Logical Expressiveness of Graph Neural Networks with Hierarchical Node Individualization

Arie Soeteman¹ Balder ten Cate¹

¹Institute for Logic, Language and Computation
University of Amsterdam

Abstract

We propose and study *Hierarchical Ego Graph Neural Networks* (HE-GNNs), an expressive extension of graph neural networks (GNNs) with hierarchical node individualization, inspired by the Individualization-Refinement paradigm for isomorphism testing. HE-GNNs generalize subgraph-GNNs and form a hierarchy of increasingly expressive models that, in the limit, distinguish graphs up to isomorphism. We show that, over graphs of bounded degree, the expressive power of HE-GNN node classifiers equals that of graded hybrid logic. This characterization enables us to relate the separating power of HE-GNNs to that of higher-order GNNs, GNNs enriched with local homomorphism count features, and color refinement algorithms based on Individualization-Refinement. Our experimental results confirm the practical feasibility of HE-GNNs and show benefits in comparison with traditional GNN architectures, both with and without local homomorphism count features.

1 Introduction

Graph neural networks (GNNs), and specifically message-passing neural networks [22, 25], are a dominant approach for representation learning on graph-structured data [49, 55]. Since the expressive power of GNNs within the message-passing framework is limited by the one-dimensional Weisfeiler-Leman test (WL) [38, 50], numerous architectures have been proposed with increased separating power—the ability to distinguish pairs of nodes or graphs. The separating power of deterministic isomorphism invariant GNN architectures can be studied logically. Morris et al. [38] and Barcelo et al. [6], building on earlier results by Cai et al. [9], gave logical characterizations of the separating power of standard message-passing GNNs, which matches Graded Modal Logic. Higher-order k-GNNs [38] have the separating power of (k-1)-WL [38], which equals that of First-Order Logic with k variables and counting quantifiers. This yields a hierarchy of increasingly expressive models that separate nodes in graphs of size n up to isomorphism when $k \ge n$. The logical study of GNNs has addressed fundamental questions about their expressive power [1, 23, 26, 46], convergence behavior [2], decidability [7], and explainability [48].

In this work, we introduce *Hierarchical Ego* GNNs (HE-GNNs), a fully isomorphism-invariant graph learning model inspired by the individualization-refinement (IR) paradigm used by graph isomorphism solvers, where node individualization is alternated with simple message-passing. We study the separating power of HE-GNN in detail through a logical lens, and make explicit connections with IR and existing expressive GNNs. Our main contributions are:

• We characterize the separating power of HE-GNNs with and without subgraph restrictions. Specifically, we provide logical characterizations in graded hybrid logic, situate the separating power of HE-GNNs within the WL hierarchy and show that HE-GNNs constitute a strict hierarchy in terms of their nesting depth d. HE-GNNs are able to separate nodes in graphs of size n up to isomorphism when d ≥ n, like higher-order GNNs, but at lower cost in terms of space complexity.

- We prove that the graph separating power of HE-GNNs with depth d is lower bounded by IR with d rounds of invidualization, and show that common subgraph-GNNs are special cases of depth-1 HE-GNNs, so that our results characterize the separating power of subgraph models. We further identify a class of graphs with "small ego-rank" from which low-depth HE-GNNs can compute homomorphism counts. These results generalize and shed new light on known relations between subgraph-GNN, higher-order GNNs and homomorphism count vectors from tree-like graphs.
- We confirm empirically that HE-GNNs up to depth 2 improve performance on ZINC-12k and can
 distinguish strongly regular graphs beyond the reach of 3-GNNs, common subgraph GNNs and
 probabilistic IR methods.

Our results add foundational insights for understanding GNNs from a logical perspective, guiding the development of models with improved expressiveness.

Related work Numerous deterministic message-passing architectures have been developed that implement isomorphism-invariant graph learning with increased separating power. Notable examples are higher-order networks [33, 37, 38], subgraph-GNNs [13, 51, 53] and GNNs augmented with homomorphism counts [5, 29]. These models allow for extensive analyses in terms of separating power and comparison with isomorphism invariant classifiers such as logics and the WL hierarchy (see [36]), and we compare them in detail with HE-GNNs in section 5.

In another line of work, node embeddings representing structural information are added before message-passing, often with probabilistic methods. Examples are positional encodings from Laplacian eigenvectors [16, 18, 27, 31], random sampling [1, 45] and random walks [43]. GNNs with randomly sampled features have complete separating power but are only isomorphism invariant in expectation: isomorphic graphs do not yield the same output but only the same distribution. Relevant to the current work are node embeddings inspired by IR, such as random traversals of IR trees [19] and Tinhofer orderings [24, 40]. These methods use non-determinism sparingly, yielding isomorphism-invariance for WL distinguishable graphs and compact graphs respectively. Another graph learning model in the IR paradigm was developed by Dupty and Lee [15], which includes several strong approximations that improve efficiency at the expense of invariance.

2 Background and notation

For a set X, we denote by $\mathcal{M}(X)$ the collection of all finite multisets of elements of X. We write \oplus for vector concatenation, and δ_{xy} for Kronecker's delta (i.e., δ_{xy} is 1 if x = y and 0 otherwise).

Graphs Fix a set P of binary node features. By a graph we will mean a triple $G=(V,E,\operatorname{lab})$ where V is set of nodes, $E\subseteq V\times V$ is a symmetric and irreflexive edge relation, and $\operatorname{lab}:V\to 2^P$. The degree of a node v in a graph $G=(V,E,\operatorname{lab})$ is $|\{u\mid (v,u)\in E\}|$ and the degree of a graph is the maximum degree of its nodes. A $pointed\ graph$ is a pair (G,v) where G is a graph and v is a node of G. An isomorphism between graphs $G=(V,E,\operatorname{lab})$ and $G'=(V',E',\operatorname{lab}')$ is a bijection $f:V\to V'$ such that $E'=\{(f(v),f(u))\mid (v,u)\in E\}$ and such that, for all $v\in V$, $\operatorname{lab}'(f(v))=\operatorname{lab}(v)$. We write $G\cong G'$ if such a bijection exists. An isomorphism between pointed graphs (G,v) and (G',v') is defined similarly, with the additional requirement that f(v)=v'. By a $node\ classifier\ we$ will mean a function CIS from pointed graphs to $\{0,1\}$ that is isomorphism invariant (i.e., such that $\operatorname{CIS}(G,v)=\operatorname{CIS}(G',v')$ whenever (G,v) and (G',v') are isomorphic).

Graph neural networks Let $D, D' \in \mathbb{N}$. A graph neural network with input dimension D and output dimension D' (henceforth: (D, D')-GNN) is a tuple $((COM_i)_{i=1,...L}, (AGG_i)_{i=1,...L})$ with $L \geq 1$, where, for $1 < i \leq L$, $COM_i : \mathbb{R}^{2D_i} \to \mathbb{R}^{D_{i+1}}$, $AGG_i : \mathcal{M}(\mathbb{R}^{D_i}) \to \mathbb{R}^{D_i}$ with $D_1 = D$, $D_i \geq 1$, and $D_{L+1} = D'$. Each such GNN induces a mapping from embeddings to embeddings. More precisely, by a D-dimensional embedding for a graph G = (V, E, lab) we will mean a function emb : $V \to \mathbb{R}^D$. A (D, D')-GNN \mathcal{A} defines a function $\text{run}_{\mathcal{A}}$ from a graph with a D-dimensional embedding to a D'-dimensional embedding as follows:

```
1: function \operatorname{run}_{\mathcal{A}}(G,\operatorname{emb})
2: \operatorname{emb}^0 := \operatorname{emb}
3: for i = 1, \dots, L do
4: \operatorname{emb}^i := \{v : \operatorname{COM}_i(\operatorname{emb}^{i-1}(v) \oplus \operatorname{AGG}_i(\{\{\{\operatorname{emb}^{i-1}(u) \mid (v, u) \in E\}\}\})) \mid v \in V\}
5: return \operatorname{emb}^L
```

Every (D,D')-GNN $\mathcal A$ with D=|P| and D'=1 naturally gives rise to a node classifier $\operatorname{Cls}_{\mathcal A}$. To define it, for a graph $G=(V,E,\operatorname{lab})$, let its *multi-hot label encoding* be the |P|-dimensional embedding emb_G given by $\operatorname{emb}_G(v)=\langle r_1,\ldots,r_n\rangle$ with $r_i=1$ if $p_i\in\operatorname{lab}(v)$ and $r_i=0$ otherwise. Then $\operatorname{cls}_{\mathcal A}(G,v)=1$ if $\operatorname{run}_{\mathcal A}(G,\operatorname{emb}_G)(v)>0$, and $\operatorname{cls}_{\mathcal A}(G,v)=0$ otherwise. We denote the set of all such node classifiers $\operatorname{cls}_{\mathcal A}$ also by GNN.

The above definition of GNNs does not specify how the functions COM_i and AGG_i are specified. In practice, there are a few common choices for AGG_i , namely Sum, Min, Max and Mean. These have the expected, point-wise, definition. For instance, Sum maps multisets of \mathbb{R}^D -tuples to \mathbb{R}^D -tuples by summing point-wise. As for the functions COM_i , these are commonly implemented by a fully-connected feed-forward neural network (FFNN) using an activation function such as ReLU. Some of our results apply to GNNs with specific aggregation and combination functions, in which case this will be explicitly indicated. Otherwise, the results apply to all GNNs.

Graded modal logic The formulas of graded modal logic (GML) are given by the recursive grammar $\phi ::= p \mid \top \mid \phi \wedge \psi \mid \neg \phi \mid \Diamond^{\geq k} \phi$, where $p \in P$ and $k \in \mathbb{N}$. Satisfaction of such a formula at a node v in a graph G (denoted: $G, v \models \phi$) is defined inductively, as usual, where $G, v \models p$ iff $p \in \text{lab}(v)$, the Boolean operators have the standard interpretation, and $G, v \models \Diamond^{\geq k} \phi$ iff $|\{u \mid (v, u) \in E \text{ and } G, u \models \phi\}| \geq k$. We use $\Diamond \phi$ as shorthand for $\Diamond^{\geq 1} \phi$ and we use $\Box \phi$ as a shorthand for $\neg \Diamond \neg \phi$. Every GML-formula ϕ gives rise to a node classifier cls_{ϕ} where $\mathsf{cls}_{\phi}(G, v) = 1$ if $G, v \models \phi$ and $\mathsf{cls}_{\phi}(G, v) = 0$ otherwise.

Example 2.1. Consider the GML-formula $\phi = \lozenge^{\geq 2} \top \wedge \Box p$. Then $\mathsf{cls}_{\phi}(G, v) = 1$ precisely if the node v has at least two successors and all its successors are labeled p.

Weisfeiler Leman Fix a countably infinite set of colors \mathcal{C} . A node coloring for a graph G=(V,E,lab) is a map $\text{col}:V\to\mathcal{C}$. A coloring is discrete if for all v in V $\text{col}^{-1}(\text{col}(v))=v$. By a colored graph we mean a graph together with a coloring. The Weisfeiler Leman (WL) algorithm takes as input a colored graph (G,col) and an integer $d\geq 0$. It produces a new coloring for the same graph as follows, where HASH is a perfect hash function onto the space of colors:

```
1: function \operatorname{WL}(G,\operatorname{col},d)

2: \operatorname{col}^0 = \operatorname{col}

3: for i=1,\ldots,d do

4: \operatorname{col}^i := \{v: \operatorname{HASH}(\operatorname{col}^{i-1}(v), \{\!\!\{\operatorname{col}^{i-1}(u) | (v,u) \in E\}\!\!\}) \mid v \in V\}

5: return \operatorname{col}^d
```

For a graph $G=(V,E,\operatorname{lab})$, by the *initial coloring* of G we will mean the coloring col_G given by $\operatorname{col}_G(v)=\operatorname{HASH}(\operatorname{lab}(v))$. We write $\operatorname{WL}(G,d)$ as a shorthand for $\operatorname{WL}(G,\operatorname{col}_G,d)$. In other words, $\operatorname{WL}(G,d)$ denotes the coloring obtained by starting with the initial coloring and applying d iterations of the algorithm. Two pointed graphs (G,v), (G',v') are said to be $\operatorname{WL-indistinguishable}$ (denoted also $(G,v)\equiv_{\operatorname{WL}}(G',v')$) if v and v' receive the same color after d iterations for $d=\max\{|G|,|G'|\}$ —that is, if $\operatorname{WL}(G,d)(v)=\operatorname{WL}(G',d)(v')$.

The WL algorithm gives rise to a node classifier for each $d \geq 0$ and subset $S \subseteq \mathcal{C}$, where $\mathsf{cls}^{\mathsf{WL}}_{d,S}(G,v) = 1$ if $\mathsf{WL}(G,d)(v) \in S$ and $\mathsf{cls}^{\mathsf{WL}}_{d,S}(G,v) = 0$ otherwise. Note that, by definition, such classifiers cannot distinguish WL-indistinguishable pointed graphs.

Three-way equivalence Given a collection C of node classifiers (e.g., all GNN-based node classifiers), we denote by $\rho(C)$ the equivalence where $((G,v),(G',v'))\in\rho(C)$ if and only if, for all $\mathrm{cls}\in C,\,\mathrm{cls}(G,v)=\mathrm{cls}(G',v').$ In other words, $\rho(C)$ captures the expressive power of C as measured by the ability to distinguish different inputs.

```
Theorem 2.2. \rho(GNN) = \rho(GML) = \rho(WL)
```

The equivalence in separating power between GNNs and WL was proven independently by Xu et al. [50] and Morris et al. [38]. Their equivalence with GML was shown by Barcelo et al. [6]. Indeed, it was shown in [6] that for every GML-formula, there is a GNN that implements the same node classifier:

Proposition 2.3. ([6]) For every GML-formula ϕ there is a GNN \mathcal{A} such that $\operatorname{Cls}_{\mathcal{A}} = \operatorname{Cls}_{\phi}$. Moreover, the GNN in question only uses Sum as aggregation and a single ReLU-FFNN as combination function.

The converse does not hold in general, but it does when we bound the degree of the input graph:

```
Proposition 2.4. Let A be a (D, D')-GNN with D = |P|, let N > 0, and let
```

```
X = \{ \operatorname{run}_{\mathcal{A}}(G, \operatorname{emb}_G)(v) \mid G = (V, E, \operatorname{lab}) \text{ is a graph of degree at most } N \text{ and } v \in V \}.
```

In other words $X\subseteq\mathbb{R}^{D'}$ is the set of all node embeddings that \mathcal{A} can produce when run on a graph of degree at most N. Then X is a finite set, and for each $\mathbf{x}\in X$, there is a GML-formula $\phi_{\mathbf{x}}$ such that for every pointed graph (G,v) of degree at most N, it holds that $G,v\models\phi_{\mathbf{x}}$ iff $\mathrm{run}_{\mathcal{A}}(G,\mathrm{emb}_G)(v)=\mathbf{x}$. In particular, for each GNN-classifier $\mathrm{Cls}_{\mathcal{A}}$ there is a GML-formula ϕ such that $\mathrm{Cls}_{\phi}(G,v)=\mathrm{Cls}_{\mathcal{A}}(G,v)$ for all pointed graphs (G,v) of degree at most N.

Proofs for these two propositions are provided in the appendix, as we will build on them.

3 Hierarchical Ego GNNs

In this section, we introduce and study the basic model of Hierarchical Ego GNNs (HE-GNNs). In the next section, we will further refine the model by means of subgraph restrictions.

Hierarchical Ego GNNs

- A (D, D')-HE-GNN of nesting depth 0 is simply a (D, D')-GNN.
- A (D, D')-HE-GNN of nesting depth d > 0 is a pair $(\mathcal{B}, \mathcal{C})$ where \mathcal{B} is a (D+1, D'')-HE-GNN of nesting depth d-1 and \mathcal{C} is a (D+D'', D')-GNN.

A HE-GNN $\mathcal{A} = (\mathcal{B}, \mathcal{C})$ defines a function $\operatorname{run}_{\mathcal{A}}$ from embedded graphs to embeddings as follows:

```
1: function \operatorname{run}_{\mathcal{A}}(G,\operatorname{emb})

2: for each node v of G do

3: \operatorname{emb}'(v) := \operatorname{emb}(v) \oplus \operatorname{run}_{\mathcal{B}}(G,\{u : \operatorname{emb}(u) \oplus \delta_{uv} \mid u \in V\})(v)

4: return \operatorname{run}_{\mathcal{C}}(G,\operatorname{emb}')
```

In other words, for each node v, we run $\mathcal B$ after extending the node embeddings to uniquely mark v, and concatenate the resulting embedding for v to its original embedding. After constructing a new embedding for each v we run $\mathcal C$. On a graph with n nodes a HE-GNN with depth d and l layers at each depth generates $O(n^d)$ graphs with different unique labelings. Since an l layer GNN sends at most $l \cdot n^2$ messages, a HE-GNN with depth d and l layers at each depth sends $O(l \cdot n^{d+2})$ messages. Applying the individualizations in depth-first order, $(d+1) \cdot n$ node embeddings are stored, which is bounded by n^2 . Naturally the time and space complexity depend on the embedding dimension and the chosen aggregation and combination functions. Just as in the case of GNNs, each (D,D')-HE-GNN $\mathcal A$ with D=|P| and D'=1 naturally gives rise to a node classifier $\mathrm{ClS}_{\mathcal A}$.

Example 3.1. Let $\mathcal B$ be a 3 layer (2,2)-GNN with element-wise sum as aggregation and the identity map as combination. Let $\mathcal C$ be a trivial (2,2)-GNN that doesn't change the input. Then $\mathcal A=(\mathcal B,\mathcal C)$ is a (1,2)-HE-GNN of depth 1 such that $\operatorname{run}_{\mathcal A}(G,v)\neq\operatorname{run}_{\mathcal A}(G',v')$ for the graphs in figure 1.

This shows that HE-GNN with nesting depth 1 has strictly more separating power than GNN. Let HE-GNN-d denote all classifiers $\operatorname{Cls}_{\mathcal{A}}$ where \mathcal{A} is a HE-GNN of nesting depth d. As we will see below, HE-GNN-d in fact forms an infinite hierarchy with respect to separating power for increasing values of d. To show this, we first give a logical characterization of HE-GNN-d.

Graded hybrid logic Graded hybrid logic (henceforth GML(\downarrow)) extends GML with *variables* and the *variable binder* \downarrow . To be precise, the formulas of GML(\downarrow) are generated by the grammar $\phi := p \mid x \mid \neg \phi \mid \phi \land \psi \mid \Diamond^{\geq k} \phi \mid \downarrow x.\phi$. We restrict attention to *sentences*, i.e., formulas without free variables. The definition of satisfaction for a GML-formula at a node v of a graph G = (V, E, lab), extends naturally to GML(\downarrow)-sentences as follows: $G, v \models \downarrow x.\phi$ if $G[x \mapsto v], v \models \phi$, where $G[x \mapsto v]$ denotes a copy of G in which x is treated as a binary node feature true only at v. By the \downarrow -nesting-depth of a GML(\downarrow)-sentence, we will mean the maximal nesting of \downarrow operators in the sentence. We denote with GML (\downarrow^d) all sentences with maximal \downarrow -nesting-depth d.

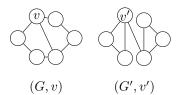


Figure 1: Two non-isomorphic pointed graphs that are WL-indistinguishable.

Example 3.2. The sentence $\phi = \downarrow x. \Diamond \Diamond \Diamond x$, which has \downarrow -nesting-depth 1, is satisfied by a pointed graph (G, v) precisely if v lies on a triangle. In particular, considering the example in Figure 1, ϕ distinguishes (G, v) from (G', v'). This also shows that $GML(\downarrow)$ is more expressive than GML.

Example 3.3. Building on the above example, the sentence $\psi = \downarrow x. \lozenge (\phi \land \lozenge (\phi \land \lozenge (\phi \land \land (\phi \land x))))$, which has \downarrow -nesting-depth 2, is satisfied by (G, v) precisely if v lies (homomorphically) on a cycle of length 4 consisting of nodes that each lie on a triangle.

In the literature, hybrid logics often include an @ operator, where $@_x \phi$ states that ϕ holds at the world denoted by the variable x. Over undirected graphs, however, every $GML(\downarrow, @)$ -sentence is already equivalent to a $GML(\downarrow)$ -sentence of the same \downarrow -nesting-depth.

The connection between GNNs and GML described in the previous section extends to a connection between HE-GNNs and GML(\downarrow):

Theorem 3.4.
$$\rho(\text{HE-GNN}) = \rho(\text{GML}(\downarrow))$$
. *Moreover, for* $d \ge 0$, $\rho(\text{HE-GNN-}d) = \rho(\text{GML}(\downarrow^d))$.

The proof, given in the appendix, is along the lines of Propositions 2.3 and 2.4. Indeed, there is a translation from $GML(\downarrow)$ -sentences to HE-GNNs, and, conversely, over bounded-degree inputs, there is a translation from HE-GNNs to $GML(\downarrow)$ -sentences. Both translations preserve nesting depth. In Section 5, we put this logical characterization to use to obtain a number of further results.

4 Hierarchical Ego GNNs with subgraph restriction

Since HE-GNNs generate an exponential number of graphs in d, we make the models more manageable by restricting subgraphs to a fixed radius r around the uniquely marked node, in line with the common approach for subgraph-GNNs ([20, 51, 52, 53]).

Hierarchical Ego Subgraph-GNNs

- A (D, D')-HES-GNN of depth 0 is simply a (D, D')-GNN.
- A (D, D')-HES-GNN of depth d > 0 is a triple $(\mathcal{B}, \mathcal{C}, r)$ where \mathcal{B} is a (D + 1, D'')-HES-GNN of depth d 1, \mathcal{C} is a (D + D'', D')-GNN, and r is a positive integer.

Given a graph G = (V, E, lab), a node $v \in V$, and a positive integer r, we will denote by G_v^r the induced subgraph of G containing the radius-r neighborhood of v.

```
1: function \operatorname{run}_{\mathcal{A}}(G,\operatorname{emb}) # For \mathcal{A}=(\mathcal{B},\mathcal{C},r)

2: for each node v of G do

3: \operatorname{emb}'(v):=\operatorname{emb}(v)\oplus\operatorname{run}_{\mathcal{B}}(G_v^r,\{u:\operatorname{emb}(u)\oplus\delta_{uv}\mid u\in V\})(v)

4: return \operatorname{run}_{\mathcal{C}}(G,\operatorname{emb}')
```

There is only one change compared to the previous version: G got replaced by G_v^r on line 3. Now if a HES-GNN with depth d, radius r and at most l layers is applied to a graph with degree k, it generates $O(n \cdot (k^r+1)^{max(0,d-1)})$ graphs, sends at most $l \cdot n^2$ times as many messages and stores $n+d \cdot (k^r+1)$ embeddings. Each (D,D')-HES-GNN $\mathcal A$ again gives rise to a node classifier $\mathcal A$. We denote with HES-GNN-r the set of such classifiers for radius r and with HES-GNN-(d,r) the restriction to nesting depth d.

Graded hybrid subgraph logic $GML(\downarrow,W)$ further extends $GML(\downarrow)$ with a "within" operator W^r inspired by temporal logics with forgettable past [3, 10]. The formulas of $GML(\downarrow,W)$ are generated by $\phi ::= p \mid x \mid \neg \phi \mid \phi \land \psi \mid \lozenge^{\geq k} \phi \mid \downarrow x. \phi \mid W^r \phi$. The definition of satisfaction for $GML(\downarrow)$ -sentences is extended by letting $G, v \models W^r \phi$ if $G_v^r, v \models \phi$. We will use $\downarrow_{W^r} x. \phi$ as a shorthand for $\downarrow x.W^r \phi$. We denote with $GML(\downarrow_W)$ the fragment of $GML(\downarrow,W)$ in which \downarrow and W can only be used in this specific combination with each other, and we denote with $GML(\downarrow_{W^r})$ (for specific integers d and r), the further fragment with radius r and where \downarrow_{W^r} can be nested at most d times. In terms of separating power, $GML(\downarrow_W)$ is equivalent to $GML(\downarrow)$, but pairing variable binders with subgraph restrictions of a specific radius serves to decrease expressive power. The connection between HE-GNN and $GML(\downarrow)$ we established in Theorem 3.4 now extends to the case with subgraph restrictions:

Theorem 4.1.

```
1. \rho(\text{HES-GNN}) = \rho(\text{GML}(\downarrow_W)) = \rho(\text{GML}(\downarrow)) = \rho(\text{HE-GNN}).
```

2.
$$\rho(\text{HES-GNN-}r) = \rho(\text{GML}(\downarrow_{W^r}))$$
. Moreover, $\rho(\text{HES-GNN-}(d,r)) = \rho(\text{GML}(\downarrow_{W^r}^d))$.

This is established again through a uniform translation from $GML(\downarrow_{W^r}^d)$ sentences to HES-GNN-(d,r) classifiers and a converse uniform translation over bounded degree inputs from HES-GNN-(d,r) classifiers to $GML(\downarrow_{W^r}^d)$ sentences.

The separating power of HES-GNN-(d,r) classifiers strictly increases with d and r. Note that $\rho(X) \subseteq \rho(Y)$ means that X has strictly more separating power than Y:

```
Theorem 4.2. For d \ge 1, r \ge 0, \rho(\text{HES-GNN-}(d,r+1)) \subseteq \rho(\text{HES-GNN-}(d,r)).
```

Theorem 4.3. For $d \ge 0$ and $r \ge 3$, $\rho(\text{HES-GNN-}(d+1,r)) \subseteq \rho(\text{HES-GNN-}(d,r))$

5 Comparison with other models

In this section, we build on the logical characterizations from the previous sections to obtain a number of technical results, drawing connections between isomorphism testing and several GNN architectures by comparing their expressive power with that of HE-GNNs and HES-GNNs.

5.1 Relationship with Individualization-Refinement

The individualization and refinement (IR) paradigm is applied by all state-of-the-art graph isomorphism solvers [14, 30, 34, 41]. In its usual presentation (e.g. [35]), color refinement, cell-selection and individualization procedures are applied in alternating fashion, resulting in a tree whose nodes are labeled by increasingly refined colorings of the input graph, with discrete colorings at the leafs. In practice, some further optimizations are typically implemented, exploiting symmetries to further reduce the size of the tree, but these optimizations do not affect the result of the equivalence test, and we do not consider them here. In order to make a precise comparison, we define WL-IR:

```
1: function WL-IR(G, \operatorname{col}, d)
2: \operatorname{col}' := \operatorname{WL}(G, \operatorname{col}, |G|)
3: if \operatorname{col}' is discrete or d = 0 then
4: return (\operatorname{col}')
5: else
6: Let c be the least color with |\operatorname{col}'^{-1}(c)| \ge 2, and let \operatorname{col}'^{-1}(c) = \{v_1, \dots, v_n\},
For each i \le n, let \operatorname{col}'_i := \{v : \operatorname{HASH}(\operatorname{col}'(v), \delta_{vv_i}) \mid v \in V\}
7: return (

WL-IR(G, \operatorname{col}'_1, d - 1) ... WL-IR(G, \operatorname{col}'_n, d - 1)
```

Here we use WL as the refinement procedure (which is indeed common practice) and apply a simple cell-selection procedure that assumes an order on the set of colors and picks the least non-singleton color. We include an extra input parameter d that controls the number of individualization steps

the algorithm can perform. WL-IR is guaranteed to produce discrete colorings when choosing $d \geq |G|$. We write WL-IR(G,d) as shorthand for WL-IR $(G,\operatorname{col}_G,d)$. We can now compare two graphs by choosing suitable d and testing if WL-IR(G,d) and WL-IR(G',d) yield isomorphic trees. Let $G \equiv_{\operatorname{WL-IR}-d} G'$ if and only if this comparison does not distinguish G from G'. For d=0, it is clear that $\equiv_{\operatorname{WL-IR}-d}$ corresponds simply to indistinguishability by the Weisfeiler Leman test. If d is sufficiently large, on the other hand, each leaf of the tree is labeled by a discrete coloring, so that WL-IR distinguishes graphs up to isomorphism:

Proposition 5.1. Let G, G' be graphs and $d \geq min(|G|, |G'|)$. Then $G \equiv_{WL-IR-d} G'$ iff $G \cong G'$.

Thus, by varying d we obtain a family of increasingly refined equivalence relations for graphs. In order to relate these equivalence relations to those induced by HE-GNNs of different nesting depths, we must first overcome a technical issue. WL-IR is designed to compare graphs, not nodes. Let $G \equiv_{\mathsf{cls}} G'$ if $\{\!\!\{\mathsf{cls}(G,v) \mid v \in V\}\!\!\} = \{\!\!\{\mathsf{cls}(G',v) \mid v \in V'\}\!\!\}$, and $G \equiv_C G'$ if $G \equiv_{\mathsf{cls}} G'$ for all classifiers G' cls in G'. The graph separating power of WL-IR with depth G' matches that of G' of G' in G' constants G' constants G' in G' constants G' constants

Proposition 5.2. $G \not\equiv_{WL-IR-0} G'$ if and only if $G \not\equiv_{GNN} G'$

The graph separating power of WL-IR-d is a lower bound to that of HE-GNN-d for $d \ge 0$

Theorem 5.3. For $d \ge 0$, if $G \not\equiv_{WL-IR-d} G'$, then $G \not\equiv_{HE-GNN-d} G'$

In fact, for connected graphs, and with depth d+1, HE-GNN node classifiers already suffice, since the separating power of local message-passing matches global message-passing over connected individualized graphs [52]:

Theorem 5.4. Let (G, v), (G', v') be connected pointed graphs and let $d \ge 0$. If $G \not\equiv_{WL-IR-d} G'$, there exists a depth d+1 HE-GNN \mathcal{A} such that $\mathsf{cls}_{\mathcal{A}}(G, v) \neq \mathsf{cls}_{\mathcal{A}}(G', v')$.

Proposition 5.1 and theorems 5.3, 5.4 show that for sufficiently large d, HE-GNN-d classifiers distinguish graphs up to isomorphism. Contrary to WL-IR, HE-GNNs combine individualized graphs hierarchically. We show this increases separating power when d=1:

Theorem 5.5. There exist G, G' such that $G =_{WL-IR-1} G'$ but $G \neq_{HE-GNN-1} G'$

Using recent results by Rattan and Seppelt [44], theorem 5.5 implies that HE-GNN-1 is strictly more separating than cospectrality of adjacency, Laplacian and Seidel matrices. In addition, this shows that the hierarchical message-passing scheme of HE-GNN-1 adds to expressive power, compared to aggregating over all individualized graphs in parallel. It remains open if the same holds for all d > 1.

5.2 Relationship with homomorphism count enriched GNNs

In [5], the authors assume a finite set of rooted graphs $\mathfrak{F} = \{F_1, \dots F_k\}$ and, given an input graph G, for each node v, they add the finite homomorphism count vector $\hom(\mathfrak{F}, (G, v))$ to the initial embedding of v before running a GNN. Here, by a rooted graph we mean a pointed graph (F, u) that is connected, i.e., such that every node of F is reachable from u. Note that the input dimensionality of the GNN is thus assumed to be |P|+k instead of |P|. This increases the expressive power of the model. For example, the non-isomorphic nodes in Figure 1 can be distinguished from each other by including the cycle of length 3 (with a distinguished node) as a pointed graph in \mathfrak{F} . We will refer to a GNN that runs over a \mathfrak{F} enriched graph simply as a \mathfrak{F} -GNN.

Theorem 5.6. Let \mathfrak{F} be any finite set of rooted graphs each with at most d nodes. Then there is a $(|P|, |P| + |\mathfrak{F}|)$ -HE-GNN \mathcal{A} of nesting depth d such that, for all pointed graphs (G, v),

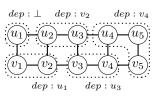
$$\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$$

The HE-GNN in question only uses Sum as aggregation and ReLu-FFNNs as combination functions.

In particular, this shows that every \mathfrak{F} -GNN is equivalent to a HE-GNN. ¹ The practical value of the above result, however, is limited by the fact that it requires a high nesting depth. As it turns out, for many choices of \mathfrak{F} , a very small nesting depth suffices.

¹Theorem 5.4 in [11] is somewhat related as it states that the node separating power of homomorphism counts from all rooted graph is captured by hybrid logic (with @-operator but without counting modalities).

We will call a rooted graph (F,u) *c-acyclic* if every cycle of F passes through u. C-acyclicity is a relaxation of acyclicity, and c-acyclic rooted graphs can be thought of as trees with back-edges. Our next result will imply that when $\mathfrak F$ consists of c-acyclic structures, a nesting depth of 1 suffices. In order to state it in full generality, we need to introduce some further terminology. In particular, we introduce the notion of ego-rank.



Given a rooted graph (G,v), let $dep:V\to V\cup\{\bot\}$ be a partial function from nodes to nodes and let $deps(u)=\{dep(u),dep(dep(u)),\ldots\}\setminus\{\bot\}$ be the (finite) set of nodes u transitively "depends on". We require of the function dep that:

Figure 2: Rooted 5×2 -grid (root: u_1)

- 1. $dep(v) = \bot$.
- 2. If $(w, u) \in E$, then dep(w) = dep(u) or $w \in deps(u)$ or $u \in deps(w)$,
- 3. Every set of nodes with the same dep-value induces an acyclic subgraph.

The ego-rank of (G, v) is the smallest value of the maximum node rank, where the node rank of a node u is |deps(u)|, across all ways to choose the function dep subject to the above constraints.

Proposition 5.7. For all rooted graphs (G, v) with G = (V, E, lab),

- 1. $tree\text{-width}(G) 1 \leq ego\text{-rank}(G, v) \leq |V|$.
- 2. ego-rank(G, v) = 0 if and only if G is acyclic.
- 3. ego-rank(G, v) = 1 whenever (G, v) is c-acyclic.

The ego-rank of a rooted graph is not upper-bounded by any function in its tree-width, and can be exponential in its tree-depth, as follows from the following example:

Example 5.8. The rooted graph consisting of an $n \times 2$ -grid, with one of its corners as the root, as depicted in Figure 2, has ego-rank n-1 for $n \geq 1$.

Theorem 5.9. Let \mathfrak{F} be any finite set of rooted graphs, let $d = \max\{ego\text{-}rank(F, u) \mid (F, u) \in \mathfrak{F}\}.$

- 1. Then there is a $(|P|, |P| + |\mathfrak{F}|)$ -HE-GNN \mathcal{A} of nesting depth d such that, for all pointed graphs (G, v), $\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$. The HE-GNN uses multiplication in the combination functions.
- 2. For each N>0, there is a $(|P|,|P|+|\mathfrak{F}|)$ -HE-GNN $\mathcal A$ of nesting depth d such that, for pointed graphs (G,v) of degree at most N, $\operatorname{run}_{\mathcal A}(G)(v)=\operatorname{emb}_G(v)\oplus\operatorname{hom}(\mathfrak{F},(G,v))$. The HE-GNN uses only Sum as aggregation and ReLu-FFNNs as combination functions.

It follows that, in a non-uniform sense, every \mathfrak{F} -GNN is equivalent to a HE-GNN of nesting depth $\max\{\text{ego-rank}(F,u)\mid (F,u)\in\mathfrak{F}\}$ using only Sum and ReLu-FFNNs.

5.3 Relationship with higher-order GNNs

k-GNNs, as proposed by Morris et al. [38], apply message-passing between node subsets of size k, where subsets are adjacent when they share exactly k-1 nodes. The separating power of these models is characterized by the k-variable fragment of first-order logic with counting quantifiers C^k .

Theorem 5.10 ([9, 38]).
$$\rho(k\text{-GNN}) = \rho(\mathbf{C}^k)$$

k-GNNs become strictly more expressive with larger k, and distinguish graphs of size $n \le k$ up to isomorphism. As such, they have proven to be a useful yardstick for the development of expressive GNN architectures. The model proposed by Morris et al. requires exponential space and time since it maintains n^k features in memory, and applies message passing over n^{k+1} edges. Maron et al. [33] proposed k-IGNs with $O(n^{k-1})$ space complexity and $O(n^k)$ time complexity, which were shown by Azizian and LeLarge [4] and Geerts [21] to have the same separating power as k-GNNs.

HE-GNNs constitute an alternative hierarchy, where nesting depth d yields classifiers that distinguish graphs of size $n \leq d$ up to isomorphism (Theorem 5.3). HE-GNNs perform simple message passing on n^d graphs, but they can do this in sequence and hence need to store only n^2 node features. Using the logical characterizations we show the separating power of HE-GNNs with nesting depth d is at most that of d+2-GNNs, or equivalently the d+1-WL algorithm.

```
Theorem 5.11. For d \ge 0, \rho((d+1)\text{-WL}) = \rho((d+2)\text{-GNN}) \subseteq \rho(\text{HE-GNN-}d).
```

This generalizes a recent result by Frasca et al. [20], who showed that the separating power of many common subgraph-GNNs is bounded by that of 2-WL. We further show that this result is optimal, in the sense that HE-GNNs with nesting depth d can distinguish nodes that d+1-GNNs can not:

Theorem 5.12. For $d \ge 0$, HES-GNN-(d,3) can distinguish pointed graphs that cannot be distinguished by d-WL, or equivalently, by a (d+1)-GNN.

Given the difference in the number of stored embeddings, one would expect that for $d \ge 0$, $\rho((d+1)\text{-WL}) \subsetneq \rho(\text{HE-GNN-}d)$. We leave this as an open conjecture.

5.4 Relationship with other variants of subgraph-GNNs

Numerous recent studies [20, 51, 52, 53, 54] have proposed variants of subgraph-GNNs, where message passing is applied to a collection of subgraphs. Subgraph-GNNs show state-of-the-art performance on real-world benchmarks such as ZINC molecular property prediction [8, 20, 54]. In particular, a variant of subgraph-GNNs in which nodes receive neighborhood embeddings based on their radius r neighborhood with distinguished center node label, also known as "ego-networks", have become prominent as simple yet expressive subgraph-GNN architecture [20, 51, 53].

ID-GNNs [51] are HES-GNNs $(\mathcal{B},\mathcal{C})$ with nesting depth 1, where \mathcal{C} is a trivial GNN that doesn't apply any message passing. Nested GNNs [53] do not use individualization, but perform global pooling over subgraphs followed by message passing over the input graph. Since local aggregation with individualization is strictly more expressive than global aggregation over connected subgraphs [52], the separating power of nested GNN is strictly less than that of HES-GNNs with nesting depth 1. Theorem 4.1 thus provides a logical upper bound to the separating power of these models.

Several other generalizations of subgraph-GNNs have recently been proposed [39, 42]. Most related to this work, Qian et al. introduced Ordered Subgraph Aggregation networks that apply message passing on $|G|^k$ copies of G, each labeled with the atomic type of a k size subgraph, and perform aggregation over representations for a predefined selection of the $|G|^k$ subgraphs. Like HE-GNN this constitutes a strict hierarchy with separating power upper bounded by k+1-WL, but not by k-WL. It is not immediately clear whether OSAN yields more expressive node classifiers than HE-GNN, since OSAN performs global aggregation over arbitrary sets of subgraphs, while HE-GNN uses local message-passing hierarchically.

6 Experiments

We apply HES-GNN to ZINC-12k [17, 28] and compare with standard GCN [32], GIN [50] and PNA [12] layers, as well as GINs augmented with random identifiers (GNN+RID) [1, 45], Tinhofer orderings (GNN+T) [40], and homomorphism counts from cycles of size 3 to 10 (\mathfrak{F} -GNN) [5]. We use feature dimension 256 for all models for a maximum of 1000 epochs on a single 20GB gpu. All code used for the experiments is available on git.² Table 1 shows the achieved mean absolute error after 10 runs and validation score selection. HES-GNNs with depth 1 outperform \mathcal{F} -GNN even though ZINC has cycle counts in its target function. HES-GNN-(2,3) performs equally well as \mathcal{F} -HES-GNN-(1,3), a depth 1 model augmented with homomorphisms counts.

Figure 3 shows the performance of HE-GNN and HES-GNN on distinguishing strongly regular graphs. We use 4 synthetic datasets, each containing 30 random isomorphisms of 10 strongly regular graphs for a specific choice of parameters (v,k,λ,μ) [47]. Since strongly regular graph are indistinguishable by 2-WL and hence by 3-GNNs, depth 1 HE-GNN and ID-GNN [51] perform at chance level. Adding cycle counts doesn't alleviate this, in line with theorem 5.9. Tinhofer orderings fully individualize all nodes to yield maximal separating power, resulting in 100% precision on the test set. However, since these orderings are not isomorphism-invariant over the tested graphs, T-GNN does not generalize to the test set. Depth 2 HE-GNNs distinguish the strongly regular graphs and generalize to unseen isomorphisms, even with restricted subgraph radius. Figure 4 shows time and memory usage of HE-GNNs with varying depth and radius on ZINC for a single forward pass.

²https://github.com/ariesoeteman/HEGNN

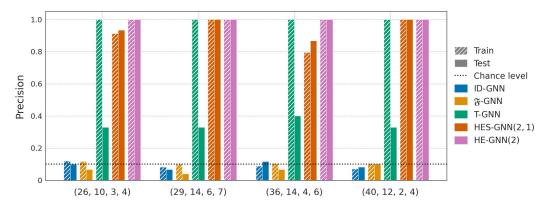


Figure 3: Precision on isomorphism classification of strongly regular graphs for four settings of (v, k, λ, μ) . Models from left to right: ID-GNN [51], \mathfrak{F} -GNN with counts from $C_3, \ldots C_{10}$ [5], GNN with Tinhofer labelings [40], HES-GNN with d=2, r=1 and HE-GNN with d=2.

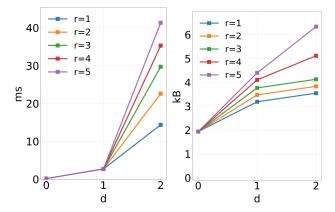


Figure 4: Time (left) and memory (right) per sample of a single forward pass of HES-GNN-(d,r) on ZINC. This does not include gradients. Experiments run with batch size 20 and feature dimension 256.

Table	1:	Mean	absolute	error	on
ZINC-	-12k	test s	cores afte	r 10 ru	ıns.

Model		ZINC (MAE)
GCN [32]		0.216
GIN [50]		0.193
PNA [12]		0.207
GNN+T [40]		0.199
GNN+random ID [1, 45]	0.226	
₹-GNN [5]		0.154
	(d,r)	
HES-GNN	(1,1)	0.191
TIES-GIVIV	(1,2)	0.189
	(1,3)	0.149
	(2,1)	0.188
	(2,2)	0.183
	(2,3)	0.140
₹-HES-GNN	(1,3)	0.140

7 Limitations and directions for further research

Efficiency Compared to k-GNNs, HE-GNNs store $|G|^2$ instead of $|G|^k$ node features. Nevertheless, they still require an exponential amount of message passing steps in the nesting depth d, rendering implementations infeasible for large d. IR-based graph isomorphism tests typically reduce tree size via informed cell selection and automorphism pruning, whereas Dupty and Lee [15] address scalability in a learning setting through compressed approximate trees. Further study is needed to explore how techniques from isomorphism testing can be adapted to graph representation learning, and how these optimizations affect expressive power.

Expressive power Some questions regarding separating power are left open by our results. In particular, we gave sufficient conditions for graphs from which HE-GNN-d can count homomorphisms in terms of size and ego-ranks, but we have not shown these conditions are necessary. Our results are also limited in scope by the fact that they concern separation power and not the uniform expressibility of functions. Several uniform expressibility results have recently been obtained for GNNs (both relative to first-order logic [6], and in terms of Presburger logic [7]), and it remains to be seen if these results can be extended to HE-GNNs.

Beyond expressive power The empirical success of GNNs cannot be understood through expressive power alone, as it also depends on trainability aspects such as convergence and generalization. These remain to be explored more extensively, across GNN architectures and in the context of HE-GNNs.

Acknowledgements

We thank Martin Grohe, Ronald de Haan, and Carsten Lutz for valuable discussions that contributed to the development of this work.

References

- [1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power of graph neural networks with random node initialization. *arXiv* preprint *arXiv*:2010.01179, 2020.
- [2] Sam Adam-Day, Michael Benedikt, Ismail Ceylan, and Ben Finkelshtein. Almost surely asymptotically constant graph neural networks. *Advances in Neural Information Processing Systems*, 37:124843–124886, 2024.
- [3] Rajeev Alur, Marcelo Arenas, Pablo Barcelo, Kousha Etessami, Neil Immerman, and Leonid Libkin. First-order and temporal logics for nested words. In *Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science*, LICS '07, page 151–160, USA, 2007. IEEE Computer Society.
- [4] W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph neural networks. *CoRR*, abs/2006.15646, 2020.
- [5] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with local graph parameters. Advances in Neural Information Processing Systems, 34:25280– 25293, 2021.
- [6] Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva. The logical expressiveness of graph neural networks. In 8th International Conference on Learning Representations (ICLR 2020), 2020.
- [7] Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of Graph Neural Networks via Logical Characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pages 127:1–127:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl Leibniz-Zentrum für Informatik.
- [8] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In *International Conference on Learning Representations*, 2022.
- [9] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. *Combinatorica*, 12(4):389–410, 1992.
- [10] Balder ten Cate and Luc Segoufin. Transitive closure logic, nested tree walking automata, and XPath. *J. ACM*, 57(3), March 2010.
- [11] Jesse Comer. Lovász theorems for modal languages. In Agata Ciabattoni, David Gabelaia, and Igor Sedlár, editors, *Advances in Modal Logic*, *AiML 2024*, *Prague*, *Czech Republic*, *August 19-23*, 2024, pages 269–292. College Publications, 2024.
- [12] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood aggregation for graph nets. Advances in neural information processing systems, 33:13260–13271, 2020.
- [13] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.
- [14] Paul T. Darga, Hadi Katebi, Mark Liffiton, Igor L. Markov, and Karem Sakallah. Saucy3. http://vlsicad.eecs.umich.edu/BK/SAUCY/, n.d. Software package.

- [15] Mohammed Haroon Dupty and Wee Sun Lee. Graph representation learning with individualization and refinement. *arXiv preprint arXiv:2203.09141*, 2022.
- [16] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. *arXiv preprint arXiv:2012.09699*, 2020.
- [17] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24(43):1–48, 2023.
- [18] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural networks with learnable structural and positional representations. *arXiv* preprint *arXiv*:2110.07875, 2021.
- [19] Billy Joe Franks, Markus Anders, Marius Kloft, and Pascal Schweitzer. A systematic approach to universal random features in graph neural networks. *Transactions on Machine Learning Research*, 2023.
- [20] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and extending subgraph GNNs by rethinking their symmetries. Advances in Neural Information Processing Systems, 35:31376–31390, 2022.
- [21] Floris Geerts. The expressive power of kth-order invariant graph networks. *arXiv preprint arXiv:2007.12035*, 2020.
- [22] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *International conference on machine learning*, pages 1263–1272. PMLR, 2017.
- [23] Martin Grohe. The descriptive complexity of graph neural networks. In *Proceedings of the Thirty eighth Annual IEEE Symposium on Logic in Computer Science (LICS 2023)*, pages 1–14. IEEE Computer Society Press, June 2023.
- [24] Alan J. X. Guo, Qing-Hu Hou, and Ou Wu. Improving the expressive power of graph neural network with tinhofer algorithm, 2021.
- [25] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and applications. *IEEE Data Eng. Bull.*, 40(3):52–74, 2017.
- [26] Stan P Hauke and Przemysław Andrzej Wałęga. Aggregate-combine-readout gnns are more expressive than logic c2. *arXiv preprint arXiv:2508.06091*, 2025.
- [27] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li. On the stability of expressive positional encodings for graphs. In *The Twelfth International Conference on Learning Representations*, 2024.
- [28] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a free tool to discover chemistry for biology. *Journal of chemical information and modeling*, 52(7):1757–1768, 2012.
- [29] Emily Jin, Michael Bronstein, Ismail Ilkan Ceylan, and Matthias Lanzinger. Homomorphism counts for graph neural networks: All about that basis. *arXiv preprint arXiv:2402.08595*, 2024.
- [30] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for large and sparse graphs. In 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 135–149. SIAM, 2007.
- [31] Charilaos Kanatsoulis, Evelyn Choi, Stefanie Jegelka, Jure Leskovec, and Alejandro Ribeiro. Learning efficient positional encodings with graph neural networks. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations*, 2017.

- [33] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. *Advances in neural information processing systems*, 32, 2019.
- [34] Brendan D. McKay and Adolfo Piperno. Nauty and traces user guide. https://cs.anu.edu.au/people/Brendan.McKay/nauty/nug25.pdf, 2014. Accessed: 2025-04-24.
- [35] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. *Journal of symbolic computation*, 60:94–112, 2014.
- [36] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. *Journal of Machine Learning Research*, 24(333):1–59, 2023.
- [37] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards scalable higher-order graph embeddings. Advances in Neural Information Processing Systems, 33:21824–21840, 2020.
- [38] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 4602–4609, 2019.
- [39] Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network extensions. In *International Conference on Machine Learning*, pages 17323–17345. PMLR, 2022.
- [40] Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity and sample complexity of node-individualized graph neural networks. *Advances in Neural Information Processing Systems*, 37:120221–120251, 2024.
- [41] Adolfo Piperno. Search space contraction in canonical labeling of graphs. *arXiv preprint* arXiv:0804.4881, 2008.
- [42] Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered subgraph aggregation networks. Advances in Neural Information Processing Systems, 35:21030– 21045, 2022.
- [43] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural Information Processing Systems*, 35:14501–14515, 2022.
- [44] Gaurav Rattan and Tim Seppelt. Weisfeiler-leman and graph spectra. In *Proceedings of the* 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268–2285. SIAM, 2023.
- [45] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural networks. In *Proceedings of the 2021 SIAM international conference on data mining (SDM)*, pages 333–341. SIAM, 2021.
- [46] Moritz Schönherr and Carsten Lutz. Logical characterizations of gnns with mean aggregation. *arXiv preprint arXiv:2507.18145*, 2025.
- [47] E. Spence. Strongly regular graphs on at most 64 vertices. https://www.maths.gla.ac.uk/~es/srgraphs.php, n.d. Accessed: 2025-05-10.
- [48] DJ Tena Cucala, B Cuenca Grau, Egor V Kostylev, and Boris Motik. Explainable gnn-based models over knowledge graphs. 2022.
- [49] Petar Veličković. Everything is connected: Graph neural networks. *Current Opinion in Structural Biology*, 79:102538, 2023.
- [50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

- [51] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 10737–10745, 2021.
- [52] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In *International Conference on Machine Learning*, pages 41019–41077. PMLR, 2023.
- [53] Muhan Zhang and Pan Li. Nested graph neural networks. *Advances in Neural Information Processing Systems*, 34:15734–15747, 2021.
- [54] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN with local structure awareness. In *International Conference on Learning Representations*, 2022.
- [55] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. *AI open*, 1:57–81, 2020.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction have been written to represent the paper's scope and contributions as clearly and accurately as possible.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A limitation section including open problems is provided at the end of the paper.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems are formulated with the objective of preventing ambiguity in terms of what is proven and what is assumed. All proofs are included in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: ZINC-12k is publicly available, and the description of the synthetic dataset should be sufficient for reproduction. The applied algorithm is explained in pseudocode. Code used to run these experiments will be made publicly available on git.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions
 to provide some reasonable avenue for reproducibility, which may depend on the nature of
 the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code will be made publicly available and a link will be included in the paper after the reviewing process, to prevent breaching anonimity. All used data is publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Main settings such as hidden dimension and the number of runs are listed in the experiments section. Details such as data splits and hyperparameters are not mentioned in the paper itself, but all details are provided in the form of code on git.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance d

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are included for the result on strongly regular graphs. Results on ZINC-12k are optimal results selected by validation scores, as explained in the experiments section.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
 report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
 of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Experiments were run on a single 20GB gpu for 1000 epochs, as stated in the experiments section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All data used is publicly available and doesn't contain sensitive information. We intend that this work will aid the scientific community in understanding graph learning models, and do not foresee harmful consequences.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee a direct (negative or positive) societal impact of this work, apart from aiding the scientific community in the development of graph learning methods.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new data. Our method focuses on improving expressive power for graph learning tasks and is not applicable to high-risk domains such as language generation or image synthesis.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Explicit references are made to the used datasets. All code is developed by the authors.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The code on git contains a package for hierarchical ego gnns including documentation. The details of the algorithm are given in pseudocode in the paper.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This project did not involve crowdsourcing or research with human subjects.

Guidelines

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of
 the paper involves human subjects, then as much detail as possible should be included in the
 main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This project did not involve crowdsourcing or research with human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were part of the core development of this work as an important or non-standard component.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Missing proofs

A Proofs for section 2

Proposition 2.3. ([6]) For every GML-formula ϕ there is a GNN \mathcal{A} such that $\operatorname{Cls}_{\mathcal{A}} = \operatorname{Cls}_{\phi}$. Moreover, the GNN in question only uses Sum as aggregation and a single ReLU-FFNN as combination function.

Proof. Let Φ be the smallest set of GML-formulas containing ϕ that is closed under taking subformulas. The *operator depth* of a GML-formula is defined as follows: $\operatorname{depth}(p) = 0$, $\operatorname{depth}(\neg \phi) = \operatorname{depth}(\phi) + 1$, $\operatorname{depth}(\phi \wedge \psi) = \max\{\operatorname{depth}(\phi), \operatorname{depth}(\psi)\} + 1$ $\operatorname{depth}(\Diamond^{\geq n}\phi) = \operatorname{depth}(\phi) + 1$. Let $|\Phi| = k$ and let L be the maximal operator depth of a formula in Φ . Let

$$\mathcal{A} = ((COM_i)_{i=1...L}, (AGG_i)_{i=1...L})$$

where

- $\operatorname{COM}_1: \mathbb{R}^{2|P|} \to \mathbb{R}^k$ given by $\operatorname{COM}_1(x_1, \dots, x_{|P|}, y_1, \dots, y_{|P|}) = (z_1, \dots, z_k)$ with $z_i = x_j$ if ϕ_i is of the form p_j and $z_i = 0$ otherwise.
- For i > 1, $COM_i : \mathbb{R}^{2k} \to \mathbb{R}^k$ is given by $COM_i(x_1, \dots, x_k, y_1, \dots y_k) = (z_1, \dots, z_k)$ with

$$z_i = \begin{cases} x_i & \text{if } \phi_i \text{ is of the form } p \\ 1 - x_j & \text{if } \phi_i \text{ is of the form } \neg \phi_j \\ \max\{x_j, x_m\} & \text{if } \phi_i \text{ is of the form } \phi_j \wedge \phi_m \\ 1 \text{ if } y_j \geq n, 0 \text{ otherwise} & \text{if } \phi_i \text{ is of the form } \lozenge^{\geq n} \phi_j \end{cases}$$

• Each AGG_i is (pointwise) sum.

It is not difficult to see that COM_i can be implemented by a two-layer feed-forward network using the ReLU activation function. In particular, $\max\{x_j, x_m\}$ can be expressed as $ReLU(x_j + x_m - 1)$ and "1 if $y_i \ge n$, 0 otherwise" can be expressed as $ReLU(1 - ReLU(n - y_i))$.

It can be shown by a straightforward induction on d, that, for all $d \ge 0$, for all $\phi \in \Phi$ of operator depth d, and for all i > d, $\operatorname{emb}_G^i(v)(j)$ is 1 if $G, v \models \phi_j$ and 0 otherwise.

In order to turn \mathcal{A} into a classifier, finally, we extend COM_L with one additional linear layer of dimensionality (k,1) that takes a vector (x_1,\ldots,x_k) and outputs x_i , where $\phi_i=\phi$.

Proposition 2.4. Let A be a (D, D')-GNN with D = |P|, let N > 0, and let

$$X = \{ \operatorname{run}_{\mathcal{A}}(G, \operatorname{emb}_G)(v) \mid G = (V, E, \operatorname{lab}) \text{ is a graph of degree at most } N \text{ and } v \in V \}.$$

In other words $X \subseteq \mathbb{R}^{D'}$ is the set of all node embeddings that A can produce when run on a graph of degree at most N. Then X is a finite set, and for each $\mathbf{x} \in X$, there is a GML-formula $\phi_{\mathbf{x}}$ such that for every pointed graph (G,v) of degree at most N, it holds that $G,v \models \phi_{\mathbf{x}}$ iff $\mathrm{run}_{A}(G,\mathrm{emb}_{G})(v) = \mathbf{x}$. In particular, for each GNN-classifier Cls_{A} there is a GML-formula ϕ such that $\mathrm{Cls}_{\phi}(G,v) = \mathrm{cls}_{A}(G,v)$ for all pointed graphs (G,v) of degree at most N.

Proof. Let $\mathcal{A}=((\mathtt{COM}_i)_{i=1...L},(\mathtt{AGG}_i)_{i=1...L})$. By definition, $\mathtt{run}_{\mathcal{A}}(G,\mathtt{emb}_G)(v)$ is equal to $\mathtt{emb}_G^L(v)$ where, for each $i=0\ldots L$, $\mathtt{emb}_G^i:V\to\mathbb{R}^{D_i}$ is given by

- $\operatorname{emb}_G^0 = \operatorname{emb}_G$
- $\operatorname{emb}_G^i = \{v : \operatorname{COM}_i(\operatorname{emb}_G^{i-1}(v) \oplus \operatorname{AGG}_i(\{\{\operatorname{emb}_G^{i-1}(u) \mid (v,u) \in E\}\})) \mid v \in V\} \text{ for } i > 0\}$

The main statement can therefore be restated as saying that the set

$$X_L = \{ \operatorname{emb}_G^L(v) \mid G = (V, E, \operatorname{lab}) \text{ is a graph of degree at most } N \text{ and } v \in V \}$$

is finite and there is a defining GML-formula $\phi_{\mathbf{x}}$ for each $\mathbf{x} \in X_L$ (over pointed graphs of degree at most N). We proceed by induction on L.

For L=0, emb_G^L equals emb_G . In this case, X is equal to the set of all multi-hot encodings, i.e., $X=\{0,1\}^D$, and for every $\mathbf{x}=(x_1,\ldots,x_D)\in X_L$, we can simply choose $\phi_{\mathbf{x}}=\alpha_1\wedge\cdots\wedge\alpha_D$ where $\alpha_i=p_i$ if $x_i=1$ and $\alpha_i=\neg p_i$ if $x_i=0$.

Next, let L>0. By induction hypothesis, the claim holds for X_{L-1} . Let us consider pairs (\mathbf{z},Z) where $\mathbf{z}\in X_{L-1}$ and Z is a multiset of vectors belonging to X_{L-1} , such that Z has cardinality at most N. Note that there are at most finitely many such pairs. For any such pair let $\phi_{(\mathbf{z},Z)}$ be the GML-formula

$$\phi_{\mathbf{z}} \wedge \bigwedge_{\mathbf{u} \text{ occurs in } Z \text{ with cardinality } n} (\lozenge^{\geq n} \phi_{\mathbf{u}} \wedge \neg \lozenge^{\geq n+1} \phi_{\mathbf{u}})$$

We now define our formula $\phi_{\mathbf{x}}$ as the disjunction of $\phi_{(\mathbf{z},Z)}$ for all pairs (\mathbf{z},Z) for which it holds that $\mathrm{COM}_L(\mathbf{z}\oplus\mathrm{AGG}_L(Z))=\mathbf{x}$. It follows from the construction that $(G,v)\models\phi_{\mathbf{x}}$ if and only if $\mathrm{emb}_G^L(v)=\mathbf{x}$.

B Proofs of logical characterizations in sections 3 and 4

We prove several lemmas building up to a uniform translation from HES-GNN-(d,r) to $GML(\downarrow_{Wr}^d)$ (theorem B.5) and a converse uniform translation for graphs with bounded degree (theorem B.6). The logical characterizations in theorems 3.4 and 4.1 follow with small additions or adjustments to the proofs. We will use \lozenge_k for $\bigodot \lozenge_k \ldots \lozenge_k$.

Proposition B.1. Every GML(\downarrow , @)-sentence is equivalent to a GML(\downarrow)-sentence of the same \downarrow -nesting-depth over unordered graphs.

Proof. Let ϕ be a GML(\downarrow , @)-sentence. Let n be the modal depth of ϕ , that is, the maximal nesting depth of the modal operators in the sentence, and let ϕ' be the sentence obtained from ϕ by replacing every subformula of the form $@_x\psi$ by

$$\bigvee_{i=0...2n} (\underbrace{\lozenge \cdots \lozenge}_{\text{length } i} (x \wedge \psi))$$

Clearly, ϕ' has the same \downarrow -nesting-depth as ϕ . A straightforward induction proof shows that ϕ and ϕ' are equivalent on unordered graphs. Intuitively, this is because all variables in ϕ are bound, and 2n bounds the distance between nodes in the subgraph that the formula ϕ can "see".

Proposition B.2 (Canonical Form). Let $Nd_{\phi}^{W}(\psi)$ be the number of W operators in ϕ that have ψ in their scope. For each $GML(\downarrow_{W^r}^d)$ sentence ϕ there exists an equivalent $GML(\downarrow_{W^r}^d)$ sentence ψ such that for every subformula of the form $\downarrow x_iW^r\psi'$, $i=d+1-Nd_{\psi}^W(\psi')$. We call such ψ canonical.

Proof. We assume the proposition holds for d and apply induction over formula construction in $GML(\downarrow_{W^r}^{d+1})$. Let $\phi_1 \in GML(\downarrow_{W^r}^d)$, and $\phi = \downarrow x_i.W^r\phi_1$. Let ψ_1 be the canonical form of ϕ_1 and construct ψ_1^* substituting free occurrences of x_i in ψ_1 by x_{d+1} . Then:

$$\psi = \downarrow x_{d+1}.W^r\psi_1^*$$

Clearly $\psi \equiv \phi$, and for every subformula $\downarrow x_j$. $W^r \psi'$ in ψ we have $j = d + 2 - Nd_{\psi}^W(\psi')$. Canonical form is maintained under construction with the other connectives $(\neg, \land, \lozenge^{>k})$.

Lemma B.3. Given a finite tuple $(A^1, ... A^m)$ where for $1 \le j \le m$, A^j is a (D, D')-GNN, there exists a $(D, m \cdot D')$ -GNN A such that $\operatorname{run}_{\mathcal{A}}(G)(u) = \bigoplus_{1 \le j \le m} (\operatorname{run}_{\mathcal{A}^j}(G)(u))$. Moreover, if all A^j

use the same pointwise aggregation function, then A uses the same aggregation function, and if all A^j use ReLU-FFNNs as combination functions, the same holds for A.

Proof. For each j let $\mathcal{A}^j=((\operatorname{COM}_i^j)_{i=1,\dots,L_j}, (\operatorname{AGG}_i^j)_{i=1,\dots,L_j})$. Without loss of generality all \mathcal{A}^j have the same number of layers L'. Let L=L'+1. We construct $\mathcal{A}=((\operatorname{COM}_i)_{i=1,\dots,L}, (\operatorname{AGG}_i)_{i=1,\dots,L})$. The first layer copies each embedding m times, i.e. for $v,v'\in\mathbb{R}^D$: $\operatorname{COM}_1(v\oplus v')=\bigoplus_{1\leq j\leq m}(v)$.

Given combination functions COM^j let COM_j apply each COM_j on the associated subspace:

$$\underset{1 \leq j \leq m}{\operatorname{COM}}(v_1 \oplus \dots v_m) \oplus (v_1' \oplus \dots v_m') = \bigoplus_{1 \leq j \leq m} (\operatorname{COM}^j(v_j \oplus v_j'))$$

Similarly, given aggregation functions AGG^{j} let $\underset{1 \le i \le m}{AGG}$ behave as:

$$\mathop{\rm agg}_{1\leq j\leq m}(M)=\bigoplus_{1\leq j\leq m}(\mathop{\rm agg}^j(M_j))$$

Here, for $AGG_j: \mathcal{M}(\mathbb{R}^{D_j}) \to \mathbb{R}^{D_j}$, M is a multiset of embeddings in $\mathbb{R}^{\sum_{1 \leq j \leq m} D_j}$ and M_j is the multiset of embeddings in \mathbb{R}^{D_j} , obtained by restricting each embedding in M to indices $[\sum_{j' < j} D_{j'}, \sum_{j' \le j} D_{j'}]$. Note that if each AGG_j is the same point-wise aggregation function (e.g. sum), then $\underset{1 \le j \le m}{\mathsf{AGG}}$ is the same point-wise aggregation function on the concatenated space.

We define the remaining layers of A as:

$$\begin{aligned} \forall l > 1 : \mathsf{AGG}_l &= \underset{1 \leq j \leq m}{\mathsf{AGG}_{l-1}} \\ \forall l > 1 : \mathsf{COM}_l &= \underset{1 \leq j \leq m}{\mathsf{COM}_{l-1}} \\ \end{aligned}$$

Corollary B.4. Given a finite tuple $(A^1, \ldots A^m)$ where for $1 \le j \le m$, A^j is a (D, D')-HES-GNN with nesting depth d and radius r, there exists a $(D, m \cdot D')$ -HES-GNN $\mathcal A$ with nesting depth d and radius r such that $\operatorname{run}_{\mathcal{A}}(G)(u) = \bigoplus_{1 \leq j \leq m} (\operatorname{run}_{\mathcal{A}^j}(G)(u))$. Moreover, if all \mathcal{A}^j use the same pointwise

aggregation function, then A uses the same aggregation function, and if all A^j use ReLU-FFNNs as combination functions, the same holds for A.

Proof. For d=0 the claim follows from the above lemma. For d>0 and $\mathcal{A}^j=(\mathcal{B}^j,\mathcal{C}^j)$, construct $\mathcal{A}=(\mathcal{B},\mathcal{C}) \text{ where } \mathrm{run}_{\mathcal{B}}(G)(u)=\bigoplus_{1\leq j\leq m}(\mathrm{run}_{\mathcal{B}^j}(G)(u)).$

C follows the construction of the above lemma, with the exception that the first combination function does not copy the complete vertex embedding m times. Instead, COM_1 now receives a vertex embedding $v \oplus \bigoplus_{1 \leq j \leq m} (v_j)$, where v is the original vertex embedding and v_j is the output of \mathcal{B}^j , and produces output $\bigoplus_{1 \leq j \leq m} (v \oplus v_j)$.

produces output
$$\bigoplus_{1 \leq j \leq m} (v \oplus v_j)$$
.

Theorem B.5. Given a finite tuple (ϕ_1, \ldots, ϕ_m) where for $1 \le j \le m$, ϕ_j is a GML $(\downarrow_{W^r}^d)$ sentence with propositions in P, there exists a (|P|, m)-HE-GNN A with nesting depth d and radius r such that for all G labeled with $P \operatorname{run}_{\mathcal{A}}(G)(u) = \bigoplus_{1 \leq j \leq m} (\operatorname{cls}_{\phi_j}(G,u)).$

Proof. For d=0, following the uniform translation from GML to GNN of proposition 2.3, there exist a GNN A_j such that $\operatorname{run}_{A_j} = \operatorname{cls}_{\phi_j}$. By lemma B.3 there then exists a GNN A that produces the concatenation of outputs for each A_j .

We apply induction over d. It suffices to show that any single sentence ϕ in GML($\downarrow_{W^r}^d$) is implemented by a single HE-GNN A, since we can construct a HE-GNN with concatenated outputs following corollary B.4.

By lemma B.2 we can assume ϕ is canonical, hence for every maximal subformula $\downarrow x_i.W^r(\psi)$ in ϕ , i=d. Let $\downarrow x_d.W^r\psi_1,\ldots,\downarrow x_d.W^r\psi_k$ be all such maximal subformulas. By the semantics of $GML(\downarrow_{W^r}^d)$, for all $1 \le j \le k$:

$$G, v \models \downarrow x_d.W^r(\psi_j) \text{ iff }$$

$$G_v^r[x_d \mapsto v], v \models \psi_j$$

Now when x_d is treated as a binary node feature, ψ_j is a sentence in $GML(\downarrow_{W^r}^d)$. There thus exists a HE-GNN \mathcal{B}_j such that

$$\begin{split} \operatorname{run}_{\mathcal{B}_j}(G_v^r[x_d \mapsto v])(v) &= \operatorname{cls}_{\psi_j}(G_v^r[x_d \mapsto v], v) \\ &= \operatorname{cls}_{\downarrow_x, W^r(\psi_j)}(G, v) \end{split}$$

We construct a single HE-GNN \mathcal{B} with nesting depth d-1 that outputs the concatenated outputs for all such \mathcal{B}_i , following corollary B.4:

$$\operatorname{run}_{\mathcal{B}}(G_v^r[x_d\mapsto v])(v) = \bigoplus_{1\leq j\leq m} \operatorname{cls}_{\downarrow\,x_d.W^r(\psi_j)}(G,v)$$

Now construct ϕ^* from ϕ by substituting each $\downarrow x_d.W^r\psi_j$ with a proposition q_j . Given G = (V, E, lab), let $G^* = (V, E, \text{lab}^*)$, where lab* extends lab so that $q_j \in \text{lab}^*(u)$ iff $G, u \models \downarrow x_d.W^r\psi_j$. Then:

$$\mathsf{cls}_{\phi}(G,v) = \mathsf{cls}_{\phi^*}(G^*,v)$$

Note that $\phi^* \in GML$. Hence by proposition 2.3 there exists a GNN \mathcal{C} such that for $\mathcal{A} = (\mathcal{B}, \mathcal{C})$:

$$\begin{aligned} \mathsf{cls}_{\phi^*}(G^*, v) &= \mathsf{run}_{\mathcal{C}}(G^*, v) \\ &= \mathsf{run}_{\mathcal{A}}(G, v) \end{aligned}$$

Theorem B.6. Let A be a (D, D')-HES-GNN with D = |P|, nesting depth d, radius r. Let $N \ge 0$ and

 $X = \{ \operatorname{run}_{\mathcal{A}}(G, \operatorname{emb}_G)(v) \mid G = (V, E, \operatorname{lab}) \text{ is a graph of degree at most } N \text{ and } v \in V \}$

Then X is a finite set, and for each $\mathbf{x} \in X$ there is a $\mathrm{GML}(\downarrow_{W^r}^d)$ sentence $\phi_{\mathbf{x}}$ such that for every pointed graph (G,v) of degree at most N it holds that $G,v\models\phi_{\mathbf{x}}$ iff $\mathrm{run}_{\mathcal{A}}(G)(v)=\mathbf{x}$. In particular, for each HES-GNN-(d,r) classifier $\mathrm{Cls}_{\mathcal{A}}$ there is a $\mathrm{GML}(\downarrow_{W^r}^d)$ sentence ϕ such that $\mathrm{Cls}_{\phi}(G,v)=\mathrm{Cls}_{\mathcal{A}}(G,v)$ for all pointed graphs (G,v) of degree at most N.

Proof. We apply induction over d. The case d=0 reduces to the translation from GNN to GML of proposition 2.4. Let $\mathcal{A}=(\mathcal{B},\mathcal{C})$ be a HES-GNN with depth d and radius r. X is finite since \mathcal{B} has finitely many output embeddings by the induction hypothesis, and \mathcal{C} produces finitely many output features on graphs with finitely many input embeddings as shown in the proof of proposition 2.4.

Let $emb^u = \{emb(u') \oplus \delta_{uu'} \mid u' \in V\}$, then for each $\mathbf{x} \in X$:

$$\begin{aligned} \operatorname{run}_{\mathcal{A}}(G)(v) &= \mathbf{x} \text{ iff} \\ \operatorname{run}_{\mathcal{C}}(G, \{\operatorname{emb}_G(u) \oplus \operatorname{run}_{\mathcal{B}}(G_u^r, \operatorname{emb}^u) | u \in V\})(v) &= \mathbf{x} \text{ iff} \\ \operatorname{run}_{\mathcal{C}}(G^*)(v) &= \mathbf{x} \end{aligned}$$

Where given $G=(V,E,\text{lab}), G^*=(V,E,\text{lab}^*)$ and lab^* extends lab with propositions for all output features of \mathcal{B} . Specifically, let $Y_{\mathcal{B}}=\{\mathbf{y_1},\ldots\mathbf{y_{|Y_{\mathcal{B}}|}}\}$ be this finite set of output features and introduce $q_1\ldots q_{|Y_{\mathcal{B}}|}$ such that $q_j\in\text{lab}^*(u)$ if and only if $\text{run}_{\mathcal{B}}(G_u^r,\text{emb}^u)(u)=\mathbf{y_j}$.

By proposition 2.4 there exists a sentence ξ in GML such that:

$$G^*, v \models \xi \text{ iff } \operatorname{run}_{\mathcal{C}}(G^*)(v) = \mathbf{x}$$

Then let
$$\phi_{\mathbf{x}} = \xi[\downarrow x_d.W^r\phi_{\mathbf{y_1}},\ldots,\downarrow x_d.W^r\phi_{\mathbf{y_{|\mathbf{Y_B}|}}}/q_1,\ldots q_{|Y_{\mathcal{B}|}}].$$

Here all $\downarrow x_d.W^r(\phi_{\mathbf{y_i}})$ are sentences in GML($\downarrow_{W^r}^d$) by the induction hypothesis, so that the same holds for $\phi_{\mathbf{x}}$.

Small adaptations can be made to the proofs of theorems B.5 and B.6 to show $\rho(\text{HE-GNN-}d) = \rho(\text{GML}(\downarrow^d))$, where now all operators W^r are removed and no subgraph restrictions are applied. Since HE-GNN $= \cup_{d \geq 0}$ HE-GNN-d and GML(\downarrow) $= \cup_{d \geq 0}$ GML(\downarrow^d) it follows that $\rho(\text{HE-GNN}) = \rho(\text{GML}(\downarrow))$. That is:

Theorem 3.4. $\rho(\text{HE-GNN}) = \rho(\text{GML}(\downarrow))$. Moreover, for $d \geq 0$, $\rho(\text{HE-GNN-}d) = \rho(\text{GML}(\downarrow^d))$. **Lemma B.7.** Let $r \geq 0$, then $\rho(\text{GML}(\downarrow^d)) \subseteq \rho(\text{GML}(\downarrow^d_{W^r}))$

Proof. Let $\phi \in GML(\downarrow_{W^r}^d)$. We define sentence ξ , which only holds at vertices of distance $\leq r$ to x_i :

$$\xi = x_i \vee \bigvee_{1 \le j \le r} \Diamond_j x_i$$

Now take a minimal subformula of the form $\downarrow x_i.W^r\psi$ in ϕ . We substitute this for an equivalent subformula $\downarrow x_i.\psi'$, where $\lozenge^{\geq k}\tau$ in ψ is replaced by $\lozenge^{\geq k}(\xi \land \tau)$ to produce ψ' .

Applying this transformation recursively to subformulas in ϕ yields an equivalent GML(\downarrow^d) sentence.

Theorem 4.1.

1. $\rho(\text{HES-GNN}) = \rho(\text{GML}(\downarrow_W)) = \rho(\text{GML}(\downarrow)) = \rho(\text{HE-GNN}).$

2.
$$\rho(\text{HES-GNN-}r) = \rho(\text{GML}(\downarrow_{Wr}))$$
. Moreover, $\rho(\text{HES-GNN-}(d,r)) = \rho(\text{GML}(\downarrow_{Wr}^d))$.

Proof. Theorems B.5 and B.6 yield $\rho(\text{HES-GNN-}(d,r)) = \rho(\text{GML}(\downarrow_{W^r}^d))$ for all $d,r \geq 0$.

Since HE-GNN- $r = \bigcup_{d \geq 0}$ HES-GNN-(d,r) and GML $(\downarrow_{W^r}) = \bigcup_{d \geq 0}$ GML (\downarrow_{W^r}) point (2) follows.

Similarly, taking the union over all $r \geq 0$ yields $\rho(\text{HES-GNN}) = \rho(\text{GML}(\downarrow_W))$. Finally, to see that $\rho(\text{GML}(\downarrow_W)) = \rho(\text{GML}(\downarrow))$ note that when two pointed graphs are separated by a sentence in $\text{GML}(\downarrow)$ they are also separated by a $\text{GML}(\downarrow_{W^r})$ sentence where r is the size of the largest of the two graphs. Using lemma B.7 then $\rho(\text{GML}(\downarrow_W)) = \rho(\text{GML}(\downarrow))$.

C Proofs of hierarchy results in section 4

Theorem 4.2. For $d \ge 1$, $r \ge 0$, $\rho(\text{HES-GNN-}(d,r+1)) \subseteq \rho(\text{HES-GNN-}(d,r))$.

The construction of lemma B.7 also shows $\rho(\mathrm{GML}(\downarrow_{W^{r+1}}^d)) \subseteq \rho(\mathrm{GML}(\downarrow_{W^r}^d))$ for $d \geq 1, r \geq 0$. Using the logical characterization of theorem 4.1 then $\rho(\mathrm{HES\text{-}GNN\text{-}}(d,r+1)) \subseteq \rho(\mathrm{HES\text{-}GNN\text{-}}(d,r))$.

Now to show $\rho(\text{HES-GNN-}(d,r+1)) \neq \rho(\text{HES-GNN-}(d,r))$, consider graphs $G_1 = C_{4r+6}$ and G_2 consisting of two disjoint cycles C_{2r+3} , where all vertices are labeled with the empty set.

Let v_1, v_2 be nodes in G_1, G_2 and $\phi = \downarrow x_i, W^{r+1}(\lozenge_{r+1}(\neg \lozenge^{\geq 2} \top))$. Then:

$$G_1, v_1 \models \phi$$

 $G_2, v_2 \not\models \phi$

Again applying theorem 4.1 (G_1, v_1) and (G_2, v_2) can be separated by HES-GNN-(d, r+1) for $d \ge 1$.

However, the marked induced subgraphs with radius r around v_1, v_2 are isomorphic and hence cannot be separated by any HE-GNN. Since $(G_1, v_1), (G_2, v_2)$ are further indistinguishable by WL:

$$\forall d \geq 0 : ((G_1, v_1), (G_2, v_2)) \in \rho(\text{HES-GNN-}(d, r)))$$

Theorem 4.3. For $d \ge 0$ and $r \ge 3$, $\rho(\text{HES-GNN-}(d+1,r)) \subsetneq \rho(\text{HES-GNN-}(d,r))$

This follows from

$$\rho((d+2)\text{-GNN}) \subseteq \rho(\text{HE-GNN-}d) \subseteq \rho(\text{HES-GNN-}(d,r))$$
Theorem 5.11
$$\rho((d+2)\text{-GNN}) \not\subseteq \rho(\text{HES-GNN-}(d+1,r))$$
Theorem 5.12

D Proofs of relations with other models in section 5

5.1. Individualization-Refinement

Proposition D.1 (([38, 50]). Let $n, D \in \mathbb{N}$. Then there exists a GNN \mathcal{A}^s such that for all featured graphs (G, emb) , $(G', \operatorname{emb}')$ of size $\leq n$ and with embeddings in \mathbb{R}^D , if $\operatorname{WL}(G, n)(v) \neq \operatorname{WL}(G', n)(v')$ then $\operatorname{run}_{\mathcal{A}^s}(G)(v) \neq \operatorname{run}_{\mathcal{A}^s}(G')(v')$. We call such a GNN sufficiently separating.

Lemma D.2. Let $n, d, D \in \mathbb{N}$. Then there exists a sufficiently separating HE-GNN \mathcal{A}^s with nesting depth d such that for all featured graphs $(G, \operatorname{emb}), (G', \operatorname{emb}')$ of size $\leq n$ and with embeddings in \mathbb{R}^D , if $((G, v), (G', v')) \notin \rho(\operatorname{HE-GNN-}d)$ then $\operatorname{run}_{\mathcal{A}^s}(G)(v) \neq \operatorname{run}_{\mathcal{A}^s}(G')(v')$, we call such a HE-GNN sufficiently separating.

Proof. When d=0 this reduces to proposition D.1. Suppose d>0. Let \mathcal{B}^s be a sufficiently separating HE-GNN for n,d-1,D+1, and let \mathcal{C}^s be a sufficiently separating GNN for n,D', where D' is the output dimension of \mathcal{B}^s . We define $\mathcal{A}^s=(\mathcal{B}^s,\mathcal{C}^s)$.

Now suppose a HE-GNN $\mathcal{A}' = (\mathcal{B}', \mathcal{C}')$ with nesting depth d separates (G, v) from (G', v'). Since \mathcal{C}^s is sufficiently separating, $(\mathcal{B}', \mathcal{C}^s)$ is at least as separating as $(\mathcal{B}', \mathcal{C}')$. Since \mathcal{C}^s has the separating power of WL up to size n, and since \mathcal{B}^s has at least the separating power of \mathcal{B}' , $(\mathcal{B}^s, \mathcal{C}^s)$ is at least as separating as $(\mathcal{B}', \mathcal{C}^s)$.

Notation Assume an injective map f from the infinite set of colors $\mathcal C$ to an infinite set of binary node labels (propositions) $\mathcal P$. Given a graph $G=(V,E,\operatorname{lab})$ we write G_{WL} for $G=(V,E,\operatorname{lab}')$, where lab' is obtained by first computing the coloring $\operatorname{col}=\operatorname{WL}(G,|G|)$ and then labeling each node $v\in V$ with $f(\operatorname{col}(v))$.

Lemma D.3. Let (G, v), (G', v') be pointed graphs such that |G| = |G'|. If $((G, v), (G', v')) \in \rho(\text{HE-GNN-}d)$ then $((G_{WL}, v), (G'_{WL}, v')) \in \rho(\text{HE-GNN-}d)$.

Proof. We apply induction over d. For d=0 note that $\rho(\text{HE-GNN-}0)=\rho(\text{GNN})=\rho(\text{WL})$. Let (G,v),(G',v') be of size n, with labels in P, such that $((G,v),(G',v'))\in\rho(\text{HE-GNN-}d)$ for d>0.

By lemma D.2 there exists a sufficiently separating HE-GNN $\mathcal{A}^s=(\mathcal{B}^s,\mathcal{C}^s)$. We show $(G_{\mathrm{WL}},v),(G'_{\mathrm{WL}},v')\in\rho(\mathsf{cls}_{\mathcal{A}^s})$.

Suppose for nodes u in G and u' in G', are given the same output by \mathcal{B}^s after individualizing u, u'. By the induction hypothesis, the same holds for u in G_{WL} and u' in G'_{WL} . Since \mathcal{C}^s is sufficiently separating and since the input embeddings given by \mathcal{C}^s are not more separating for G_{WL} , G'_{WL} than for G, G', it follows that $(G_{WL}, v), (G'_{WL}, v') \in \rho(HE\text{-GNN-}d)$.

We apply the following lemma from Zhang et al. [52]

Lemma D.4. Let G = (V, E, lab), G' = (V', E', lab') be finite connected graphs with $v \in V, v' \in V'$ uniquely marked. Then:

$$WL(G)(v) = WL(G')(v') \text{ iff } \{WL(G)(u) \mid u \in V\} = \{WL(G')(u') \mid u' \in V'\}$$

Theorem 5.3. For $d \ge 0$, if $G \not\equiv_{WL-IR-d} G'$, then $G \not\equiv_{HE-GNN-d} G'$

Proof. We apply induction over d. At d=0, the claim follows since $\rho(\text{GNN})=\rho(\text{WL})$. Suppose for graphs G,G' with labels in P and d>0, $G\equiv_{\text{HE-GNN-}(d)}G'$, then |G|=|G'|. We show $G\equiv_{\text{WL-IR-}(d)}G'$.

By lemma D.2 there exists a sufficiently separating HE-GNN $\mathcal{A}^s = (\mathcal{B}^s, \mathcal{C}^s)$. Since:

$$\{ \operatorname{run}_{\mathcal{A}^s}(G, v) \mid v \in V \} = \{ \operatorname{run}_{\mathcal{A}^s}(G', v') \mid v' \in V' \}$$

there is a bijection f between the two multisets, such that for all $u \in V$ and for unique proposition q:

$$\operatorname{run}_{\mathcal{B}^s}(G_{[q\mapsto u]})(u) = \operatorname{run}_{\mathcal{B}^s}(G'_{[q\mapsto f(u)]})(f(u))$$

Let C^u , $C^{f(u)}$ be the connected components containing u and f(u). By lemma D.4:

$$\{\!\!\{\operatorname{run}_{\mathcal{B}^s}((C^u_{[q\mapsto u]})_{\operatorname{WL}})(w)\mid w\in C^u\}\!\!\}=\{\!\!\{\operatorname{run}_{\mathcal{B}^s}((C^{f(u)}_{[q\mapsto f(u)]})_{\operatorname{WL}})(w)\mid w\in C^{f(u)}\}\!\!\}$$

Since these connected components then also obtain the same multiset of output embeddings without a unique marking, this equality extends to the full graphs G, G':

$$\{\!\!\{\operatorname{run}_{\mathcal{B}^s}(G_{[q\mapsto u]})(w)\mid w\in V\}\!\!\}=\{\!\!\{\operatorname{run}_{\mathcal{B}^s}(G'_{[q\mapsto f(u)]})(w)\mid w\in V'\}\!\!\}$$

It follows that G, G' are indistinguishable by WL-IR-(d-1) after marking u, and f(u) and applying WL:

$$\begin{aligned} \{\!\!\!\{ \operatorname{run}_{\mathcal{B}^s}((G_{[q\mapsto u]})_{\operatorname{WL}})(w) \mid w \in V \}\!\!\!\} &= \{\!\!\!\{ \operatorname{run}_{\mathcal{B}^s}((G'_{[q\mapsto f(u)]})_{\operatorname{WL}})(w) \mid w \in V' \}\!\!\!\} & \text{(Lemma D.3)} \\ (G_{[q\mapsto u]})_{\operatorname{WL}} &\equiv_{\operatorname{HE-GNN-}(d-1)} (G'_{[q\mapsto f(u)]})_{\operatorname{WL}} & \text{(Lemma D.2)} \\ (G_{[q\mapsto u]})_{\operatorname{WL}} &\equiv_{\operatorname{WL-IR-}(d-1)} (G'_{[q\mapsto f(u)]})_{\operatorname{WL}} & \text{(Induction hypothesis)} \end{aligned}$$

Since WL-IR(G, d) obtains the same depth d-1 subtrees as WL-IR(G', d), $G \equiv_{\text{WL-IR-d}} G'$.

Theorem 5.4. Let (G, v), (G', v') be connected pointed graphs and let $d \ge 0$. If $G \not\equiv_{\text{WL-IR-}d} G'$, there exists a depth d+1 HE-GNN \mathcal{A} such that $\operatorname{\mathsf{Cls}}_{\mathcal{A}}(G, v) \ne \operatorname{\mathsf{Cls}}_{\mathcal{A}}(G', v')$.

Proof. Let $d \geq 0$. Suppose $(G, v) \equiv_{HE\text{-GNN-}d+1} (G', v')$. We show $G \equiv_{WL\text{-IR-}d} G'$.

For a sufficiently separating HE-GNN $\mathcal{A}^s = (\mathcal{B}^s, \mathcal{C}^s)$ with nesting depth d+1:

$$\operatorname{run}_{\mathcal{A}^s}(G)(v) = \operatorname{run}_{\mathcal{A}^s}(G')(v')$$

Thus, for unique label q:

$$\operatorname{run}_{\mathcal{B}^s}(G_{[q\mapsto v]})(v) = \operatorname{run}_{\mathcal{B}^s}(G'_{[q\mapsto v']})(v')$$

Then since G, G' are connected:

G

Figure 5: Two graphs that are distinguished by a depth 1 HE-GNN, but not by WL-IR-1. All nodes in both graphs have an empty labeling.

Theorem 5.5. There exist G, G' such that $G =_{WL-IR-1} G'$ but $G \neq_{HE-GNN-1} G'$

Proof. We use two graphs G, G' introduced by Rattan and Seppelt [44], and shown in Figure 5. G has a square u_1, u_2, u_3, u_4 , where u_1 is connected to all nodes in two triangles, the same holds for u_4 and two different triangles, and u_2, u_3 are connected to all nodes in two distinct 6 cycles. G' is constructed similarly with a central square v_1, v_2, v_3, v_4 , where now v_1 and v_3 are each connected to two triangles and v_2, v_4 are connected to distinct 6 cycles.

To see $G=_{\operatorname{WL-IR-1}}G'$ note firstly that the two graphs are WL equivalent. Furthermore, there is a bijection f between nodes of G and G', where for each node u in G, applying WL to G after individualizing u yields the same coloring as applying WL to G' after individualizing f(u). We let $f(u_1)=v_1, f(u_2)=v_2, f(u_3)=v_3, f(u_4)=v_4$, map every node in a triangle in G to a node in a triangle in G' and do the same for nodes in the 6 cycles of G and G'. One can easily check that this gives the desired result so that $G=_{\operatorname{WL-IR-1}}G'$.

We now show there is a GML($\downarrow_{W^2}^1$) formula ψ that is satisfied by u_1 but not by any node in G'.

$$\begin{split} \phi &= \lozenge^{\geq 8}(\top) \wedge \lozenge(\mathop{\downarrow} x.W^2(\neg \lozenge^{\geq 8}(\top) \wedge \lozenge(\neg \lozenge^{\geq 8}(\top) \wedge \lozenge(\neg \lozenge^{\geq 8}(\top) \wedge \lozenge(\neg \lozenge^{\geq 8}(\top) \wedge \lozenge x)))) \\ \psi &= \phi \wedge \neg \lozenge \phi \end{split}$$

Here, ϕ expresses having degree at least 8, and being connected to a node on a 3 cycle that doesn't pass a node with degree at least 8. u_1, u_4, v_1 and v_3 are the only nodes in G, G' that satisfy ϕ . Thus $G, u_1 \models \psi$, while no node in G' satisfies ψ . By the logical characterization in theorem 3.4 there exists a HE-GNN \mathcal{A} such that $G \neq_{\mathsf{cls}_{\mathcal{A}}} G'$.

5.2. Homomorphism count enriched GNNs

The definitions of homomorphisms and homomorphism counts were omitted from the paper due to lack of space. They are as follows: a *homomorphism* from a pointed graph (F, u) to a pointed graph (F, u) is a map h from the vertex set of F to the vertex set of F such that

- 1. for each edge (w, w') of F, (h(w), h(w')) is an edge of G,
- 2. for each vertex w of F, $lab_F(w) \subseteq lab_G(h(w))$, and
- 3. h(u) = v.

Homomorphisms are defined similarly for unpointed graphs G, where we simply omit condition (ii). We use $\hom((F,u),(G,v))$ to denote the number of homomorphism from (F,u) to (G,v). In addition, if h is a partial map from the vertex set of F to the vertex set of G, then we denote by $\hom_h(F,G)$ the number of homomorphism that extend h. In particular, $\hom_{\{(u,v)\}}(F,G) = \hom((F,u),(G,v))$.

For a set of pointed graphs $\mathfrak{F} = \{(F_1, u_1), \dots, (F_m, u_m)\}$ and a pointed graph (G, v), we denote by $\hom(\mathfrak{F}, (G, v))$ the vector of homomorphism counts

$$\langle \text{hom}((F_1, u_1), (G, v)), \dots, \text{hom}((F_m, u_m), (G, v)) \rangle$$

(assuming some ordering on the members of \mathfrak{F}).

Theorem 5.6. Let \mathfrak{F} be any finite set of rooted graphs each with at most d nodes. Then there is a $(|P|, |P| + |\mathfrak{F}|)$ -HE-GNN \mathcal{A} of nesting depth d such that, for all pointed graphs (G, v),

$$\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$$

The HE-GNN in question only uses Sum as aggregation and ReLu-FFNNs as combination functions.

Proof. We consider the case where \mathfrak{F} consists of a single rooted graph (F, u) with d nodes. The proof extends naturally to the case with multiple such rooted graphs.

We will prove the following stronger statement:

(*) For all sequences $\langle u_1, \dots, u_k \rangle$ of distinct nodes of F (with k > 0), there is a $(D + k, 1) - \text{HE-GNN } \mathcal{A}$ of nesting depth d - k, such that, for all graph G and maps $h : \{u_1, \dots, u_k\} \to V_G$,

$$\operatorname{run}_{\mathcal{A}}(G,\operatorname{emb}_{G}^{+h})(h(u_{k})) = \operatorname{hom}_{h}(F,G)$$

where
$$\operatorname{emb}_{G}^{+h} = \{w : \operatorname{emb}_{G}(w) \oplus \langle \delta_{wh(u_{1})}, \dots, \delta_{wh(u_{k})} \rangle \mid w \in V_{G}\}.$$

Observe that the special case of (*) with k = 1 and $u_1 = u$ yields a (|P| + 1, 1)-HE-GNN \mathcal{B} of nesting depth d - 1 such that

$$\operatorname{run}_{\mathcal{B}}(G,\operatorname{emb}'_{G})(v) = \operatorname{hom}((F,u),(G,v))$$

where $\operatorname{emb}_G' = \{w : \operatorname{emb}_G(w) \oplus \langle \delta_{wh(u)} \rangle \mid w \in V_G \}$. Let $\mathcal C$ be the trivial (|P|+1, |P|+1)-GNN that implements the identity function. It then follows that $\mathcal A = (\mathcal B, \mathcal C)$, which is a (|P|, |P|+1)-HE-GNN of nesting depth d, has the desired behavior.

It remains to prove (*). The proof proceeds by induction on the d-k. When k=d, the partial function h is in fact a total function from the node set of F to that of G. It is easy to implement a GNN that, in this case, outputs 1 if h is a homomorphism and outputs 0 otherwise. Indeed, this can be done using only ReLU-FFNN combination functions and Sum aggregation, and using at most $|V_F|$ many rounds of message passing. We omit the details, as they are straightforward.

Next, let 0 < k < d and assume that (*) holds for k + 1. We will show that it then also holds for k. Since k > 0, there are nodes of F that do not belong to the sequence $\langle u_1, \ldots, u_k \rangle$. It follows from this, by the connectedness of F, that there is an edge of F connecting some u_i (with $i \le k$) to some $u' \notin \{u_1, \ldots, u_k\}$. As a basic fact about homomorphism counts, we have

$$\hom_h(F,G) = \sum_{v' \in V_G \text{ such that } (h(u_i),v') \in E_G} \hom_{h \cup \{(u',v')\}}(F,G)$$

We now apply induction hypothesis to $\langle u_1, \dots, u_k, u' \rangle$, obtaining a (|P| + k + 1, 1)-HE-GNN \mathcal{B} . Let \mathcal{C} be a (|P| + k + 1, |P| + k + 1)-GNN that performs one round of message passing using Sum aggregation and using the combination function

$$COM(\langle x_1, ..., x_{|P|+k}, x', z_1, ..., z_{|P|+k}, z' \rangle) = \langle x_1, ..., x_{|P|+k}, z' \rangle$$

(i.e. summing up the values in the |P|+k+1-th position across all neighbors, and keeping the other values in the vector the same). Let $\mathcal{A}=(\mathcal{B},\mathcal{C})$. It follows from the construction that

$$\operatorname{run}_{\mathcal{A}}(G,\operatorname{emb}_{G}^{+h})(h(u_{i})) = \operatorname{hom}_{h}(F,G)$$

In other words, after running \mathcal{A} , "node $h(u_i)$ knows the answer". All that remains to complete the construction, is to "pass this information from $h(u_i)$ to $h(u_k)$. This can be done by augmenting \mathcal{C} with $|V_F|$ more layers of message passing (because $h(u_i)$ and $h(u_k)$ are at most $|V_F|$ distance apart). We omit the details which are straightforward.

Lemma D.5. For every pointed graph (F, u) of ego-rank n, there is a witnessing dep-function (i.e., with maximum node rank n) such that

- 1. dep is well-founded, i.e, $v \neq dep^n(v)$ for all v and $n \geq 1$.
- 2. for all nodes v, every connected component of the subgraph induced by $dep^{-1}(v)$ contains a neighbor of v. Equivalently, when dep(w) = v, there is a path from w to v passing only though nodes w' with dep(w') = v.

Proof.

1. If dep is not well-founded, there is a cycle

$$v_1, v_2, v_3, \ldots, v_n$$

where $dep(v_i) = v_{i+1}$ for i < n and $dep(v_n) = v_1$. Note that, in this case, $deps(v_1) = deps(v_2) = \ldots = deps(v_n) = \{v_1, \ldots, v_n\}$.

Fix such a cycle, and let dep' be identical to dep except that (i) $dep'(v_n) = \bot$, and (ii) for all $v \notin \{v_1, \ldots, v_n\}$, if $dep(v) \in \{v_1, \ldots, v_n\}$ then $dep'(v) = v_1$. Note that, in this way, deps'(v) = deps(v) for all $v \notin \{v_1, \ldots, v_n\}$.

We claim that dep' still satisfies the conditions given in the definition of ego-rank. Indeed,

- dep'(u) is still \perp
- Let $(w, v) \in E$ be an edge. Then one of the following three cases holds:
 - (a) dep(w) = dep(v). Then the same holds for dep', except possibly if $w \notin \{v_1, \ldots, v_n\}$, $dep(w) \in \{v_1, \ldots, v_n\}$, and $v \in \{v_1, \ldots, v_n\}$. However, in this case, we have that $dep'(w) = v_1$ and hence $v \in deps'(w) = \{v_1, \ldots, v_n\}$.
 - (b) $w \in deps(v)$. It follows from the construction of dep' that, for all $v \notin \{v_1, \ldots, v_n\}$, deps'(v) = deps(v). Therefore, we only have to consider the case that $v \in \{v_1, \ldots, v_n\}$. If $w \in \{v_1, \ldots, v_n\}$, then we have either $w \in deps'(v)$ or $v \in deps'(w)$ (note that $v \neq w$). Otherwise, by construction, $dep'(w) = v_1$ and hence $v \in deps'(w)$.



Figure 6: Rooted 5×2 grid

- (c) $v \in deps(w)$. This case is symmetric to the above.
- Finally, we must show that, for each $v \in V \cup \{\bot\}$, the subgraph induced by $dep'^{-1}(v)$ is acyclic. For each node $v \neq v_1$, we have that $dep'^{-1}(v) \subseteq dep^{-1}(v)$, and hence, since $dep^{-1}(v)$ is acyclic, so is $dep'^{-1}(v)$. Therefore, it remains only to consider $dep'^{-1}(\bot)$ and $dep'^{-1}(v_1)$.

Suppose there were a cycle in the subgraph induced by $dep'^{-1}(\bot)$. This cycle must contain the node v_1 , while all other nodes u on the cycle satisfy $dep(u) = \bot$. However, it is easy to see that there can be no edge connecting v_1 to such a node u.

Finally, suppose there were a cycle

$$w_1, \ldots, w_k$$

in the subgraph induced by $dep'^{-1}(v_1)$. If $dep(w_1) = dep(w_2) = \ldots = dep(w_k) = v_i$, then the subgraph induced by $dep^{-1}(v_i)$ would already have a cycle, which we have assumed is not the case. Therefore, the cycle must include an edge connecting nodes w_i and w_{i+1} where $dep(w_i) \neq dep(w_{i+1})$. Note that $w_i, w_{i+1} \notin \{v_1, \ldots, v_n\}$ and that $dep(w_i), dep(w_{i+1}) \in \{v_1, \ldots, v_n\}$. Such an edge cannot exist as it fails to satisfy the second property in the definition of ego-rank.

- 2. We assume dep satisfies property 1. Let dep(w) = v and suppose that property 2 fails, i.e., there is a node w with dep(w) = v such that no node w' reachable from w in the subgraph induced by $dep^{-1}(v)$ is adjacent to v. Let dep' be identical to dep except that, for all w' reachable from w in the subgraph induced by $dep^{-1}(v)$, we set dep'(w') := dep(v). Note that, by property $1, v \not\in deps(v)$ and hence the net effect of this change is that $deps'(w') = deps(w') \setminus \{v\}$. We claim that deps' still satisfies all requirements from the definition of ego-rank. Indeed:
 - dep'(u) is still \perp .
 - Let $(w_1, w_2) \in E$ be an edge. Then one of the following conditions holds:
 - (a) $dep(w_1) = dep(w_2)$. Then the same holds for dep' (note that w_1 and w_2 belong to the same connected component of $dep^{-1}(dep(w_1))$).
 - (b) $w_1 \in deps(w_2)$ or vice versa. It is easy to see that, in this case, the same still holds for deps'.
 - Finally, we must show that, for each $x \in V \cup \{\bot\}$, the subgraph induced by $dep'^{-1}(x)$ is acyclic. It suffices to consider the case where x = dep(v), because, for all other x we have that $dep'^{-1}(x) \subseteq dep^{-1}(x)$. Therefore, let x = dep(v) and suppose for the sake of a contradiction that $dep'^{-1}(x)$ contains a cycle. Since $dep^{-1}(x)$ and $dep^{-1}(v)$ were both acyclic, this cycle must include an edge (w_1, w_2) such that $dep(w_1) = v$ and $dep(w_2) = x$. It must then be the case that $w_2 \in deps(w_1)$, and, indeed, it must be the case that $w_2 = v$, a contradiction since the connected component of w_1 in $dep^{-1}(v)$ was not supposed to be connected to v.

By repeating this operation, we obtain a dep-function satisfying property 2. \Box

Proposition D.6. The rooted $n \times 2$ -grid (with $n \ge 1$) as depicted in Figure 2 has ego-rank n-1.

Proof. For the n-1 upper bound, a witnessing dep-function is already depicted in Figure 2 for the special case of n=5, and it can be modified in the obvious way for the general case (note that there are also other choices for the dep function that yield the same ego rank). In what follows, we prove the n-1 lower bound.

Let $dep: V \to V \cup \{\bot\}$ be any function satisfying the requirements in the definition of ego-rank. We may assume that it also satisfies the properties described in Lemma D.5.

Recall that u_1 is the root of the rooted graph. We show there is a sequence

$$\langle \pi_1, \pi_2, \ldots, \pi_n \rangle$$

where $\pi_1 = u_1$, and for i > 1 the following holds:

- 1. $\pi_i \in \{u_i, v_i\}$
- 2. Either (i) $dep(\pi_i) = \pi_{i-1}$ or (ii) $dep(\pi_i) = \pi'_{i-1}$ and $dep^2(\pi_i) = \pi_{i-1}$

where
$$\pi'_{i-1} = \begin{cases} u_{i-1} & \text{if } \pi_{i-1} = v_{i-1} \\ v_{i-1} & \text{if } \pi_{i-1} = u_{i-1} \end{cases}$$

We apply induction over i>1. It follows from the induction hypothesis that $deps(\pi_{i-1})$ doesn't contain any u_j, v_j with $j\geq i-1$. Suppose w.l.o.g. that $\pi_{i-1}=u_{i-1}$. Note firstly that either $u_{i-1}\in deps(v_{i-1})$ or $u_{i-1}\in deps(u_i)$. For, if this would not hold then, by definition of dep, $dep(u_{i-1})=dep(v_{i-1})=dep(u_i)$, which by well-foundedness leaves no possibility for $dep(v_i)$.

Since every connected component of $dep^{-1}(u_{i-1})$ is connected to u_{i-1} it follows that $u_{i-1} = dep(u_i)$ or $u_{i-1} = dep(v_{i-1})$. In the first case we let $\pi_i = u_i$.

Suppose then that $u_{i-1} = dep(v_{i-1})$, then either $u_{i-1} = dep(v_i)$ or $v_{i-1} \in deps(v_i)$. In the second case, by well-foundedness and the connectedness of $dep^{-1}(v_{i-1})$ to v_{i-1} it follows that $v_{i-1} = dep(v_i)$. In both cases we let $\pi_i = v_i$, completing the induction.

Since $|deps(\pi_n)| \ge n-1$ the lower bound follows.

Lemma D.7. Let (F, u) be a rooted graphs and N > 0. Then there exists a number M such that, for all pointed graphs (G, v) of degree at most N, $hom((F, u), (G, v)) \leq M$.

Proof. Let r be the maximal distance from u to any other node of F. The radius-r neighborhood of v in G contains at most $(N+1)^r$ nodes. It follows that there can be at most $M=((N+1)^r)^n$ homomorphisms from (F,u) to (G,v), where n is the number of nodes of F. \square

Lemma D.8. ReLU-FFNNs can multiply small natural numbers. That is, for each N > 0 and k > 0, there is a ReLU-FFNN with input dimension k and output dimension k that, on input (x_1, \ldots, x_k) with $0 \le x_i \le N$, outputs $\Pi_i x_i$.

Proof. This is well-known (and holds not only for ReLU but also for other common non-linear activation functions). For the sake of completeness we sketch a proof. First, for a fixed m, we can test with a ReLU-FFNN, for a given natural number x, whether $x \ge m$. Indeed, ReLU($1-\text{ReLU}(m-x_i)$) is 1 if this holds and 0 otherwise. Furthermore, the Boolean operators of conjunction and negation can be implemented by ReLU-FFNNs as well (cf. the proof of Proposition 2.3). It follows that the function

$$f_{(m_1,\dots,m_k)}(x_1,\dots,x_k) = \begin{cases} 1 & \text{if } x_i = m_i \text{ for all } i \leq k \\ 0 & \text{otherwise} \end{cases}$$

can also be implemented by a ReLU-FFNN. Using this, we can represent the product $\Pi_i x_i$ by the linear expression

$$\sum_{0 \le m_1, \dots, m_k \le N} \left(\prod_i m_i \cdot f_{(m_1, \dots, m_k)}(x_1, \dots, x_k) \right)$$

Note that the $\Pi_i m_i$ factors are viewed as constant integer coefficient here.

Proposition 5.7. For all rooted graphs (G, v) with G = (V, E, lab),

- 1. $tree\text{-width}(G) 1 \leq ego\text{-rank}(G, v) \leq |V|$.
- 2. ego-rank(G, v) = 0 if and only if G is acyclic.
- 3. ego-rank(G, v) = 1 whenever (G, v) is c-acyclic.

Proof. For the first part of the first claim, let dep be a function witnessing that (G, v) has ego-rank k. We define a tree decomposition as follows:

• The nodes of the tree decomposition are (i) all nodes w of the graph G, and (ii) all edges (w, v) of the graph G satisfying dep(w) = dep(v). The bag associated to each w is $\{w\} \cup deps(w)$ and the bag associated to each edge (w, v) is $\{w, v\} \cup deps(w)$.

• The edges of the tree decomposition are pairs where one node is a node of G and the other is an edge of G in which the node participates.

Note that, in this way, every edge of G is indeed contained in a bag. Furthermore, the third condition in the definition of dependency functions guarantees that this tree decomposition is indeed a tree.

Consider any path in the tree decompositions of the form

$$w_1(w_1, w_2) w_2(w_2, w_3) \dots (w_{n-1}, w_n) w_n$$

where $dep(w_i) = dep(w_j)$ for all i < j < n, and hence $w_i \neq w_j$ for all i < j < n (because the subgraph induced by $dep^{-1}(dep(w_i))$ is acyclic). Suppose, now, that some graph vertex x belongs to the bag of w_1 as well as to the bag of w_n . In this case, x must belong to $deps(w_1)$ and to $deps(w_n)$ and hence it belongs to the bag of each node on the path. A similar argument applies for paths that start or end with an edge. This shows that the constructed tree decomposition is indeed a valid tree-decomposition. Moreover, the maximal bag size is k+2. Therefore, the tree-width of G is at most k+1.

For the second part of the first claim, it suffices to choose an arbitrary enumeration $v_1, v_2, \dots v_n$ of the nodes of G, where $v_1 = v$, and set $dep(v_1) = \bot$ and $dep(v_{i+1}) = v_i$.

The second claim follows immediately from the definition of ego-rank.

For the third claim, it suffices to take
$$dep(v) = \bot$$
 and $dep(v') = v$ for all $v' \neq v$.

The next theorem is not stated in the body of the paper, but it's a special case of Theorem 5.9(1) below, and it serves as a warming up towards the proof of Theorem 5.9.

Theorem D.9. Let \mathfrak{F} be any finite set of acyclic rooted graphs. There is a $(|P|, |P| + |\mathfrak{F}|)$ -GNN \mathcal{A} such that, for all pointed graphs (G, v), $\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$. The GNN in question uses multiplication in the combination function.

Proof. In what follows, we will refer to acyclic rooted graphs (F,u) also as *trees*, where we think of u as the root of the tree. By an *immediate subtree* of a tree (F,u) we will mean a rooted graph (F',u') where u' is a neighbor of u and where F' is the induced subgraph of F consisting of all nodes whose shortest path to u contains u'. We will write $(F,u)\Rightarrow (F',u')$ to indicate that (F',u') is an immediate subtree of (F,u). By the *depth* of a tree (F,u) we will mean the maximum, over all nodes u' of F, of the distance from u to u'. Note that (F,u) has depth zero if and only if it has no immediate subtrees, and that the depth of an immediate subtree of (F,u) is always strictly smaller than the depth of (F,u).

We may assume without loss of generality that \mathfrak{F} is closed under taking immediate subtrees. The general case then follows by adding one additional layer on top that projects the resulting embedding vectors to a subset of \mathfrak{F} .

Let $|\mathfrak{F}| = \{(F_1, u_1), \dots, (F_k, u_k)\}$ and let L be the maximal depth of a rooted graph in \mathfrak{F} . Let

$$\mathcal{A} = ((COM_i)_{i=1...L}, (AGG_i)_{i=1...L})$$

where

• COM₁: $\mathbb{R}^{2|P|} \to \mathbb{R}^{|P|+k}$ given by COM₁ $(x_1, \dots, x_{|P|}, z_1, \dots, z_{|P|}) = (y_1, \dots, y_{|P|+k})$ with $y_i = x_i$ for i < |P|, and with

$$y_{|P|+i} = \begin{cases} 1 & \text{if } F_i \text{ has depth 0 and } x_j = 1 \text{ for each } p_j \in \mathsf{lab}^{F_i}(u_i) \\ 0 & \text{otherwise} \end{cases}$$

• For i > 1, $\text{COM}_i : \mathbb{R}^{2(|P|+k)} \to \mathbb{R}^{|P|+k}$ given by $\text{COM}_i(x_1, \dots, x_{|P|+k}, z_1, \dots, z_{|P|+k}) = (y_1, \dots, y_{|P|+k})$ with $y_i = x_i$ for $i \leq |P|$, and with

$$y_{|P|+i} = \begin{cases} \prod_{F_j \text{ with } F_i \Rightarrow F_j} (z_{|P|+j}) & \text{if } x_\ell = 1 \text{ for each } p_\ell \in \operatorname{lab}^{F_i}(u_i) \\ 0 & \text{otherwise} \end{cases}$$

• Each AGG_i is (pointwise) sum.

It is not difficult to see that COM_i can be implemented by a FFNN using ReLU and multiplication.

It follows from the above construction, and by induction on d, that, for all $d \geq 0$ and for all $(F_j, u_j) \in \mathfrak{F}$ of depth d, $\operatorname{emb}_G^i(v)(|P|+j) = \operatorname{hom}((F_j, u_j), (G, v))$ for i > d. Furthermore, it is immediately clear from the construction that $\operatorname{emb}_G^i(v)(j) = \operatorname{emb}_G(v)(j)$ for all $j \leq |P|$.

Theorem 5.9. Let \mathfrak{F} be any finite set of rooted graphs, let $d = \max\{ego\text{-}rank(F, u) \mid (F, u) \in \mathfrak{F}\}.$

- 1. Then there is a $(|P|, |P| + |\mathfrak{F}|)$ -HE-GNN \mathcal{A} of nesting depth d such that, for all pointed graphs (G, v), $\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$. The HE-GNN uses multiplication in the combination functions.
- 2. For each N > 0, there is a $(|P|, |P| + |\mathfrak{F}|)$ -HE-GNN \mathcal{A} of nesting depth d such that, for pointed graphs (G, v) of degree at most N, $\operatorname{run}_{\mathcal{A}}(G)(v) = \operatorname{emb}_{G}(v) \oplus \operatorname{hom}(\mathfrak{F}, (G, v))$. The HE-GNN uses only Sum as aggregation and ReLu-FFNNs as combination functions.

Proof. We prove the first statement. The proof of the second statement is identical, except that we can replace the use of multiplication by a ReLU-FFNN due to the fact that the numbers being multiplied are bounded by a constant (cf. Lemma D.7 and Lemma D.8).

We may assume that \mathfrak{F} consists of a single rooted graph (F, u). Let dep be the dependency function witnessing the fact that (F, u) has ego-rank d. By Lemma D.5, we may assume that dep is well-founded, and that for each node w, if $dep^{-1}(w)$ is non-empty, then each connected component of the subgraph induced by $dep^{-1}(w)$ contains a neighbor (in the original graph F) of w.

By the dependency depth of a node w of F, we will mean the largest number ℓ for which it is the case that $w = dep^{\ell}(w')$ for some w'. Note that this is a finite number.

For a node w, we will denote by F_w the subgraph of F induced by the set of nodes $deps^{-1}(w) \cup \{w\} \cup deps(w)$, where $deps^{-1}(w)$ is the set of nodes w' for which $w \in deps(w)$.

We will now prove the following claim:

(*) For each node w of dependency depth $\ell \geq 1$ with $deps(w) = \{w_1, \ldots, w_k\}$, there is a (|P| + k + 1, 1)-HE-GNN \mathcal{A}_w of nesting depth $\ell - 1$ such that for all graphs G with vertices V_G and maps $h: \{w\} \cup deps(w) \to V_G$,

$$\operatorname{run}_{\mathcal{A}}(G,\operatorname{emb}_{G}^{+h})(h(w)) = \operatorname{hom}_{h}(F_{w},G)$$

where
$$\operatorname{emb}_G^{+h} = \{v' : \operatorname{emb}_G(v') \oplus \langle \delta_{v'h(w_1)}, \dots, \delta_{v'h(w_k)}, \delta_{v'h(w)} \rangle \mid v' \in V_G \}.$$

Recall that $\hom_h(F_w,G)$ denotes the number of homomorphisms from F_w to G extending the partial function h. Also, note that the embedding vectors of $\operatorname{emb}_G^{+h}$, by construction, include features that uniquely mark the h-image of each $w' \in deps(w)$ as well as w.

We will first prove (*) by induction on the dependency depth $\ell \geq 1$ of w, and then show that it implies the main statement of our theorem.

The subgraph F_w can be decomposed as described in Figure 7. By Lemma D.5, each connected component of the subgraph induced by $dep^{-1}(w)$ of F includes at least one neighbor of w. Let (F',w) be the rooted tree that consists of the subgraph induced by $\{w\} \cup dep^{-1}(w)$, after removing, for each connected component of $dep^{-1}(w)$, all but one (arbitrarily chosen) connecting edge to w. Note that, as explained in the caption of Figure 7, there may be more than one edge between w and a given connected component of $dep^{-1}(w)$, but we only keep one in order to ensure that F' is a tree rooted at w. We refer to the edges connecting w to nodes in $dep^{-1}(w)$ that we did not add, as well as edges connecting nodes in deps(w) to nodes in $dep^{-1}(w)$ as "back-edges".

Now, by construction, for every function $h: \{w\} \cup deps(w) \rightarrow V_G$, we have that

$$\hom_h(F_w,G) = \sum_{\text{homomorphisms } f : (F',w) \to (G,h(w))} \prod_{w_i \in dep^{-1}(w)} \hom_{h \cup \{(w_i,f(w_i))\}}(F_{w_i},G)$$

Note that the fact that we omitted the back-edges from F' does not impact the above equation. Indeed, if a function $f:(F',w)\to (G,h(w))$ fails to preserve a back-edge it will simply not extend to a homomorphism from F_{w_i} to G, and hence will not contribute to the above sum.

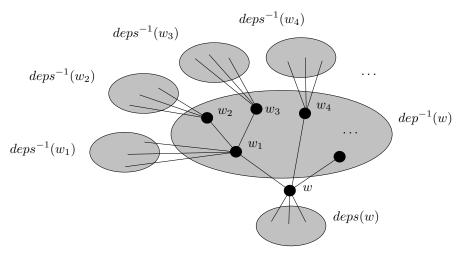


Figure 7: Decomposition of the subgraph F_w induced by $deps(w) \cup \{w\} \cup deps^{-1}(w)$ when w has dependency depth greater than 1. The gray circles are disjoint. In addition to the edges drawn in the picture, there may also be additional edges connecting nodes in $deps^{-1}(w)$ to nodes in $\{w\} \cup deps(w)$. We omitted such edges from the drawing in order to not clutter the picture.

Now if $\ell=1$, $\hom_{h\cup\{w_i,f(w_i)\}}(F_{w_i},G)$ is either 1 or 0 since every vertex of F_{w_i} is in the domain of $h\cup\{(w_i,f(w_i))\}$. Since all nodes in the range of this function are uniquely marked, this can be computed by a (|P|+k+1,1)- GNN \mathcal{C}_{w_i} , i.e. a HE-GNN of nesting depth 0. More precisely, for each $v'\in G$:

$$\mathrm{run}_{\mathcal{C}_{w_i}}(G, \mathrm{emb}_G^{+h \cup \{(w_i, v')\}})(v') = hom_{h \cup \{(w_i, v')\}}(F_{w_i}, G)$$

These can be combined using Lemma B.3 into a single GNN \mathcal{C} computing their concatenation. We now add layers, exactly as in the proof of Theorem D.9 that run through the tree (F', w) and aggregate the respective counts according to the above equation to compute $\hom_h(F_w, G)$.

If l>1 we can apply the induction hypothesis (*) to obtain a (|P|+k+2,1)-HE-GNN \mathcal{B}_{w_i} of nesting depth at most $\ell-2$ for each $w_i\in dep^{-1}(w)$, calculating the corresponding factor in the above equation. Now for each $v'\in G$:

$$\operatorname{run}_{\mathcal{B}_{w_i}}(G,\operatorname{emb}_G^{+h\cup\{(w_i,v')\}})(v') = hom_{h\cup\{(w_i,v')\}}(F_{w_i},G)$$

These can be combined using Lemma B.4 into a single HE-GNN $(\mathcal{B},\mathcal{C})$ of nesting depth $\ell-2$ computing their concatenation. Now similarly to the case for $\ell=1$, we add layers to \mathcal{C} that run through the tree (F',w) and aggregate the respective counts according to the above equation and call the result \mathcal{C}' . Let \mathcal{I} be a trivial GNN. Then $\mathcal{A}=((\mathcal{B},\mathcal{C}'),\mathcal{I})$ is a (|P|+k+1,1)-HE-GNN of nesting depth $\ell-1$ that computes $\mathrm{hom}_h(F_w,G)$, concluding the proof by induction of (*).

Finally, we must show that (*) implies the main statement of our theorem. Let (F', u) be the induced subgraph of F with nodes in $dep^{-1}(\bot)$. Then again:

$$\hom((F,u),(G,v)) = \sum_{\text{homomorphisms } f: (F',u) \to (G,v)} \prod_{w_i \in F'} \hom_{\{(w_i,f(w_i))\}}(F_{w_i},G)$$

The argument now is very similar as the one we used in the inductive step. Since each $w_i \in F'$ has dependency depth at most d, by (*) and theorem D.9 we obtain for each $w_i \in F'$, a (|P|+1,1)-HE-GNN \mathcal{B}_{w_i} of nesting depth d-1 computing the corresponding factor in the above equation. These can be combined using Lemma B.4 into a single (|P|+1,|F'|)-HE-GNN $(\mathcal{B},\mathcal{C})$ of nesting depth d-1 computing their concatenation. We again add layers to \mathcal{C} as in the proof of Theorem D.9 that run through the tree (F',u) and aggregate the respective counts according to the above equation, and call this GNN \mathcal{C}' . Then for trivial GNN \mathcal{I} , It follows that $\mathcal{A}=((\mathcal{B},\mathcal{C}'),\mathcal{I})$ is a (|P|,1)-HE-GNN of nesting depth d that computes hom((F,u),(G,v)).

5.3. Higher order GNNs

Theorem 5.11. For $d \ge 0$, $\rho((d+1)\text{-WL}) = \rho((d+2)\text{-GNN}) \subseteq \rho(\text{HE-GNN-}d)$.

Proof. Let \mathcal{A} be a HE-GNN with depth d such that $\operatorname{cls}_{\mathcal{A}}(G,v) \neq \operatorname{cls}_{\mathcal{A}}(G',v')$. By theorem 3.4 there exists a $\operatorname{GML}(\downarrow^d)$ -sentence ϕ such that $\operatorname{cls}_{\phi}(G,v) \neq \operatorname{cls}_{\phi}(G',v')$.

 ϕ is equivalent to a sentence that uses at most d variables x_i . Hence there exists an equivalent formula ψ in the d+2-variable fragment of first-order logic with counting quantifiers (cf. Table 2). By theorem 5.10 there then exists a (d+2)-GNN $\mathcal B$ such that $\mathsf{cls}_{\mathcal B}(G,v) \neq \mathsf{cls}_{\mathcal B}(G',v')$.

We apply a lemma by Morris et al. [37], which was slightly adjusted by Qian et al. [42].

Definition D.10. For a graph G = (V, E, lab), $S \subseteq V$ forms a distance 2 clique if any two nodes in S are connected by a path of length 2. We say S is colorful if for all $v, v' \in S$, lab(v) = lab(v') iff v = v'.

Lemma D.11. For $d \in \mathbb{N}$ there exist graphs G_d , H_d such that:

- 1. $G_d \equiv_{(d-1)\text{-WL}} H_d$
- 2. There exists a colorful distance 2 clique of size d+1 in G_d .
- 3. There does not exist a colorful distance 2 clique of size d+1 in H_d .

Table 2: Translation from a GML(\downarrow)-formula ϕ containing variables z_1, \ldots, z_k to a C^{k+2} -formula $tr_x(\phi)$ containing variables x, y, z_1, \ldots, z_k .

$$\begin{array}{lclcrcl} tr_x(p_i) & = & P_i(x) & tr_y(p_i) & = & P_i(x) \\ tr_x(z_i) & = & x = z_i & tr_y(z_i) & = & y = z_i \\ tr_x(\phi \wedge \psi) & = & tr_x(\phi) \wedge tr_x(\psi) & tr_y(\phi \wedge \psi) & = & tr_y(\phi) \wedge tr_y(\psi) \\ tr_x(\neg \phi) & = & \neg tr_x(\phi) & tr_y(\neg \phi) & = & \neg tr_y(\phi) \\ tr_x(\lozenge^{\geq n}\phi) & = & \exists^{\geq n} y (Rxy \wedge tr_y(\phi)) & tr_y(\lozenge^{\geq n}\phi) & = & \exists^{\geq n} x (Ryx \wedge tr_x(\phi)) \\ tr_x(\downarrow z_i.\phi) & = & \exists z_i(z_i = x \wedge tr_x(\phi)) & tr_y(\downarrow z_i.\phi) & = & \exists z_i(z_i = y \wedge tr_y(\phi)) \end{array}$$

Theorem 5.12. For $d \ge 0$, HES-GNN-(d,3) can distinguish pointed graphs that cannot be distinguished by d-WL, or equivalently, by a (d+1)-GNN.

Proof. We show there exist formula $\phi \in GML(\downarrow_{W^3}^d)$ and node v in G_{d+1} such that $G_{d+1}, v \models \phi$ but $H_{d+1}, w \not\models \phi$ for all w in H_{d+1} .

Let v be in a distance 2 colorful clique S of size d+2, and let $\alpha_1 \dots \alpha_{d+2}$ be conjunctions of literals matching the distinct labelings of nodes in S. Thus v, v' only satisfy the same α_i if lab(v) = lab(v'). Further let $G_{d+1}, v \models \alpha_1$.

We let:

$$\phi = \downarrow x_1.W^3(\Diamond \Diamond \downarrow x_2.W^3(\Diamond \Diamond \downarrow x_3.W^3(\dots, \downarrow x_d.W^3(\xi \land \psi)\dots)))$$

 ξ ensures that all x_i have distinct values matching labeling as specified by $\alpha_1, \dots \alpha_d$, and form a colorful distance 2 clique of size d.

$$\xi = \bigwedge_{1 \le i \le d} (@_{x_i}(\alpha_i \land \bigwedge_{1 \le j \le d, j \ne i} (\Diamond \Diamond x_j)))$$

 ψ ensures that there are two more connected vertices with labelings matching $\alpha_{d+1}, \alpha_{d+2}$ that have edges to all the x_i :

$$\psi = \Diamond \Diamond (\alpha_{d+1} \land \bigwedge_{1 \le i \le d} (\Diamond \Diamond x_i) \land \Diamond \Diamond (\alpha_{d+2} \land \bigwedge_{1 \le i \le d} (\Diamond \Diamond x_i))$$

Now $G_{d+1}, v \models \phi$ and any node in H_{d+1} satisfying ϕ would be in a distance 2 colorful clique. Hence for all v' in H_{d+1} :

$$G_{d+1}, v \not\equiv_{\mathrm{GML}(\downarrow_{W^2}^d)} H_{d+1}, v'$$

We apply the logical characterization of HES-GNN (Theorem 4.1), the WL characterization of higher order GNNs and the fact that $G_{d+1} \equiv_{(d-1)\text{-WL}} H_{d+1}$ to obtain the theorem:

$$\rho((d+1)\text{-GNN}) = \rho(d\text{-WL}) \not\subseteq \rho(\text{GML}(\downarrow_{W^3}^d)) = \rho(\text{HES-GNN-}(d,\!3))$$