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Abstract

Generative protein language models (PLMs) are powerful tools for designing pro-
teins purpose-built to solve problems in medicine, agriculture, and industrial pro-
cesses. Recent work has trained ever larger language models, but there has been
little systematic study of the optimal training distributions and the influence of
model scale on the sequences generated by PLMs. We introduce the ProGen3
family of sparse generative PLMs, and we develop compute-optimal scaling laws
to scale up to a 46B-parameter model pre-trained on 1.5T amino acid tokens. Pro-
Gen3’s pre-training data is sampled from an optimized data distribution over the
Profluent Protein Atlas v1, a carefully curated dataset of 3.4B full-length proteins.
We evaluate for the first time in the wet lab the influence of model scale on the
sequences generated by PLMs, and we find that larger models generate viable pro-
teins for a much wider diversity of protein families. Finally, we find both compu-
tationally and experimentally that larger models are more responsive to alignment
with laboratory data, resulting in improved protein fitness prediction and sequence
generation capabilities. These results indicate that larger PLMs like ProGen3-46B
trained on larger, well-curated datasets are powerful foundation models that push
the frontier of protein design.”

1 Introduction

Proteins are ubiquitous molecules that play a central role in most biological processes. They catalyze
reactions, contribute to immune function, regulate cellular pathways, and facilitate the transport of
other molecules. They enable solutions for multiple industries including therapeutics, diagnostics,
agriculture, energy, and manufacturing. Until recently, we have been limited to finding relevant
proteins in nature through serendipitous discovery. Techniques to engineer proteins for our desired
purposes largely rely on laborious laboratory techniques that randomly mutate these initial hits in
hopes of discovering a variant with enhanced function [B, B4]. Relying on these inherently random
processes presents a major challenge to the bespoke design of proteins for specific use cases.

The dramatic reduction of DNA sequencing costs has enabled exponential growth in our ability to
sample naturally occurring protein sequences that are the product of selective pressures over billions
of years. Generative protein language models (PLMs) have emerged as powerful tools to learn the
complex distribution of proteins found in nature, and their ability to design highly functional novel
proteins has been experimentally verified for a wide range of applications [&(, &5, 63, b8, [79, R0, O6].
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The trajectory of these models mirrors those found in natural language processing (NLP) research.
Earlier works in NLP demonstrated that larger models learn representations that can be fine-tuned to
perform downstream tasks more effectively [BU, [75, T00, T0OT], and elucidated the compute-optimal
ways to scale up the size of both models and datasets to reap these benefits [&3, 51]. Similarly, it has
been shown that PLM embeddings implicitly capture notions of protein fitness that can be elicited
in both supervised and unsupervised settings [I35, 63, bY, [/0, B0, T09], and recent work has derived
compute-optimal scaling laws for PLMs [[IY].

However, a number of important questions have remained relatively under-explored in the PLM lit-
erature. Despite the rapidly accelerating growth of protein sequence datasets, little work has been
done to determine the optimal data distributions for training ever larger PLMs [B3]. While evalua-
tions in NLP have shifted towards analyzing the sequences generated by LMs rather than properties
of their embeddings [0, 3, &1, it is unclear how scale influences the proteins generated by PLMs,
both computationally and experimentally. Finally, post-training strategies to align models with user-
defined preferences have gained traction in both domains [[74, 8BS, [06, TT0], but the influence of an
aligned PLM’s scale on its performance has received only limited attention [40].

In this work, we introduce ProGen3, a family of autoregressive generative PLMs that leverages a
sparse mixture of experts architecture [32, 56, B3] to improve efficiency while maintaining perfor-
mance. To train ProGen3, we assemble the Profluent Protein Atlas vl (PPA-1), a highly curated
dataset of 3.4B full-length proteins and 1.1T amino acid tokens, and we optimize the data distribu-
tion for pre-training. We determine compute-optimal scaling laws for sparse PLMs and use them to
scale ProGen3 up to a 46B parameter model trained on 1.5T tokens from PPA-1. Next, we evaluate
for the first time in the wet lab the influence of model scale on the sequences generated by PLMs. We
find that larger models generate viable proteins for much wider swaths of sequence space. Finally,
we demonstrate both computationally and experimentally that models at all scales can be aligned
with laboratory data for improved protein fitness prediction and sequence generation capabilities,
and that the larger models receive the greatest lift from alignment. Taken together, these results
present a clear case that larger protein language models trained on larger, well-curated datasets are
more useful tools for a broad range of protein design challenges.

1.1 Related Work

Mixture of Experts Scaling up model size is one of the most important ways to improve the
performance of deep learning models [23, 51]. However, larger models are also more compute-
intensive. Mixture of Experts (MoE) layers leverage sparsity to increase model efficiency [BS].
These layers consist of multiple expert sub-networks, and they route each individual token to a
different subset of experts. Transformer models trained in the NLP [29, 32, B9, 56], computer
vision [[Z7], and protein [90] domains have replaced the feedforward network with a MoE to unlock
significant speedups while maintaining performance comparable to a dense model.

Protein Language Models Protein language models (PLMs) encompass a wide range of ap-
proaches including causal decoders that generate novel proteins from scratch [63, b, KU] or infill
spans in the middle of a protein [, BA], bidirectional encoders useful for protein understanding
[20, B9, [78, B0], and inverse folding models that generate proteins conditioned on a user-specified
structure [, &5, [79], among others. These models are typically pre-trained on large databases of
naturally occurring proteins. Compute-optimal scaling laws have been derived for dense PLMs [1TY],
but it is unclear whether they also apply to sparse PLMs.

Limited work has been done to determine the best data distributions for training PLMs, and prior
works have largely relied on a range of ad-hoc distributions. Lin et al. [89] and Hayes et al. [40] de-
replicated their data at 90% ID and respectively sampled each 50% and 70% ID cluster with equal
probability. Nijkamp et al. [68] and Cheng et al. [T9] de-replicated their genomic data at 90% ID and
their metagenomic data at 30% ID. Chen et al. [T5] and Sun et al. [90] de-replicated their genomic
data at 90% ID and included at most 10 sequences per 30% ID cluster for their metagenomic data.
Meanwhile, Fournier et al. [33] found the best results without any resampling.

Model Alignment As language models grow, they acquire increasingly useful emergent proper-
ties over the course of unsupervised training [8, 21, 9, 59, 68, O5]. However, out of the box, they
are often ill-suited to tasks that their users care about, from generating performant code to design-
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Figure 1: Determining the optimal data distribution and scaling laws to train ProGen3, a sparse
generative PLM. (a) ProGen3 can generate proteins from the N- to C-terminal or from the C- to
N-terminal. It can also generate spans in the middle of a protein. (b) ProGen3 is an autoregressive
transformer with a sparse mixture of experts architecture. (c) Diversity of PPA-1 data distributions
as measured by the CDF of 50% ID cluster sizes. (d) Validation losses of 1.4B parameter models
trained on 80B tokens from different data distributions. (e) Validation losses of models with 112M
to 46B parameters trained on 10B to 1.5T tokens from the Inverse Log distribution. “Opt.” indicates
the predicted losses for the compute-optimal configurations given by Equation .

ing more stable proteins. Alignment algorithms leverage supervised data to direct language model
generations to match a user’s preferences. These include fine-tuning on a curated set of positive
examples [bY, 82, T07], reinforcement learning to maximize the user-specified rewards achieved by
a language model’s conditional generations [22, TT0], and direct alignment algorithms that reformu-
late the reinforcement learning task as an easier supervised learning task [[Z1, [74]. For PLMs, direct
alignment algorithms have improved models for inverse folding [40, T06], fitness prediction [T09],
function-guided generation [20, B8], and binder design [&R, B7].

2 ProGen3

2.1 Architecture

ProGen3 is a family of autoregressive (AR) transformer based PLMs with a sparse mixture of experts
(MoE) architecture that only activates 27% of its parameters per forward pass [32, 56, RS, 09] (Fig-
ure [Mb). Models span 8 sizes ranging from 112M to 46B parameters, and all models have a context
length of 8192 tokens. See Appendix Bl for more details. Like prior work in NLP [29, 9], we find
that for a fixed compute budget, sparse models meaningfully outperform dense ones (Appendix B).

A standard AR PLM enables causal language modeling (CLM), where users can generate proteins
one amino acid at a time either from the N- to C-terminal, or from the C- to N-terminal [b3, BR].
In addition to CLM, ProGen3 also performs generalized language modeling (GLM) to infill spans
in the middle of a protein [f, 13, BS, 79, 83, B2]. It does so by replacing target spans with special
sentinel tokens and placing those spans (preceded by their corresponding sentinel tokens) at the end
of the sequence (Figure Ma). This capability allows users to redesign domains in the middle of a
protein while attending to all surrounding residues. See Appendix B3 for more details.



2.2 Training Data

To train ProGen3, we curate the Profluent Protein Atlas vl (PPA-1), a dataset of 3.4B proteins and
1.1T amino acid tokens. PPA-1 draws from a wide range of genomic and metagenomic sources,
and we apply multiple layers of quality filters to ensure the dataset is appropriate for pre-training a
generative PLM. In particular, we exclude all protein fragments so we can train only on full protein
sequences. PPA-1 is of similar scale and diversity to the OMG dataset [24]. It has a similar number
of sequences as ESM3’s dataset, but ESM3’s dataset does include protein fragments [40]. It is also
considerably larger than UniRef [U1] and BFD [50, R]. See Appendix [Al for more details.

While protein datasets are rapidly expanding, they have biases that influence the quality of PLMs
trained on them [, B1, T03]. Therefore, we aim to more rigorously study the impact of the training
distribution, an aspect which has been relatively underexplored in prior PLM literature (Section ).
We consider 4 different schemes of balancing data diversity over 50% ID clusters, which we refer
to (in descending order of diversity) as Uniform, Square Root, Inverse Log, and Unmodified (Fig-
ure [Mc). In each of these distributions, we respectively sample a 50% ID cluster of size n with
probability proportional to 1 (equal probability), /n, n/(1+1log n), and n (the natural sequence dis-
tribution). These distributions are listed in descending order of diversity: 80% of sequences sampled
from these distributions reside in clusters of size at most 8, 94, 591, and 1471, respectively. After
sampling a 50% ID cluster, we sample a 90% ID sub-cluster from the same distribution, before
sampling a sequence from that 90% ID sub-cluster uniformly at random.

To measure model generalization, we construct validation sets distinct from our training data at 30%,
50%, and 90% ID. Each x% ID validation set consists of 2.5M sequences distributed uniformly
between X% ID clusters of sizes 1-10, 11-100, and 101-1000. The average loss thus avoids over-
weighting highly represented parts of protein space and more accurately measures out-of-distribution
generalization. We also average the losses on these sets to compute an aggregate validation loss.

Figure Md shows the validation losses achieved by 1.4B parameter models trained for 80B tokens
sampled from each distribution. For proteins close to our training data — distinct at 90% ID — training
on the Unmodified distribution yields the best performance. The Inverse Log distribution is a close
second, while the other two are considerably worse. However, training on the Inverse Log distribu-
tion yields the lowest loss for out-of-distribution sequences that are distinct from the training data at
50% and even 30% ID. We therefore train all subsequent models on the Inverse Log distribution.

Interestingly, training on the Uniform distribution, which is similar in spirit to de-replicating the
training data at 50% ID, consistently obtains the worst performance on all validation sets. This
suggests that PLMs can learn important signals from the frequencies with which related proteins
occur in the data. However, some rebalancing can improve out-of-distribution generalization.

2.3 Scaling Up to a 46B Parameter Model

Given a fixed computational budget, scaling laws describe the optimal way to allocate pre-training
resources between model size and dataset size [IY, &3, 511]. They do so by predicting a model’s loss L
as a function of the number of parameters N and the number of tokens in the training dataset D. We

fit a variant of the equation proposed by Kaplan et al. [51], L(N, D) = (ANf‘l/ﬁ + BD’l)ﬁ +C,
to the validation losses achieved by models spanning a wide range of parameter counts and dataset
sizes. This equation can then be manipulated to yield a power law Ny (D) o DPA/® which tells us
the compute-optimal model size to pre-train on a dataset with D tokens.

We train models with 112M to 10B parameters for 10k to 500k steps (10B to 1T tokens, depending
on batch size; see Appendix Bl). Because we use a cosine learning rate schedule, we train a separate
model for each dataset size [23]. We plot their validation losses in Figure [le and find

Nopt (D) = (2.462 x 10~7) D47, (1)

This result for sparse AR PLMs agrees closely with Cheng et al. [T9], who report that Ny (D) o
D*370 for dense AR PLMs. Equation [ predicts that the optimal allocation for 1.1 x 1023 FLOPs
is to train a 90B parameter model for 753B tokens. This model is predicted to achieve a validation
loss of 1.376. We make the practical decision to instead train a 46B parameter model for 1.5T
tokens because it is predicted to achieve a slightly higher validation loss of 1.397 but can be used
for inference on 4xA100_40GB GPUs.
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Figure 2: Larger models generate viable proteins for a much more diverse set of families than smaller
models. (a) Larger models generate more valid sequences that pass a series of quality filters. (b)
Valid generations from larger models cover a wider array of naturally occurring 30% ID clusters. (c)
The clusters covered by larger models are largely a superset of those covered by smaller models. (d)
Larger models generate sequences from clusters whose natural members are assigned high perplexity
by smaller models, but not vice versa. (e) Larger models are better able to generate sequences
from smaller clusters. (f) Visualization of the clusters selected for experimental characterization,
accompanied by ESMFold predicted structures for selected generations. (g) In vitro expression
rates of model generations for different groups of clusters. Black circles indicate natural protein
expression rates for the same clusters.

Interestingly, this 46B parameter model achieves a validation loss of 1.345, which lies below the
predicted compute-optimal frontier (Figure e, bottom right). We had to increase the warmup period
to stabilize the training for this model, which could explain the discrepancy, since a longer warmup
improved the final training and validation losses of a 1.4B parameter model trained for 80B tokens
(Appendix B4).

3 Computational and Experimental Analysis of Model Generations

We have shown that scaling up the computational resources to pre-train PLMs predictably improves
their validation losses for proteins both near and distant to their training data. In other words, larger
models better represent the naturally occurring distribution of proteins. However, the implications
of scaling on the generative capabilities of PLMs have largely gone unexplored by prior works. We
focus on three models separated by three orders of magnitude in pre-training compute: ProGen3-
339M (trained on 200B tokens with 1.2 x 1020 FLOPs), ProGen3-3B (trained on 500B tokens with
2.6 x 102! FLOPs), and ProGen3-46B (trained on 1.5T tokens with 1.1 x 10%*> FLOPs). We also
evaluate ProGen2-XL [bX], a previous-generation dense autoregressive model with 6.4B parameters,
and ProGen3-3B-200B, a variant of ProGen3-3B trained on only 200B tokens.

3.1 Larger PLMs generate more diverse proteins that express in vitro

From each ProGen3 model, we respectively generate 4M, 3M, and 2M sequences unconditionally
using top-p sampling [44] with p = 0.95 and temperatures 7' € [0.5,1]. We also sample 4M
generations from ProGen2-XL using the same hyperparameters.

We then apply a series of quality filters to extract “protein-like” sequences. Because language mod-
els often generate repetitive sequences [24, T3], we first remove all sequences consisting of >25%
low-complexity regions [Bf]; 95.5% of PPA-1 also passes this filter. We also require that genera-
tions include the appropriate termination token, and that they have >80% alignment coverage to any
natural sequence in PPA-1 [, 80]. Larger ProGen3 models generate more valid sequences that pass
each of these quality filters, and scaling up from 339M to 3B especially reduces the number of repet-



itive generations (Figure Dla). Interestingly, only 4% of the sequences generated by ProGen2-XL are
valid, compared with 30%, 40%, and 49% from ProGen3-339M, 3B, and 46B, respectively.

Next, we align each valid generation to the 30% ID cluster representatives in PPA-1 and say that
it covers a cluster if it is >30% ID to the cluster representative with >90% alignment coverage.
Note that a single generation can cover multiple clusters because a sequence can be >30% ID to
multiple cluster representatives that are <30% ID to each other. Larger models generate sequences
from a more diverse set of clusters than smaller models (Figure Bb). Moreover, the clusters covered
by smaller models are almost entirely covered by larger models, while larger models generate se-
quences from many clusters that are not covered by smaller models (Figure lc). Amongst its valid
generations, ProGen2-XL covers 18% fewer clusters than ProGen3-3B despite being a larger model.

We also find that for ProGen3, model size has more influence than dataset size, further corroborating
our scaling laws (Equation M). ProGen3-3B-200B generates 38% valid sequences, compared to 30%
for ProGen3-339M (200B tokens) and 40% for ProGen3-3B (500B tokens). Meanwhile, ProGen3-
3B covers 81% more clusters than ProGen3-339M, but only 14% more than ProGen3-3B-200B.

To determine whether sampling more sequences would allow smaller ProGen3 models to generate
from the clusters covered by larger models, we compute the average perplexities of the naturally
occurring proteins in those clusters. If a given model assigns high perplexity to a cluster’s naturals,
it is unlikely to generate a sequence from that cluster. Figure Bd shows that larger models routinely
generate from clusters that smaller models assign high perplexity, but not vice versa. This implies
that larger models can cover all the clusters that smaller models generate from, but that some clusters
covered by larger models are out-of-distribution for smaller models. This trend is partially explained
by the fact that as models scale up, they become better at covering smaller clusters (Figure De).

We now seek to characterize the viability of these generated proteins in the lab. It is infeasible to
directly measure protein function for a wide range of families with potentially unknown functions.
Therefore, we instead perform the split-GFP E. coli protein expression assay [T, I2] (Appendix D)
to measure soluble protein abundance, which depends on factors including mRNA abundance and
stability, translational yield, thermodynamic folding equilibrium, kinetic stability, susceptibility to
proteases, aggregation propensity, and toxicity [8, B0]. This assay correlates well with protein ex-
pression assayed by direct methods such as SDS-PAGE and Western blotting, is amenable to high
throughput assay [61], and has been used to benchmark generative protein models [27]. All of these
qualities are important components of a protein’s fitness.

Given that increased diversity is one of the clearest impacts of scaling up PLMs, we select for exper-
imental characterization 42 clusters that all 3 models generated from, 62 clusters that ProGen3-3B
and ProGen3-46B generated from, and 45 clusters that only ProGen3-46B generated from (Fig-
ure [f). From each cluster, we select one sequence per model that is 40-60% ID to a natural sequence
in PPA-1, and one sequence that is 60-80% ID. For each (cluster, %ID bucket) pair, the selected se-
quences have the lowest perplexity according to the model that generated them. We also include
as controls two random natural proteins for each cluster, and we ensure that the sequences in the
selected clusters span a wide range of lengths (75-300aa) and structural diversity.

Figure Dg reports the cluster-averaged percentage of sequences that showed soluble expression in
vitro. All models attain similar rates of expression, but larger models do so for a wider range of
clusters. As one might expect, generated proteins that are 40-60% ID to a natural tend to have
lower rates of expression than those that are 60-80% ID. Interestingly, for all models, the generated
proteins expressed at rates similar to random naturals from the clusters they reside in.

3.2 PLMs generate viable proteins outside natural sequence space

Having demonstrated that proteins generated by PLMs residing in sequence clusters alongside nat-
urals are broadly viable, we next turn to sequences without a natural reference point, i.e. they are
<30% identity to any protein in PPA-1 (or could not be aligned). From the same set of uncondi-
tional generations, we select 10 each that have mostly-alpha, mostly-beta, and mixed alpha/beta
secondary structure compositions (as predicted by ESMFold [89]) from ProGen3-339M, ProGen3-
3B, and ProGen3-46B, for a total of 90 sequences. We consider the rate of expression using the
split-GFP assay (Figure Ba), as well as the expression levels relative to our split-GFP positive con-
trol (Figure Bb). We find that all models are comparable in their ability to generate sequences that
express in vitro, but generations from larger models generally have higher expression.
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Figure 3: Protein language model generate novel proteins and infill effectively. (a) Expression rates
(left) and levels relative to positive control (right) for generated proteins with less than 30% identity
to any natural sequence. (b) Expression levels of infilled sequences relative to respective scaffold
proteins for long- and short-span infilling tasks. (c) Comparison of relative expression levels for
infills generated for the same spans by models with 3B and 46B parameters.

3.3 Larger PLMs are better infillers

ProGen3’s infilling capabilities enable redesigning key segments in the middle of a proteins se-
quence. To test these capabilities, we select nine therapeutically or industrially relevant proteins
100-400aa in length and with some precedent for compatibility with recombinant E. coli expression.
For each protein, we use ProGen3-3B and ProGen3-46B to infill sequences for two randomly se-
lected short spans (20% of the protein’s length) and two randomly selected long spans (50% of the
protein’s length). We also randomly select nine additional cytosolic proteins between 100aa and
300aa from the E. coli proteome and use the two models to infill sequences for one short span and
one long span.

For each span, we select from each model the two infills with the lowest perplexity according to
the model that generated them. We experimentally determine the expression levels of two selected
sequences from each model, as well as the expression of the corresponding natural protein, using
our split-GFP assay.

11 of the 18 natural proteins come from the E. coli proteome and may therefore be expected to
express well in our split-GFP assay. While infilled sequences have reduced expression on average
compared to their corresponding natural protein (Figure Bb), there are nonetheless examples of in-
filled sequences with improved expression over their natural counterpart. Overall, ProGen3-46B
slightly outperforms ProGen3-3B, both by the average expression across all infills (Figure Bb) and
by the relative expression for a given infilled span (Figure Bc). This suggests that larger models may
be more adept at understanding the context and constraints present in a given sequence for infilling.

4 Aligning Protein Language Models to Laboratory Data

Zero-shot fitness prediction is often used to evaluate PLMs pre-trained on evolutionary data. Per-
formance is typically measured by the Spearman correlation p between model likelihoods and ex-
perimentally determined fitness values for the proteins in a deep mutational scan (DMS) dataset
[82, bS, BY]. However, due to correlations present in evolutionary dynamics, a PLM’s task of faith-
fully capturing the natural protein distribution can be at odds with zero-shot fitness prediction [T03].

Indeed, despite the fact that scaling up model size decreases the validation loss of proteins highly
distant from their training data and allows them to generate a much greater diversity of expressing
proteins, we find that models larger than 3B parameters often perform worse on the ProteinGym
benchmark [69] (Figure Ba). This finding strengthens with more extensive experiments the hypothe-
ses of Weinstein et al. [T(3] and Gordon et al. [BX], that beyond a certain threshold, better estimators
of the natural protein distribution can be worse fitness predictors.

Instead, we find that a key advantage of larger models lies in their latent abilities which can be
elicited through supervised training. To this end, we use iterative reasoning preference optimization
(IRPO, [[711]) to align ProGen3 likelihoods with experimentally measured protein properties includ-
ing activity, binding, organismal fitness, and stability. See Appendix C1l for more details.
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Figure 4: Aligning a model with laboratory data improves its utility for practical design tasks, and
larger models are more amenable to alignment. Solid lines indicate ProGen3, while dashed lines
indicate ProGen2. (a) Increasing model scale beyond a certain point degrades zero-shot fitness
prediction. (b) Aligning models on a local mutational landscape improves their fitness prediction
capabilities for much more distant variants. ProGen3 outperforms ProGen2. (c) Aligning models on
protein stability datasets allows them to perform out-of-distribution stability prediction. ProGen3
outperforms ProGen2. (d) Stability prediction performance on single-substitution variants. (e) Sta-
bility prediction performance on multi-substitution variants. (f) Average change in Rosetta energy
(REU) between natural proteins and sequences generated using those proteins as prompts. Align-
ment and model scale both improve the in silico stability of generated sequences. (g) Aligning
ProGen3-46B on stability data improves the in vitro expression of its generations in many cases.

4.1 Supervised Fitness Prediction

First, we demonstrate how alignment can accelerate a directed evolution campaign by training Pro-
Gen3 models on a local mutational landscape and performing fitness prediction on more distant
variants. We identify all assays in ProteinGym [6Y] with at least 3 mutations, and we train on all
variants at most k mutations from the wild type, where k is the smallest number required for the
train split to exceed 500 sequences. To ensure that the train and test splits contain proteins of similar
fitness, we require that the total variation distance between the train and test distributions of fitness
scores be less than 1. These filters yield 8 assays that measure diverse functional attributes for a
wide range of proteins (Supp. Table B).

With as few as 500 experimental measurements of single-substitution protein variants, aligned mod-
els learn generalizable concepts of fitness that allow them to accurately rank proteins that are tens
of mutations away from the wild type. The overall fitness prediction performance of aligned models
increases with their size (Figure Bb, Supp. Figure B). An aligned ProGen3-46B (p = 0.673) outper-
forms KERMUT [BY9] (p = 0.628) and obtains similar performance to ConFit [T09] (p = 0.679).
Both baselines are state-of-the-art methods that leverage inductive biases specifically designed to
predict the effects of substitutions. In contrast, ProGen3 can also generate novel proteins, and our
IRPO formulation can accommodate insertions and deletions as well as substitutions.

Next, we align ProGen3 models with folding free energy measurements (AG) from the Megascale
protein stability dataset [97], which consists of almost 800,000 single- and double-mutation variants
of 479 protein domains. We evaluate how well the models learn a universal concept of stability
that generalizes to proteins highly distinct from the training data. Like Widatalla et al. [T06], we
use FoldSeek easy-cluster [98] with 50% alignment coverage to structurally cluster the domains.
We hold out 5% of clusters for validation and 5% for testing. Additionally, we only train on single-
substitution variants.



As before, increasing model size uniformly improves the stability prediction performance of an
aligned model (Figure Bc-e). Using a similar train/val/test split, ProteinDPO [[[06], a similar method
that additionally leverages structural information, obtains comparable overall performance (p =
0.72) to the aligned ProGen3-46B (p = 0.737, Figure HBc). However, despite only being trained
on single-substitution variants, our sequence-only method is a much better stability predictor for
multi-substitution variants, achieving p = 0.820 compared to ProteinDPO’s p = 0.468 (Figure Be).

Finally, across all fitness prediction tasks, we find that for a fixed parameter count, applying IRPO to
ProGen3 outperforms applying IRPO to ProGen?2 (Figure Bb-e), but ProGen3 is much more efficient
due to its sparse MoE implementation. This further highlights the importance of the improved
architecture and pre-training data distribution that differentiate ProGen3 from ProGen2.

4.2 Sequence Generation

Encouraged by these results, we now evaluate the generative capabilities of stability-aligned models.
From the set tested in Section B, we select as prompts 32 structurally diverse natural proteins that
are 98-282 amino acids long (considerably longer than the domains in the Megascale dataset, which
are 40-72 amino acids long). We generate 50,000 sequences per model per prompt subject to the
quality filters described in Figure Da, either the C-terminal 75% conditioned on the N-terminal 25%,
or the N-terminal 75% conditioned on the C-terminal 25%. For each (model, prompt) combination,
we select the 100 sequences passing these quality filters that have the lowest perplexity according to
the model that generated them.

As an initial evaluation, we perform an in silico characterization of protein stability. For each batch
of generated sequences and the corresponding natural sequence prompt, we predict the structure with
ESMFold [89] and perform four cycles of minimization (MinMover) and relaxation (FastRelax)
across five independent trajectories in PyRosetta [[4]. To evaluate the effects of model scale and
alignment on the stability of generated proteins, we calculate the difference in the minimum Rosetta
energy achieved for each sequence relative to the corresponding natural (lower is more stable). We
find that larger models generally produce more stable proteins and that alignment further stabilizes
proteins across model scales (Figure Bf).

Finally, prior work has found that the split-GFP assay correlates positively with protein stability
[8, B]. To determine whether alignment on protein stability data actually improves the stability of
generated proteins, we select for each prompt the two lowest-perplexity sequences from both pre-
trained and stability-aligned ProGen3-46B models, and we characterize them with the split-GFP
assay. In Figure Big, we plot for each prompt the average expression of each model’s generations,
normalized by the expression of the wild type protein used to construct each prompt. Using a paired-
sample Welch’s ¢-test [[04] with p < 0.01, we find that alignment improves in vitro expression for
8/32 prompts, degrades it for 3/32 prompts, and has no significant effect for 21/32 prompts.

We thus verify both computationally and experimentally that alignment not only improves a ProGen3
model’s stability prediction capabilities, but also improves the stability of the sequences it generates.
Moreover, alignment imbues these models with a concept of protein stability that generalizes to
proteins that are structurally dissimilar to and considerably longer than any of the sequences found
in the alignment dataset. Since alignment also improves out-of-distribution fitness prediction more
broadly, we expect that it can be applied to improve models’ abilities to generate sequences that
optimize a diverse array of functional attributes, and that larger models will see greater gains.

5 Discussion

In this work, we introduce ProGen3, a family of sparse, optimally-scaled generative protein language
models (PLMs) trained on one of the largest high-quality protein datasets constructed to date. We
systematically demonstrate the importance of curating appropriate data distributions for pre-training
PLMs, and we use our findings to train a 46B parameter instantiation of ProGen3 on 1.5T tokens.
To our knowledge, ProGen3-46B is the largest sparse PLM yet, and it required 5-10x less compute
to pre-train than dense frontier models of a comparable scale [15, &0].

We perform wet lab studies on the relationship between model scale and the fitness of proteins gen-
erated by PLMs, and we find that larger models generate viable proteins for a much wider diversity
of protein families. Thus, an immediate consequence of model scaling is the ability to better rep-



resent rare protein families. Larger models’ more general representations also improve their ability
to redesign a protein of interest for improved expression, even if that protein is well-represented in
the training data. Finally, we show both computationally and experimentally that larger models reap
the greatest benefits to their protein fitness prediction and sequence generation capabilities when
we align them with laboratory data. In particular, an aligned ProGen3-46B consistently matches or
beats state-of-the-art supervised fitness prediction methods while being a far more flexible model.

We have thus demonstrated that larger generative PLMs are more useful tools for a wide range of
real-world protein design tasks. Continued model scaling can leverage the exponentially growing
amounts of protein sequence data while employing more sophisticated implementations of sparsity
to remain highly efficient [29]. However, our results show that ProGen3-46B is already well poised
to advance the vision of designing bespoke proteins for use cases that include drug discovery, en-
zyme engineering, and industrial processes.

Safety and Ethics

Computational protein design carries the dual potential to accelerate the development of novel ther-
apeutics and other society-improving molecules, while providing parallel capabilities for nefarious
uses, such as engineering of bioweapons. When bolstered by current and future iterations of gener-
ative Al, these capabilities are heightened and expected to grow further. The global protein design
community has begun to establish appropriate regulations and guidelines towards the continued
beneficial development and application of these technologies. We support having a set of commu-
nity values, guiding principles, and commitments for the responsible development of Al for protein
design (https://responsiblebiodesign.ai). Gene synthesis represents a critical step in the actualiza-
tion of designed protein sequences. The International Gene Synthesis Consortium (IGSC) unites
major gene synthesis providers under a commitment to screen all incoming orders against known
pathogens and potentially dangerous sequences. As a concrete step towards safe application of pro-
tein design technology, all gene synthesis work in support of the present study was performed with
IGSC members. For all protein design projects, we urge researchers to maintain ethical oversight
throughout project initiation, experimental characterization, and subsequent deployment phases to
ensure safety and avoid unintended harmful outcomes. For the current models described in this
paper for release, we find the benefit of model accessibility to greatly outweigh any theoretical risks.
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A Profluent Protein Atlas

To train ProGen3, we curated the Profluent Protein Atlas vl (PPA-1). Table Il summarizes the com-
position of the dataset. We collected genomic and metagenomic datasets from IMG/M [I6], ENA
[65], and NCBI GenBank [R1], and we performed protein coding prediction using prodigal-gv
[I3, 26]. We discarded contigs shorter than 1,000 bp as well as contigs with coding density <65%
to remove mispredicted proteins from eukaryotic sequences [[/3]. These were combined with pro-
teins from UniRef [U1], NCBI NR [KT], and five additional metagenome and eukaryotic-focused
databases, resulting in a total of 12.2B proteins. All proteins were subject to additional filters to
remove proteins with >8000 amino acids, protein fragments, and proteins with invalid amino acids,
k-mer repeats [R{], or >50% low complexity regions [Bf]. This resulted in a final filtered set of 3.4B
proteins.

On this filtered set, we performed hierarchical clustering at 90%, 50%, and 30% amino acid identity
using DIAMOND [9]. At each clustering step, we used the representative sequences from the previ-
ous round (e.g., 50% identity clustering was performed on the 90% identity cluster representatives).
Clustering at each level was conducted iteratively across four sensitivity settings, where the repre-
sentatives from one setting were clustered further at the next. The number of sensitivity levels varied
by identity threshold: at 90% identity, we applied only --1inclust, while at 50% and 30% identity,
we used ——linclust, -—fast, -—default, and --more-sensitive. This pipeline yielded 1.2B
90% ID clusters, 183M 50% ID clusters, and 113M 30% ID clusters.

We compare PPA-1 to other protein datasets in Table D. After filtering and clustering, PPA-1 is of
similar scale and diversity to the OMG dataset [24]. It is of similar scale to the dataset used to train
ESM3 [40], but it does not include any protein fragments while ESM3’s dataset does. It is also
considerably larger than resources like UniRef [91] and BFD [0, B7].

Data Source Type Proteins (Total) | Proteins (Filtered) | Percentage
IMG/M [I6] | Metagenomic | 5,313,407,975 1,402,061,253 41.28%
ENA [59] | Metagenomic | 3,324,676,018 946,087,610 27.85%
NCBI-nr [81] Genomic 542,683,057 471,482,093 13.88%
GenBank [81] Genomic 455,377,658 362,034,076 10.66%
UniRef90 [G1] Genomic 170,669,877 144,914,015 4.27%
SRC [R7] | Metagenomic | 2,020,821,851 60,061,204 1.77%
MMETSP [67] | Metagenomic 28,029,947 3,837,925 0.11%
SoilEuk [[] | Metagenomic 5,366,252 3,450,399 0.10%
MERC [B7] | Metagenomic 291,261,719 1,994,696 0.06%
MetaEuk [57] | Metagenomic 6,310,729 258,456 0.01%
Total — 12,158,605,083 3,396,181,727 100%
Table 1: Composition of PPA-1.
Dataset | Fragments Removed | 30% ID clusters | 50% ID Clusters | Proteins
UniRef [91] X — 6OM 454M
BFD [0, K7] X 66M — 2204M
ESM3 [40] X — — 3143M
OMG [4] v — 207M 3300M
PPA-1 (ours) v 113M 183M 3396M

Table 2: Comparison of PPA-1 to other large protein datasets.

B Pre-Training

B.1 Implementation and Hyperparameters

All ProGen3 models are transformer based decoder-only models[99] with a context length of 8192
tokens and Transformer++ optimizations [95]: feedforward networks with SwiGLU activations
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[2R, 84]], rotary positional embeddings (RoPE [RY]), grouped query attention [I], and pre-layer nor-
malization [[07] using RMSNorm [T0X]. For RoPE, we use # = 10°. Unless otherwise specified,
we replace all feed-forward layers with a Mixture of Experts (MoE) that activates 2 experts (out of
8 total) for each token [B2, BS]:

8
MoE(z) = » _ Softmax(Top2(W,z)); - FFN;(z), 2)
i=1
where z € R% is a single token embedding, W, € R8%4 ig a linear routing layer, and FFN; : R? —

R? is an expert sub-network. We regularize our language modeling loss with the load balancing loss
used by SwitchTransformer [32] multiplied by a weight A = 0.05.

All models are trained using the AdamW optimizer [53, 62] with 5; = 0.9, B2 = 0.95, and BF16
mixed precision [B6]. After an initial warmup period, we decay the learning rate to 10% of its peak
value following a cosine schedule. We leverage fully sharded data parallel training [76] and gradient
checkpointing [I8] for memory-efficient distributed training.

We implement our models using PyTorch [[Z]. To improve efficiency, we use FlashAttention?2
[26] and Megablocks [B7] for our attention and MoE layers, respectively. Finally, we orchestrate
training and data loading with MosaicML’s composer [U3] and streaming [94] libraries, respec-
tively. We trained all models on H100s hosted by MosaicML/Databricks. Pre-training ProGen3-46B
took approximately 17 days on a cluster of 256xH100.

Table @ describes our model configurations and pre-training hyperparameters in more detail.

Params (Active) | Layers | dpoder | Attn Heads | dppn LR WD | BSZ | WU
112M (32M) 10 384 6 1152 S5e-4 | 5e-6 | IM 2000
219M (63M) 11 512 8 1536 S5e-4 | 5e-6 | 1M | 2000
339M (98M) 17 512 8 1536 5e-4 | 5e-6 | 1M | 2000
762M (221M) 17 768 12 2304 S5e-4 | 5e-6 | 1M | 2000

1.4B (393M) 17 1024 16 3072 5e-4 | 5e-6 | IM | 2000
3.0B (866M) 24 1280 16 3840 S5e-4 | 5e-6 | 1M | 2000
10B (2.7B) 24 2048 16 (8§ KV) 8192 S5e-4 | 5e-6 | 2M | 2000
46B (12.6B) 32 4096 32 (8KV) | 14336 | 3.2e-4 | 4e-6 | 3M | 10000

Table 3: Model configurations and pre-training hyperparameters. BSZ is the number of tokens per
batch. WU is the number of warmup steps and is kept constant regardless of total training duration.

B.2 Mixture of Experts Performance

To validate the performance of sparse architectures, we train three models for 80B tokens: a dense
1.4B parameter model, a sparse 1.4B parameter model, and a sparse 3B parameter model. In Table B,
we find that the dense 1.4B parameter model slightly outperforms the sparse 1.4B parameter model.
However, the sparse 3B parameter model significantly outperforms both while requiring about half
the FLOPs of the smaller dense model.

Architecture Parameters Active Parameters FLOPs Validation Loss
Dense 1,386,084,352 1,386,084,352 1.10 x 10% 1.920
Sparse 1,355,871,232 393,174,016 3.14 x 1019 1.948
Sparse 2,989,920,000 866,369,280 6.93 x 109 1.849

Table 4: Validation loss of dense and sparse architectures trained for 80B tokens. For a fixed number
of parameters, dense models slightly outperform sparse ones. For a fixed FLOPs budget, sparse
models outperform dense ones.

B.3 Training Tasks

Training Protein Language Models with a standard autoregressive modeling objective supports gen-
erating protein sequences from the N-to-C terminal or C-to-N terminal, conditioned on the previous
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Validation PPL (Distinct @50%)
Hyperparameter | CLM | GLM (L = 10) | GLM (L = 50) | GLM (L = 200)
Infilling to CLM Ratio
0| 840 - - -
1:10 | 8.82 20.86 >100 >100
1:4 | 8.98 14.84 >100 >100
1:2 ] 9.13 12.05 >100 >100
1:1 | 941 12.47 >100 >100
Mask Fractions and Span Lengths
L <10,f<0.15 | 9.13 12.05 >100 >100
L <30,f<0.25 | 9.08 9.64 49.16 >100
L <70,f<0.50 | 9.09 9.71 9.68 9.44
L <200, f <0.50 | 9.02 9.54 9.34 8.91
Positional Encoding Strategy
Naive | 8.98 9.47 9.30 8.87
Position-Preserving | 8.99 9.08 8.86 8.56
Fuzzy Position-Preserving | 8.90 8.30 8.87 8.56

Table 5: Validation Loss on CLM and Single Span Infilling Tasks for various infilling setups.

residues in the sequence [B3, B8]. This formulation precludes settings where we only want to gen-
erate a segment in the middle of the protein while keeping both prior and subsequent amino acids
fixed. To support this, we augment the ProGen3 model training with an infilling or generalized
language modeling (GLM) learning objective, taking inspiration from multiple prior works in NLP
[6, BS, 75, 2] and Protein Language Modeling [[9, K3].

Infilling Training Details During ProGen3 training, we used the infilling objective for 1/3 of
the sequences seen by the model (i.e., the GLM to CLM ratio is 1:2). For each such case, we
sample N spans from the sequence, up until a maximum length fraction f. The span length of
each span is sampled from a truncated mixture of Gaussians, where we assign equal probability to
each of NV (10, 5), AV'(30,10), N (70, 20), N'(200, 50), and N (400, 100), denoted as N (u, o). The
maximum length fraction f is itself sampled from the set {0.15,0.25,0.5,0.8} with probabilities
{0.28,0.3,0.28,0.14} respectively.

For each span, we sample the start position uniformly from the protein sequence and we replace
the corresponding span of residues (span start, span start + span length) with a single sentinel token
<span_i>. At the same time, the same sentinel token is appended to the end of the sequence,
followed by the residues in the span being replaced and finally an end of span token. The constructed
sequence is then used to train the model with a causal attention mask and autoregressive modeling
loss over the whole sequence. Similar to ProGen2 [bX], we use a 1 token to denote the N-terminal
and a 2 token to denote the C-terminal, enabling us to perform both CLM and GLM tasks in the
N-to-C or C-to-N direction.

Position Preserving Fuzzy Encoding When the infilled residues are transposed to the end of the
sequence, they retain their original position ids, and the sentinel span tokens get the same position
id as the first token of the infilled span. A drawback of this scheme is that the model will have a
strong bias towards exactly the same number of residues that have been removed from the prefix. To
mitigate this and allow the model to stop early, for each infilled span, we add a fuzzy length factor to
the position ids of all tokens that come after that span. The fuzzy factor is sampled from a geometric
distribution with a mean of 0.2 times the length of the span. We provide an example below with
infilled spans highlighted in color.
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Original Sequence: ASVGFKAGVKDYKLTYYTPEYETLDTD

Infilling Sequence, <bos_glm> 1 ASVGF <span_. 38> K D Y K L T Y Y T
Position Ids _ ° 0 123456 7 12 13 14 15 16 17 18 19 20
<span_6> L D T D 2 <eos> <span_38> K A G V <eos_span> <span_6> P
21 29 30 31 3233 34 7 8910 11 12 21 22 23

Y E T <eos_span>
242526 27

Ablations We validated various design decisions described in the previous paragraphs using val-
idation perplexity, measured on the sequences from the held-out clusters distinct at 50% from the
training set for both CLM task (to measure any degradation in CLM performance) and single span
infilling. For the latter, we remove a random span of length L from each validation example and
measure the perplexity of the suffix after the infilling transformation as described previously (i.e. per-
plexity of tokens after the <eos> token). The results from these ablations can be found in Table B.
Initially, we only infilled spans up to length 10 for infilling and varied the proportion of infilling
examples seen during training. We observed that CLM performance shows small degradation (with
1pt perplexity difference) as we vary the proportion from 0 to 1:1, while infilling perplexity varies
significantly. We selected a ratio of 1:2 as a compromise. In addition, we also observed that this set
of models had very high perplexity for infilling spans of length 50 and 200. Therefore, in the next
set of experiments, we vary the length of spans and the mask fraction seen by the model. We see
that increasing lengths and mask fraction generally improve performance across all validation sets,
validating our choice of using a mixture of Gaussians with mean lengths of up to 400. Finally, we
observed that using position-preserving position encoding improved perplexities, while fuzzy length
encoding did not lead to any significant performance degradation. Hence, we adopted both of these
enhancements.

B.4 Importance of Warmup Duration

In Section I3, we found that the 46B parameter model achieved a validation loss lower than the
compute-optimal frontier our scaling laws predicted. A key difference between this model and the
smaller ones is that we increased its warmup from 2,000 steps to 10,000 steps to stabilize training
(Table B). This discrepancy could explain the gap in performance, as we find that using 8,000 steps
of warmup instead of 2,000 steps improves the final training and validation loss of a 1.4B parameter
model trained for 80B tokens (80,000 steps) (Figure B).

2.81 —— warmup = 2k (val loss = 1.948)
warmup = 8k (val loss = 1.939)
2.6
@
o
—
o 2.4 1
c
c
I
F 22
2.0 T—
—
0 1 2 3 4 5 6 7 8
Training Tokens lelO

Figure 5: Increasing warmup from 2000 steps to 8000 steps improves the final training and validation
loss for a 1.4B parameter model trained on 80B tokens.
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Parameters | Pre-Train Tokens I} Q # Epochs # Epochs
(ProteinGym) | (Megascale)
339M 200B 0.10 | 0.05 25 6
1.4B 500B 0.10 | 0.05 25 6
3B 500B 0.10 | 0.02 25 6
46B 1.5T 0.10 | 0.01 25 10

Table 6: Training hyperparameters for IRPO.

C Model Alignment

C.1 Implementation and Hyperparameters

The most relevant alignment algorithms for this paper are direct preference optimization (DPO,
[[74]) and its generalization iterative reasoning preference optimization (IRPO, [[Z1]). Let py be the
model we are aligning, p..¢ be the pre-trained model, D be our alignment dataset,  be conditioning
information, y |  be a completion, and R be the reward assigned to y | 2. IRPO can be formulated
as

po(y; | @) ) 3)

. po(yi | ©)
min E —logo [ Blog ———= — Slo
0 &,((y1,R1),ooor (4, R ))~D 2 & ( & ® pret(y; [ )

..... n Ri>R; prcf(yi | ZL’)

_logpo(y: | z)
R;=max R1,...,Ry, |y2|

+ «

The first term encourages the aligned model py to assign higher likelihood to preferred completions
than dispreferred ones. [ controls the amount we allow the aligned model py to deviate from the
pre-trained model p,.¢; larger values allow less deviation. The richness of this loss also increases
with the block size n, i.e. the number of completions that are directly comparable with each other.
The second term is the negative log likelihood loss of the completions with the highest reward. If
we set the regularization strength o = 0, IRPO reduces to DPO.

In this paper, we let the conditioning information = denote a single DMS assay, y; denote a pro-
tein characterized in that assay, and R; its experimentally measured fitness (AG for the Megascale
dataset). We use a cosine learning rate schedule that decays to 50% of the peak learning rate over
training and uses the first 10% of steps for a linear warmup. We train all models with peak learning
rate 3 x 1075 and peak weight decay 3 x 10~8. For models smaller than ProGen3-46B, we run
alignment jobs on 8xH100; each job takes at most 3hr. For ProGen3-46B, we require 16xH100, and
jobs take 2-6hr, depending on the size of the dataset.

For the ProteinGym experiments, we train a separate set of models for each assay in Table B. We use
a common set of hyperparameters across all configurations; the only exception is that we decrease
the batch size from 64 to 32 if the training dataset contains fewer than 1000 samples. Since we are
only training on a single assay, the block size n is the same as the batch size.

For all Megascale experiments, we a single model on the entire training set with a batch size of 1024
and block size n of 64. We select the training duration via early stopping on the validation Spearman
p. Table B reports additional training hyperparameters that vary between models.

C.2 IRPO Ablation Studies

We select the o hyperparameter and block size n for each model by training on the Megascale
protein stability dataset and evaluating fitness prediction performance on the Megascale validation
set, as well as the model’s perplexity on the validation set used for pre-training.

Table [ shows representative trends for a 1.4B parameter model. In general, increasing the block size
n improves fitness prediction performance with minimal impact to validation perplexity. This makes
sense because the number of comparisons in Equation 3 scales quadratically with n, so increasing
n imbues the loss with much richer information about the overall fitness landscape. For this reason,
we proceed with a fairly large block size of 64 wherever possible.
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Model Q Block Size | Spearman p | Validation Perplexity
1.4B (Pre-Trained) - - 0.471 8.150

1.4B 0.05 8 0.562 9.384

1.4B 0.05 16 0.639 9.607

1.4B 0.05 64 0.643 9.712

1.4B (DPO) 0 64 0.670 13.874

1.4B 0.02 64 0.650 10.551

1.4B 0.05 64 0.643 9.712

1.4B 0.1 64 0.629 9.241

Table 7: Larger block sizes improve fitness prediction performance. Increasing the IRPO regulariza-
tion coefficient o improves validation perplexity at the cost of fitness prediction performance.

We also find that the NLL loss term of IRPO is an important regularizer that prevents the validation
perplexity from degrading too much, i.e. it allows aligned models to retain the broad knowledge
about proteins that they gained during pre-training. For each model size, we select the value of «
which achieves the best fitness prediction performance while obtaining a validation perplexity no
more than 2 points higher than the pre-trained model’s. This process yields the values in Table B.

C.3 ProteinGym Alignment Experiments

In Figure B, we report the fitness prediction performance of both pre-trained and aligned models on
each of the 8 assays described in Table RB. Figure @b in the main text reports the average Spearman p
across these assays. Across the board, aligned models outperform their zero-shot counterparts.

For the five assays with at least 500 single-mutation variants (i.e. the ones where we trained only on
single-mutation variants), the performance of the aligned models improves monotonically with their
scale. KERMUT and ConFit obtain similar performance to ProGen3-46B on the 4 activity assays;
ConFit also performs similarly on CAPSD_AAV2S_Sinai_2021, but KERMUT has meaningfully
worse performance on this assay (Table B).

For the other three assays, there is no such correlation between model scale and fitness prediction
performance, though using a larger model almost never causes a meaningful performance drop. This
suggests that IRPO learns most effectively from rich single-mutation data, and that on balance, larger
models benefit more from alignment than smaller models. Each of the baseline methods also has
noticeably worse performance than ProGen3-46B on two of these three assays (Table B).

We also observe that the two assays where all methods obtain the worst performance
(GCN4_YEAST_Staller_2018 and SPG1_STRSG_Wu_2016) both measure binding affinity. Given
that the pre-training data contains no signals about a protein’s binding partner, predicting a pro-
tein’s binding affinity is likely a challenging task for models of this sort. However, access to richer
single-mutation data may still improve performance for this task.

D Split-GFP Methods and Supporting Information

D.1 Competent cell preparation

Two days in advance, E. coli BLI-21 DE3 (either with or without p15a-GFP;_¢) was struck onto LB
agar with or without kanamycin 50 pg/L, and incubated overnight at 37°C. One day in advance, a
single colony was inoculated into 50 mL LB with or without kanamycin 50 pg/L in a 250 mL shake
flask, and incubated overnight at 37°C 225 RPM. On the day of, the overnight pre-culture was inoc-
ulated 1:100 into 500 mL to 2L LB with or without kanamycin 50 pg/mL in 2L shake flasks, and
incubated at 37°C 225 RPM, until OD600 was between 0.4 and 0.6. The flasks were then chilled
for 30 minutes on ice and then pelleted by centrifugation (10min, 3500 RCF, 4°C) in chilled 500mL
plastic centrifuge bottles. The supernatant was decanted and pellets were suspended in TFB I (100
mM rubidium chloride, 50 mM manganese chloride (MnCI2 H20), 30 mM potassium acetate, 10
mM calcium chloride (CaCI2H20), 15% v/v glycerol) at a ratio of 1:10 TFBI to starting culture
volume. Resuspended cells were incubated on ice for 15 minutes and then pelleted by centrifuga-
tion (10min, 3500 RCF, 4°C). The supernatant was decanted and pellets were suspended in TFB II
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Dataset ID Coarse Max # # Train Max # # Test
Selection Mutations Variants Mutations Variants
Type (Train) (Test)

D7PMO5_CLYGR_Somermeyer_2022 Activity 1 1169 23 23,346

GFP_AEQVI_Sarkisyan_2016 Activity 1 1084 15 50,630

Q6WV12_9MAXI_Somermeyer_2022 Activity 1 1141 13 30,260

Q8WTC7_9CNID_Somermeyer_2022 Activity 1 1201 43 32,309

GCN4_YEAST_Staller_2018 Binding 4 617 44 2021

SPG1_STRSG_Wu_2016 Binding 2 2167 4 147,193

CAPSD_AAV2S_Sinai_2021 Organismal 1 532 28 41,796
Fitness

HIS7_YEAST_Pokusaeva_2019 Organismal 2 1643 28 494,494
Fitness

Table 8: Summary of ProteinGym datasets used for alignment.

Avg | D7PMOS5 | GFP | Q6WVI12 | Q8WTC7 | GCN4 | SPG1 | CAPSD | HIS7

KERMUT | 0.628 0.820 0.764 0.843 0.773 0.461 | 0.227 0.494 0.645
ConFit | 0.679 0.871 0.829 0.845 0.800 0.250 | 0.460 0.714 0.585
ProGen3-46B | 0.673 0.825 0.837 0.798 0.706 0.339 | 0.451 0.753 0.672

Table 9: Supervised fitness prediction performance of different methods.

(10mM 3-(N-morpholino)propanesulfonic acid (MOPS), 10mM rubidium chloride, 75 mM calcium
chloride, 15% glycerol) at a ratio of 1:25 TFBII to starting culture volume. The resuspensions were
incubated on ice for 30 minutes, before being gently homogenized by inversion, and aliquoted to
96w plates, before storage at -80°C.

D.2 Cloning of expression plasmid backbones

The expression plasmids for the Pol-GFP;; and GFP,.jy, pTet-Pol-GFP,; and p15a-GFPy_j, re-
spectively, were modeled after Cabantous 2005, synthesized by Twist Bioscience with overlapping
fragments, assembled via NEB HiFi following manufacturer recommendations, transformed into
10-beta competent E. coli (New England Bioscience), and plated on LB agar containing the appro-
priate antibiotic. Colonies were picked, miniprepped (Zymo), and sequence verified via long-read
nanopore sequencing (Plasmidsaurus) (Table [M).

D.3 Cloning of the GFP11 fusion libraries

The Pol insert libraries were codon optimized for E. coli with DNA Chisel [ITT], flanked with
Bsal Type II restriction sites and synthesized as gene fragments via Twist Bioscience. Plate maps
were specified such that generated and wild type proteins from the same cluster were located on the
same plate. Positive and negative controls (human dihydrofolate reductase DHFR, NP_000782.1,
and human GPCR beta-3 adrenergic receptor, NP_000016.1, respectively) were added to each plate.
Additionally, several wells were left empty on each plate to permit background subtraction at the flu-
orescent measurement stage. DNA fragments were suspended in 100 pL. H20. Bsal-HFv2 Golden
Gate reactions were performed using manufacturer recommendations (New England Bioscience)
scaled to 10 pL per assembly. Golden Gate reactions consisted of 30 cycles X (5 min 37°C, 5
min 16°C) followed by 5 min 60°C. 5 uLL completed Golden Gate reaction was transformed follow-
ing manufacturer recommendations into BL-21 DE3 competent cells either with or without p15a-
GFP_;o (New England Bioscience). Transformations were plated onto LB agar plates containing 75
ng/L spectinomycin either with or without 50 pg/L kanamycin using a Hamilton liquid handler. Up
to four colonies per assembly were picked using a Qpix robotic colony picker into liquid LB con-
taining 75 pg/L spectinomycin with or without 50 pg/L kanamycin. Colony PCR was performed
using primers splitgpf-Pol-fwd and splitgpf-Pol-rv (Table 1) and RedTaq PCR mastermix (Thermo
Fischer) following manufacturer recommendations, scaled to 10 L. To spot check, PCR reactions
were diluted 1:40 in water and size-verified by capillary electrophoresis (Revvity LabChip).
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D7PMO05_CLYGR_Somermeyer_2022 GFP_AEQVI_Sarkisyan_2016 Q6WV12_9MAXI_Somermeyer_2022 Q8WTC7_9CNID_Somermeyer_2022
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Figure 6: Fitness prediction by zero-shot and aligned models on the assays described in Table B.

D.4 Sequence verification

For each plate of assemblies, we generated an in silico pool of references sequences, correspond-
ing to the PCR amplicons using primers splitgpf-Pol-fwd and splitgpf-Pol-rv (Table [). Prior to
sequencing, all pools were pre-validated to ensure sufficient sequence diversity using Jellyfish with
kmer size set to 31 [b4]. A custom Python script was run across the resulting kmer file to ensure
each member of the pool had a kmer with a sufficient edit distance from all other members of the
pool.

PCR reactions were pooled, size-selected (1x v:v Beckman Coulter Ampure beads, 2x 80% ethanol
wash), and sequenced via Oxford Nanopore PromethION sequencing using R10.4.1 flow cells (Plas-
midsaurus). For each sequenced pool, Plasmidsaurus returned a single FASTQ containing all reads.
Reference amplicons of the expected library members were compiled into a multi-FASTA. The
FASTQ and reference FASTA went through the following analysis steps: All unique 31-mers per
reference sequence were identified by Uniquekmer [I7]. Reads were filtered based on length. Reads
with fewer than 50 bp were discarded using BBDuk [[0]. Reads were demultiplexed based on
exact match to unique 31-mers using BBSeal [[0]. Demultiplexed reads were mapped to refer-
ence sequences using minimap2 [58]. Consensus sequence generated based on aligned reads using
samtools [Z5]. Variants were called between the consensus and the reference using DNADiff [54].
Colonies were filtered for sequence fidelity, coverage, and depth (>10 reads covering the ORF), and
a single correct representative of each genotype was hitpicked using a Hamilton liquid handler. Hit-
pick plates were grown overnight in liquid LB containing 75 pg/L spectinomycin with or without
50 pg/L kanamycin, mixed 1:1 with 50% glycerol, and stored at -80°C until assay.

D.5 Split-GFP Assay

In general, the preparation and assay of the Pols and GFP1-10 and assay followed the protocols
delineated in Cabantous, 2006 [ILT]. The split-GFP assay can be either run in cells using two orthog-
onal expression plasmids, or in lysate. In a pilot study, we observed a poor correlation between the
two methods (r? = —0.27, n = 91 proteins), and that SDS-PAGE abundance was better correlated
with GFP fluorescence under sequential induction (Figures -3). We further validated the sequential
induction approach with SDS-PAGE of 88 proteins (Figure ). Although the relatively high limit
of detection for SDS-PAGE prevents quantitative correlation across the range of measured GFP val-
ues, we observed excellent identification of highly expressing and lowly expressing proteins. 19
of 23 proteins in the top quartile had distinct bands at the correct size, while 22 of 22 proteins in
the bottom quartile had no detectable band (Figure B). In the top quartile, two bands were absent.
The other two proteins without proper migration were two highly-expressing proteins that failed to
migrate on the gel, implying high stability or resistance to SDS-mediated denaturation (Figure @0).
While boiling (up to 100°C, 10 min) or proteinase K treatment afforded partial purification, neither
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Plasmid

DNA Sequence 2

pTet-Pol-GFP;

TGTGAGACCTAATTAATTAATTGGTCTCAGGATCCGATGGAGG
GTCTGGTGGCGGATCAACAAGTCGTGACCACATGGTCCTTCATGAGTACGTAAATGCTGCTGGGATTACATAAGGTACCTAACTCGAGTGAGATCCGGCT
GCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCTCTAGAGGCCH

plSa-GFPHo

TTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTT
CACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATC
CTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCG
GTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAAC
CGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGAC
AGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATA
CTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAG
TTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGG
CACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTT
TGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGG
TTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTC
CGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCC
CAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCAT
ACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGC
GCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAAC
AATTCCCCTCTAGGATCCGAATTCGAGCTCTCTAGAGAAAGAGGAGAAATACTAGATGAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTT
GTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGAGGAGAGGGTGAAGGTGATGCTACAATCGGAAAACTCACCCTTAAATTTATTTGCA
CTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTCTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAAAGGCATGAC
TTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAAATACAAGACGCGTGCTGTAGTCAAGTTTGAAG
GTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTACTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTTTAACTCACACAA
TGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCACAGTTCGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCATTAT
CAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAAACTGTCCTTTCGAAAGATCCCAACGAAAAGTAAA
AGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGC
AATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATH GATTGGCGAATGGGAC
AGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCT
TCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTG
ATT/\GGGTGATGGTTCACGT/\GTGGGCCATCGCCCTGAT/\G/\CGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTA/\T/\GTGG/\CTCTTGTTCCA/\

AC. GTC CTT 'CTATTGGTTAAA.
CGGGGAAAIGI GCGCGGAACCCCTATTTG
TTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTT
TGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACAT
CAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATG
CATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGA
GACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTG
AATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGT
CGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCG
CATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTT
AATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTTGegeacaacttatatcg

'TTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTC
GCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGC
CGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGC
AAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAA
GAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGG
TGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGC

Table 10: Plasmids used in this study.

Plasmid DNA Sequence 2
splitgpf-Pol-fwd | gcaggacgcactgaccgagttc
splitgpf-Pol-rv | agggcggcggatttgtcctact

Table 11: Primers used for the size and sequence validation of Pol inserts in pTet-Pol-GFP;;.

led to proper migration of the bands. Interestingly, both of these proteins shared the same cluster
with the most closely related natural protein 3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ.

Due to the higher correlation with SDS-PAGE, we chose the in-lysate approach for experimental
validation of the broader set. We describe both approaches in more detail below.

D.5.1

Whole-cell assay

Glycerol stocks containing pTet-Pol-GFP;; and p15a-GFP;_j( plasmids were inoculated into 1 mL
liquid LB containing 75 pg/L spectinomycin and 50 pg/liter kanamycin sulfate and grown overnight
in a shaking plate incubator (37°C, 1000RPM). In the morning, overnight growth was inoculated in
quadruplicate plates 1:100 in LB containing 75 pg/L spectinomycin and 50 pg/liter kanamycin sul-
fate, and grown in a shaking plate incubator (37°C, 1000RPM) until OD600 reached 0.5 to 1.0.
Pol-GFP;; expression was induced by the addition of anhydrotetracycline in ethanol to a final
concentration of 250 ng/L. Simultaneous GFP;_y was induced by the addition of isopropyl 8-D-
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Figure 7: Scatter plot of mean split-GFP under sequential induction (y-axis) vs mean co-induction
(x-axis), t = 16 hours, for 91 unique proteins. Each color is a unique protein sequence. Error bars
are standard deviation of n = 4 replicates.

thiogalactopyranoside (IPTG) to a final concentration of 0.1 mM. Protein production continued for
two hours in a shaking incubator (37°C, 1000RPM). Cultures were diluted 1:1 in LB to a final vol-
ume of 100 pL in a 384-well black clear bottom plate (Greiner 781097). Fluorescence and OD600
were read on a Tecan Spark plate reader (Ex: 475nm, Em: 530 nm, Gain: 69, Z-position: 30000).

D.5.2 Lysate assay

Preparation of protein of interest: Glycerol stocks containing pTet-Pol-GFP11 plasmids were
inoculated into 1mL liquid LB containing 75 pg/L spectinomycin and grown overnight in a shaking
plate incubator (37°C, 1000RPM). In the morning, overnight growth was inoculated 1:50 in quadru-
plicate in ImL LB containing 75 pg/L spectinomycin, and grown in a shaking plate incubator (37°C,
1000RPM) until OD600 reached 0.5 to 1.0. Pol was induced by the addition of anhydrotetracycline
in ethanol to a final concentration of 250 ng/L. Protein production continued for two hours in a shak-
ing incubator (37°C, 1000RPM). Culture-containing plates were spun down (3500 RCF, 5 minutes),
decanted, and 100 ©L. BugBuster MasterMix (EMD Millipore) containing 25 pg/mL chlorampheni-
col was added to lyse cells and stop protein expression. Cells were lysed by incubation in a shaking
incubator (25°C, 300RPM, 1 hour). Lysates were stored overnight at 4° before assay.

Preparation of GFP1-10 pl5a-GFP;_jy was transformed into E. coli BL-21 DE3 competent cells
(New England Bioscience) following manufacturer recommendations. A single colony was grown
overnight in LB 50 pg/liter kanamycin sulfate, diluted 1:1 with 50% glycerol, and stored at -80°C.
Biomass from the glycerol stock was inoculated into 50 mL LB 50 pg/liter kanamycin sulfate in
a 250 mL shake flask, and incubated overnight (37°C, 225 RPM). The following morning, the
overnight culture was inoculated 1:100 into LB 50 pg/liter kanamycin sulfate in a 2 L shake flask.
After two hours (37°C, 225 RPM), GFP,_ expression was induced with a final concentration of 1
mM isopropyl S-D-thiogalactopyranoside (IPTG). After five hours of incubation (37°C, 225 RPM),
the culture was placed at 4° and left overnight. The following morning, the culture was spun down
(3500 RCF x 15 minutes) and re-suspended in 1/5 of the culture volume (i.e. 200 mL for 1 L
culture) in lysis buffer containing 100 mm Tris HCl Ph 7.5, 10% glycerol, and 150 mm sodium
chloride (TNG buffer). The resuspended culture was sonicated on ice (VWR 76193-590 50% duty,
10 minutes, 30 second pulse). The lysate was centrifuged (3500 RCF x 15 minutes) and the GFP_jo-
containing supernatant was decanted.
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D.5.3 In trans folding and fluorescence measurement

10 pL of Pol-gpp;; lysate were added to 90uL of the GFP;_j lysate in a 384-well black clear bottom
plate (Greiner 781097). Plates were sealed and incubated at 25°C overnight. Fluorescence was read
on a Tecan Spark plate reader (Ex: 475nm, Em: 530 nm, Gain: 69, Z-position 30000). Samples
were background subtracted using the mean fluorescence of the empty wells on a per plate basis.

D.6 SDS-PAGE validation

10 uL of cell lysate were diluted with 30 L. BugBuster Protein Extraction Reagent with 25 pg/mL
chloramphenicol and then added to 12 pL. Laemmli + DTT and pipet mixed. Samples were heated
at 85°C for 3 min. 10 puL. were loaded on a Mini-PROTEANGS TGX Precast Gel (BioRad) and run at
120V for 50 minutes. Gels were rinsed in DI water then opened and transferred into troughs filled
with DI water. Troughs were gently shaken for 15 minutes on an Ohaus light duty orbital shaker at
130 rpm at room temperature. Then DI water was replaced and this wash process was repeated two
more times. Gels were then stained with GelCode Blue Stain Reagent for 45 minutes while shaking
at 130 rpm. Gel was de-stained by decanting dye and adding DI water and shaking at 130 rpm for
another hour. Photographs were taken via smartphone camera.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our first claim is that we introduce compute-optimal scaling laws for sparse
protein language models (PLMs), and use them to train a 46B parameter sparse PLM on
1.5T tokens of data from a curated data distribution. Section D describes our model ar-
chitecture, data distribution, and optimal scaling laws. Appendix A describes the dataset
in more detail. Section B describes the validation of our models in the wet lab, showing
that larger models generate viable proteins for a much wider diversity of protein families.
Finally, Section B describes how alignment is an effective technique for supervised fitness
prediction, and that larger models benefit more for alignment.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We note in Section Bl that the split-GFP assay does not directly measure
protein function, which is an inherent limitation of any assay that measures properties of
diverse protein families with divergent (and potentially unknown) function.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: There are no theoretical results in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all relevant model architecture and pre-training details in Ap-
pendix B, all relevant details pertaining to model alignment in Appendix O, and all experi-
mental methods for the split-GFP method in Appendix D. We describe how we constructed
our pre-training dataset in Appendix Al

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the model code on GitHub and weights (up to 3B parameters) on
Huggingface. However, we do not release the dataset, training code, and ProGen3-46B
weights.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All these details are enumerated throughout the main text and appendices.
We provide all relevant model architecture and pre-training details in Appendix B, details
on the train/test splits for pre-training in Appendix @&, and all relevant details pertaining to
model alignment (and the relevant datasets) in Appendix O.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: For wet lab data, we include error bars corresponding to 2 standard deviations
from the experiment. We do not include error bars for most computational experiments be-
cause they would be too expensive to construct. First, it would be too costly to replicate
pre-training runs to obtain error bars. Second, we perform model alignment using 4 differ-
ent models on 9 different datasets; cross-validation would have been too expensive, so we
use a single train/val/test split throughout.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We note in Appendix Bl that we pre-trained ProGen3-46B for approximately
17 days on 256xH100 hosted by Databricks; all other pre-training jobs were considerably
smaller. We also note in Appendix L1 the amount of compute required for each align-
ment training run (<3hr on 8xH100 for models smaller than ProGen3-46B, and 2-6hr on
16xH100 for ProGen3-46B).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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10.

11.

Justification: We do no research and use no data involving human subjects, and all our data
complies with the terms of the datasets we use. We consider potential negative ramifications
of our work and determine that the potential to improve society greatly outweighs any
theoretical risks (see “Safety and Ethics” section). We also include notes on responsible
development in our GitHub repo and Huggingface model cards.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of protein language models in both the intro-
duction and discussion sections, where we overview a wide range of protein engineering
use cases that models like ProGen3 enable. We also discuss potential negative impacts in
the Safety and Ethics section after the discussion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe appropriate safeguards in the “Safety and Ethics” section at the
end of the main text.

Guidelines:

* The answer NA means that the paper poses no such risks.
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12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all raw data repositories used to create our dataset in Appendix Al

these are the only assets we use that we did not produce ourselves. Licenses for the datasets
are respected, but we do not list them in the paper.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We release well-documented model code on GitHub, along with weights for
all models up to ProGen3-3B on Huggingface.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: There was no crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-

tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: None of the work in this paper involved human study participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not use traditional LLMs anywhere.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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