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Abstract

Neural Fields (NeFs) offer compact, continuous models of signals and scenes. However, one
of the major issues is that a separate neural network has to be trained from scratch for each
signal. To tackle this, we propose Geometric Neural Process Fields (G-NPF), a probabilistic
framework for neural radiance fields that explicitly captures uncertainty. We formulate
NeF generalization as a probabilistic problem, enabling direct inference of NeF function
distributions from limited context observations. To incorporate structural inductive biases,
we introduce a set of geometric bases that encode spatial structure and facilitate the inference
of NeF function distributions. Building on these bases, we design a hierarchical latent variable
model, allowing G-NPF to integrate structural information across multiple spatial levels and
effectively parameterize INR functions. This hierarchical approach improves generalization to
novel scenes and unseen signals. Experiments on novel-view synthesis for 3D scenes, as well
as 2D image and 1D signal regression, demonstrate the effectiveness of G-NPF in capturing
uncertainty and leveraging structural information for improved generalization.

1 Introduction

Neural fields (NeFs) (Sitzmann et al., 2020b; Tancik et al., 2020) have emerged as a powerful framework for
learning continuous, compact representations of signals across domains, including 1D signals (Yin et al., 2022),
2D images (Sitzmann et al., 2020b), and 3D scenes (Park et al., 2019; Mescheder et al., 2019). NeFs (Vyas
et al., 2024) are now used broadly in image and signal processing, including shape representation (Genova
et al., 2020), novel view synthesis (Mildenhall et al., 2021), material rendering (Kuznetsov, 2021), medical
imaging (Wang et al., 2022b), linear inverse problems (Sun et al., 2021), and compression (Dupont et al.,
2021a). A notable advancement in 3D scene modeling is the Neural Radiance Field (NeRF) (Mildenhall et al.,
2021; Barron et al., 2021), which extends NeFs to map 3D coordinates and viewing directions to volumetric
density and view-dependent radiance. With differentiable volume rendering along camera rays, NeRFs enable
photorealistic novel-view synthesis. Despite strong reconstruction performance, NeRFs typically require
per-scene overfitting, leading to limited generalization to new scenes from few context images.

In this paper, we focus on neural field generalization (also referred to as conditional neural fields) and
the rapid adaptation of NeFs to new signals. It is crucial for real-world deployment, where only sparse or
constrained observations (common in robotics, AR/VR, and medical/computational imaging) are provided,
requiring data-efficient adaptation with calibrated uncertainty to obviate costly per-scene optimization and
to guide acquisition. Previous works on NeF generalization have addressed this challenge using gradient-
based meta-learning (Tancik et al., 2021), enabling adaptation to new scenes with only a few optimization
steps (Tancik et al., 2021; Papa et al., 2024). Other approaches include modulating shared MLPs through
HyperNets (Chen & Wang, 2022; Mehta et al., 2021; Dupont et al., 2022a; Kim et al., 2023) or directly
predicting the parameters of scene-specific MLPs (Dupont et al., 2021b; Erkoç et al., 2023). However, the
deterministic nature of these methods cannot capture uncertainty in NeFs, when used with scenes with only
limited observations are available. This is important as such sparse data may be interpreted in multiple valid
ways.

To address uncertainty arising from having few context images, probabilistic NeFs (Gu et al., 2023; Guo
et al., 2023; Kosiorek et al., 2021) have recently been investigated. For example, VNP (Guo et al., 2023) and
PONP (Gu et al., 2023) infer the NeFs using Neural Processes (NPs) (Bruinsma et al., 2023; Garnelo et al.,
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2018b; Wang & Van Hoof, 2020), a probabilistic meta-learning method that models functional distributions
conditioned on partial signal observations. These probabilistic methods, however, do not exploit potential
structural information, such as the geometric characteristics of signals (e.g., object shape) or hierarchical
organization in the latent space (from global to local). Incorporating such inductive biases can facilitate more
effective adaptation to new signals from partial observations.

To jointly capture uncertainty and leverage inherent structural information for efficient adaptation to
new signals with few observations, we propose a probabilistic neural fields generalization framework called
Geometric Neural Processes Fields (G-NPF). Our contributions can be summarized as follows: 1) Probabilistic
NeF generalization framework. We formulate NeF generalization as a probabilistic modeling problem, allowing
us to amortize a learned model over multiple signals and improve NeF learning and generalization. 2)
Geometric bases. To encode structural inductive biases, we design geometric bases that incorporate prior
knowledge (e.g., Gaussian structures), enabling the aggregation of local information and the integration
of geometric cues. 3) Geometric neural processes with hierarchical latent variables. Building on these
geometric bases, we develop geometric neural processes to capture uncertainty in the latent NeF function
space. Specifically, we introduce hierarchical latent variables at multiple spatial scales, offering improved
generalization for novel scenes and views. Experiments on 1D and 2D signals demonstrate the effectiveness
of the proposed method for NeF generalization. Furthermore, we adapt our approach to the formulation
of Neural Radiance Fields (NeRFs) with differentiable volume rendering on ShapeNet objects and NeRF
Synthetic scenes to validate the versatility of our approach.

2 Background

2.1 Neural (Radiance) Fields

Neural Fields (NeFs) Sitzmann et al. (2020b) are continuous functions fω : x 7→ y, parameterized by a
neural network whose parameters ω we optimize to reconstruct the continuous signal y on coordinates x.
As with regular neural networks, fitting Neural Field parameters ω relies on gradient descent minimization.
Unlike regular networks, however, conventional Neural Fields are explicitly designed to overfit the signal y
during reconstruction deterministically, without considering generalization (Mildenhall et al., 2021; Barron
et al., 2021). The reason is that Neural Fields have been primarily considered in transductive learning settings
in 3D graphics, whereby the optimization objective is to optimally reconstruct the photorealism of single 3D
objects at a time. In this case, there is no need for generalization across objects. A single trained Neural
Field network is optimized to “fill in” the specific shape of a specific 3D object under all possible view points,
given input point cloud (coordinates x). For each separate 3D object, we optimize a separate Neural Field
afresh. Beyond 3D graphics, Neural Fields have found applicability in a broad array of 1D (Yin et al., 2022)
and 2D (Chen et al., 2023b) applications, for scientific (Raissi et al., 2019) and medical data (de Vries et al.,
2023), especially when considering continuous spatiotemporal settings.

Neural Radiance Fields (NeRF) (Mildenhall et al., 2021; Arandjelović & Zisserman, 2021) are Neural
Fields specialized for 3D graphics, reconstructing the 3D shape and texture of a single objects. Specifically,
each point p = (px, py, pz) in the 3D space centered around the object has a color c(p, d), where d = (θ, ϕ) is
the direction of the camera looking at the point p. Since objects might be opaque or translucent, points also
have opacity σ(p). In Neural Field terms, therefore, our input comprises point coordinates and the camera
direction, that is x = (p, d), and our output comprises colors and opacities, that is y = (c, σ).

Optimizing a NeRF is an inverse problem: we do not have direct access to ground-truth 3D colors and
points of the object. Instead, we optimize solely based on 2D images from known camera positions o and
viewing directions d. Specifically, we optimize the parameters ω of the NeRF function, which encodes the
3D shape and color of the object, allowing us to render novel 2D views from arbitrary camera positions and
directions using ray tracing along r = (o, d). This ray-tracing process integrates colors and opacities along
the ray, accumulating contributions from points until they reach the camera. The objective is to ensure that
NeRF-generated 2D views match the training images. Since these images provide an object-specific context
for inferring its 3D shape and texture, we refer to them as context data. In contrast, all other unknown shape
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Figure 1: Illustration of the proposed G-NPF.
and texture information is target data. For a detailed description of the ray-tracing integration process, see
Appendix B.

Conditional Neural Fields Papa et al. (2024) have recently gained popularity to avoid optimizing from
scratch a new Neural Field for every new object. Conditional Neural Fields split parameters ω to a shared
part ωD that is common between objects in the dataset D, and an object-specific part ωi that is optimized
specifically for the i-th object. However, the optimization of ωi is still done independently per object using
stochastic gradient descent.

2.2 Neural Processes

Neural Processes (NPs) (Garnelo et al., 2018b; Kim et al., 2019) extend the notion of Gaussian Processes
(GPs) (Rasmussen, 2003) by leveraging neural networks for flexible function approximation. Given a context
set C = {(xC,i, yC,n)}N

n=1 of N input–output pairs, NPs infer a latent variable z that captures function-level
uncertainty. When presented with new inputs xT = {xT,m}M

m=1, the goal is to predict yT = {yT,m}M
m=1.

Formally, NPs define the predictive distribution:

p
(
yT | xT , C

)
=
∫

p
(
yT | xT , z

)
p
(
z | C

)
dz. (1)

Here, p(z | C) is a prior over z derived solely from the context set. During training, an approximate posterior
q(z | C, T ) (where T is the target set consisting of (xT , yT ) pairs) is learned via variational inference (Garnelo
et al., 2018b). Through this latent-variable formulation, NPs capture both predictive uncertainty and
function-level variability, enabling robust performance under partial observations.

3 Geometric Neural Process Fields

Despite their great reconstruction capabilities, Neural Fields are still limited by their lack of generalization.
While Conditional Neural Fields offer an interesting path forward, they still suffer from the unconstrained
nature of stochastic gradient descent and the over-parameterized nature of neural networks (Papa et al.,
2024), thus making representation learning and generalization to few-shot settings hard, whether for 1-D (e.g.,
for time series), 2-D (e.g., for PINNs), or 3-D (e.g., for occupancy and radiance fields) data. We alleviate this
by imposing geometric and hierarchical structure to the NeF and NeRF functions in 1-, 2-, or 3-D data, such
that Neural Fields are constrained to the types of outputs that they predict. Further, we embed Conditional
Neural Fields in a probabilistic learning framework using Neural Processes, so that the learned Neural Fields
generalize well even with few-shot context data settings.

3.1 Probabilistic Neural Process Fields

Conditional Neural Fields, defined in a deterministic setting, bear direct resemblance to Neural Processes and
Gaussian Processes and their context and target sets, defined in a probabilistic setting. To make the point
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clearer, we will use the 2D image completion task as a running example, where the goal is to reconstruct an
entire image from a sparse set of observed pixels (an occluded image).

In image completion task, the C = {(xC,i, yC,n)}N
n=1 consists of N observed pixel coordinates xC and their

corresponding intensity values yC , while the target set T = {xT } comprises all M pixel coordinates in the
image, with yT denoting the unobserved intensities to be predicted. The objective is thus to infer the full
image yT conditioned on C, effectively regressing pixel intensities across the entire spatial domain using only
the sparse context observations. Although our approach is formulated as a general probabilistic framework,
we present a novel 3D-specific extension for Neural Radiance Fields, detailed in Appendix G.

For probabilistic Neural Process Fields, we adopt the Neural Process decomposition from Eq. (1) for prior
distribution,

p(yT |xT , xC , yC) =
∫

p(yT |z, xT , xC , yC)︸ ︷︷ ︸
Conditional Neural Field

p(z|xT , xC , yC)dz

=
∫ M∏

m=1
p(yT,m|z, xT,m, xC , yC)p(z|xT,m, xC , yC)dz,

(2)

where in the last line of Eq. (2) we use the fact that the M target output variables, which comprise the
target object, are conditionally independent with respect to the latent variable z. In probabilistic Neural
Process Fields, z encodes object-level information, similar to the object-specific parameters ωi in deterministic
Conditional Neural Fields. However, by modeling z probabilistically, our approach enables generalization
across different objects, whereas standard NeFs are limited to fitting a single object at a time.

3.2 Adding Geometric Priors to Probabilistic Neural Process Fields

With probabilistic Neural Process Fields, we are able to generalize conditional Neural Fields to account for
uncertainty and thus be more robust to few-shot learning settings. Given that (conditional) neural fields
are most commonly instantiated as standard MLPs, they impose no explicit structural priors on the output
and place few constraints on the types of predicted values; this flexibility can hinder generalization. While
some NeRF pipelines introduce structured feature backbones (e.g., planes or grids), such designs are task-
and modality-specific; there is no single unified structured representation in the NeF generalization that
seamlessly covers heterogeneous signal types (e.g., 2D images and 3D radiance/shape fields).

To address this problem, we propose adding geometric priors to probabilistic Neural Process Fields. Specifically,
we encode the context set C so that to represent it in terms of structured geometric bases BC =

{
b
}R

r=1, rather
than using C directly. Here R is the number of bases. These geometric bases must create an information
bottleneck through which we embed structure to the context set C, thus R ≪ ∥C∥ = N . Each geometric
basis br =

(
N (µr, Σr), ωr

)
contains a Gaussian distribution N in the 2D spatial plane with covariance Σr,

centered around a 2D coordinate µr. Note that when extending to the 3D data, N is a 3D Gaussian. Each
geometric basis also contains a representation variable ωr, learned jointly to encode the semantics around the
location of µr. The probabilistic Neural Process Field in Eq. (2) becomes

p(yT |xT , BC) =
∫

p(yT |z, xT , BC)︸ ︷︷ ︸
Geometric Priors on

Conditional Neural Fields

p(z|xT , BC)dz (3)

3.3 Adding Hierarchical Priors to Probabilistic Neural Process Fields

The decomposition in Eq. (2) conditioning on the latent z allows generalizing conditional Neural Fields with
uncertainty to arbitrary training sets, especially by introducing geometric priors in Eq. (3). We note, however,
that when learning probabilistic Neural Fields, our training must serve two slightly conflicting objectives. On
one hand, the latent variable encodes the global appearance and geometry of the target object at (xT , yT ).
On the other hand, the Neural Fields are inherently local, in that their inferences are coordinate-specific.

To ease the tension, we introduce hierarchical latent variables, having a single global latent variable zg, and
M local latent variables {zl,m}M

m=1 for the M target points xT , to condition the probabilistic Neural Process
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Figure 2: Graphical model for the proposed geometric neural processes.

Fields. A graphical model of our method is provided in Fig. 2.

p(yT |xT , BC) =
∫ ∫

p(yT |zg, zl, xT , BC)︸ ︷︷ ︸
Hierarchical Priors on

Conditional Neural Fields

p(zl|zg, xT , BC) dzl p(zg|xT , BC) dzg (4)

=
∫ ∏

m

∫
p(yT,m|zg, zl,m, xT,m, BC)p(zl,m|zg, xT , BC) dzl,m p(zg|xT , BC)dzg. (5)

In Eq. (4), we bring p(zg|xT , BC) out of the inside integral, which marginalizes over the local latent variables
zl. In Eq. (5), we further decompose by using the fact that the target variables yT,m and the local latent
variables zl,m are conditionally independent.

3.4 Implementation

We next describe the implementation of all individual components, and refer to Appendix D for more details.

Geometric basis functions. We implement the geometric basis functions using a transformer encoder,(
µ, Σ, ω

)
r

= Encoder[xC , yC ]. In p(zl,m|zg, xT , BC) of Eq. (5), the prior distribution of each hierarchical
latent variable is conditioned on the geometric bases BC and target inputs xT . Since the geometric basis
functions rely on Gaussians, we use an MLP with a Gaussian radial basis function to measure their interaction:

⟨xT , BC⟩ = MLP
[ R∑

r=1
exp(−1

2(xT − µr)T Σ−1
r (xT − µr)) · ωr

]
, (6)

Global latent variables. We model the global latent variable zg as a Gaussian distribution:

(
µg, σg

)
= MLP

(
1

M

M∑
m=1

⟨xT , BC⟩

)
, (7)

where p(zg|xT , BC) is parameterized by a Gaussian whose mean µg and variance σg are generated via an
MLP. Eq (7) aggregates representations across all target points to produce a global latent variable zg, thereby
parameterizing the underlying object or scene. This formulation enables our model to capture object-specific
uncertainty through the inferred distribution of zg.

Local latent variables. To infer the distribution of the local latent variables zl, we first compute the
position-aware representation ⟨xT,m, BC⟩ for each target point xT,m using Eq. (6). The local latent variable
zl,m is then derived by combining these representations with the global latent variable zg via a transformer:(

µl, σl

)
= Transformer (MLP [⟨xT,m, BC⟩] ; ẑg) ,
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where ẑg is a sample from the global prior distribution p(zg | xT , BC). Mirroring the global latent variable
zg, we model the local prior distribution p(zl,m | zg, xT,m, BC) as a mean-field Gaussian with parameters µl

and σl. This hierarchical structure enables coordinate-specific uncertainty modeling while preserving global
geometric consistency. Full architectural details are provided in Appendix D.2.

Predictive distribution. The hierarchical latent variables {zg, zl,m} condition the neural network to
generate predictions that integrate global and local geometric uncertainty. Specifically, the neural field
is conditioned jointly on the global latent variable zg, which encodes object-level structure, and the local
latent variables zl,m, which capture coordinate-specific variations. The predictive distribution p(yT | xT , BC)
is obtained by propagating each target coordinate xT,m through the neural network, parameterized by zg

and zl,m, to model the distribution of outputs yT,m. This process directly leverages the hierarchical prior
distributions defined in Eq. (5), ensuring consistency across scales. During inference, we approximate the
predictive integrals via Monte Carlo marginalization over the hierarchical latents using the learned priors
conditioned on the context set. Implementation details are provided in Appendix D.3.

3.5 Training objective

To optimize the proposed G-NPF , we apply variational inference (Garnelo et al., 2018b) to derive the evidence
lower bound (ELBO). Specifically, we first introduce the hierarchical variational posterior:

q
(
zg, {zl,m} | xT , BT

)
=

M∏
m=1

q
(
zl,m | zg, xT,m, BT

)
q
(
zg | xT , BT

)
, (8)

where BT are target set-derived bases (available only at training). The variational posteriors are inferred from
the target set T during training with the same encoder, which introduces more information on the object.
The prior distributions are supervised by the variational posterior using Kullback–Leibler (KL) divergence,
learning to model more object information with limited context data and generalize to new scenes. The
details about the evidence lower bound (ELBO) and derivation are provided in the Appendix C.

Finally, the training objective includes reconstruction, hierarchical latent alignment, and geometric basis
regularization:

L = ||yT − y′
T ||22 + α

(
DKL

[
p(zg|BC)

∣∣∣∣ q(zg|BT )
]

+
M∑

m=1
DKL

[
p(zl,m|zg, BC)

∣∣∣∣ q(zl,m|zg, BT )
])

+ β · DKL
[
BC

∣∣∣∣BT

]
,

(9)

where y′
T denotes predictions, and α, β balance the terms. The first term enforces local reconstruction

quality, while the second ensures that the prior distributions are guided by the variational posterior using the
Kullback-Leibler (KL) divergence. The third term, the KL divergence, aligns the spatial distributions of BC

and BT , ensuring that the context bases capture the target geometry.

3.6 G-NPF in 1D, 2D, 3D

The proposed method generalizes seamlessly to 1D, 2D, and 3D signals by leveraging Gaussian structures
of corresponding dimensionality. A single global variable consistently encodes the entire signal (e.g., a 3D
object or a 2D image), ensuring unified representation. For local variables, we adopt a dimension-specific
formulation: in 1D and 2D signals, local variables are associated with individual spatial locations; while in
3D radiance fields, we developed a mechanism where a unique local variable is assigned to each camera ray,
detailed in Appendix G. This design preserves both global coherence and local adaptability across signals.

4 Experiments

To demonstrate the generality of G-NPF , we conduct extensive evaluations on, 2D image regression, 3D
novel view synthesis, and 1D signal regression, comparing against recent state-of-the-art baselines.
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Table 1: Quantitative results on 2D regression. PSNR is reported. G-NPF outperforms baseline
methods consistently on both datasets.

CelebA Imagenette
Learned Init (Tancik et al., 2021) 30.37 27.07
TransINR (Chen & Wang, 2022) 31.96 29.01
G-NPF (Ours) 33.41 29.82

Prediction GT Prediction GT

Figure 3: Visualizations of image regression re-
sults on CelebA (left) and Imagenette (right).

4.1 G-NPF in 2D image regression

We start with experiments in 2D image regression, a canonical task (Tancik et al., 2021; Sitzmann et al.,
2020b) to evaluate how well Neural Fields can fit and represent a 2D signal. Image regression treats an image
as a continuous function f : R2 → [0, 1]3 and learns f from sparse or dense pixel samples to predict color at
any queried coordinate, thereby reflecting a model’s capacity to fit and represent a new signal. At inference,
given context pixels, we infer the mapping functions for unseen images from the test set without re-training.
In this setting, the context set is an image and the task is to learn an implicit function that regresses the
image pixels accurately. Following TransINR (Chen & Wang, 2022), we resize each image into 178 × 178, and
use patch size 9 for the tokenizer. The self-attention module remains the same as our baseline, VNP (Guo
et al., 2023). For the Gaussian bases, we predict 2D Gaussians. The hierarchical latent variables are inferred
in image-level and pixel-level. We evaluate the method on two real-world image datasets as used in previous
works (Chen & Wang, 2022; Tancik et al., 2021; Gu et al., 2023). We report peak signal-to-noise ratio (PSNR;
higher is better) for comparison.

Datasets. We employ two real-world image datasets as used in previous works (Chen & Wang, 2022; Tancik
et al., 2021; Gu et al., 2023). The CelebA dataset (Liu et al., 2015) encompasses approximately 202,000
images of celebrities, partitioned into training (162,000 images), validation (20,000 images), and test (20,000
images) sets. The Imagenette dataset (Howard, 2020), a curated subset comprising 10 classes from the 1,000
classes in ImageNet (Deng et al., 2009), consists of roughly 9,000 training images and 4,000 testing images.

Results. We give quantitative comparisons with respect to PSNR in Table 1. G-NPF outperforms baselines
on both CelebA and Imagenette datasets significantly, generalizing better. Fig. 3 showcases G-NPF ’s ability
to recover high-frequency details in image regression, producing reconstructions that closely match the ground
truth with high fidelity. This highlights the effectiveness of our approach. Additional qualitative results are
provided in Appendix F.2.

Context Prediction GT Context Prediction GT

Figure 4: Image completion visualization on CelebA using 10% (left) and 20% (right) context.
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Table 2: Quantitative Comparison (PSNR) on Novel View Synthesis of ShapeNet Objects.
G-NPF outperforms baselines across categories for both 1-view and 2-view contexts. PSNR ↑ is reported.

Method Views Car Lamps Chairs
Learn Init (Tancik et al., 2021) 25 22.80 22.35 18.85
Trans-INR (Chen & Wang, 2022) 1 23.78 22.76 19.66
NeRF-VAE (Kosiorek et al., 2021) 1 21.79 21.58 17.15
PONP (Gu et al., 2023) 1 24.17 22.78 19.48
VNP (Guo et al., 2023) 1 24.21 24.10 19.54
G-NPF (Ours) 1 25.13 24.59 20.74
Trans-INR (Chen & Wang, 2022) 2 25.45 23.11 21.13
PONP Gu et al. (2023) 2 25.98 23.28 19.48
G-NPF (Ours) 2 26.39 25.32 22.68

2-View

1-View

Context GTPrediction Context Prediction Context PredictionGT GT

Context Prediction GT Context Prediction GT Context Prediction GT

Figure 5: Qualitative results of the proposed G-NPF on novel view synthesis of ShapeNet
objects. Both 1-view (top) and 2-view (bottom) context results are presented.

Image Completion. In addition, we also conduct experiments of G-NPF on image completion (also called
image inpainting), which is a more challenging variant of image regression. Essentially, only part of the pixels
are given as context, while the INR functions are required to complete the full image. Visualizations in Fig. 4
demonstrate the generalization ability of our method to recover realistic images with fine details based on
very limited context (10% − 20% pixels).

4.2 G-NPF in 3D novel view synthesis

We continue with experiments in 3D novel view synthesis, a canonical task to evaluate 3D Neural Radiance
Fields. 3D novel view synthesis (NVS) learns a continuous radiance field from a limited set of calibrated
multi-view images and renders photorealistic images from previously unseen camera poses. This setting
requires extrapolating colors along unseen rays while maintaining geometry and appearance consistency,
thus providing a stringent benchmark of neural field generalization. We follow the implementation of Guo
et al. (2023) and Chen & Wang (2022). Briefly, our input context set comprises camera rays and their
corresponding image pixels from one or two views. These are split into 256 tokens, each projected into a
512D vector via a linear layer and self-attention. Two MLPs predict 256 geometric bases: one generates 3D
Gaussian parameters, and the other outputs 32D latent representations. From these, we derive object- and
ray-specific modulating vectors (both 512D). Our NeRF function includes four layers: two modulated and
two shared layers. Further details are provided in Appendix D.1.

ShapeNet (Chang et al., 2015). We follow the data setup of (Tancik et al., 2021), with objects from
three ShapeNet categories: chairs, cars, and lamps. For each 3D object, 25 views of size 128 × 128 images
are generated from viewpoints randomly selected on a sphere. The objects in each category are divided into
training and testing sets, with each training object consisting of 25 views with known camera poses. At test
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Table 3: Quantitative Comparison on Novel View Synthesis of NeRF Synthetic. G-NPF outperforms
baselines consistently.

Models # Views PSNR (↑) SSIM (↑) LPIPS (↓)
GNT (Wang et al., 2022a) 1 10.25 0.583 0.496
G-NPF 1 20.07 0.815 0.208
GNT (Wang et al., 2022a) 2 23.47 0.877 0.151
MatchNeRF (Chen et al., 2023a) 2 20.57 0.864 0.200
GeFu (Liu et al., 2024) 2 25.30 0.939 0.082
G-NPF 2 25.66 0.926 0.081
GNT (Wang et al., 2022a) 3 25.80 0.905 0.104
MatchNeRF (Chen et al., 2023a) 3 23.20 0.897 0.164
GeFu (Liu et al., 2024) 3 26.99 0.952 0.070
G-NPF 3 27.85 0.958 0.068

time, a random input view is sampled to evaluate the performance of the novel view synthesis. Following the
setting of previous methods (Chen & Wang, 2022), we focus on the single-view (1-shot) and 2-view (2-shot)
versions of the task, where one or two images with their corresponding camera rays are provided as the
context.

We first compare with probabilistic Neural Field baselines, including NeRF-VAE (Kosiorek et al., 2021),
PONP (Gu et al., 2023), and VNP (Guo et al., 2023). Like G-NPF , PONP (Gu et al., 2023) and VNP (Guo
et al., 2023) also use Neural Processes, without, however, considering either geometric or hierarchical priors.
Secondly, we also compare with well-established deterministic Neural Fields, including LearnInit (Tancik
et al., 2021) and TransINR (Chen & Wang, 2022). We note that recent works (Liu et al., 2023; Shi et al.,
2023b) have shown that training on massive 3D datasets (Deitke et al., 2023) is highly beneficial for Neural
Radiance Fields. We leave massive-scale settings and comparisons to future work. Thirdly, to demonstrate
the flexibility of G-NPF to handle complex scenes, we integrate with GNT (Wang et al., 2022a) and conduct
experiments on the NeRF Synthetic dataset (Mildenhall et al., 2021).

Quantitative results. We show Peak Signal-to-Noise Ratio (PSNR) results in Table 2. G-NPF consistently
outperforms all other baselines across all categories by a significant margin. On average, G-NPF outperforms
the probabilistic Neural Field baselines such as VNP (Guo et al., 2023), by 0.87 PSNR, indicating that adding
structure in the form of geometric and hierarchical priors leads to better generalization. With two views for
context, G-NPF improves significantly by about 1 PSNR.

Qualitative results. In Fig. 5, we visualize the results on novel view synthesis of ShapeNet objects. G-NPF
can infer object-specific radiance fields and render high-quality 2D images of the objects from novel camera
views, even with only 1 or 2 views as context. More comparisons with VNP are provided in Appendix F.

NeRF Synthetic (Mildenhall et al., 2021). The NeRF-Synthetic dataset contains eight object-centric
scenes with complex geometry and realistic materials. For each scene, images are rendered from viewpoints
randomly sampled on a hemisphere around the object. We further evaluate on the NeRF Synthetic dataset
against recent state-of-the-art, including GNT (Wang et al., 2022a), MatchNeRF (Chen et al., 2023a), and
GeFu (Liu et al., 2024). For a fair comparison, we use the same encoder and NeRF network architecture
while integrating our probabilistic framework into GNT. Following GeFu, we assess performance in 2-view
and 3-view settings.

Quantitative results. We present results in Table 3. We observe that G-NPF surpasses GeFu by approximately
1 PSNR in the 3-view setting, validating the effectiveness of our probabilistic framework and geometric
bases. Moreover, we consider a challenging 1-view setting to examine the model’s robustness under extremely
limited context. Both Table 3 and Fig. 9 indicate that G-NPF reconstructs novel views effectively with
only a single view for context, in contrast to GNT that fails in this setting. We furthermore test cross-
category generalization for our model and GNT without retraining, training on the drums category and
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evaluating on lego. As shown in Fig. 10, G-NPF leverages the available context information more effectively,
producing higher-quality generations with better color fidelity compared to GNT. We give additional details
in Appendix F.3.

4.3 G-NPF in 1D signal regression

Following the previous works’ implementation (Guo et al., 2023; Kim et al., 2019), we conduct 1D signal
regression experiments. 1D signal regression learns a continuous function f : R→RK from samples {(ti, yi)},
where ti ∈ R is a 1D coordinate (e.g., time) and yi ∈ RK the target (scalar when K=1). Queried at
arbitrary t for interpolation or extrapolation, it provides a simple task to quantify extrapolation ability
and assess uncertainty calibration. We use synthetic functions drawn from Gaussian processes (GPs) with
RBF and Matern kernels. This kernel selection, as advocated by Kim et al. (2022), ensures diverse function
characteristics spanning smoothness, periodicity, and local variability. To evaluate performance, we adopt two
key metrics: (1) context reconstruction error, quantifying the log-likelihood of observed data points (context
set), and (2) target prediction error, measuring the log-likelihood of extrapolated predictions (target set). We
compare with, VNP (Guo et al., 2023), CNP (Garnelo et al., 2018a), and ANP (Kim et al., 2019).

Quantitative results. We present a quantitative comparison with baselines in Table 4. G-NPF consistently
outperforms the baselines across two types of synthetic data, demonstrating its effectiveness and flexibility in
different signals.

Table 4: Performance comparison on 1D signal regression. Log-likelihoods (↑) of the context set and
target set are reported.

RBF kernel GP Matern kernel GP
Method Context Target Context Target
CNP 1.023 ± 0.033 0.019 ± 0.015 0.935 ± 0.036 −0.124 ± 0.010
Stacked ANP 1.381 ± 0.001 0.400 ± 0.004 1.381 ± 0.001 0.183 ± 0.012
VNP 1.377 ± 0.004 0.651 ± 0.001 1.376 ± 0.004 0.439 ± 0.007
G-NPF 1.397 ± 0.006 0.741 ± 0.001 1.376 ± 0.004 0.545 ± 0.009

4.4 Ablations

Table 5: Importance of geometric bases
and hierarchical latent variables on a
subset of the Lamps scene synthesis (PSNR).
zg and zl are global and local latent vari-
ables, respectively. ✓ and ✗ denote whether
the component joins the pipeline or not.

BC zg zl PSNR (↑)
✗ ✓ ✓ 23.06
✓ ✗ ✗ 25.98
✓ ✓ ✗ 26.24
✓ ✗ ✓ 26.29
✓ ✓ ✓ 26.48

Importance of hierarchical latent variables. To demon-
strate the effectiveness of the hierarchical nature of G-NPF
with object-specific and ray-specific latent variables for modula-
tion, we performed an ablation study on a subset of the Lamps
dataset for fast evaluation. As shown in the last four rows
in Table 5, either object-specific or ray-specific latent variable
improves the performance of neural processes, indicating the
effectiveness of the specific function modulation. With both
zg and zl, the method performs best, demonstrating the im-
portance of the hierarchical modulation by latent variables. In
addition, the hierarchical modulation also performs well without
the geometric bases.

Importance of geometric bases. We also explore the effec-
tiveness of the proposed geometric bases. As shown in Table 5
(rows 1 and 5), with the geometric bases, G-NPF performs
clearly better. This indicates the importance of the 3D structure information modeled in the geometric bases,
which provide specific inferences of the INR function in different spatial levels. Moreover, the bases perform
well without hierarchical latent variables, demonstrating their ability to construct 3D information and reduce
misalignment between 2D and 3D spaces.
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Qualitative ablation of the hierarchical latent variables In this section, we perform a qualitative
ablation study on the hierarchical latent variables. As illustrated in Fig. 6, the absence of the global variable
prevents the model from accurately predicting the object’s outline, whereas the local variable captures
fine-grained details. When both global and local variables are incorporated, G-NPF successfully estimates
the novel view with high accuracy.

w/o global w/o local GTG-NPF

1

Context

10

148

Figure 6: Qualitative ablation of the hierarchical latent variables (global and local variables).

Table 6: Sensitivity to the number of geometric
bases on NeRF and image regression.

Image Regression NeRF
# Bases 49 169 484 100 250
PSNR (↑) 28.59 33.74 44.24 24.31 24.59

Sensitivity to the number of geometric bases.
We further analyze the sensitivity to the number of
geometric bases in the CelebA image regression and
Lamps NeRF tasks. In image regression, we resize
the images to 64 × 64 and use different patch sizes to
construct 49, 169, and 484 bases. In the NeRF task,
we keep the same setup as in Sec. 4.2 and construct
100, 250 bases. The results are provided in Table 6.
With more bases, G-NPF achieves better performance consistently, indicating that large numbers of geometric
Gaussian bases further enrich the structure information and lead to stronger predictive functions. We choose
the number of bases by balancing the performance and computational costs.

5 Related Work

Neural Fields (NeFs) and generalization. Neural Fields (NeFs) map coordinates to signals, providing a
compact and flexible continuous data representation (Sitzmann et al., 2020b; Tancik et al., 2020). They are
widely used for 3D object and scene modeling (Chen & Zhang, 2019; Park et al., 2019; Mescheder et al., 2019;
Genova et al., 2020; Niemeyer & Geiger, 2021). However, how to generalize to new scenes without retraining
remains a problem. Many previous methods attempt to use meta-learning to achieve NeF generalization.
Specifically, gradient-based meta-learning algorithms such as Model-Agnostic Meta Learning (MAML) (Finn
et al., 2017) and Reptile (Nichol et al., 2018) have been used to adapt NeFs to unseen data samples in a
few gradient steps (Lee et al., 2021; Sitzmann et al., 2020a; Tancik et al., 2021). Another line of work uses
HyperNet (Ha et al., 2016) to predict modulation vectors for each data instance, scaling and shifting the
activations in all layers of the shared MLP (Mehta et al., 2021; Dupont et al., 2022a;b). Some methods
use HyperNet to predict the weight matrix of NeF functions (Dupont et al., 2021b; Zhang et al., 2023).
Transformers (Vaswani et al., 2017) have also been used as hypernetworks to predict column vectors in the
weight matrix of MLP layers (Chen & Wang, 2022; Dupont et al., 2022b). In addition, Reizenstein et al.
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(2021); Wang et al. (2022a) use transformers specifically for NeRF. Such methods are deterministic and
do not consider the uncertainty of a scene when only partially observed. Other approaches model NeRF
from a probabilistic perspective (Kosiorek et al., 2021; Hoffman et al., 2023; Dupont et al., 2021b; Moreno
et al., 2023; Erkoç et al., 2023). For instance, NeRF-VAE (Kosiorek et al., 2021) learns a distribution over
radiance fields using latent scene representations based on VAE (Kingma & Welling, 2013) with amortized
inference. Normalizing flow (Winkler et al., 2019) has also been used with variational inference to quantify
uncertainty in NeRF representations (Shen et al., 2022; Wei et al., 2023). However, these methods do not
consider potential structural information, such as the geometric characteristics of signals, which our approach
explicitly models.

Generalizable Neural Radiance Fields (NeRF). PixelNeRF (Yu et al., 2021) is the seminal work
that learns a scene prior for reconstructing NeRFs from one or a few images. Wang et al. (2022a) propose
an attention-based NeRF architecture, demonstrating enhanced capabilities in capturing complex scene
geometries by focusing on informative regions. Suhail et al. (2022) introduce a generalizable patch-based
neural rendering approach, enabling models to adapt to new scenes without retraining. Xu et al. (2022)
present Point-NeRF, leveraging point-based representations for efficient scene modeling and scalability. Wang
et al. (2024) further enhance point-based methods by incorporating visibility and feature augmentation to
improve robustness and generalization. Liu et al. (2024) propose a geometry-aware reconstruction with
fusion-refined rendering for generalizable NeRFs, improving geometric consistency and visual fidelity. Recent
diffusion-based 3D methods (Szymanowicz et al., 2023; Anciukevičius et al., 2024) learn data-level score
priors over viewsets/IB-planes and adapt to each new scene via a diffusion process. By contrast, we adopt
a meta-learning (Neural-Process) formulation that learns a task-level prior over neural fields across scenes,
enabling amortized, single-pass adaptation from a sparse context to a full scene representation, i.e., few-shot
generalization across scenes.

Neural Processes. Neural Processes (NPs) (Garnelo et al., 2018b) is a meta-learning framework that char-
acterizes distributions over functions, enabling probabilistic inference, rapid adaptation to novel observations,
and the capability to estimate uncertainties. This framework is divided into two classes of research. The first
one concentrates on the marginal distribution of latent variables (Garnelo et al., 2018b), whereas the second
targets the conditional distributions of functions given a set of observations (Garnelo et al., 2018a; Gordon
et al., 2019). Typically, MLP is employed in Neural Processes methods. To improve this, Attentive Neural
Processes (ANP) (Kim et al., 2019) integrate the attention mechanism to improve the representation of
individual context points. Similarly, Transformer Neural Processes (TNP) (Nguyen & Grover, 2022) view each
context point as a token and utilize transformer architecture to effectively approximate functions. Additionally,
the Versatile Neural Process (VNP) (Guo et al., 2023) employs attentive neural processes for neural field
generalization but does not consider the information misalignment between the 2D context set and the 3D
target points (i.e., 2D pixels are radiance integrals along camera rays rather than pointwise samples of the 3D
field, so occlusion, view-dependence, and depth ambiguity induce a many-to-one, projection-induced mismatch
between observed contexts and 3D targets). The hierarchical structure in VNP is more sequential than
global-to-local. Conversely, PONP (Gu et al., 2023) is agnostic to neural-field specifics and concentrates on the
neural process perspective. Although both our approach and PONP (Gu et al., 2023) use the neural-process
paradigm, our model introduces an explicit hierarchical latent structure with geometric bases. By contrast,
PONP does not explicitly parameterize such structural information. In this work, we consider a hierarchical
neural process to model the structural information of the scene.

6 Conclusion

In this paper, we addressed the challenge of Neural Field (NeF) generalization, enabling models to rapidly
adapt to new signals with limited observations. To achieve this, we proposed Geometric Neural Processes
(G-NPF), a probabilistic neural radiance field that explicitly captures uncertainty. By formulating neural
field generalization in a probabilistic framework, G-NPF incorporates uncertainty and infers NeF function
distributions directly from sparse context images. To embed structural priors, we introduce geometric bases,
which learn to provide structured spatial information. Additionally, our hierarchical neural process modeling
leverages both global and local latent variables to parameterize NeFs effectively. In practice, G-NPF extends
to 1D, 2D, and 3D signal generalization, demonstrating its versatility across different modalities.
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A Appendix

B Neural Radiance Field Rendering

In this section, we outline the rendering function of NeRF (Mildenhall et al., 2021). A 5D neural radiance
field represents a scene by specifying the volume density and the directional radiance emitted at every point
in space. NeRF calculates the color of any ray traversing the scene based on principles from classical volume
rendering (Kajiya & Von Herzen, 1984). The volume density σ(x) quantifies the differential likelihood of a ray
terminating at an infinitesimal particle located at x. The anticipated color C(r) of a camera ray r(t) = o + td,
within the bounds tn and tf , is determined as follows:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, where T (t) = exp
(

−
∫ t

tn

σ(r(s))ds

)
. (10)

Here, the function T (t) represents the accumulated transmittance along the ray from tn to t, which is the
probability that the ray travels from tn to t without encountering any other particles. To render a view from
our continuous neural radiance field, we need to compute this integral C(r) for a camera ray traced through
each pixel of the desired virtual camera.

C Hierarchical ELBO Derivation

Recall the hierarchical predictive distribution:

p
(
yT | xT , BC

)
=
∫ [∫

p
(
yT | zg, zl, xT , BC

)
p
(
zl | zg, xT , BC

)
dzl

]
p
(
zg | xT , BC

)
dzg, (11)

and its factorized version across M target points:

p(yT | xT , BC) =
∫

p
(
zg | xT , BC

)[ M∏
m=1

∫
p
(
yT,m | zg, zl,m, xT,m, BC

)
p
(
zl,m | zg, xT,m, BC

)
dzl,m

]
dzg.

We introduce a hierarchical variational posterior:

q
(
zg, {zl,m} | xT , BT

)
= q

(
zg | xT , BT

) M∏
m=1

q
(
zl,m | zg, xT,m, BT

)
,

where BT are target-derived bases (available only at training). We then write the log-likelihood as

log p
(
yT | xT , BC

)
= log

∫ ∫
p
(
yT , zg, {zl,m} | xT , BC

) q
(
zg, {zl,m} | xT , BT

)
q
(
zg, {zl,m} | xT , BT

) dzl dzg

= log
∫

p
(
zg | xT , BC

) q
(
zg | xT , BT

)
q
(
zg | xT , BT

)[∫ p
(
yT , {zl,m} | zg, xT , BC

) q
(
{zl,m} | zg, xT , BT

)
q
(
{zl,m} | zg, xT , BT

) dzl

]
dzg .

(12)

We first apply Jensen’s inequality w.r.t. q(zg | xT , BT ). This yields:

log p
(
yT | xT , BC

)
≥ Eq(zg|xT ,BT )

[
log
∫

p
(
yT , {zl,m} | zg, xT , BC

) q
(
{zl,m} | zg, xT , BT

)
q
(
{zl,m} | zg, xT , BT

) dzl

]
− DKL

(
q(zg | xT , BT ) ∥ p(zg | xT , BC)

)
.

(13)

Inside the expectation over zg, we have

log
∫

p
(
yT , {zl,m} | zg, xT , BC

) q
(
{zl,m} | zg, xT , BT

)
q
(
{zl,m} | zg, xT , BT

) dzl .
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We again apply Jensen’s inequality w.r.t. q({zl,m} | zg, xT , BT ), factorizing over m:

log
∫

p
(
yT , {zl,m} | zg, xT , BC

)q
(
{zl,m} | zg, xT , BT

)
q
(
{zl,m} | zg, xT , BT

) dzl

≥ Eq({zl,m}|zg,xT ,BT )

[
log p

(
yT | zg, {zl,m}, xT , BC

)]
−

M∑
m=1

DKL

(
q
(
zl,m | zg, xT,m, BT

) ∥∥ p
(
zl,m | zg, xT,m, BC

))
.

(14)

Putting this back into Eq. (13), we arrive at the hierarchical ELBO:

log p
(
yT | xT , BC

)
≥ Eq(zg|xT ,BT )

[
M∑

m=1
Eq(zl,m|zg,xT,m,BT )

[
log p

(
yT,m | zg, zl,m, xT,m, BC

)]
−

M∑
m=1

DKL

(
q
(
zl,m | zg, xT,m, BT

)
∥ p
(
zl,m | zg, xT,m, BC

))]
− DKL

(
q
(
zg | xT , BT

)
∥ p
(
zg | xT , BC

))
.

(15)

The first expectation over q(zg | xT , BT ) enforces global consistency and penalizes deviations from the prior
p(zg | xT , BC). The second set of expectations over q(zl,m | zg, xT,m, BT ) shapes local reconstruction quality
(via the log-likelihood) and penalizes deviations from the local prior p(zl,m | zg, xT,m, BC).

Hence, the final ELBO (Eq. (15)) combines these outer and inner regularization terms with the expected
log-likelihood of the target data yT . This allows the model to learn coherent global structure as well as local
(coordinate-specific) details in a principled way.

D Implementation Details

D.1 Gaussian Construction

Since 3D Gaussians represent a special case involving quaternion-based transformations, we use them here as
an illustrative example for constructing geometric bases. However, the method remains consistent with the
construction of 1D and 2D Gaussian geometric bases.

Geometric Bases with 3D Gaussians. To impose geometric structure on the context variables, we
encode the context set {xC , yC} into a set of M geometric bases:

BC =
{

br

}R

r=1
, where br =

(
N
(
µr, Σr

)
, ωr

)
. (16)

Each basis br is thus defined by a 3D Gaussian N(µr, Σr) and an associated semantic embedding ωr. The
center µr ∈ R3 and covariance Σi ∈ R3×3 capture location and shape, while ωr ∈ RdB represents additional
learned properties (e.g., color or texture). In our implementation, dB = 32.

Self-Attention Construction. We use a self-attention module, denoted Att, to extract these Gaussian
parameters from the context data. Concretely,

µi, Σi = Att
(
xC , yC

)
, ωi = Att

(
xC , yC

)
, (17)

where each call to Att produces M tokens of hidden dimension D. An MLP then maps each token into a
10-dimensional vector encoding: (i) the 3D center µi, (ii) a 3D scaling vector si, and (iii) a 4D quaternion qi

that, together, define the rotation matrix Ri. Following Kerbl et al. (2023), we obtain the covariance Σi via

Σi = Ri

(
SiS⊤

i

)
R⊤

i , (18)
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Transformer Encoder

Linear

Linear

Figure 7: Using transformer encoder to generate ray-specific latent variable zl.

where Si = diag(si) ∈ R3×3 is the scaling matrix and Ri ∈ R3×3 is derived from qi. A separate MLP outputs
the 32-dimensional embedding ωi. Consequently, each bi is a fully parameterized 3D Gaussian plus a semantic
vector, allowing the model to represent rich geometric information inferred from the context set.

D.2 Hierarchical Latent Variables

At the object level, the distribution of the global latent variable zg is obtained by aggregating all location
representations from (BC , xT ). We assume that p(zg | BC , xT ) follows a standard Gaussian distribution, and
we generate its mean µg and variance σg using MLPs. We then sample a global modulation vector, ẑg, from
its prior distribution p(zg | xT , BC).

Similarly, as shown in Fig. 7, we aggregate information for each target coordinate xT,m using BC , which is
then processed through a Transformer along with ẑg to predict the local latent variable zl,m for each target
point. The mean µl,m and variance σl,m of zl,m are obtained via MLPs.

D.3 Modulation

We use modulation to the latent variables for modulating the MLP are represented as [zg; zl]. Our approach
to the modulated MLP layer follows the style modulation techniques described in (Karras et al., 2020; Guo
et al., 2023). Specifically, we consider the weights of an MLP layer (or 1x1 convolution) as W ∈ Rdin×dout ,
where din and dout are the input and output dimensions respectively, and wij is the element at the i-th row
and j-th column of W .

To generate the style vector s ∈ Rdin , we pass the latent variable z through two MLP layers. Each element si

of the style vector s is then used to modulate the corresponding parameter in W .

w′
ij = si · wij , j = 1, . . . , dout, (19)

where wij and w′
ij denote the original and modulated weights, respectively.

The modulated weights are normalized to preserve training stability,

w′′
ij =

w′
ij√∑

i w′2
ij + ϵ

, j = 1, . . . , dout. (20)

E Implementation Details

We train all our models with PyTorch. Adam optimizer is used with a learning rate of 1e−4. For NeRF-related
experiments, we follow the baselines (Chen & Wang, 2022; Guo et al., 2023) to train the model for 1000
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epochs. All experiments are conducted on four NVIDIA A6000 GPUs. For the hyperparameters α and β, we
simply set them as 0.001.

Model Complexity The comparison of the number of parameters is presented in Table. 7. Our method,
G-NPF , utilizes fewer parameters than the baseline, VNP, while achieving better performance on the ShapeNet
Car dataset in terms of PSNR.

Table 7: Comparison of the number of parameters and PSNR on the ShapeNet Car dataset.

Method # Parameters PSNR
VNP 34.3M 24.21
G-NPF 24.0M 25.13

F More Experimental Results

Figure 8: More image regression results on the Imagenette dataset. Left: ground truth; Right:
prediction.
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F.1 More Metrics

We include the SSIM and LPIPS metrics for both the image regression and ShapeNet reconstruction tasks.
Following the NeF generalization setting (Trans-INR (Chen & Wang, 2022); VNP (Guo et al., 2023)), which
do not originally report these metrics, we computed the scores as follows: for 3D reconstruction, we used the
pretrained weights provided by VNP; for 2D image regression, we re-ran the publicly available Trans-INR
implementation and calculated the metrics accordingly. As shown in Table 8 and Table 9, our method
consistently achieves higher SSIM and lower LPIPS scores than the baseline, indicating improved structural
similarity and perceptual quality.

Table 8: Comparison of PSNR, SSIM, and LPIPS for car, lamps, and chair categories.

Car PSNR ↑ SSIM ↑ LPIPS ↓
VNP (Guo et al., 2023) 24.21 0.92 0.13
Ours 25.13 0.95 0.11

Lamps PSNR ↑ SSIM ↑ LPIPS ↓
VNP (Guo et al., 2023) 24.10 0.91 0.16
Ours 24.59 0.92 0.14

Chair PSNR ↑ SSIM ↑ LPIPS ↓
VNP (Guo et al., 2023) 19.54 0.83 0.22
Ours 20.74 0.87 0.19

Table 9: Results on CelebA and Imagenette.

CelebA Imagenette
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Trans-INR (Chen & Wang, 2022) 31.96 0.92 0.07 29.01 0.86 0.14
Ours 33.41 0.96 0.04 29.82 0.93 0.09

F.2 Image Regression

We provide more image regression results to demonstrate the effectiveness of our method as shown in Fig. 8.

F.3 Comparison with other baselines.

Comparison with GNT For fair comparison, we use GNT’s image encoder and predict the geometric
bases, and GNT’s NeRF’ network for prediction. Fig. 9 shows that our method is effective when very limited
context information is given, while GNT fails. This indicates that our method can sufficiently utilize the
given information.

Cross-Category Example. In our NeRF-synthetic experiments, “generalization” follows the standard
protocol and refers to novel-view prediction within a scene rather than across scenes. Our formulation is
NP-like but targets a distribution over location-specific functions (i.e., the conditional radiance field given
a context set for that scene), not a distribution over functions across a large meta-dataset of scenes. For
the cross-scene function distribution, we additionally perform cross-category evaluation without retraining
the model. The model is trained on drums category and evaluated on lego. As shown in Figure 10, G-NPF
leverages the available context information more effectively, producing higher-quality generations with better
color fidelity compared to GNT.
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GeomNP

GT

GNT

Figure 9: Qualitative comparison with GNT on 1-view setting.

GeomNP

GT

GNT

Figure 10: Qualitative comparison of cross-category ability. Methods are trained on the Drums
category and evaluated on LEGO.
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Comparison with Viewset Diffusion We also compare against Viewset Diffusion (Szymanowicz et al.,
2023). Concretely, we adopt its encoder as the backbone to estimate our geometric bases and then apply our
hierarchical modulation for reconstruction. Under the ShapeNet Car setting of Viewset Diffusion (Table 10),
our method achieves higher PSNR and SSIM and lower LPIPS than the baseline.

Table 10: ShapeNet Car results using the Viewset Diffusion backbone. Higher is better for PSNR/SSIM;
lower is better for LPIPS.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Viewset Diffusion (Szymanowicz et al., 2023) 28.00 0.871 0.167
Ours 28.68 0.892 0.153

F.4 More results on ShapeNet

In this section, we demonstrate more experimental results on the novel view synthesis task on ShapeNet in
Fig 11, comparison with VNP Guo et al. (2023) in Fig. 12, and image regression on the Imagenette dataset
in Fig. 8. The proposed method is able to generate realistic novel view synthesis and 2D images.

2-View

Context Prediction GT Context Prediction GT Context Prediction GT

1-View

Context GTPrediction Context Prediction Context PredictionGT GT

Figure 11: More NeRF results on novel view synthesis task on ShapeNet objects.

F.5 Training Time Comparison

As illustrated in Fig.14, with the same training time, our method (G-NPF) demonstrates faster convergence
and higher final PSNR compared to the baseline (VNP).

F.6 Diverse Sampling

We provide qualitative examples and quantitative results for the image completion task. The results
demonstrate that our method can generate outputs that are both visually similar to the ground truth and
exhibit meaningful diversity across samples.

We also present the results with respect to different context ratio in Table 11. We report quantitative results
under limited context. Specifically, we evaluate with 5%, 10%, and 50% of pixels provided as context. As
shown in Table 11, performance improves as more context is available.
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Comparison with VNP

Context OursVNP GT VNP OursContext GT

Figure 12: Comparison between the proposed method and VNP on novel view synthesis task for
ShapeNet objects. Our method has a better rendering quality than VNP for novel views.

Figure 13: Training time vs. PSNR on the ShapeNet Car dataset. Our method (G-NPF) demonstrates
faster convergence and higher final PSNR compared to the baseline (VNP).

Context

5% 10% 100% 5% 10% 100%

Sample1

Sample2

Sample3

Figure 14: Diverse sampling under varying numbers of context pixels.
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Table 11: PSNR versus the ratio of context pixels.

Ratio of context pixels PSNR
5% 22.61
10% 24.62
50% 28.75

Figure 15: Uncertainty Map of the predictions. Edges of objects have higher uncertainty since it is more
challenging for the model to capture the detailed, sharp changes at the edges. Colormap denotes per-pixel
predictive variance (brighter indicates larger variance).

F.7 Uncertainty

Uncertainty Visualization. As a probabilistic framework, our method can provide uncertainty estimation.
To obtain the uncertainty map, we sample ten times from the predicted prior distribution to generate
corresponding images and then use the variance map to represent the uncertainty. As shown in Fig. 15, high
uncertainty is concentrated around the edges, which is expected, as capturing detailed, sharp changes at the
edges is more challenging for the model. Additionally, we provide uncertainty maps for image completion
under limited context. To demonstrate the relationship between the sparsity of the context pixels and the
uncertainty, we use the distance to the nearest context pixel to quantify local sparsity (larger distances
indicate sparser context). Specifically, we use quantile binning of the distance values (e.g., 12 bins) so each
bin spans a similar fraction of pixels. For each bin, we report the mean uncertainty and its standard error
and plot these against the bin centers, providing a stable, interpretable trend of how uncertainty evolves as
locations move farther from the available context. We consider two masking schemes: random masking and
lower-half masking. As shown in Fig. 16, predictive uncertainty increases with the distance to the nearest
context pixel. As shown in Fig. 17, uncertainty concentrates in the masked lower half where no context pixels
are provided. With sparse context, the model admits multiple plausible completions, resulting in higher
predictive variance; with richer context, the model concentrates, yielding sharper, lower-variance maps that
correlate with reconstruction error.

F.8 More multi-view reconstruction results

We integrate our method into GNT (Wang et al., 2022a) framework and perform experiments on the Drums
class of the NeRF synthetic dataset. Qualitative comparisons of multi-view results are presented in Fig. 18.

G Extending G-NPF to NeRFs

Notations. We denote 3D world coordinates by p = (x, y, z) and a camera viewing direction by d = (θ, ϕ).
Each point in 3D space have its color c(p, d), which depends on the location p and viewing direction d. Points
also have a density value σ(p) that encodes opacity. We represent coordinates and view direction together
as x = {p, d}, color and density together as y(p, d) = {c(p, d), σ(p)}. When observing a 3D object from
multiple locations, we denote all 3D points as X = {xn}N

n=1 and their colors and densities as Y = {yn}N
n=1.
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Figure 16: Uncertainty maps for image completion (random masking). Shown are the context image
(left), the uncertainty–distance to nearest context curve (middle), and the uncertainty map (right). Local
sparsity is quantified by the distance to the nearest context pixel (larger distances imply sparser context).
To relate sparsity to uncertainty, we quantile-bin the distance values (e.g., 12 equal-mass bins) and plot the
bin-wise mean predictive uncertainty with standard errors. Predictive uncertainty increases with distance to
the nearest context pixel. Colormap denotes per-pixel predictive variance (brighter indicates larger variance).

Figure 17: Uncertainty maps for image completion (lower-half masked). Uncertainty concentrates in
the lower half where no context pixels are given. Colormap denotes per-pixel predictive variance (brighter
indicates larger variance).
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GeomNP
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GNT

Figure 18: Qualitative comparisons of Multi-view results on the Drums class of the NeRF
synthetic dataset.

Assuming a ray r = (o, d) starting from the camera origin o and along direction d, we sample P points along
the ray, with xr = {xr

i }P
i=1 and corresponding colors and densities yr = {yr

i }P
i=1. Further, we denote the

observations X̃ and Ỹ as: the set of camera rays X̃ = {x̃n = rn}N
n=1 and the projected 2D pixels from the

rays Ỹ = {ỹn}N
n=1.

Integration

3D points in a ray:

Rendering

Camera ray:
2D pixel on image:3D colors and densities:

Figure 19: Complete rendering from 3D points to a 2D pixel.

Background on Neural Radiance Fields. We formally describe Neural Radiance Field (NeRF) (Mildenhall
et al., 2021; Arandjelović & Zisserman, 2021) as a continuous function fNeRF : x 7→ y, which maps 3D world
coordinates p and viewing directions d to color and density values y. That is, a NeRF function, fNeRF, is a
neural network-based function that represents the whole 3D object (e.g., a car in Fig. 19) as coordinates to
color and density mappings. Learning a NeRF function of a 3D object is an inverse problem where we only
have indirect observations of arbitrary 2D views of the 3D object, and we want to infer the entire 3D object’s
geometry and appearance. With the NeRF function, given any camera pose, we can render a view on the
corresponding 2D image plane by marching rays and using the corresponding colors and densities at the 3D
points along the rays. Specifically, given a set of rays r with view directions d, we obtain a corresponding
2D image. The integration along each ray corresponds to a specific pixel on the 2D image using the volume
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rendering technique described in Kajiya & Von Herzen (1984), which is also illustrated in Fig. 19. Details
about the integration are given in Appendix B.

G.1 Probabilistic NeRF Generalization

Deterministic Neural Radiance Fields Neural Radiance Fields are normally considered as an optimiza-
tion routine in a deterministic setting (Mildenhall et al., 2021; Barron et al., 2021), whereby the function
fNeRF fits specifically to the available observations (akin to “overfitting” training data).

Probabilistic Neural Radiance Fields As we are not just interested in fitting a single and specific 3D
object but want to learn how to infer the Neural Radiance Field of any 3D object, we focus on probabilistic
Neural Radiance Fields with the following factorization:

p(Ỹ|X̃) ∝ p(Ỹ|Y, X)︸ ︷︷ ︸
Integration

p(Y|X)︸ ︷︷ ︸
NeRF Model

p(X|X̃)︸ ︷︷ ︸
Sampling

. (21)

The generation process of this probabilistic formulation is as follows. We first start from (or sample) a set of
rays X̃. Conditioning on these rays, we sample 3D points in space X

∣∣X̃. Then, we map these 3D points into
their colors and density values with the NeRF function, Y = fNeRF(X). Last, we sample the 2D pixels of
the viewing image that corresponds to the 3D ray Ỹ|Y, X with a probabilistic process. This corresponds to
integrating colors and densities Y along the ray on locations X.

The probabilistic model in Eq. (21) is for a single 3D object, thus requiring optimizing a function fNeRF
afresh for every new object, which is time-consuming. For NeRF generalization, we accelerate learning and
improve generalization by amortizing the probabilistic model over multiple objects, obtaining per-object
reconstructions by conditioning on context sets X̃C , ỸC . For clarity, we use (·)C to indicate context sets with
a few new observations for a new object, while (·)T indicates target sets containing 3D points or camera rays
from novel views of the same object. Thus, we formulate a probabilistic NeRF for generalization as:

p(ỸT |X̃T , X̃C , ỸC) ∝

p(ỸT |YT , XT )︸ ︷︷ ︸
Integration

p(YT |XT , X̃C , ỸC)︸ ︷︷ ︸
NeRF Generalization

p(XT |X̃T )︸ ︷︷ ︸
Sampling

. (22)

As this paper focuses on generalization with new 3D objects, we keep the same sampling and integrating pro-
cesses as in Eq. (21). We turn our attention to the modeling of the predictive distribution p(YT |XT , X̃C , ỸC)
in the generalization step, which implies inferring the NeRF function.

Misalignment between 2D context and 3D structures It is worth mentioning that the predictive
distribution in 3D space is conditioned on 2D context pixels with their ray {X̃C , ỸC} and 3D target points
XT , which is challenging due to potential information misalignment. Thus, we need strong inductive biases
with 3D structure information to ensure that 2D and 3D conditional information is fused reliably.

G.2 Geometric Bases

To mitigate the information misalignment between 2D context views and 3D target points, we introduce
geometric bases BC = {bi}M

i=1, which induces prior structure to the context set {X̃C , ỸC} geometrically. M
is the number of geometric bases.

Each geometric basis consists of a Gaussian distribution in the 3D point space and a semantic representation,
i.e., bi = {N (µi, Σi); ωi}, where µi and Σi are the mean and covariance matrix of i-th Gaussian in 3D space,
and ωi is its corresponding latent representation. Intuitively, the mixture of all 3D Gaussian distributions
implies the structure of the object, while ωi stores the corresponding semantic information. In practice, we
use a transformer-based encoder to learn the Gaussian distributions and representations from the context sets,
i.e., {(µi, Σi, ωi)} = Encoder[X̃C , ỸC ]. Detailed architecture of the encoder is provided in Appendix D.1.
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Figure 20: Illustration of our Geometric Neural Processes. We cast radiance field generalization as a
probabilistic modeling problem. Specifically, we first construct geometric bases BC in 3D space from the 2D
context sets X̃C , ỸC to model the 3D NeRF function (Section G.2). We then infer the NeRF function by
modulating a shared MLP through hierarchical latent variables zo, zr and make predictions by the modulated
MLP (Section G.3). The posterior distributions of the latent variables are inferred from the target sets
X̃T , ỸT , which supervises the priors during training (Section G.4).

With the geometric bases BC , we review the predictive distribution from p(YT |XT , X̃C , ỸC) to p(YT |XT , BC).
By inferring the function distribution p(fNeRF), we reformulate the predictive distribution as:

p(YT |XT , BC) =
∫

p(YT |fNeRF, XT )p(fNeRF|XT , BC)dfNeRF, (23)

where p(fNeRF|XT , BC) is the prior distribution of the NeRF function, and p(YT |fNeRF, XT ) is the likelihood
term. Note that the prior distribution of the NeRF function is conditioned on the target points XT and the
geometric bases BC . Thus, the prior distribution is data-dependent on the target inputs, yielding a better
generalization on novel target views of new objects. Moreover, since BC is constructed with continuous
Gaussian distributions in the 3D space, the geometric bases can enrich the locality and semantic information
of each discrete target point, enhancing the capture of high-frequency details (Chen et al., 2023b; 2022; Müller
et al., 2022).

G.3 Geometric Neural Processes with Hierarchical Latent Variables

With the geometric bases, we propose Geometric Neural Processes (G-NPF) by inferring the NeRF
function distribution p(fNeRF|XT , BC) in a probabilistic way. Based on the probabilistic NeRF generalization
in Eq. (22), we introduce hierarchical latent variables to encode various spatial-specific information into
p(fNeRF|XT , BC), improving the generalization ability in different spatial levels. Since all rays are independent
of each other, we decompose the predictive distribution in Eq. (23) as:

p(YT |XT , BC) =
N∏

n=1
p(yr,n

T |xr,n
T , BC), (24)

where the target input XT consists of N × P location points {xr,n
T }N

n=1 for N rays.

Further, we develop a hierarchical Bayes framework for G-NPF to accommodate the data structure of the
target input XT in Eq. (24). We introduce an object-specific latent variable zo and N individual ray-specific
latent variables {zn

r }N
n=1 to represent the randomness of fNeRF.
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Ray-specific 

Object-specific 

Figure 21: Graphical model for the proposed geometric neural processes.

Within the hierarchical Bayes framework, zo encodes the entire object information from all target inputs
and the geometric bases {XT , BC} in the global level; while every zn

r encodes ray-specific information from
{xr,n

T , BC} in the local level, which is also conditioned on the global latent variable zo. The hierarchical
architecture allows the model to exploit the structure information from the geometric bases BC in different
levels, improving the model’s expressiveness ability. By introducing the hierarchical latent variables in
Eq. (24), we model G-NPF as:

p(YT |XT , BC) =
∫ N∏

n=1

{∫
p(yr,n

T |xr,n
T , BC , zn

r , zo)

p(zn
r |zo, xr,n

T , BC)dzn
r

}
p(zo|XT , BC)dzo,

(25)

where p(yr,n
T |xr,n

T , BC , zo, zi
r) denotes the ray-specific likelihood term. In this term, we use the hierarchical

latent variables {zo, zi
r} to modulate a ray-specific NeRF function fNeRF for prediction, as shown in Fig. 20.

Hence, fNeRF can explore global information of the entire object and local information of each specific ray,
leading to better generalization ability on new scenes and new views. A graphical model of our method is
provided in Fig. 21.

In the modeling of G-NPF , the prior distribution of each hierarchical latent variable is conditioned on the
geometric bases and target input. We first represent each target location by integrating the geometric bases,
i.e., < xn

T , BC >, which aggregates the relevant locality and semantic information for the given input. Since
BC contains M Gaussians, we employ a Gaussian radial basis function in Eq. (26) between each target input
xn

T and each geometric basis bi to aggregate the structural and semantic information to the 3D location
representation. Thus, we obtain the 3D location representation as follows:

< xn
T , BC >= MLP

[ M∑
i

exp(−1
2(xn

T − µi)T Σ−1
i (xn

T − µi)) · ωi

]
, (26)

where MLP[·] is a learnable neural network. With the location representation < xn
T , BC >, we next infer each

latent variable hierarchically, in object and ray levels.

Object-specific Latent Variable. The distribution of the object-specific latent variable zo is obtained by
aggregating all location representations:

[µo, σo] = MLP
[ 1

N × P

N∑
n=1

∑
r

< xn
T , BC >

]
, (27)

where we assume p(zo|BC , XT ) is a standard Gaussian distribution and generate its mean µo and variance
σo by a MLP. Thus, our model captures objective-specific uncertainty in the NeRF function.

Ray-specific Latent Variable. To generate the distribution of the ray-specific latent variable, we first
average the location representations ray-wisely. We then obtain the ray-specific latent variable by aggregating
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the averaged location representation and the object latent variable through a lightweight transformer. We
formulate the inference of the ray-specific latent variable as:

[µr, σr] = Transformer
[
MLP[ 1

P

∑
r

< xn
T , BC >]; ẑo

]
, (28)

where ẑo is a sample from the prior distribution p(zo|XT , BC). Similar to the object-specific latent variable,
we also assume the distribution p(zn

r |zo, xr,n
T , BC) is a mean-field Gaussian distribution with the mean µr

and variance σr. We provide more details of the latent variables in Appendix D.2.

NeRF Function Modulation. With the hierarchical latent variables {zo, zn
r }, we modulate a neural

network for a 3D object in both object-specific and ray-specific levels. Specifically, the modulation of each
layer is achieved by scaling its weight matrix with a style vector (Guo et al., 2023). The object-specific latent
variable zo and ray-specific latent variable zn

r are taken as style vectors of the low-level layers and high-level
layers, respectively. The prediction distribution p(YT |XT , BC) are finally obtained by passing each location
representation through the modulated neural network for the NeRF function. More details are provided in
Appendix D.3.

G.4 Empirical Objective

Evidence Lower Bound. To optimize the proposed G-NPF , we apply variational inference (Garnelo et al.,
2018b) and derive the evidence lower bound (ELBO) as:

log p(YT |XT , BC) ≥

Eq(zo|BT ,XT )

{ N∑
n=1

Eq(zn
r |zo,xr,n

T
,BT) log p(yr,n

T |xr,n
T , zo, zn

r )

− DKL[q(zn
r |zo, xr,n

T , BT )||p(zn
r |zo, xr,n

T , BC)]
}

− DKL[q(zo|BT , XT )||p(zo|BC , XT )],

(29)

where qθ,ϕ(zo, {zi
r}N

i=1|XT , BT ) = ΠN
i=1q(zn

r |zo, xr,n
T , BT )q(zo|BT , XT ) is the involved variational posterior

for the hierarchical latent variables. BT is the geometric bases constructed from the target sets {X̃T , ỸT },
which are only accessible during training. The variational posteriors are inferred from the target sets during
training, which introduces more information on the object. The prior distributions are supervised by the
variational posterior using Kullback–Leibler (KL) divergence, learning to model more object information
with limited context data and generalize to new scenes. Detailed derivations are provided in Appendix G.5.

For the geometric bases BC , we regularize the spatial shape of the context geometric bases to be closer to
that of the target one BT by introducing a KL divergence. Therefore, given the above ELBO, our objective
function consists of three parts: a reconstruction loss (MSE loss), KL divergences for hierarchical latent
variables, and a KL divergence for the geometric bases. The empirical objective for the proposed G-NPF is
formulated as:

LG-NPF = ||y − y′||22 + α ·
(
DKL[p(zo|BC)|q(zo|BT )]

+ DKL[p(zr|zo, BC)|q(zr|zo, BT )]
)

+ β · DKL[BC , BT ],
(30)

where y′ is the prediction. α and β are hyperparameters to balance the three parts of the objective. The KL
divergence on BC , BT is to align the spatial location and the shape of two sets of bases.
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G.5 Derivation of Evidence Lower Bound

Evidence Lower Bound. We optimize the model via variational inference (Garnelo et al., 2018b), deriving
the evidence lower bound (ELBO):

log p(YT | XT , BC) ≥

Eq(zg|XT ,BT )

[
M∑

m=1
Eq(zm

l
|zg,xm

T
,BT ) log p(ym

T | zg, zm
l , xm

T )

− DKL

[
q(zm

l |zg, xm
T , BT )

∣∣∣∣ p(zm
l |zg, xm

T , BC)
]]

− DKL

[
q(zg|XT , BT )

∣∣∣∣ p(zg|XT , BC)
]
,

(31)

where the variational posterior factorizes as q(zg, {zm
l }M

m=1|XT , BT ) = q(zg|XT , BT )
∏M

m=1 q(zm
l |zg, xm

T , BT ).
Here, BT denotes geometric bases constructed from target data {X̃T , ỸT } (available only during training).
The KL terms regularize the hierarchical priors p(zg|BC) and p(zm

l |zg, BC) to align with variational posteriors
inferred from BT , enhancing generalization to context-only settings.
The propose G-NPF is formulated as:

p(YT |XT , BC) =
∫ N∏

n=1

{∫
p(yr,n

T |xr,n
T , BC , zn

r , zo, )p(rn|zo, xr,n
T , BC)dzn

r

}
p(zo|XT , BC)dzo, (32)

where p(zo|BC , XT ) and p(zn
r |zo, xr,n

T , BC) denote prior distributions of a object-specific and each ray-specific
latent variables, respectively. Then, the evidence lower bound is derived as follows.

log p(YT |XT , BC)

= log
∫ N∏

n=1

{∫
p(yr,n

T |xr,n
T , zo, zn

r )p(zn
r |zo, xr,n

T , BC)dzn
r

}
p(zo|BC , XT )dzo

= log
∫ N∏

i=1

{∫
p(yr,n

T |xr,n
T , zo, zn

r )p(zn
r |zo, xr,n

T , BC)q(zn
r |zo, xr,n

T , BT)
q(zn

r |zo, xr,n
T , BT)dzn

r

}
p(zo|BC , XT ) q(zo|BT , XT )

q(zo|BT , XT , )dzo

≥ Eq(zo|BT ,XT )

{ N∑
i=1

log
∫

p(yr,n
T |xr,n

T , zo, zn
r )p(zn

r |zo, xr,n
T , BC)q(zn

r |zo, xr,n
T , BT)

q(zn
r |zo, xr,n

T , BT)dzn
r

}
− DKL(q(zo|BT , XT , )||p(zo|BC , XT ))

≥ Eq(zo|BT ,XT )

{ N∑
n=1

Eq(zn
r |zo,xr,n

T
,BT) log p(yr,n

T |xr,n
T , zo, zn

r )

− DKL[q(zn
r |zo, xr,n

T , BT)||p(zn
r |zo, xr,n

T , BC)]
}

− DKL[q(zo|BT , XT )||p(zo|BC , XT )],

(33)

where qθ,ϕ(zo, {zi
r}N

i=1|XT , BT ) = q(zn
r |zo, xr,n

T , BT)q(zo|BT , XT ) is the variational posterior of the hierarchi-
cal latent variables.

H More Related Work

Generalizable Neural Radiance Fields (NeRF) Advancements in neural radiance fields have focused
on improving generalization across diverse scenes and objects. Wang et al. (2022a) propose an attention-
based NeRF architecture, demonstrating enhanced capabilities in capturing complex scene geometries by
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focusing on informative regions. Suhail et al. (2022) introduce a generalizable patch-based neural rendering
approach, enabling models to adapt to new scenes without retraining. Xu et al. (2022) present Point-NeRF,
leveraging point-based representations for efficient scene modeling and scalability. Wang et al. (2024) further
enhance point-based methods by incorporating visibility and feature augmentation to improve robustness and
generalization. Liu et al. (2024) propose a geometry-aware reconstruction with fusion-refined rendering for
generalizable NeRFs, improving geometric consistency and visual fidelity. Recently, the Large Reconstruction
Model (LRM) (Hong et al., 2023) has drawn attention. It aims for single-image to 3D reconstruction,
emphasizing scalability and handling of large datasets.

Gaussian Splatting-based Methods Gaussian splatting (Kerbl et al., 2023) has emerged as an effective
technique for efficient 3D reconstruction from sparse views. Szymanowicz et al. (2024) propose Splatter Image
for ultra-fast single-view 3D reconstruction. Charatan et al. (2024) introduce pixelsplat, utilizing 3D Gaussian
splats from image pairs for scalable generalizable reconstruction. Chen et al. (2025) present MVSplat, focusing
on efficient Gaussian splatting from sparse multi-view images. Our approach can be a complementary module
for these methods by introducing a probabilistic neural processing scheme to fully leverage the observation.

Diffusion-based 3D Reconstruction Integrating diffusion models into 3D reconstruction has shown
promise in handling uncertainty and generating high-quality results. Müller et al. (2023) introduce DiffRF,
a rendering-guided diffusion model for 3D radiance fields. Tewari et al. (2023) explore solving stochastic
inverse problems without direct supervision using diffusion with forward models. Liu et al. (2023) propose
Zero-1-to-3, a zero-shot method for generating 3D objects from a single image without training on 3D data,
utilizing diffusion models. Shi et al. (2023a) introduce Zero123++, generating consistent multi-view images
from a single input image using diffusion-based techniques. Shi et al. (2023c) present MVDream, which uses
multi-view diffusion for 3D generation, enhancing the consistency and quality of reconstructed models.
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