any hard-coded heuristics (detailed in Appendix B). Detailed network structure, auxiliary
input specifications and algorithmic summary are presented in Appendices E and A.

Cognitive Map. A cognitive map maintains all discovered objects with a list where the ith entry
stores λi for object i and interacts with the inference model through two functions:

Query: Given a camera v specified in the global coordinate system, we retrieve {(i, λi)}Ki=1 for K
objects whose locations are inside the field of view for camera v, from the cognitive map. To this end,
according to the extrinsic parameters of v, µwhere for all objects in the cognitive map are projected
from the global coordinate system into the camera coordinate system of v while other parameters are
kept fixed. If less than K objects are located in the current view, priors of latent variables are filled in
with pseudo index i = −1.

Registration: Given a camera v, the set {(i, λi)}i∈{φv(1)...φv(K)} can be registered into a cognitive
map. Objects with q(zpres = 1) < 0.5, will be discarded since they are deemed non-existent. As the
reverse process of a query, all µwhere will then be projected into the global coordinate system. Then,
newly discovered objects (identified by i = −1) are appended to the list and the corresponding entry
indices become their global object id.

Per-Object NeRF Finetuning. To achieve higher reconstruction quality, we associate each object
representation with a per-object NeRF (no weight sharing) in the cognitive map. We initialize the
per-object NeRF decoder as that of the SOOC3D NeRF and then finetune it by maximizing the input
view observation likelihood. Such non-weight sharing and training strategy for per-object NeRF can
improve the reconstruction quality and preserve object identity naturally. For implementation, we fix
zwhere, binarize zpres with a threshold of 0.5 and treat view zwhat as part of the NeRF parameters.

4 EXPERIMENTS

Dataset. Datasets adopted in object-centric learning literature commonly focus on small scenes that
can fit into camera FOV (Eslami et al., 2018; Johnson et al., 2017; Engelcke et al., 2021; Yu et al.,
2022). To evaluate the scalability of our approach, we construct a large-scale dataset termed Unity
dataset mimicking the object room dataset (Eslami et al., 2018). The dataset contains scenes of
three different scales termed as small (s), medium (m) and large (l). To assess the performance of
our model when facing non-trivial geometries, we also build a Blender dataset where objects are
randomly selected from a pool of indoor furniture. See Appendix D for dataset generation details.

Metric. We compute the mean-intersection-over-union (mIoU) score between the ground truth mask
and the mask inferred from our NeRF representation for scene segmentation and per-pixel root-mean-
square-error (RMSE) for the rendered RGB image and the depth for the scene reconstruction. We
mask out all pixels with depth values larger than the clipping plane. We compute both mIoU and

5

Under review as a conference paper at ICLR 2023

RMSE for both input (I) and query (Q) views. We also evaluate the location prediction performance
by measuring the average distance between the predicted object locations and the ground truth for
each scene. See Appendix F for rendering equations of depth, segmentation masks, and uncertainty
maps. Unless stated otherwise, the visualizations below are without per-object NeRF finetuning.

Baseline. We compare our method with MulMON (Li et al., 2020), the state-of-the-art multi-view
3D scene object-centric learning method with online inference ability. We adopt their official
implementation and additionally add ground truth depth as input. We additionally discuss ObSuRF
Stelzner et al. (2021), a single view inference model, in Appendix G to provide more insights.

4.1 SCALABLE OBJECT CENTRIC LEARNING

Test time scalability is crucial for deploying agents in an open environment. Below we identify three
types of scalability desired for an object-centric learning model. Our experiments show that our
model demonstrates strong test time scalability across all three types.

Scene Scale. In practice, the training scenes are normally of bounded scale but the deploying scenes
are of varying sizes. Below, we test the generalization of our approach w.r.t a different scene scale.
Specifically, we train the baseline and our model on both small (MulMON small, Ours small) and
medium (MulMON medium, Ours medium) scenes and test them on different scene scales. For the
baseline, we set the number of mixing components M = 8, 12, and 25 for small, medium and large
scale scenes respectively, during both training and testing. For our model, we fix K to 7 for all scene
scales. The quantitative results are reported in Table 1. The results of our approach are obtained as
the average of 5 runs with at most ±0.01, ±0.02, ±0.02 and ±0.02 variation for mIoU, RGB-RMSE,
depth-RMSE and coordinate L-2 error respectively. MulMON achieves 0.612 mIoU when trained
and tested on small scenes. This setup aligns with their assumption that all objects appear in all views.
However, evaluated on medium and large-scale scenes, its performance drops significantly to below
0.2 in mIoU. The performance of MulMON is not improved after training on the medium scene.

Table 1: Quantitative results on scene segmentation and reconstruction.

mIoU ↑ RGB RMSE ↓ depth RMSE ↓ L2 coord. error ↓
s m l s m l s m l s m l

MulMON small I 0.612 0.198 0.158 0.055 0.167 0.178 N/A N/A
Q 0.599 0.192 0.152 0.056 0.171 0.186 N/A N/A

MulMON medium I 0.371 0.225 0.141 0.102 0.141 0.144 N/A N/A
Q 0.365 0.221 0.136 0.103 0.149 0.159 N/A N/A

Ours small I 0.763 0.721 0.694 0.074 0.107 0.141 0.516 0.680 0.793 N/A
Q 0.761 0.713 0.690 0.073 0.109 0.149 0.517 0.691 0.805 0.068 0.170 0.192

Ours medium I 0.710 0.756 0.761 0.075 0.098 0.091 0.617 0.650 0.634 N/A
Q 0.703 0.751 0.757 0.073 0.099 0.092 0.619 0.652 0.640 0.099 0.117 0.111

Ours finetune I 0.903 0.897 0.910 0.016 0.018 0.021 0.472 0.620 0.615 N/A
Q 0.892 0.874 0.889 0.019 0.023 0.025 0.498 0.630 0.624 N/A

Ground Truth MulMON Ours

Figure 2: Qualitative comparison on query view synthesis in large scenes.

By contrast, our model, being agnostic to any global coordinate system, can scale to large scenes with
a 0.07 mIoU performance drop when it is only trained on small scenes. After we train our model on
medium scenes, the performance in both medium and large scenes improves (see Fig. 2 for qualitative
comparison). The similar performances on the input and query views demonstrate that our model
learned the view-invariant features resulting in robust rendering from all views. As shown in the last
row of Table 1, after per-object finetuning, on the unity dataset, both instance mask prediction and
appearance reconstruction improved significantly (qualitative results are shown in Appendix H).

6

Under review as a conference paper at ICLR 2023

Cog. Map Ground Truth Reconstruction

Figure 3: Visualization of an online inference process from top to bottom. Each row corresponds to
one inference step. The left column shows the evolution of the cognitive map. The camera pose of
each step is marked by a blue triangle and the camera cone (visible area) is highlighted. Each object
latent registered in the cognitive map is marked with an x and is greyed out if outside of view.

In Fig. 3 we visualize a 6-step online inference process. For each step, our model discovers new
objects, registers them to the cognitive map and at the same time updates the latent variables. With a
cognitive map as external memory, the inference process can be scaled to arbitrary scales.

The Number of Object in View. To demonstrate the scalability w.r.t the number of objects in the
scene, we generate a set of 100 testing scenes, each of which consists of 10 views. Each view can
capture 8 to 11 objects. We set the K to be 11 and test our pre-trained model without any additional
training. We then report that our model achieves on average 0.702 mIoU, and 0.092 for RGB-RMSE.
Although it has never been trained on such dense views, our model can generalize well to dense 3D
scenes without performance drops. Qualitative results on scene decomposition are shown in Fig. 4.
Our method can decompose the images with dense objects and render each object with high quality.

Figure 4: Demonstration of the model scalability at test time on the number of objects per view. In
rows 1 and 3, from left to right are ground truth RGB, depth, instance mask, rendered RGB, rendered
depth, rendered mask and uncertainty map. Rows 2 and 4 show the rendered individual objects.

Number of Updates. In practice, objects can be observed and updated arbitrarily frequently and the
inferred scene representations should remain stable. However, during training, it is common that each

7

Under review as a conference paper at ICLR 2023

object latent can only be updated a fixed maximum number of times. In our experiments, one object
latent can be updated 4 times at most during training.

To evaluate our model’s scalability on object latent updates without additional training, we sample
input views and repeat the inference process multiple times. After each update, we compute the
induced KL Divergence and the RGB-RMSE for the rendered image. As shown in Fig. 5, our model
shows test-time scalability to around 10 updates. To achieve stronger scalability, we finetune our
model by traversing each scene 5 times consecutively. Similar to the truncated backpropagation
through time (TBPTT), after each traverse, we update the model parameters and keep the contents of
the cognitive map for the next traverse. As a result, the object representation remains stable under
more than 30 updates during testing time. Fig. 6 visualizes the appearance changes under updates.

Figure 5: The per-update KL (left) and per-update RGB RMSE (right) with and without finetuning.

Ground Truth 1st update 2nd update 4th update 6th update 8th update 10th update 12th update

Ground Truth 1st update 2nd update 10th update 15th update 20th update 25th update 30th update

Figure 6: Visualization of scene changes under update before (top two sequences) and after (bottom
two sequences) the TBPTT finetuning. Due to object blocking views, the first update may result in
high uncertainty. Qualitatively, the appearance of objects is refined and remains stable after.

4.2 SCENE EDITING

In previous works, while object removal or creation can be achieved by adding or deleting object latent
variables, moving objects commonly relies on latent variable traversal (Kabra et al., 2021; Burgess
et al., 2019; Greff et al., 2019; Li et al., 2020). For our model, thanks to the explicit object pose
estimation, scene editing can be achieved with a direct modification of the content of the cognitive
map in a view-independent way. We use our model to infer the latents of a random small scene and
save the resulting Cognitive map. In Fig. 7, we modify the registered coordinates of the latents in
the Cognitive map by directly setting them to some designated coordinates to create different object
arrangements. In Fig. 8, we traverse zwhat of the left-most object one dimension at a time, render
the modified object and inspect the changes in the object appearance manually. We identified three
feature dimensions with highly interpretable meanings, i.e. color, shape and size.

8

Under review as a conference paper at ICLR 2023

4.3 VISUALLY CHALLENGING SCENES AND PER-OBJECT FINETUNING

We test our model on the Blender dataset to evaluate the capability of handling more realistic scenes.
We report that our model achieves 0.734 mIoU and 0.072 RMSE while MulMON achieves 0.489
mIoU and 0.069 RMSE. The experimental results show that our model is capable of handling
challenging geometries with photorealistic observations. The metrics can be further improved
by the per-object finetuning to 0.870 mIoU and 0.031 RMSE. The comparison between ground
truth observation (GT), SOOC3D inference results (SOOC3D) and the per-object finetuning results
(SOOC3D+) in Fig. 9 shows that the per-object finetuning process can capture the fine detail of
objects leading to more accurate instance masks. See Appendix I for more qualitative results.

ring layout grid layout line layout

Figure 7: Demonstration of scene editing and ren-
dering from our learned object representations.
Note that all three images are rendered by the same
set of learned objects representations.

color shape size

Figure 8: Latent variable traversal.

GT SOOC3D+ SOOC3D GT SOOC3D+ SOOC3D

Figure 9: Qualitative comparison before and after per-object finetuning.

5 LIMITATION

We observe that our model may fail to model objects located on the boundaries of camera visual
cones. This challenge is rarely discussed in previous 3D aware object-centric learning literature since
they either process all frames at once (Kabra et al., 2021; Henderson & Lampert, 2020) or the scenes
are not large enough to trigger the problem (Li et al., 2020; Stelzner et al., 2021; Yu et al., 2022). In a
cognitive map, objects are abstracted as points. A large object can be partially observed while its
predicted centers are still outside the current view. As a result, the object is not retrieved from the
cognitive map. We anticipate that this problem can be handled by predicting a bounding box for each
object. Then the cognitive map should retrieve any object whose bounding box intersects with the
visual cone for the current view. We leave the bounding box prediction as our future work.

6 CONCLUSION AND FUTURE WORK

We propose a framework for unsupervised 3D object-centric learning for handling scenes of large
scale and a varying number of objects in the scene. We introduced factorized latent learning which
separates the camera pose and view-invariant object latents. Our object-compositional nerf allows the
learning of 3D representation in the object camera coordinate system. The cognitive map ensures the
framework keeps all the detected objects. Our learned view-invariant 3D object representation can
potentially be applied in the SLAM system or the robotic object manipulation of object representation.
Our model cannot handle dynamic objects in the scene which is left as our future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab, 2016. URL https://arxiv.org/abs/1612.
03801.

Christopher Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. ArXiv,
abs/1901.11390, 01 2019. URL https://arxiv.org/abs/1901.11390.

B. Michael Chang, Tomer Ullman, Antonio Torralba, and B. Joshua Tenenbaum. A compositional
object-based approach to learning physical dynamics. ICLR, 2017.

Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d
scenes, 2021.

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolutional
neural networks. AAAI, 33:3412–3420, 07 2019. doi: 10.1609/aaai.v33i01.33013412.

Eric Crawford and Joelle Pineau. Exploiting spatial invariance for scalable unsupervised object
tracking. AAAI, 34:3684–3692, 04 2020. doi: 10.1609/aaai.v34i04.5777.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In ICML, ICML ’08, pp. 240–247, New York, NY, USA, 2008. Association
for Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390187. URL
https://doi.org/10.1145/1390156.1390187.

Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient iterative amortized inference
for learning symmetric and disentangled multi-object representations. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 2970–2981. PMLR, 18–24 Jul 2021. URL
http://proceedings.mlr.press/v139/emami21a.html.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations. In ICLR, 2020a. URL
https://openreview.net/forum?id=BkxfaTVFwH.

Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. Reconstruction Bottlenecks in Object-
Centric Generative Models. ICML Workshop on Object-Oriented Learning, 2020b.

Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. GENESIS-V2: Inferring Unordered Object
Representations without Iterative Refinement. arXiv preprint arXiv:2104.09958, 2021.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray
Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene understanding with
generative models. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 3233–3241, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 9781510838819.

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, David P. Reichert,
Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum, Neil Rabinowitz, Helen King,
Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray Kavukcuoglu, and Demis Hassabis. Neural
scene representation and rendering. Science, 360(6394):1204–1210, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6170. URL https://science.sciencemag.org/content/360/
6394/1204.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
NeurIPS, NIPS’17, pp. 6694–6704, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

10

https://arxiv.org/abs/1612.03801
https://arxiv.org/abs/1612.03801
https://arxiv.org/abs/1901.11390
https://doi.org/10.1145/1390156.1390187
http://proceedings.mlr.press/v139/emami21a.html
https://openreview.net/forum?id=BkxfaTVFwH
https://science.sciencemag.org/content/360/6394/1204
https://science.sciencemag.org/content/360/6394/1204

Under review as a conference paper at ICLR 2023

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loı̈c Matthey, Matthew M Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In ICML, 2019.

Paul Henderson and Christoph H. Lampert. Unsupervised object-centric video generation and
decomposition in 3D. In NeurIPS, 2020.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning.
pp. 1988–1997, 07 2017. doi: 10.1109/CVPR.2017.215.

A. Juliani, V. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry, M. Mattar,
and D. Lange. Unity: A general platform for intelligent agents. ArXiv, abs/1809.02627, 2020.

Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matthew Botvinick,
Alexander Lerchner, and Christopher P. Burgess. SIMONe: View-invariant, temporally-abstracted
object representations via unsupervised video decomposition. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=YSzTMntO1KY.

Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-Centric
Learning from Video. arXiv preprint arXiv:2111.12594, 2021.

Rob Kitchin. Cognitive maps: What are they and why study them? Journal of Environmental
Psychology, 14:1–19, 03 1994. doi: 10.1016/S0272-4944(05)80194-X.

Nanbo Li, Cian Eastwood, and Robert Fisher. Learning object-centric representations of multi-
object scenes from multiple views. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5656–
5666. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/3d9dabe52805a1ea21864b09f3397593-Paper.pdf.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In ICLR, 2020. URL https://openreview.net/forum?
id=rkl03ySYDH.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
In NeurIPS, 2020.

Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In ICML, 07 2018.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM,
65(1):99–106, dec 2021. ISSN 0001-0782. doi: 10.1145/3503250. URL https://doi.org/
10.1145/3503250.

Cameron Smith, Hong-Xing Yu, Sergey Zakharov, Fredo Durand, Joshua B. Tenenbaum, Jiajun Wu,
and Vincent Sitzmann. Unsupervised discovery and composition of object light fields, 2022. URL
https://arxiv.org/abs/2205.03923.

Karl Stelzner, Kristian Kersting, and Adam R. Kosiorek. Decomposing 3d scenes into objects via
unsupervised volume segmentation, 2021.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view
synthesis. arXiv preprint arXiv:2202.05263, 2022.

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Learning object-compositional neural radiance field for editable scene rendering.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13779–13788,
2021.

11

https://openreview.net/forum?id=YSzTMntO1KY
https://proceedings.neurips.cc/paper/2020/file/3d9dabe52805a1ea21864b09f3397593-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3d9dabe52805a1ea21864b09f3397593-Paper.pdf
https://openreview.net/forum?id=rkl03ySYDH
https://openreview.net/forum?id=rkl03ySYDH
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://arxiv.org/abs/2205.03923

Under review as a conference paper at ICLR 2023

Hong-Xing Yu, Leonidas Guibas, and Jiajun Wu. Unsupervised discovery of object radiance fields.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=rwE8SshAlxw.

Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and Zexiang Xu. Nerfusion: Fusing radiance
fields for large-scale scene reconstruction. arXiv preprint arXiv:2203.11283, 2022.

12

https://openreview.net/forum?id=rwE8SshAlxw
https://openreview.net/forum?id=rwE8SshAlxw

Under review as a conference paper at ICLR 2023

A ALGORITHMS

Algorithm 1: SOOC3D Inference
Input: a cognitive mapM.

1 begin
/* iterate over views, T can be unbounded during test time */

2 for t = 1, 2, ..., T do
3 Receive posed observation (ovt , vt);
4 λscenet = Encode(ovt);
5 zscenet ∼ qλscenet

; // Gaussian distribution
/* φvt(i) is the global index of the ith object in view vt */

6 {(λ0i,t, φvt(i))}i=1:K = Query(M, vt), λ
0
i,t = {λwhat,0i,t , λwhere,0i,t , λpres,0i,t };

7 for l = 0, 1, . . . , L do
/* Executed in parallel */

8 for i = 1, . . .K do
9 zwhat,li,t ∼ qλwhat,li,t

; // Gaussian distribution

10 zwhere,li,t ∼ qλwhere,li,t
; // Gaussian distribution

11 zpres,li,t ∼ qλpres,li,t
; // Bernoulli distribution

12 Compute DwhatKL,i = DKL(qλwhat,li,t
||qλwhat,0i,t

);

13 Compute DwhereKL,i = DKL(qλwhere,li,t
||qλwhere,0i,t

);

14 Compute DpresKL,i = DKL(qλpres,li,t
||qλpres,0i,t

);

15 end
16 DKL =

∑K
i=1(DwhatKL,i +DwhereKL,i)× zpres,li,t +DpresKL,i;

17 Llt = − log p(ovt |z
what,l
1:k,t , zwhere,l1:k,t , zpres,l1:k,t , z

scene
t) +DKL;

/* a is the auxiliary input specified in Appendix E. */

18 λl+1
i,t = λli,t + fϑ(zwhat,li,t , zwhere,li,t , zpres,li,t , ovt , vt,a);

19 end
20 Register({(λL+1

i,t , φvt(i))}i=1,...,K ,M, vt)

21 end
22 end
23 return Cognitive MapM storing the object-centric scene representation.

13

Under review as a conference paper at ICLR 2023

Algorithm 2: Cognitive Map Register
Input: a cognitive mapM, latents with global index {(λi, φ(i))}i=1,...,K , camera pose v.

1 begin
2 for i = 1, 2, ...,K do
3 λwhati , λwhati , λwhati = λi;
4 µwherei , σwherei = λwherei ;
5 µwherei ← ProjectIntoGlobalCoordinate(µwherei , v);
6 if φ(i) = −1 and qλpresi

(zpres = 1) > 0.5 then
/* Object newly detected in this view */

7 φ(i)→ len(M);
8 M.append(λi);
9 else

/* Object detected by previous views */
10 M[φ(i)]← λi;
11 end
12 end
13 end
14 return Cognitive MapM storing the object-centric scene representation.

Algorithm 3: Cognitive Map Query
Input: a cognitive mapM, a camera pose v, global prior λprior.

1 begin
2 initialize empty list L = [];

/* Find all existing object in view */
3 for i = 0, 1, 2, ..., len(M)− 1 do
4 λwhati , λwhati , λwhati = λi;
5 µwherei , σwherei = λwherei ;
6 if µwherei in the FOV of v and qλpresi

(zpres = 1) > 0.5 then
7 µwherei ← ProjectIntoGlobalCoordinate(µwherei , v);
8 L.append((λi, i));
9 end

10 end
/* Rank latents with the probability of existence and take

the top K latents */
11 L← TopK(L, qλpresi

(zpres = 1))

12 while len(I) < K do
13 L.append((λprior,−1))
14 end
15 end
16 return L containing K queried object latents.

14

Under review as a conference paper at ICLR 2023

B ELBO OBJECTIVE.

Object Centric NeRF Likelihood. In our formulation, each pixel in one image emits a single ray.
Thus, with known intrinsic parameters of the camera, ray directions can be computed from pixel
coordinates. Each ray is associated with two observables, i.e. the color and the depth of the hit point
of the ray. Following common practice, we assume the likelihood of color and depth are independent
given latents Zvt .

For a single-component NeRF, the color returned by a ray r(·) originated from x0 pointing towards
direction e, i.e, r(t) = x0 + et, in a neural radiance filed is defined by the rendering equation

C(r) =

∫ ∞
0

T (t)σ(r(t))c(r(t), e)dt, (6)

where σ(r(t)) and c(r(t), e) are NeRF density and color at point r(t) separately, T (t) =

exp
(
−
∫ t
0
σ (r (t′)) dt′

)
is the transmittance term (Mildenhall et al., 2021). Under mild assumptions,

the probability density that the observed colors originate at the depth t via the ray r(·) is given by
p(t, r) = σ(r(t))T (t) (Stelzner et al., 2021). An unbiased estimator is given by

log pθ(t, r|Zv) = log σθ(r(t)|Zv)− Et′∼q(·) [σθ (r (t′|Zv)) /q (t′)] , (7)

where q(·) is a proposal distribution with support [0, t], θ is the parameters of a NeRF decoder.

By replacing t in Eq. 7 with depth djv, we can compute the likelihood p(djv|·) of the depth djv
of pixel j. The color likelihood of pixel j is given by p(cjv|·) = N (cjv|ĉjv, σc), where ĉjv is the
predicted color and σc is a constant variance. Thus, the per-pixel log likelihood is decomposed as
log p(ojv|Zv) = log p(djv|Zv) + log p(cjv|Zv). For each pixel, we only need to evaluate the NeRF
at the depth djv, and a random point sampled from q(·). Points beyond a fixed clipping depth are
deemed unreliable and are discarded.

Under the object-centric learning setup, the object-compositional NeRF is a composition of K + 1

NeRFs. The NeRF density σ(r(t)) =
∑K
k=0 σk(r(t)) is the sum of the density of each component.

The color ĉ(r(t)) =
∑K
k=0

σk(r(t))
σ(r(t)) ĉk(r(t), e) is now a weighted sum of individual components.

Following common practice, we assume the likelihood of rays is independent given object latent.
Then the joint likelihood p(ovt |Zvt) in Eq. 5 is the product of the likelihood of all rays. In practice,
for each view/image, instead of using all rays/pixels, for efficiency reasons, we only sample a set of
rays/pixels to compute the likelihood. By plugging the likelihood function into the Eq. 5, we get the
ELBO that SOOC3D is trained to maximize.

The KL term Lklvt in Eq. 5 is crucial to the emerging of view-invariant object-centric representations.
For each refinement iteration l at time step t, we compute the KL term as

zpres,li,t

[
DKL(qλwhat,li,t

||qλwhat,0i,t
) +DKL(qλwhere,li,t

||qλwhere,0i,t
)
]

+DKL(qλpres,li,t
||qλpres,0i,t

). (8)

Recall that, at the beginning of the inference process the cognitive map is empty and, instead, global
priors will be retrieved from the cognitive map. The global prior of zwhat and zwhere takes the form
of zero-mean isotropic Gaussian. To encourage the rejection of empty component, the global prior of
zpres is a Bernoulli distribution with p(zpres = 1) ≈ 0. We further encourage the rejection of empty
components by weighing DKL(qλwhat,li,t

||qλwhat,0i,t
) and DKL(qλwhere,li,t

||qλwhere,0i,t
) with zpres. As a

consequence, rejected components will not induce KL penalty.

Crucially, the KL term encourages object latents to remain constant across views. One local optimum
for models maintaining a dynamic set of object representations is to discard all previously detected
objects and re-discover all objects in the current view (Crawford & Pineau, 2020). Instead of learning
view-invariant representations, the discover-reconstruct-discard mode achieves a high reconstruction
likelihood by only extracting view-dependent representations. The KL term in our objective discour-
ages such local optimum since re-discovering an object induces a high KL divergence between the
global prior and the posterior.

Another common concern is that when one object is temporally blocked by other objects, it is excluded
from the likelihood computation directly and can be discarded without changing the observation
likelihood. The KL term between zpres preserves the existence of such blocked objects.

15

Under review as a conference paper at ICLR 2023

The refinement network takes into account both object location zwhere and appearance information
zwhat. By minimizing the KL term between each update, we discourage any abrupt changes to our
latents. The KL term between zwhere enforces better handling of multiple objects with the same
appearance. Thus, exchanging the location of two objects will lead to a large KL loss. Note that in
practice two rigid bodies cannot occupy the same space. If two objects share the same space and
have the same appearance information, our model will learn to reject one of them by setting the
corresponding zpres to 0 since rejecting one will not decrease the likelihood.

C TRAINING

In this section, we describe our training pipeline. For each scene in the training set, SOOC3D first
takes a set of T views sequentially as input and detects and refines object representations. Then the
set of object representations refined through T views is used for query view reconstruction. The
likelihood of Q query views is computed before we get the ELBO as specified in Eq.5.

While the cognitive map is a key factor to scalability, it also makes end-to-end training unstable. As
introduced in the main paper, any object with p(zpres = 1) < 0.5 will be rejected during cognitive
map registration and objects that are outside the current view will not be retrieved. Objects can be
constantly dropped during the registration and query process at the beginning of the training stage
introducing a large variance.

To overcome this issue, we resort to curriculum learning and pre-train our model on small scenes that
can fit into camera FOV (detailed below). During registration, all K object latent distributions are
kept regardless of their zpres value. Similarly, the query function skips the in-view check and returns
all registered object latents. Thus, for each scene, we will have the same set of K object throughout.

We stop the pre-training at 20, 000 iterations when our model can stably predict object locations and
zpres value. Then we train our model on scenes with the full cognitive map functionality.

D DATASETS

Figure 10: Scene setup example. From left to right is the large, medium and small scene. Objects are
marked in black and cameras are marked with colored triangles. Cameras are uniformly randomly
sampled from camera rings (color circles).

To evaluate the scalability of our approach, we construct a large-scale dataset with Unity3D (Juliani
et al., 2020) termed Unity dataset. The dataset contains scenes of three different scales termed as
small, medium and large scenes used for evaluating the scalability of our approach. For small and
medium scenes we generate 40, 000 scenes for training and 1, 000 scenes for testing. For large scenes,
we only generate 1, 000 scenes for testing.

For each small scene, 2 ∼ 5 objects are randomly placed in a square of 5 unit width. 10 cameras of
resolution 128× 64 are randomly sampled on a ring surrounding the area. A medium scene is twice
the size of a small scene where 3 ∼ 10 objects are randomly placed in a 5 unit by 10 unit region. In
particular, we treat each medium scene as the overlapping of three square areas, each of which is of 5
unit width. For each area, we spawn 10 cameras in a ring layout. Note that the size of the medium

16

Under review as a conference paper at ICLR 2023

scene is now too large to fit into a camera FOV. Different cameras in a medium scene may capture a
different set of objects. In a large scene, 12 ∼ 24 objects randomly spawn in a 10 unit by 15 unit
area, which is 3 times larger than the medium scenes. In terms of camera setup, we decompose the
large area into 10 regions, each of which is a square area of 5 unit width. 10 cameras are set similarly
as above. Thus for a large scene, we have in total 100 views available. The camera ring layouts are
illustrated in Fig. 10.

During training, for each small scene, we randomly sample 3 input views and 2 query views. For
each medium scene, in each area, we randomly sample 2 input views and 1 query view. For testing,
for small and medium scenes, we keep the same number of input views and use the rest as query
views. For large scenes, we randomly sample 2 input views in each area. A large-scene inference
visualization is shown in Appendix H.

The Blender dataset is built in Blender with raytracing renderer. The object and camera arrangements
follow the small scene setup of the Unity dataset. Each scene in the Blender dataset contains 3− 7
objects of non-trivial structures. The training set contains 10K small scenes, each of which contains
10 views. The training procedure is identical to the one described above. Similarly, during training,
for each scene, we randomly sample 3 input views and 2 query views. The Blender dataset contains
10, 000 training scenes and 200 testing scenes.

Unlike the Unity dataset, for the Blender dataset, we render each view in 512 × 256 resolution.
During training, we downsample observations to 128 × 64. For per-object finetuning, we use the
original resolution.

E NETWORK STRUCTURE AND HYPERPARAMETERS

Auxiliary input: We group the auxiliary input into three different bundles.

bundle quantity note

data bundle

ot RGB and depth observation
depth mask mask indicate whether the depth is beyond clipping plane
e ray direction in object local coordinate system
xk object local coordinate of surface sample

latent bundle λi object latent distribution
dLλi grad. of λi w.r.t loss

inference bundle

log p(d) depth likelihood of the composed NeRF
σ̂ predicted surface sample density
σ̂k predicted surface sample density of the kth NeRF component
dLσ̂ grad. of σ̂ w.r.t loss
log p(c) color likelihood of the composed NeRF
log pk(c) color likelihood of the kth NeRF component
log p/k(c) leave-one-out color likelihood
ĉ predicted color
ĉk predicted color of kth NeRF component
dLĉk grad. of ĉk w.r.t loss

Hyperparamter:

quantity note value
lr learning rate 1e−4

σmax the maximum NeRF density 5
σc color prediction var. 0.2
L the number of AVI iteration 3
R the number of sampled ray 2048

observation resolution 64× 128
D zwhat dimension 64

17

Under review as a conference paper at ICLR 2023

Figure 11: NeRF decoder structure. We specify the output dim for each fully connected layer.
fc1-4 has no activation function. The rest fully connected layer uses leaky relu. x is the harmonic
representation of point coordinates. σ and c are the predicted raw density and color. e is the ray
direction.

Figure 12: Refinement network structure. For convolution and partial convolution layer we specify
(kernel size, output channel, padding, stride). For LSTM we specify the dimension of its hidden state.
It produces the additive delta of λi.

18

Under review as a conference paper at ICLR 2023

F RENDERING EQUATION FOR DEPTH, MASK AND UNCERTAINTY

To render per-component RGB, we apply the render equation Eq. 9 on individual NeRF components
to get the color. The transparency is rendered using equation Eq. 10. The returned transparency
always fails in the interval [0, 1].

Ck(r) =

∫ ∞
0

Tk(t)σk(r(t))ck(r(t), e)dt. (9)

Ak(r) =

∫ ∞
0

Tk(t)σk(r(t))dt. (10)

Finally, we lay Ck(r) on a checkerboard background with transparency Ak(r). The Eq.11 computes
the contribution made by each component to the rendering of the composed NeRF.

Kk(r) =

∫ ∞
0

T (t)σk(r(t))dt. (11)

The segmentation mask is obtained by arg maxk(Kk(r)). Eq. 12 gives the rendered depth of a view.

D(r) =

∫ ∞
0

T (t)σ(r(t))tdt. (12)

For the uncertainty map, we interpret the normalized raw density detailed in Sec.3.2 as the probability
that a point in space is occupied by matters. The view uncertainty is computed as by Eq. 13 whereH
is the entropy function.

H(r) =

∫ ∞
0

T (t)σ(r(t))H(σ(r(t)))dt. (13)

19

Under review as a conference paper at ICLR 2023

G ADDITIONAL BASELINE.

In this section, we discuss ObSuRFStelzner et al. (2021) as an additional baseline. ObSuRF is a 3D
scene object-centric learning model based on the slot attention Locatello et al. (2020) mechanism.
ObSuRF relies on a global coordinate system and by design only takes observations from one view
as input. Thus, ObSuRF is not directly comparable to our method.

Since slot attention is an iterative object-centric learning algorithm shown effective on 2D, 3D and
video object-centric learning tasks (Stelzner et al., 2021; Locatello et al., 2020; Kipf et al., 2021). We
attempted to replace the amortized variational inference process in our model with slot attention. The
slot attention model structures are identical to the one used in ObSuRF and we decompose each slot
into zwherei , zpresi , zwhati for each object. We further allow slots to be carried over to the next frames
(with projected zwhere) for multi-view online updating. The training likelihood function remains
unchanged and the KL term is replaced with L2 distance between latents.

After training the slot attention-based model in small scenes, we match the ground truth object
identities with the predicted object identities after each input view. We report that the slot attention
module only preserves 27% object identities on average per update, while our full model equipped
with amortized variational inference preserves identities all the time. Further investigation reveals
that during subsequent slot attention iteration, the identities, as well as representations of slots are
discarded and assigned.

The slot attention can be interpreted as a clustering algorithm operating on feature vectors extracted
from observations. We conjecture that the feature vectors are view-dependent and the clustering
mechanism fails to convert view-dependent features into view-independent object representations.
Thus, compared with a multi-view setup, slot attention is better suited for continuous frame processing
where the correlation between consecutive frames is large.

To compare with ObSuRF, we downgrade our model to the single view inference mode by setting the
number of input views and the number of query views to be one and train on the CLEVR3D and the
MultiShapeNet dataset Stelzner et al. (2021).

Table 2: Quantitative results on CLEVR3D and MultiShapeNet dataset. ObSuRF performance is
obtained from the original paper.

CLEVR-3D MultiShapeNet
MSE ×103 Fg-Depth-MSE Fg-ARI ARI MSE ×103 Fg-Depth-MSE Fg-ARI ARI

ObSuRF 0.78 0.10 95.7 94.6 1.91 3.44 81.4 64.1
Ours 0.84 0.12 96.2 92.2 2.04 3.81 83.1 61.4

Our model achieves performance on par with ObSuRF. Note that our model is not designed for the
single view scenario.

20

Under review as a conference paper at ICLR 2023

H ADDITIONAL RESULTS ON UNITY DATASET

Below we show per-object NeRF finetuning results on the Unity dataset. We show the ground truth
data (GT), SOOC3D inference results (SOOC3D) as well as the results of 5000 iteration per-object
NeRF finetuning (SOOC3D+). While SOOC3D can capture the structure of objects, the finetuning
process recovers more details like edges or shadings. Most importantly, the object identities are
preserved throughout the finetuning process.

Note that per-object NeRFs are also built on the object local coordinate system. Thus, one can finetune
an unboundedly large scene and register each per-object NeRF into the cognitive map to achieve
unsupervised unboundedly scalable high-quality object-compositional NeRF reconstruction.

GT SOOC3D+ SOOC3D GT SOOC3D+ SOOC3D

Figure 13: Qualitative comparison before and after per-object finetuning.

21

Under review as a conference paper at ICLR 2023

To demonstrate the scene scale scalability, below we show a long inference sequence (without
per-object finetuning) in a large scene in Fig. 14 and Fig. 15.

Cog. Map Ground Truth Reconstruction

Figure 14: Visualization of steps 1-10 in a 20-step inference trajectory.

22

Under review as a conference paper at ICLR 2023

Cog. Map Ground Truth Reconstruction

Figure 15: Visualization of steps 11-20 in a 20-step inference trajectory.

23

Under review as a conference paper at ICLR 2023

I ADDITIONAL RESULTS ON BLENDER DATASET

Fig. 16 shows the qualitative comparison between our methods and MulMON Li et al. (2020) baseline.
Both our model (SOOC3D) and MulMON are trained with low-resolution observation (128× 64).
As a NeRF-based method, our model can render images of arbitrary resolution, which allows us to
finetune the per-object NeRF with higher resolution observation (512× 256).

When facing non-trivial geometries of varying sizes, our model can capture object structures ac-
curately with correct pose prediction. Notably, after per-object NeRF finetuning, fine details are
recovered leading to more accurate RGB, depth as well as instance mask prediction. While thin
object parts like the legs of round tables are not reflected on the rendered instance masks (the main
source of mIoU error) due to NeRF sampling interval length, we’d like to point out that they are
correctly modeled by our SOOC3D+ as shown in their RGB reconstructions.

MulMON GT SOOC3D+ SOOC3D SOOC3D+ Components

Figure 16: Qualitative comparison between the inference results of baseline (MulMON), the inference
results of our model (SOOC3D) and our per-object finetuning results (SOOC3D+).

24

Under review as a conference paper at ICLR 2023

Below we show more SOOC3D+ results.

(a) RGB observation (b) depth observation (c) Instance mask

(d) SOOC3D+ RGB reconstruction (e) SOOC3D+ depth reconstruction (f) SOOC3D+ segmentation

Figure 17

(a) RGB observation (b) depth observation (c) Instance mask

(d) SOOC3D+ RGB reconstruction (e) SOOC3D+ depth reconstruction (f) SOOC3D+ segmentation

Figure 18

25

Under review as a conference paper at ICLR 2023

(a) RGB observation (b) depth observation (c) Instance mask

(d) SOOC3D+ RGB reconstruction (e) SOOC3D+ depth reconstruction (f) SOOC3D+ segmentation

Figure 19

26

	Introduction
	Related Work
	Method
	Generative Model formulation and the Optimization Objective
	Model Implementation

	Experiments
	Scalable Object Centric Learning
	Scene Editing
	Visually Challenging Scenes and Per-Object Finetuning

	Limitation
	Conclusion and Future Work
	Algorithms
	ELBO objective.
	Training
	Datasets
	Network Structure and hyperparameters
	Rendering Equation for Depth, Mask and Uncertainty
	Additional Baseline.
	Additional Results on Unity Dataset
	Additional Results on Blender Dataset

