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Abstract

We propose and study Hierarchical Ego Graph Neural Networks (HE-GNNs), an
expressive extension of graph neural networks (GNNs) with hierarchical node
individualization, inspired by the Individualization-Refinement paradigm for iso-
morphism testing. HE-GNNs generalize subgraph-GNNs and form a hierarchy
of increasingly expressive models that, in the limit, distinguish graphs up to iso-
morphism. We show that, over graphs of bounded degree, the expressive power of
HE-GNN node classifiers equals that of graded hybrid logic. This characterization
enables us to relate the separating power of HE-GNNs to that of higher-order
GNNs, GNNs enriched with local homomorphism count features, and color refine-
ment algorithms based on Individualization-Refinement. Our experimental results
confirm the practical feasibility of HE-GNNs and show benefits in comparison
with traditional GNN architectures, both with and without local homomorphism
count features.

1 Introduction

Graph neural networks (GNNs), and specifically message-passing neural networks [22, 25], are a
dominant approach for representation learning on graph-structured data [49, 55]. Since the expressive
power of GNNs within the message-passing framework is limited by the one-dimensional Weisfeiler-
Leman test (WL) [38, 50], numerous architectures have been proposed with increased separating
power—the ability to distinguish pairs of nodes or graphs. The separating power of deterministic
isomorphism invariant GNN architectures can be studied logically. Morris et al. [38] and Barcelo et
al. [6], building on earlier results by Cai et al. [9], gave logical characterizations of the separating
power of standard message-passing GNNs, which matches Graded Modal Logic. Higher-order
k-GNNs [38] have the separating power of (k − 1)-WL [38], which equals that of First-Order Logic
with k variables and counting quantifiers. This yields a hierarchy of increasingly expressive models
that separate nodes in graphs of size n up to isomorphism when k ≥ n. The logical study of GNNs
has addressed fundamental questions about their expressive power [1, 23, 26, 46], convergence
behavior [2], decidability [7], and explainability [48].

In this work, we introduce Hierarchical Ego GNNs (HE-GNNs), a fully isomorphism-invariant
graph learning model inspired by the individualization-refinement (IR) paradigm used by graph
isomorphism solvers, where node individualization is alternated with simple message-passing. We
study the separating power of HE-GNN in detail through a logical lens, and make explicit connections
with IR and existing expressive GNNs. Our main contributions are:

• We characterize the separating power of HE-GNNs with and without subgraph restrictions.
Specifically, we provide logical characterizations in graded hybrid logic, situate the separating
power of HE-GNNs within the WL hierarchy and show that HE-GNNs constitute a strict hierarchy
in terms of their nesting depth d. HE-GNNs are able to separate nodes in graphs of size n up to
isomorphism when d ≥ n, like higher-order GNNs, but at lower cost in terms of space complexity.
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• We prove that the graph separating power of HE-GNNs with depth d is lower bounded by IR with
d rounds of invidualization, and show that common subgraph-GNNs are special cases of depth-1
HE-GNNs, so that our results characterize the separating power of subgraph models. We further
identify a class of graphs with “small ego-rank” from which low-depth HE-GNNs can compute
homomorphism counts. These results generalize and shed new light on known relations between
subgraph-GNN, higher-order GNNs and homomorphism count vectors from tree-like graphs.

• We confirm empirically that HE-GNNs up to depth 2 improve performance on ZINC-12k and can
distinguish strongly regular graphs beyond the reach of 3-GNNs, common subgraph GNNs and
probabilistic IR methods.

Our results add foundational insights for understanding GNNs from a logical perspective, guiding the
development of models with improved expressiveness.

Related work Numerous deterministic message-passing architectures have been developed that
implement isomorphism-invariant graph learning with increased separating power. Notable examples
are higher-order networks [33, 37, 38], subgraph-GNNs [13, 51, 53] and GNNs augmented with
homomorphism counts [5, 29]. These models allow for extensive analyses in terms of separating
power and comparison with isomorphism invariant classifiers such as logics and the WL hierarchy
(see [36]), and we compare them in detail with HE-GNNs in section 5.

In another line of work, node embeddings representing structural information are added before
message-passing, often with probabilistic methods. Examples are positional encodings from Laplacian
eigenvectors [16, 18, 27, 31], random sampling [1, 45] and random walks [43]. GNNs with randomly
sampled features have complete separating power but are only isomorphism invariant in expectation:
isomorphic graphs do not yield the same output but only the same distribution. Relevant to the current
work are node embeddings inspired by IR, such as random traversals of IR trees [19] and Tinhofer
orderings [24, 40]. These methods use non-determinism sparingly, yielding isomorphism-invariance
for WL distinguishable graphs and compact graphs respectively. Another graph learning model in the
IR paradigm was developed by Dupty and Lee [15], which includes several strong approximations
that improve efficiency at the expense of invariance.

2 Background and notation

For a set X , we denote by M(X) the collection of all finite multisets of elements of X . We write ⊕
for vector concatenation, and δxy for Kronecker’s delta (i.e., δxy is 1 if x = y and 0 otherwise).

Graphs Fix a set P of binary node features. By a graph we will mean a triple G = (V,E, lab)
where V is set of nodes, E ⊆ V × V is a symmetric and irreflexive edge relation, and lab : V → 2P .
The degree of a node v in a graph G = (V,E, lab) is |{u | (v, u) ∈ E}| and the degree of a graph
is the maximum degree of its nodes. A pointed graph is a pair (G, v) where G is a graph and v
is a node of G. An isomorphism between graphs G = (V,E, lab) and G′ = (V ′, E′, lab′) is a
bijection f : V → V ′ such that E′ = {(f(v), f(u)) | (v, u) ∈ E} and such that, for all v ∈ V ,
lab′(f(v)) = lab(v). We write G ∼= G′ if such a bijection exists. An isomorphism between pointed
graphs (G, v) and (G′, v′) is defined similarly, with the additional requirement that f(v) = v′. By
a node classifier we will mean a function cls from pointed graphs to {0, 1} that is isomorphism
invariant (i.e., such that cls(G, v) = cls(G′, v′) whenever (G, v) and (G′, v′) are isomorphic).

Graph neural networks Let D,D′ ∈ N. A graph neural network with input dimension D and
output dimension D′ (henceforth: (D,D′)-GNN) is a tuple ((COMi)i=1,...L, (AGGi)i=1,...L) with
L ≥ 1, where, for 1 < i ≤ L, COMi : R2Di → RDi+1 , AGGi : M(RDi) → RDi with D1 = D,
Di ≥ 1, and DL+1 = D′. Each such GNN induces a mapping from embeddings to embeddings.
More precisely, by a D-dimensional embedding for a graph G = (V,E, lab) we will mean a function
emb : V → RD. A (D,D′)-GNN A defines a function runA from a graph with a D-dimensional
embedding to a D′-dimensional embedding as follows:
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1: function runA(G, emb)
2: emb0 := emb
3: for i = 1, . . . , L do
4: embi := {v : COMi(embi−1(v)⊕ AGGi({{embi−1(u) | (v, u) ∈ E}})) | v ∈ V }
5: return embL

Every (D,D′)-GNN A with D = |P | and D′ = 1 naturally gives rise to a node classifier clsA.
To define it, for a graph G = (V,E, lab), let its multi-hot label encoding be the |P |-dimensional
embedding embG given by embG(v) = ⟨r1, . . . , rn⟩ with ri = 1 if pi ∈ lab(v) and ri = 0 otherwise.
Then clsA(G, v) = 1 if runA(G, embG)(v) > 0, and clsA(G, v) = 0 otherwise. We denote the set
of all such node classifiers clsA also by GNN.

The above definition of GNNs does not specify how the functions COMi and AGGi are specified. In
practice, there are a few common choices for AGGi, namely Sum, Min, Max and Mean. These have
the expected, point-wise, definition. For instance, Sum maps multisets of RD-tuples to RD-tuples
by summing point-wise. As for the functions COMi, these are commonly implemented by a fully-
connected feed-forward neural network (FFNN) using an activation function such as ReLU. Some of
our results apply to GNNs with specific aggregation and combination functions, in which case this
will be explicitly indicated. Otherwise, the results apply to all GNNs.

Graded modal logic The formulas of graded modal logic (GML) are given by the recursive
grammar ϕ ::= p | ⊤ | ϕ ∧ ψ | ¬ϕ | ♢≥kϕ, where p ∈ P and k ∈ N. Satisfaction of such
a formula at a node v in a graph G (denoted: G, v |= ϕ) is defined inductively, as usual, where
G, v |= p iff p ∈ lab(v), the Boolean operators have the standard interpretation, and G, v |= ♢≥kϕ
iff |{u | (v, u) ∈ E and G, u |= ϕ}| ≥ k. We use ♢ϕ as shorthand for ♢≥1ϕ and we use □ϕ as a
shorthand for ¬♢¬ϕ. Every GML-formula ϕ gives rise to a node classifier clsϕ where clsϕ(G, v) = 1
if G, v |= ϕ and clsϕ(G, v) = 0 otherwise.

Example 2.1. Consider the GML-formula ϕ = ♢≥2⊤ ∧□p. Then clsϕ(G, v) = 1 precisely if the
node v has at least two successors and all its successors are labeled p.

Weisfeiler Leman Fix a countably infinite set of colors C. A node coloring for a graph G =
(V,E, lab) is a map col : V → C. A coloring is discrete if for all v in V col−1(col(v)) = v. By a
colored graph we mean a graph together with a coloring. The Weisfeiler Leman (WL) algorithm
takes as input a colored graph (G, col) and an integer d ≥ 0. It produces a new coloring for the same
graph as follows, where HASH is a perfect hash function onto the space of colors:

1: function WL(G, col, d)
2: col0 = col
3: for i = 1, . . . , d do
4: coli := {v : HASH(coli−1(v), {{coli−1(u)|(v, u) ∈ E}}) | v ∈ V }
5: return cold

For a graph G = (V,E, lab), by the initial coloring of G we will mean the coloring colG given by
colG(v) = HASH(lab(v)). We write WL(G, d) as a shorthand for WL(G, colG, d). In other words,
WL(G, d) denotes the coloring obtained by starting with the initial coloring and applying d iterations
of the algorithm. Two pointed graphs (G, v), (G′, v′) are said to be WL-indistinguishable (denoted
also (G, v) ≡WL (G′, v′)) if v and v′ receive the same color after d iterations for d = max{|G|, |G′|}
—that is, if WL(G, d)(v) = WL(G′, d)(v′).

The WL algorithm gives rise to a node classifier for each d ≥ 0 and subset S ⊆ C, where
clsWL

d,S(G, v) = 1 if WL(G, d)(v) ∈ S and clsWL
d,S(G, v) = 0 otherwise. Note that, by definition, such

classifiers cannot distinguish WL-indistinguishable pointed graphs.

Three-way equivalence Given a collection C of node classifiers (e.g., all GNN-based node clas-
sifiers), we denote by ρ(C) the equivalence where ((G, v), (G′, v′)) ∈ ρ(C) if and only if, for all
cls ∈ C, cls(G, v) = cls(G′, v′). In other words, ρ(C) captures the expressive power of C as
measured by the ability to distinguish different inputs.
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Theorem 2.2. ρ(GNN) = ρ(GML) = ρ(WL)

The equivalence in separating power between GNNs and WL was proven independently by Xu et
al. [50] and Morris et al. [38]. Their equivalence with GML was shown by Barcelo et al. [6]. Indeed,
it was shown in [6] that for every GML-formula, there is a GNN that implements the same node
classifier:
Proposition 2.3. ([6]) For every GML-formula ϕ there is a GNN A such that clsA = clsϕ. Moreover,
the GNN in question only uses Sum as aggregation and a single ReLU-FFNN as combination function.

The converse does not hold in general, but it does when we bound the degree of the input graph:
Proposition 2.4. Let A be a (D,D′)-GNN with D = |P |, let N > 0, and let

X = {runA(G, embG)(v) | G = (V,E, lab) is a graph of degree at most N and v ∈ V } .

In other words X ⊆ RD′
is the set of all node embeddings that A can produce when run on a

graph of degree at most N . Then X is a finite set, and for each x ∈ X , there is a GML-formula
ϕx such that for every pointed graph (G, v) of degree at most N , it holds that G, v |= ϕx iff
runA(G, embG)(v) = x. In particular, for each GNN-classifier clsA there is a GML-formula ϕ such
that clsϕ(G, v) = clsA(G, v) for all pointed graphs (G, v) of degree at most N .

Proofs for these two propositions are provided in the appendix, as we will build on them.

3 Hierarchical Ego GNNs

In this section, we introduce and study the basic model of Hierarchical Ego GNNs (HE-GNNs). In
the next section, we will further refine the model by means of subgraph restrictions.

Hierarchical Ego GNNs

• A (D,D′)-HE-GNN of nesting depth 0 is simply a (D,D′)-GNN.
• A (D,D′)-HE-GNN of nesting depth d > 0 is a pair (B, C) where B is a (D + 1, D′′)-HE-GNN

of nesting depth d− 1 and C is a (D +D′′, D′)-GNN.

A HE-GNN A = (B, C) defines a function runA from embedded graphs to embeddings as follows:

1: function runA(G, emb)
2: for each node v of G do
3: emb′(v) := emb(v)⊕ runB(G, {u : emb(u)⊕ δuv | u ∈ V })(v)
4: return runC(G, emb′)

In other words, for each node v, we run B after extending the node embeddings to uniquely mark
v, and concatenate the resulting embedding for v to its original embedding. After constructing a
new embedding for each v we run C. On a graph with n nodes a HE-GNN with depth d and l
layers at each depth generates O(nd) graphs with different unique labelings. Since an l layer GNN
sends at most l · n2 messages, a HE-GNN with depth d and l layers at each depth sends O(l · nd+2)
messages. Applying the individualizations in depth-first order, (d + 1) · n node embeddings are
stored, which is bounded by n2. Naturally the time and space complexity depend on the embedding
dimension and the chosen aggregation and combination functions. Just as in the case of GNNs,
each (D,D′)-HE-GNN A with D = |P | and D′ = 1 naturally gives rise to a node classifier clsA.

Example 3.1. Let B be a 3 layer (2, 2)-GNN with element-wise sum as aggregation and the identity
map as combination. Let C be a trivial (2, 2)-GNN that doesn’t change the input. Then A = (B, C)
is a (1, 2)-HE-GNN of depth 1 such that runA(G, v) ̸= runA(G′, v′) for the graphs in figure 1.

This shows that HE-GNN with nesting depth 1 has strictly more separating power than GNN. Let
HE-GNN-d denote all classifiers clsA where A is a HE-GNN of nesting depth d. As we will see
below, HE-GNN-d in fact forms an infinite hierarchy with respect to separating power for increasing
values of d. To show this, we first give a logical characterization of HE-GNN-d.

4



v v′

(G, v) (G′, v′)

Figure 1: Two non-isomorphic
pointed graphs that are WL-
indistinguishable.

Graded hybrid logic Graded hybrid logic (henceforth GML(↓))
extends GML with variables and the variable binder ↓. To be
precise, the formulas of GML(↓) are generated by the grammar
ϕ ::= p | x | ¬ϕ | ϕ ∧ ψ | ♢≥kϕ | ↓x.ϕ. We restrict attention
to sentences, i.e., formulas without free variables. The definition
of satisfaction for a GML-formula at a node v of a graph G =
(V,E, lab), extends naturally to GML(↓)-sentences as follows:
G, v |= ↓x.ϕ if G[x 7→ v], v |= ϕ, where G[x 7→ v] denotes a
copy of G in which x is treated as a binary node feature true only
at v. By the ↓-nesting-depth of a GML(↓)-sentence, we will mean
the maximal nesting of ↓ operators in the sentence. We denote
with GML (↓d) all sentences with maximal ↓-nesting-depth d.
Example 3.2. The sentence ϕ = ↓x.♢♢♢x, which has ↓-nesting-depth 1, is satisfied by a pointed
graph (G, v) precisely if v lies on a triangle. In particular, considering the example in Figure 1, ϕ
distinguishes (G, v) from (G′, v′). This also shows that GML(↓) is more expressive than GML.
Example 3.3. Building on the above example, the sentence ψ = ↓x.♢(ϕ ∧ ♢(ϕ ∧ ♢ϕ ∧ ♢(ϕ ∧ x))),
which has ↓-nesting-depth 2, is satisfied by (G, v) precisely if v lies (homomorphically) on a cycle of
length 4 consisting of nodes that each lie on a triangle.

In the literature, hybrid logics often include an @ operator, where @xϕ states that ϕ holds at the world
denoted by the variable x. Over undirected graphs, however, every GML(↓,@)-sentence is already
equivalent to a GML(↓)-sentence of the same ↓-nesting-depth.

The connection between GNNs and GML described in the previous section extends to a connection
between HE-GNNs and GML(↓):
Theorem 3.4. ρ(HE-GNN) = ρ(GML(↓)). Moreover, for d ≥ 0, ρ(HE-GNN-d) = ρ(GML(↓d)).

The proof, given in the appendix, is along the lines of Propositions 2.3 and 2.4. Indeed, there is
a translation from GML(↓)-sentences to HE-GNNs, and, conversely, over bounded-degree inputs,
there is a translation from HE-GNNs to GML(↓)-sentences. Both translations preserve nesting depth.
In Section 5, we put this logical characterization to use to obtain a number of further results.

4 Hierarchical Ego GNNs with subgraph restriction

Since HE-GNNs generate an exponential number of graphs in d, we make the models more manage-
able by restricting subgraphs to a fixed radius r around the uniquely marked node, in line with the
common approach for subgraph-GNNs ([20, 51, 52, 53]).

Hierarchical Ego Subgraph-GNNs

• A (D,D′)-HES-GNN of depth 0 is simply a (D,D′)-GNN.
• A (D,D′)-HES-GNN of depth d > 0 is a triple (B, C, r) where B is a (D + 1, D′′)-HES-GNN

of depth d− 1, C is a (D +D′′, D′)-GNN, and r is a positive integer.

Given a graph G = (V,E, lab), a node v ∈ V , and a positive integer r, we will denote by Grv the
induced subgraph of G containing the radius-r neighborhood of v.

1: function runA(G, emb) # For A = (B, C, r)
2: for each node v of G do
3: emb′(v) := emb(v)⊕ runB(G

r
v, {u : emb(u)⊕ δuv | u ∈ V })(v)

4: return runC(G, emb′)

There is only one change compared to the previous version: G got replaced by Grv on line 3. Now
if a HES-GNN with depth d, radius r and at most l layers is applied to a graph with degree k, it
generates O(n · (kr + 1)max(0,d−1)) graphs, sends at most l · n2 times as many messages and stores
n + d · (kr + 1) embeddings. Each (D,D′)-HES-GNN A again gives rise to a node classifier A.
We denote with HES-GNN-r the set of such classifiers for radius r and with HES-GNN-(d,r) the
restriction to nesting depth d.
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Graded hybrid subgraph logic GML(↓,W ) further extends GML(↓) with a “within” operator W r

inspired by temporal logics with forgettable past [3, 10]. The formulas of GML(↓,W ) are generated by
ϕ ::= p | x | ¬ϕ | ϕ∧ψ | ♢≥kϕ | ↓x.ϕ |W rϕ . The definition of satisfaction for GML(↓)-sentences
is extended by letting G, v |=W rϕ if Grv, v |= ϕ. We will use ↓W r x.ϕ as a shorthand for ↓x.W rϕ.
We denote with GML (↓W ) the fragment of GML (↓,W ) in which ↓ and W can only be used in this
specific combination with each other, and we denote with GML (↓dW r ) (for specific integers d and r),
the further fragment with radius r and where ↓W r can be nested at most d times. In terms of separating
power, GML(↓W ) is equivalent to GML(↓), but pairing variable binders with subgraph restrictions of
a specific radius serves to decrease expressive power. The connection between HE-GNN and GML(↓)
we established in Theorem 3.4 now extends to the case with subgraph restrictions:
Theorem 4.1.

1. ρ(HES-GNN) = ρ(GML(↓W )) = ρ(GML(↓)) = ρ(HE-GNN).

2. ρ(HES-GNN-r) = ρ(GML(↓W r )). Moreover, ρ(HES-GNN-(d,r)) = ρ(GML(↓dW r )).

This is established again through a uniform translation from GML(↓dW r ) sentences to HES-GNN-(d,r)
classifiers and a converse uniform translation over bounded degree inputs from HES-GNN-(d,r)
classifiers to GML(↓dW r ) sentences.

The separating power of HES-GNN-(d,r) classifiers strictly increases with d and r. Note that
ρ(X) ⊊ ρ(Y ) means that X has strictly more separating power than Y :
Theorem 4.2. For d ≥ 1, r ≥ 0, ρ(HES-GNN-(d,r + 1)) ⊊ ρ(HES-GNN-(d,r)).

Theorem 4.3. For d ≥ 0 and r ≥ 3, ρ(HES-GNN-(d+ 1,r)) ⊊ ρ(HES-GNN-(d,r))

5 Comparison with other models

In this section, we build on the logical characterizations from the previous sections to obtain a number
of technical results, drawing connections between isomorphism testing and several GNN architectures
by comparing their expressive power with that of HE-GNNs and HES-GNNs.

5.1 Relationship with Individualization-Refinement

The individualization and refinement (IR) paradigm is applied by all state-of-the-art graph isomor-
phism solvers [14, 30, 34, 41]. In its usual presentation (e.g. [35]), color refinement, cell-selection
and individualization procedures are applied in alternating fashion, resulting in a tree whose nodes
are labeled by increasingly refined colorings of the input graph, with discrete colorings at the leafs.
In practice, some further optimizations are typically implemented, exploiting symmetries to further
reduce the size of the tree, but these optimizations do not affect the result of the equivalence test, and
we do not consider them here. In order to make a precise comparison, we define WL-IR:

1: function WL-IR(G, col, d)
2: col′ := WL(G, col, |G|)
3: if col′ is discrete or d = 0 then
4: return (col′)
5: else

6:
Let c be the least color with |col′−1(c)| ≥ 2, and let col′−1(c) = {v1, . . . , vn},
For each i ≤ n, let col′i := {v : HASH(col′(v), δvvi) | v ∈ V }

7: return (
col′

WL-IR(G, col′1, d− 1) . . . WL-IR(G, col′n, d− 1)

)

Here we use WL as the refinement procedure (which is indeed common practice) and apply a simple
cell-selection procedure that assumes an order on the set of colors and picks the least non-singleton
color. We include an extra input parameter d that controls the number of individualization steps
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the algorithm can perform. WL-IR is guaranteed to produce discrete colorings when choosing
d ≥ |G|. We write WL-IR(G, d) as shorthand for WL-IR(G, colG, d). We can now compare two
graphs by choosing suitable d and testing if WL-IR(G, d) and WL-IR(G′, d) yield isomorphic trees.
Let G ≡WL-IR-d G

′ if and only if this comparison does not distinguish G from G′. For d = 0, it is
clear that ≡WL-IR-d corresponds simply to indistinguishability by the Weisfeiler Leman test. If d is
sufficiently large, on the other hand, each leaf of the tree is labeled by a discrete coloring, so that
WL-IR distinguishes graphs up to isomorphism:

Proposition 5.1. Let G,G′ be graphs and d ≥ min(|G|, |G′|). Then G ≡WL-IR-d G
′ iff G ∼= G′.

Thus, by varying d we obtain a family of increasingly refined equivalence relations for graphs. In
order to relate these equivalence relations to those induced by HE-GNNs of different nesting depths,
we must first overcome a technical issue. WL-IR is designed to compare graphs, not nodes. Let
G ≡cls G

′ if {{cls(G, v) | v ∈ V }} = {{cls(G′, v) | v ∈ V ′}}, and G ≡C G′ if G ≡cls G
′ for all

classifiers cls in C. The graph separating power of WL-IR with depth 0 matches that of GNN.

Proposition 5.2. G ̸≡WL-IR-0 G
′ if and only if G ̸≡GNN G

′

The graph separating power of WL-IR-d is a lower bound to that of HE-GNN-d for d ≥ 0

Theorem 5.3. For d ≥ 0, if G ̸≡WL-IR-d G
′, then G ̸≡HE-GNN-d G

′

In fact, for connected graphs, and with depth d+ 1, HE-GNN node classifiers already suffice, since
the separating power of local message-passing matches global message-passing over connected
individualized graphs [52]:

Theorem 5.4. Let (G, v), (G′, v′) be connected pointed graphs and let d ≥ 0. If G ̸≡WL-IR-d G
′,

there exists a depth d+ 1 HE-GNN A such that clsA(G, v) ̸= clsA(G′, v′).

Proposition 5.1 and theorems 5.3, 5.4 show that for sufficiently large d, HE-GNN-d classifiers
distinguish graphs up to isomorphism. Contrary to WL-IR, HE-GNNs combine individualized graphs
hierarchically. We show this increases separating power when d = 1:

Theorem 5.5. There exist G,G′ such that G =WL-IR-1 G
′ but G ̸=HE-GNN-1 G

′

Using recent results by Rattan and Seppelt [44], theorem 5.5 implies that HE-GNN-1 is strictly more
separating than cospectrality of adjacency, Laplacian and Seidel matrices. In addition, this shows
that the hierarchical message-passing scheme of HE-GNN-1 adds to expressive power, compared to
aggregating over all individualized graphs in parallel. It remains open if the same holds for all d ≥ 1.

5.2 Relationship with homomorphism count enriched GNNs

In [5], the authors assume a finite set of rooted graphs F = {F1, . . . Fk} and, given an input graph
G, for each node v, they add the finite homomorphism count vector hom(F, (G, v)) to the initial
embedding of v before running a GNN. Here, by a rooted graph we mean a pointed graph (F, u) that
is connected, i.e., such that every node of F is reachable from u. Note that the input dimensionality
of the GNN is thus assumed to be |P |+ k instead of |P |. This increases the expressive power of the
model. For example, the non-isomorphic nodes in Figure 1 can be distinguished from each other by
including the cycle of length 3 (with a distinguished node) as a pointed graph in F. We will refer to a
GNN that runs over a F enriched graph simply as a F-GNN.

Theorem 5.6. Let F be any finite set of rooted graphs each with at most d nodes. Then there is a
(|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for all pointed graphs (G, v),

runA(G)(v) = embG(v)⊕ hom(F, (G, v))

The HE-GNN in question only uses Sum as aggregation and ReLu-FFNNs as combination functions.

In particular, this shows that every F-GNN is equivalent to a HE-GNN. 1 The practical value of the
above result, however, is limited by the fact that it requires a high nesting depth. As it turns out, for
many choices of F, a very small nesting depth suffices.

1Theorem 5.4 in [11] is somewhat related as it states that the node separating power of homomorphism
counts from all rooted graph is captured by hybrid logic (with @-operator but without counting modalities).
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Figure 2: Rooted 5×2-grid
(root: u1)

We will call a rooted graph (F, u) c-acyclic if every cycle of F passes
through u. C-acyclicity is a relaxation of acyclicity, and c-acyclic rooted
graphs can be thought of as trees with back-edges. Our next result will
imply that when F consists of c-acyclic structures, a nesting depth of 1
suffices. In order to state it in full generality, we need to introduce some
further terminology. In particular, we introduce the notion of ego-rank.

Given a rooted graph (G, v), let dep : V → V ∪ {⊥}
be a partial function from nodes to nodes and let deps(u) =
{dep(u), dep(dep(u)), . . .} \ {⊥} be the (finite) set of nodes u transi-
tively “depends on”. We require of the function dep that:

1. dep(v) = ⊥.
2. If (w, u) ∈ E, then dep(w) = dep(u) or w ∈ deps(u) or u ∈ deps(w),
3. Every set of nodes with the same dep-value induces an acyclic subgraph.

The ego-rank of (G, v) is the smallest value of the maximum node rank, where the node rank of a
node u is |deps(u)|, across all ways to choose the function dep subject to the above constraints.
Proposition 5.7. For all rooted graphs (G, v) with G = (V,E, lab),

1. tree-width(G)− 1 ≤ ego-rank(G, v) ≤ |V |.

2. ego-rank(G, v) = 0 if and only if G is acyclic.

3. ego-rank(G, v) = 1 whenever (G, v) is c-acyclic.

The ego-rank of a rooted graph is not upper-bounded by any function in its tree-width, and can be
exponential in its tree-depth, as follows from the following example:
Example 5.8. The rooted graph consisting of an n× 2-grid, with one of its corners as the root, as
depicted in Figure 2, has ego-rank n− 1 for n ≥ 1.

Theorem 5.9. Let F be any finite set of rooted graphs, let d = max{ego-rank(F, u) | (F, u) ∈ F}.

1. Then there is a (|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for all pointed graphs
(G, v), runA(G)(v) = embG(v) ⊕ hom(F, (G, v)). The HE-GNN uses multiplication in the
combination functions.

2. For each N > 0, there is a (|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for pointed
graphs (G, v) of degree at most N , runA(G)(v) = embG(v)⊕ hom(F, (G, v)). The HE-GNN
uses only Sum as aggregation and ReLu-FFNNs as combination functions.

It follows that, in a non-uniform sense, every F-GNN is equivalent to a HE-GNN of nesting depth
max{ego-rank(F, u) | (F, u) ∈ F} using only Sum and ReLu-FFNNs.

5.3 Relationship with higher-order GNNs

k-GNNs, as proposed by Morris et al. [38], apply message-passing between node subsets of size
k, where subsets are adjacent when they share exactly k − 1 nodes. The separating power of these
models is characterized by the k-variable fragment of first-order logic with counting quantifiers Ck.

Theorem 5.10 ([9, 38]). ρ(k-GNN) = ρ(Ck)

k-GNNs become strictly more expressive with larger k, and distinguish graphs of size n ≤ k up to
isomorphism. As such, they have proven to be a useful yardstick for the development of expressive
GNN architectures. The model proposed by Morris et al. requires exponential space and time since it
maintains nk features in memory, and applies message passing over nk+1 edges. Maron et al. [33]
proposed k-IGNs with O(nk−1) space complexity and O(nk) time complexity, which were shown
by Azizian and LeLarge [4] and Geerts [21] to have the same separating power as k-GNNs.

HE-GNNs constitute an alternative hierarchy, where nesting depth d yields classifiers that distinguish
graphs of size n ≤ d up to isomorphism (Theorem 5.3). HE-GNNs perform simple message passing
on nd graphs, but they can do this in sequence and hence need to store only n2 node features. Using
the logical characterizations we show the separating power of HE-GNNs with nesting depth d is at
most that of d+ 2-GNNs, or equivalently the d+ 1-WL algorithm.
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Theorem 5.11. For d ≥ 0, ρ((d+ 1)-WL) = ρ((d+ 2)-GNN ) ⊆ ρ(HE-GNN-d).

This generalizes a recent result by Frasca et al. [20], who showed that the separating power of many
common subgraph-GNNs is bounded by that of 2-WL. We further show that this result is optimal, in
the sense that HE-GNNs with nesting depth d can distinguish nodes that d+ 1-GNNs can not:

Theorem 5.12. For d ≥ 0, HES-GNN-(d,3) can distinguish pointed graphs that cannot be distin-
guished by d-WL, or equivalently, by a (d+ 1)-GNN.

Given the difference in the number of stored embeddings, one would expect that for d ≥ 0,
ρ((d+ 1)-WL) ⊊ ρ(HE-GNN-d). We leave this as an open conjecture.

5.4 Relationship with other variants of subgraph-GNNs

Numerous recent studies [20, 51, 52, 53, 54] have proposed variants of subgraph-GNNs, where
message passing is applied to a collection of subgraphs. Subgraph-GNNs show state-of-the-art
performance on real-world benchmarks such as ZINC molecular property prediction [8, 20, 54]. In
particular, a variant of subgraph-GNNs in which nodes receive neighborhood embeddings based on
their radius r neighborhood with distinguished center node label, also known as “ego-networks”,
have become prominent as simple yet expressive subgraph-GNN architecture [20, 51, 53].

ID-GNNs [51] are HES-GNNs (B, C) with nesting depth 1, where C is a trivial GNN that doesn’t apply
any message passing. Nested GNNs [53] do not use individualization, but perform global pooling
over subgraphs followed by message passing over the input graph. Since local aggregation with
individualization is strictly more expressive than global aggregation over connected subgraphs [52],
the separating power of nested GNN is strictly less than that of HES-GNNs with nesting depth 1.
Theorem 4.1 thus provides a logical upper bound to the separating power of these models.

Several other generalizations of subgraph-GNNs have recently been proposed [39, 42]. Most related
to this work, Qian et al. introduced Ordered Subgraph Aggregation networks that apply message
passing on |G|k copies of G, each labeled with the atomic type of a k size subgraph, and perform
aggregation over representations for a predefined selection of the |G|k subgraphs. Like HE-GNN this
constitutes a strict hierarchy with separating power upper bounded by k + 1-WL, but not by k-WL.
It is not immediately clear whether OSAN yields more expressive node classifiers than HE-GNN,
since OSAN performs global aggregation over arbitrary sets of subgraphs, while HE-GNN uses local
message-passing hierarchically.

6 Experiments

We apply HES-GNN to ZINC-12k [17, 28] and compare with standard GCN [32], GIN [50] and
PNA [12] layers, as well as GINs augmented with random identifiers (GNN+RID) [1, 45], Tinhofer
orderings (GNN+T) [40], and homomorphism counts from cycles of size 3 to 10 (F-GNN) [5]. We
use feature dimension 256 for all models for a maximum of 1000 epochs on a single 20GB gpu.
All code used for the experiments is available on git.2 Table 1 shows the achieved mean absolute
error after 10 runs and validation score selection. HES-GNNs with depth 1 outperform F-GNN
even though ZINC has cycle counts in its target function. HES-GNN-(2,3) performs equally well as
F-HES-GNN-(1,3), a depth 1 model augmented with homomorphisms counts.

Figure 3 shows the performance of HE-GNN and HES-GNN on distinguishing strongly regular graphs.
We use 4 synthetic datasets, each containing 30 random isomorphisms of 10 strongly regular graphs
for a specific choice of parameters (v, k, λ, µ) [47]. Since strongly regular graph are indistinguishable
by 2-WL and hence by 3-GNNs, depth 1 HE-GNN and ID-GNN [51] perform at chance level. Adding
cycle counts doesn’t alleviate this, in line with theorem 5.9. Tinhofer orderings fully individualize all
nodes to yield maximal separating power, resulting in 100% precision on the test set. However, since
these orderings are not isomorphism-invariant over the tested graphs, T-GNN does not generalize
to the test set. Depth 2 HE-GNNs distinguish the strongly regular graphs and generalize to unseen
isomorphisms, even with restricted subgraph radius. Figure 4 shows time and memory usage of
HE-GNNs with varying depth and radius on ZINC for a single forward pass.

2https://github.com/ariesoeteman/HEGNN
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Figure 3: Precision on isomorphism classification of strongly regular graphs for four settings of
(v, k, λ, µ). Models from left to right: ID-GNN [51], F-GNN with counts from C3, . . . C10 [5], GNN
with Tinhofer labelings [40], HES-GNN with d = 2, r = 1 and HE-GNN with d = 2.

Figure 4: Time (left) and memory (right) per sample of a
single forward pass of HES-GNN-(d,r) on ZINC. This does
not include gradients. Experiments run with batch size 20
and feature dimension 256.

Table 1: Mean absolute error on
ZINC-12k, test scores after 10 runs.

Model ZINC (MAE)

GCN [32] 0.216
GIN [50] 0.193
PNA [12] 0.207
GNN+T [40] 0.199
GNN+random ID [1, 45] 0.226
F-GNN [5] 0.154

(d,r)

(1,1) 0.191
(1,2) 0.189
(1,3) 0.149
(2,1) 0.188
(2,2) 0.183
(2,3) 0.140
(1,3) 0.140

HES-GNN

F-HES-GNN

7 Limitations and directions for further research

Efficiency Compared to k-GNNs, HE-GNNs store |G|2 instead of |G|k node features. Nevertheless,
they still require an exponential amount of message passing steps in the nesting depth d, rendering
implementations infeasible for large d. IR-based graph isomorphism tests typically reduce tree
size via informed cell selection and automorphism pruning, whereas Dupty and Lee [15] address
scalability in a learning setting through compressed approximate trees. Further study is needed to
explore how techniques from isomorphism testing can be adapted to graph representation learning,
and how these optimizations affect expressive power.

Expressive power Some questions regarding separating power are left open by our results. In
particular, we gave sufficient conditions for graphs from which HE-GNN-d can count homomorphisms
in terms of size and ego-ranks, but we have not shown these conditions are necessary. Our results are
also limited in scope by the fact that they concern separation power and not the uniform expressibility
of functions. Several uniform expressibility results have recently been obtained for GNNs (both
relative to first-order logic [6], and in terms of Presburger logic [7]), and it remains to be seen if these
results can be extended to HE-GNNs.

Beyond expressive power The empirical success of GNNs cannot be understood through expressive
power alone, as it also depends on trainability aspects such as convergence and generalization. These
remain to be explored more extensively, across GNN architectures and in the context of HE-GNNs.
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architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: Code will be made publicly available and a link will be included in the paper after
the reviewing process, to prevent breaching anonimity. All used data is publicly available.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Main settings such as hidden dimension and the number of runs are listed in the
experiments section. Details such as data splits and hyperparameters are not mentioned in the
paper itself, but all details are provided in the form of code on git.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance d

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations are included for the result on strongly regular graphs. Results
on ZINC-12k are optimal results selected by validation scores, as explained in the experiments
section.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Experiments were run on a single 20GB gpu for 1000 epochs, as stated in the
experiments section.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All data used is publicly available and doesn’t contain sensitive information. We
intend that this work will aid the scientific community in understanding graph learning models,
and do not foresee harmful consequences.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: We do not foresee a direct (negative or positive) societal impact of this work, apart
from aiding the scientific community in the development of graph learning methods.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data. Our method focuses on improving expressive
power for graph learning tasks and is not applicable to high-risk domains such as language
generation or image synthesis.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: Explicit references are made to the used datasets. All code is developed by the
authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code on git contains a package for hierarchical ego gnns including documenta-
tion. The details of the algorithm are given in pseudocode in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This project did not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This project did not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were part of the core development of this work as an important or
non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Missing proofs

A Proofs for section 2

Proposition 2.3. ([6]) For every GML-formula ϕ there is a GNN A such that clsA = clsϕ. Moreover,
the GNN in question only uses Sum as aggregation and a single ReLU-FFNN as combination function.

Proof. Let Φ be the smallest set of GML-formulas containing ϕ that is closed under taking subfor-
mulas. The operator depth of a GML-formula is defined as follows: depth(p) = 0, depth(¬ϕ) =
depth(ϕ) + 1, depth(ϕ ∧ ψ) = max{depth(ϕ), depth(ψ)} + 1 depth(♢≥nϕ) = depth(ϕ) + 1. Let
|Φ| = k and let L be the maximal operator depth of a formula in Φ. Let

A = ((COMi)i=1...L, (AGGi)i=1...L)

where

• COM1 : R2|P | → Rk given by COM1(x1, . . . , x|P |, y1, . . . , y|P |) = (z1, . . . , zk) with zi = xj if
ϕi is of the form pj and zi = 0 otherwise.

• For i > 1, COMi : R2k → Rk is given by COMi(x1, . . . , xk, y1, . . . yk) = (z1, . . . , zk) with

zi =


xi if ϕi is of the form p

1− xj if ϕi is of the form ¬ϕj
max{xj , xm} if ϕi is of the form ϕj ∧ ϕm
1 if yj ≥ n, 0 otherwise if ϕi is of the form ♢≥nϕj

• Each AGGi is (pointwise) sum.

It is not difficult to see that COMi can be implemented by a two-layer feed-forward network using the
ReLU activation function. In particular, max{xj , xm} can be expressed as ReLU(xj + xm − 1) and
“1 if yj ≥ n, 0 otherwise” can be expressed as ReLU(1− ReLU(n− yi)).

It can be shown by a straightforward induction on d, that, for all d ≥ 0, for all ϕ ∈ Φ of operator
depth d, and for all i > d, embiG(v)(j) is 1 if G, v |= ϕj and 0 otherwise.

In order to turn A into a classifier, finally, we extend COML with one additional linear layer of
dimensionality (k, 1) that takes a vector (x1, . . . , xk) and outputs xi, where ϕi = ϕ.

Proposition 2.4. Let A be a (D,D′)-GNN with D = |P |, let N > 0, and let

X = {runA(G, embG)(v) | G = (V,E, lab) is a graph of degree at most N and v ∈ V } .

In other words X ⊆ RD′
is the set of all node embeddings that A can produce when run on a

graph of degree at most N . Then X is a finite set, and for each x ∈ X , there is a GML-formula
ϕx such that for every pointed graph (G, v) of degree at most N , it holds that G, v |= ϕx iff
runA(G, embG)(v) = x. In particular, for each GNN-classifier clsA there is a GML-formula ϕ such
that clsϕ(G, v) = clsA(G, v) for all pointed graphs (G, v) of degree at most N .

Proof. Let A = ((COMi)i=1...L, (AGGi)i=1...L). By definition, runA(G, embG)(v) is equal to
embLG(v) where, for each i = 0 . . . L, embiG : V → RDi is given by

• emb0
G = embG

• embiG = {v : COMi(embi−1
G (v)⊕ AGGi({{embi−1

G (u) | (v, u) ∈ E}})) | v ∈ V } for i > 0

The main statement can therefore be restated as saying that the set

XL = {embLG(v) | G = (V,E, lab) is a graph of degree at most N and v ∈ V }
is finite and there is a defining GML-formula ϕx for each x ∈ XL (over pointed graphs of degree at
most N ). We proceed by induction on L.

For L = 0, embLG equals embG. In this case, X is equal to the set of all multi-hot encodings, i.e.,
X = {0, 1}D, and for every x = (x1, . . . , xD) ∈ XL, we can simply choose ϕx = α1 ∧ · · · ∧ αD
where αi = pi if xi = 1 and αi = ¬pi if xi = 0.
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Next, let L > 0. By induction hypothesis, the claim holds for XL−1. Let us consider pairs (z, Z)
where z ∈ XL−1 and Z is a multiset of vectors belonging to XL−1, such that Z has cardinality at
most N . Note that there are at most finitely many such pairs. For any such pair let ϕ(z,Z) be the
GML-formula

ϕz ∧
∧

u occurs in Z with cardinality n

(♢≥nϕu ∧ ¬♢≥n+1ϕu)

We now define our formula ϕx as the disjunction of ϕ(z,Z) for all pairs (z, Z) for which it holds
that COML(z ⊕ AGGL(Z)) = x. It follows from the construction that (G, v) |= ϕx if and only if
embLG(v) = x.

B Proofs of logical characterizations in sections 3 and 4

We prove several lemmas building up to a uniform translation from HES-GNN-(d,r) to GML(↓dW r )
(theorem B.5) and a converse uniform translation for graphs with bounded degree (theorem B.6). The
logical characterizations in theorems 3.4 and 4.1 follow with small additions or adjustments to the
proofs. We will use ♢k for ♢♢ . . .♢︸ ︷︷ ︸

k

.

Proposition B.1. Every GML(↓,@)-sentence is equivalent to a GML(↓)-sentence of the same
↓-nesting-depth over unordered graphs.

Proof. Let ϕ be a GML(↓,@)-sentence. Let n be the modal depth of ϕ, that is, the maximal nesting
depth of the modal operators in the sentence, and let ϕ′ be the sentence obtained from ϕ by replacing
every subformula of the form @xψ by ∨

i=0...2n

(♢ · · ·♢︸ ︷︷ ︸
length i

(x ∧ ψ))

Clearly, ϕ′ has the same ↓-nesting-depth as ϕ. A straightforward induction proof shows that ϕ and ϕ′
are equivalent on unordered graphs. Intuitively, this is because all variables in ϕ are bound, and 2n
bounds the distance between nodes in the subgraph that the formula ϕ can “see”.

Proposition B.2 (Canonical Form). Let NdWϕ (ψ) be the number of W operators in ϕ that have ψ in
their scope. For each GML(↓dW r ) sentence ϕ there exists an equivalent GML(↓dW r ) sentence ψ such
that for every subformula of the form ↓ xiW rψ′, i = d+ 1−NdWψ (ψ′). We call such ψ canonical.

Proof. We assume the proposition holds for d and apply induction over formula construction in
GML(↓d+1

W r ). Let ϕ1 ∈ GML(↓dW r ), and ϕ = ↓xi.W rϕ1. Let ψ1 be the canonical form of ϕ1 and
construct ψ∗

1 substituting free occurrences of xi in ψ1 by xd+1. Then:

ψ = ↓xd+1.W
rψ∗

1

Clearly ψ ≡ ϕ, and for every subformula ↓ xj .W r ψ′ in ψ we have j = d+2−NdWψ (ψ′). Canonical
form is maintained under construction with the other connectives (¬,∧,♢>k).

Lemma B.3. Given a finite tuple (A1, . . .Am) where for 1 ≤ j ≤ m, Aj is a (D,D′)-GNN, there
exists a (D,m ·D′)-GNN A such that runA(G)(u) =

⊕
1≤j≤m

(runAj (G)(u)). Moreover, if all Aj

use the same pointwise aggregation function, then A uses the same aggregation function, and if all
Aj use ReLU-FFNNs as combination functions, the same holds for A.

Proof. For each j let Aj = ((COMj
i )i=1,...,Lj , (AGGji )i=1,...,Lj ). Without loss of general-

ity all Aj have the same number of layers L′. Let L = L′ + 1. We construct A =
((COMi)i=1,...,L, (AGGi)i=1,...,L). The first layer copies each embeddingm times, i.e. for v, v′ ∈ RD:
COM1(v ⊕ v′) =

⊕
1≤j≤m

(v).
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Given combination functions COMj let COM
1≤j≤m

apply each COMj on the associated subspace:

COM
1≤j≤m

(v1 ⊕ . . . vm)⊕ (v′1 ⊕ . . . v′m) =
⊕

1≤j≤m

(COMj(vj ⊕ v′j))

Similarly, given aggregation functions AGGj let AGG
1≤j≤m

behave as:

AGG
1≤j≤m

(M) =
⊕

1≤j≤m

(AGGj(Mj))

Here, for AGGj : M(RDj ) → RDj , M is a multiset of embeddings in R
∑

1≤j≤mDj and Mj

is the multiset of embeddings in RDj , obtained by restricting each embedding in M to indices
[
∑
j′<j Dj′ ,

∑
j′≤j Dj′ ]. Note that if each AGGj is the same point-wise aggregation function (e.g.

sum), then AGG
1≤j≤m

is the same point-wise aggregation function on the concatenated space.

We define the remaining layers of A as:
∀l > 1 : AGGl = AGGl−1

1≤j≤m

∀l > 1 : COMl = COMl−1
1≤j≤m

Corollary B.4. Given a finite tuple (A1, . . .Am) where for 1 ≤ j ≤ m, Aj is a (D,D′)-HES-GNN
with nesting depth d and radius r, there exists a (D,m ·D′)-HES-GNN A with nesting depth d and
radius r such that runA(G)(u) =

⊕
1≤j≤m

(runAj (G)(u)). Moreover, if all Aj use the same pointwise

aggregation function, then A uses the same aggregation function, and if all Aj use ReLU-FFNNs as
combination functions, the same holds for A.

Proof. For d = 0 the claim follows from the above lemma. For d > 0 and Aj = (Bj , Cj), construct
A = (B, C) where runB(G)(u) =

⊕
1≤j≤m

(runBj (G)(u)).

C follows the construction of the above lemma, with the exception that the first combination function
does not copy the complete vertex embedding m times. Instead, COM1 now receives a vertex
embedding v ⊕

⊕
1≤j≤m

(vj), where v is the original vertex embedding and vj is the output of Bj , and

produces output
⊕

1≤j≤m

(v ⊕ vj).

Theorem B.5. Given a finite tuple (ϕ1, . . . , ϕm) where for 1 ≤ j ≤ m, ϕj is a GML(↓dW r ) sentence
with propositions in P , there exists a (|P |,m)-HE-GNN A with nesting depth d and radius r such
that for all G labeled with P runA(G)(u) =

⊕
1≤j≤m

(clsϕj
(G, u)).

Proof. For d = 0, following the uniform translation from GML to GNN of proposition 2.3, there
exist a GNN Aj such that runAj

= clsϕj
. By lemma B.3 there then exists a GNN A that produces

the concatenation of outputs for each Aj .

We apply induction over d. It suffices to show that any single sentence ϕ in GML(↓dW r ) is implemented
by a single HE-GNN A, since we can construct a HE-GNN with concatenated outputs following
corollary B.4.

By lemma B.2 we can assume ϕ is canonical, hence for every maximal subformula ↓ xi.W r(ψ) in
ϕ, i = d. Let ↓ xd.W rψ1, . . . , ↓ xd.W rψk be all such maximal subformulas. By the semantics of
GML(↓dW r ), for all 1 ≤ j ≤ k:

G, v |=↓ xd.W r(ψj) iff
Grv[xd 7→ v], v |= ψj

24



Now when xd is treated as a binary node feature, ψj is a sentence in GML(↓dW r ). There thus exists a
HE-GNN Bj such that

runBj
(Grv[xd 7→ v])(v) = clsψj

(Grv[xd 7→ v], v)

= cls↓xd
.W r(ψj)(G, v)

We construct a single HE-GNN B with nesting depth d− 1 that outputs the concatenated outputs for
all such Bj , following corollary B.4:

runB(Grv[xd 7→ v])(v) =
⊕

1≤j≤m

cls↓ xd.W r(ψj)(G, v)

Now construct ϕ∗ from ϕ by substituting each ↓xd.W rψj with a proposition qj . Given G =
(V,E, lab), let G∗ = (V,E, lab∗), where lab∗ extends lab so that qj ∈ lab∗(u) iff G, u |=↓
xd.W

rψj . Then:

clsϕ(G, v) = clsϕ∗(G∗, v)

Note that ϕ∗ ∈ GML. Hence by proposition 2.3 there exists a GNN C such that for A = (B, C):

clsϕ∗(G∗, v) = runC(G∗, v)

= runA(G, v)

Theorem B.6. Let A be a (D,D′)-HES-GNN with D = |P |, nesting depth d, radius r. Let N ≥ 0
and

X = {runA(G, embG)(v) |G = (V,E, lab) is a graph of degree at most N and v ∈ V }

Then X is a finite set, and for each x ∈ X there is a GML(↓dW r ) sentence ϕx such that for
every pointed graph (G, v) of degree at most N it holds that G, v |= ϕx iff runA(G)(v) = x. In
particular, for each HES-GNN-(d,r) classifier clsA there is a GML(↓dW r ) sentence ϕ such that
clsϕ(G, v) = clsA(G, v) for all pointed graphs (G, v) of degree at most N .

Proof. We apply induction over d. The case d = 0 reduces to the translation from GNN to GML of
proposition 2.4. Let A = (B, C) be a HES-GNN with depth d and radius r. X is finite since B has
finitely many output embeddings by the induction hypothesis, and C produces finitely many output
features on graphs with finitely many input embeddings as shown in the proof of proposition 2.4.

Let embu = {emb(u′)⊕ δuu′ | u′ ∈ V }, then for each x ∈ X:

runA(G)(v) = x iff
runC(G, {embG(u)⊕ runB(Gru, embu)|u ∈ V })(v) = x iff

runC(G∗)(v) = x

Where given G = (V,E, lab), G∗ = (V,E, lab∗) and lab∗ extends lab with propositions for all
output features of B. Specifically, let YB = {y1, . . .y|YB|} be this finite set of output features and
introduce q1 . . . q|YB| such that qj ∈ lab∗(u) if and only if runB(Gru, embu)(u) = yj.

By proposition 2.4 there exists a sentence ξ in GML such that:

G∗, v |= ξ iff runC(G
∗)(v) = x

Then let ϕx = ξ[↓xd.W rϕy1 , . . . , ↓xd.W rϕy|YB|/q1, . . . q|YB|].

Here all ↓xd.W r(ϕyi
) are sentences in GML(↓dW r ) by the induction hypothesis, so that the same

holds for ϕx.

Small adaptations can be made to the proofs of theorems B.5 and B.6 to show ρ(HE-GNN-d) =

ρ(GML(↓d)), where now all operators W r are removed and no subgraph restrictions are applied.
Since HE-GNN = ∪d≥0HE-GNN-d and GML(↓) = ∪d≥0GML(↓d) it follows that ρ(HE-GNN) =
ρ(GML(↓)). That is:
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Theorem 3.4. ρ(HE-GNN) = ρ(GML(↓)). Moreover, for d ≥ 0, ρ(HE-GNN-d) = ρ(GML(↓d)).

Lemma B.7. Let r ≥ 0, then ρ(GML(↓d)) ⊆ ρ(GML(↓dW r ))

Proof. Let ϕ ∈ GML(↓dW r ). We define sentence ξ, which only holds at vertices of distance ≤ r to
xi:

ξ = xi ∨
∨

1≤j≤r

♢jxi

Now take a minimal subformula of the form ↓xi.W rψ in ϕ. We substitute this for an equivalent
subformula ↓xi.ψ′, where ♢≥kτ in ψ is replaced by ♢≥k(ξ ∧ τ) to produce ψ′.

Applying this transformation recursively to subformulas in ϕ yields an equivalent GML(↓d) sentence.

Theorem 4.1.

1. ρ(HES-GNN) = ρ(GML(↓W )) = ρ(GML(↓)) = ρ(HE-GNN).

2. ρ(HES-GNN-r) = ρ(GML(↓W r )). Moreover, ρ(HES-GNN-(d,r)) = ρ(GML(↓dW r )).

Proof. Theorems B.5 and B.6 yield ρ(HES-GNN-(d,r)) = ρ(GML(↓dW r )) for all d, r ≥ 0.

Since HE-GNN-r = ∪d≥0HES-GNN-(d,r) and GML(↓W r ) = ∪d≥0GML(↓dW r ) point (2) follows.

Similarly, taking the union over all r ≥ 0 yields ρ(HES-GNN) = ρ(GML(↓W )). Finally, to see
that ρ(GML(↓W )) = ρ(GML(↓)) note that when two pointed graphs are separated by a sentence in
GML(↓) they are also separated by a GML(↓W r ) sentence where r is the size of the largest of the
two graphs. Using lemma B.7 then ρ(GML(↓W )) = ρ(GML(↓)).

C Proofs of hierarchy results in section 4

Theorem 4.2. For d ≥ 1, r ≥ 0, ρ(HES-GNN-(d,r + 1)) ⊊ ρ(HES-GNN-(d,r)).

The construction of lemma B.7 also shows ρ(GML(↓dW r+1 )) ⊆ ρ(GML(↓dW r )) for d ≥ 1, r ≥ 0. Us-
ing the logical characterization of theorem 4.1 then ρ(HES-GNN-(d,r + 1)) ⊆ ρ(HES-GNN-(d,r)).

Now to show ρ(HES-GNN-(d,r + 1)) ̸= ρ(HES-GNN-(d,r)), consider graphs G1 = C4r+6 and G2

consisting of two disjoint cycles C2r+3, where all vertices are labeled with the empty set.

Let v1, v2 be nodes in G1, G2 and ϕ =↓ xi.W r+1(♢r+1(¬♢≥2⊤)). Then:

G1, v1 |= ϕ

G2, v2 ̸|= ϕ

Again applying theorem 4.1 (G1, v1) and (G2, v2) can be separated by HES-GNN-(d,r + 1) for
d ≥ 1.

However, the marked induced subgraphs with radius r around v1, v2 are isomorphic and hence cannot
be separated by any HE-GNN. Since (G1, v1), (G2, v2) are further indistinguishable by WL:

∀d ≥ 0 : ((G1, v1), (G2, v2)) ∈ ρ(HES-GNN-(d,r)))

Theorem 4.3. For d ≥ 0 and r ≥ 3, ρ(HES-GNN-(d+ 1,r)) ⊊ ρ(HES-GNN-(d,r))

This follows from

ρ((d+ 2)-GNN) ⊆ ρ(HE-GNN-d) ⊆ ρ(HES-GNN-(d,r)) Theorem 5.11
ρ((d+ 2)-GNN) ̸⊆ ρ(HES-GNN-(d+ 1,r)) Theorem 5.12
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D Proofs of relations with other models in section 5

5.1. Individualization-Refinement

Proposition D.1 (([38, 50]). Let n,D ∈ N. Then there exists a GNN As such that for all fea-
tured graphs (G, emb), (G′, emb′) of size ≤ n and with embeddings in RD, if WL(G,n)(v) ̸=
WL(G′, n)(v′) then runAs(G)(v) ̸= runAs(G′)(v′). We call such a GNN sufficiently separating.
Lemma D.2. Let n, d,D ∈ N. Then there exists a sufficiently separating HE-GNN As with nesting
depth d such that for all featured graphs (G, emb), (G′, emb′) of size ≤ n and with embeddings
in RD, if ((G, v), (G′, v′)) ̸∈ ρ(HE-GNN-d) then runAs(G)(v) ̸= runAs(G′)(v′), we call such a
HE-GNN sufficiently separating.

Proof. When d = 0 this reduces to proposition D.1. Suppose d > 0. Let Bs be a sufficiently
separating HE-GNN for n, d− 1, D+1, and let Cs be a sufficiently separating GNN for n,D′, where
D′ is the output dimension of Bs. We define As = (Bs, Cs).
Now suppose a HE-GNN A′ = (B′, C′) with nesting depth d separates (G, v) from (G′, v′). Since
Cs is sufficiently separating, (B′, Cs) is at least as separating as (B′, C′). Since Cs has the separating
power of WL up to size n, and since Bs has at least the separating power of B′, (Bs, Cs) is at least as
separating as (B′, Cs).

Notation Assume an injective map f from the infinite set of colors C to an infinite set of binary
node labels (propositions) P . Given a graph G = (V,E, lab) we write GWL for G = (V,E, lab′),
where lab′ is obtained by first computing the coloring col = WL(G, |G|) and then labeling each node
v ∈ V with f(col(v)).
Lemma D.3. Let (G, v), (G′, v′) be pointed graphs such that |G| = |G′|. If ((G, v), (G′, v′)) ∈
ρ(HE-GNN-d) then ((GWL, v), (G

′
WL, v

′)) ∈ ρ(HE-GNN-d).

Proof. We apply induction over d. For d = 0 note that ρ(HE-GNN-0) = ρ(GNN) = ρ(WL). Let
(G, v), (G′, v′) be of size n, with labels in P , such that ((G, v), (G′, v′)) ∈ ρ(HE-GNN-d) for d > 0.

By lemma D.2 there exists a sufficiently separating HE-GNN As = (Bs, Cs). We show
(GWL, v), (G

′
WL, v

′) ∈ ρ(clsAs).

Suppose for nodes u in G and u′ in G′, are given the same output by Bs after individualizing u, u′.
By the induction hypothesis, the same holds for u in GWL and u′ in G′

WL. Since Cs is sufficiently
separating and since the input embeddings given by Cs are not more separating for GWL, G

′
WL than

for G,G′, it follows that (GWL, v), (G
′
WL, v

′) ∈ ρ(HE-GNN-d).

We apply the following lemma from Zhang et al. [52]
Lemma D.4. Let G = (V,E, lab), G′ = (V ′, E′, lab′) be finite connected graphs with v ∈ V, v′ ∈
V ′ uniquely marked. Then:

WL(G)(v) = WL(G′)(v′) iff {{WL(G)(u) | u ∈ V }} = {{WL(G′)(u′) | u′ ∈ V ′}}
Theorem 5.3. For d ≥ 0, if G ̸≡WL-IR-d G

′, then G ̸≡HE-GNN-d G
′

Proof. We apply induction over d. At d = 0, the claim follows since ρ(GNN) = ρ(WL). Suppose
for graphs G,G′ with labels in P and d > 0, G ≡HE-GNN-(d) G

′, then |G| = |G′|. We show
G ≡WL-IR-(d) G

′.

By lemma D.2 there exists a sufficiently separating HE-GNN As = (Bs, Cs). Since:

{{runAs(G, v) | v ∈ V }} = {{runAs(G′, v′) | v′ ∈ V ′}}
there is a bijection f between the two multisets, such that for all u ∈ V and for unique proposition q:

runBs(G[q 7→u])(u) = runBs(G′
[q 7→f(u)])(f(u))

Let Cu, Cf(u) be the connected components containing u and f(u). By lemma D.4:

{{runBs((Cu[q 7→u])WL)(w) | w ∈ Cu}} = {{runBs((C
f(u)
[q 7→f(u)])WL)(w) | w ∈ Cf(u)}}
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Since these connected components then also obtain the same multiset of output embeddings without
a unique marking, this equality extends to the full graphs G,G′:

{{runBs(G[q 7→u])(w) | w ∈ V }} = {{runBs(G′
[q 7→f(u)])(w) | w ∈ V ′}}

It follows that G,G′ are indistinguishable by WL-IR-(d− 1) after marking u, and f(u) and applying
WL:

{{runBs((G[q 7→u])WL)(w) | w ∈ V }} = {{runBs((G′
[q 7→f(u)])WL)(w) | w ∈ V ′}} (Lemma D.3)

(G[q 7→u])WL ≡HE-GNN-(d− 1) (G
′
[q 7→f(u)])WL (Lemma D.2)

(G[q 7→u])WL ≡WL-IR-(d− 1) (G
′
[q 7→f(u)])WL (Induction hypothesis)

Since WL-IR(G, d) obtains the same depth d− 1 subtrees as WL-IR(G′, d), G ≡WL-IR-d G
′.

Theorem 5.4. Let (G, v), (G′, v′) be connected pointed graphs and let d ≥ 0. If G ̸≡WL-IR-d G
′,

there exists a depth d+ 1 HE-GNN A such that clsA(G, v) ̸= clsA(G′, v′).

Proof. Let d ≥ 0. Suppose (G, v) ≡HE-GNN-d+ 1 (G′, v′). We show G ≡WL-IR-d G
′.

For a sufficiently separating HE-GNN As = (Bs, Cs) with nesting depth d+ 1:

runAs(G)(v) = runAs(G′)(v′)

Thus, for unique label q:

runBs(G[q 7→v])(v) = runBs(G′
[q 7→v′])(v

′)

Then since G,G′ are connected:

{{runBs(G[q 7→v])(u) | u ∈ V }} = {{runBs(G′
[q 7→v′])(u

′) | u′ ∈ V ′}} (Lemma D.4)

G ≡HE-GNN-d G
′ (Lemma D.2)

G ≡WL-IR-d G
′ (Theorem 5.3)

Figure 5: Two graphs that are distinguished by a depth 1 HE-GNN, but not by WL-IR-1. All nodes
in both graphs have an empty labeling.

Theorem 5.5. There exist G,G′ such that G =WL-IR-1 G
′ but G ̸=HE-GNN-1 G

′

Proof. We use two graphs G,G′ introduced by Rattan and Seppelt [44], and shown in Figure 5. G
has a square u1, u2, u3, u4, where u1 is connected to all nodes in two triangles, the same holds for
u4 and two different triangles, and u2, u3 are connected to all nodes in two distinct 6 cycles. G′ is
constructed similarly with a central square v1, v2, v3, v4, where now v1 and v3 are each connected to
two triangles and v2, v4 are connected to distinct 6 cycles.
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To see G =WL-IR-1 G
′ note firstly that the two graphs are WL equivalent. Furthermore, there is

a bijection f between nodes of G and G′, where for each node u in G, applying WL to G after
individualizing u yields the same coloring as applying WL to G′ after individualizing f(u). We let
f(u1) = v1, f(u2) = v2, f(u3) = v3, f(u4) = v4, map every node in a triangle in G to a node in a
triangle in G′ and do the same for nodes in the 6 cycles of G and G′. One can easily check that this
gives the desired result so that G =WL-IR-1 G

′.

We now show there is a GML(↓1W 2) formula ψ that is satisfied by u1 but not by any node in G′.

ϕ = ♢≥8(⊤) ∧ ♢(↓x.W 2(¬♢≥8(⊤) ∧ ♢(¬♢≥8(⊤) ∧ ♢(¬♢≥8(⊤) ∧ ♢x))))

ψ = ϕ ∧ ¬♢ϕ
Here, ϕ expresses having degree at least 8, and being connected to a node on a 3 cycle that doesn’t
pass a node with degree at least 8. u1, u4, v1 and v3 are the only nodes in G,G′ that satisfy ϕ. Thus
G, u1 |= ψ, while no node in G′ satisfies ψ. By the logical characterization in theorem 3.4 there
exists a HE-GNN A such that G ̸=clsA G′.

5.2. Homomorphism count enriched GNNs

The definitions of homomorphisms and homomorphism counts were omitted from the paper due to
lack of space. They are as follows: a homomorphism from a pointed graph (F, u) to a pointed graph
(G, v) is a map h from the vertex set of F to the vertex set of G such that

1. for each edge (w,w′) of F , (h(w), h(w′)) is an edge of G,
2. for each vertex w of F , labF (w) ⊆ labG(h(w)), and
3. h(u) = v.

Homomorphisms are defined similarly for unpointed graphs G, where we simply omit condition
(ii). We use hom((F, u), (G, v)) to denote the number of homomorphism from (F, u) to (G, v).
In addition, if h is a partial map from the vertex set of F to the vertex set of G, then we denote
by homh(F,G) the number of homomorphism that extend h. In particular, hom{(u,v)}(F,G) =
hom((F, u), (G, v)).

For a set of pointed graphs F = {(F1, u1), . . . , (Fm, um)} and a pointed graph (G, v), we denote by
hom(F, (G, v)) the vector of homomorphism counts

⟨hom((F1, u1), (G, v)), . . . ,hom((Fm, um), (G, v))⟩
(assuming some ordering on the members of F).
Theorem 5.6. Let F be any finite set of rooted graphs each with at most d nodes. Then there is a
(|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for all pointed graphs (G, v),

runA(G)(v) = embG(v)⊕ hom(F, (G, v))

The HE-GNN in question only uses Sum as aggregation and ReLu-FFNNs as combination functions.

Proof. We consider the case where F consists of a single rooted graph (F, u) with d nodes. The
proof extends naturally to the case with multiple such rooted graphs.

We will prove the following stronger statement:

(*) For all sequences ⟨u1, . . . , uk⟩ of distinct nodes of F (with k > 0), there is a (D + k, 1) −
HE-GNN A of nesting depth d− k, such that, for all graph G and maps h : {u1, . . . , uk} → VG,

runA(G, emb+hG )(h(uk)) = homh(F,G)

where emb+h
G = {w : embG(w)⊕ ⟨δwh(u1), . . . , δwh(uk)⟩ | w ∈ VG}.

Observe that the special case of (*) with k = 1 and u1 = u yields a (|P | + 1, 1)-HE-GNN B of
nesting depth d− 1 such that

runB(G, emb′G)(v) = hom((F, u), (G, v))

where emb′
G = {w : embG(w)⊕⟨δwh(u)⟩ | w ∈ VG}. Let C be the trivial (|P |+1, |P |+1)-GNN that

implements the identity function. It then follows that A = (B, C), which is a (|P |, |P |+1)-HE-GNN
of nesting depth d, has the desired behavior.
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It remains to prove (*). The proof proceeds by induction on the d − k. When k = d, the partial
function h is in fact a total function from the node set of F to that of G. It is easy to implement a
GNN that, in this case, outputs 1 if h is a homomorphism and outputs 0 otherwise. Indeed, this can
be done using only ReLU-FFNN combination functions and Sum aggregation, and using at most
|VF | many rounds of message passing. We omit the details, as they are straightforward.

Next, let 0 < k < d and assume that (*) holds for k + 1. We will show that it then also holds for k.
Since k > 0, there are nodes of F that do not belong to the sequence ⟨u1, . . . , uk⟩. It follows from
this, by the connectedness of F , that there is an edge of F connecting some ui (with i ≤ k) to some
u′ ̸∈ {u1, . . . , uk}. As a basic fact about homomorphism counts, we have

homh(F,G) =
∑

v′∈VG such that (h(ui),v′)∈EG

homh∪{(u′,v′)}(F,G)

We now apply induction hypothesis to ⟨u1, . . . , uk, u′⟩, obtaining a (|P | + k + 1, 1)-HE-GNN B.
Let C be a (|P |+ k + 1, |P |+ k + 1)-GNN that performs one round of message passing using Sum
aggregation and using the combination function

COM(⟨x1, . . . , x|P |+k, x
′, z1, . . . , z|P |+k, z

′⟩) = ⟨x1, . . . , x|P |+k, z
′⟩

(i.e. summing up the values in the |P |+ k + 1-th position across all neighbors, and keeping the other
values in the vector the same). Let A = (B, C). It follows from the construction that

runA(G, emb+hG )(h(ui)) = homh(F,G)

In other words, after running A, “node h(ui) knows the answer”. All that remains to complete the
construction, is to “pass this information from h(ui) to h(uk). This can be done by augmenting C
with |VF | more layers of message passing (because h(ui) and h(uk) are at most |VF | distance apart).
We omit the details which are straightforward.

Lemma D.5. For every pointed graph (F, u) of ego-rank n, there is a witnessing dep-function (i.e.,
with maximum node rank n) such that

1. dep is well-founded, i.e, v ̸= depn(v) for all v and n ≥ 1.

2. for all nodes v, every connected component of the subgraph induced by dep−1(v) contains a
neighbor of v. Equivalently, when dep(w) = v, there is a path from w to v passing only though
nodes w′ with dep(w′) = v.

Proof.

1. If dep is not well-founded, there is a cycle

v1, v2, v3, . . . , vn

where dep(vi) = vi+1 for i < n and dep(vn) = v1. Note that, in this case, deps(v1) = deps(v2) =
. . . = deps(vn) = {v1, . . . , vn}.

Fix such a cycle, and let dep′ be identical to dep except that (i) dep′(vn) = ⊥, and (ii) for all
v ̸∈ {v1, . . . , vn}, if dep(v) ∈ {v1, . . . , vn} then dep′(v) = v1. Note that, in this way, deps′(v) =
deps(v) for all v ̸∈ {v1, . . . , vn}.

We claim that dep′ still satisfies the conditions given in the definition of ego-rank. Indeed,

• dep′(u) is still ⊥

• Let (w, v) ∈ E be an edge. Then one of the following three cases holds:

(a) dep(w) = dep(v). Then the same holds for dep′, except possibly if w ̸∈ {v1, . . . , vn},
dep(w) ∈ {v1, . . . , vn}, and v ∈ {v1, . . . , vn}. However, in this case, we have that
dep′(w) = v1 and hence v ∈ deps′(w) = {v1, . . . , vn}.

(b) w ∈ deps(v). It follows from the construction of dep′ that, for all v ̸∈ {v1, . . . , vn},
deps′(v) = deps(v). Therefore, we only have to consider the case that v ∈ {v1, . . . , vn}.
If w ∈ {v1, . . . , vn}, then we have either w ∈ deps′(v) or v ∈ deps′(w) (note that v ̸= w).
Otherwise, by construction, dep′(w) = v1 and hence v ∈ deps′(w).
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Figure 6: Rooted 5× 2 grid

(c) v ∈ deps(w). This case is symmetric to the above.

• Finally, we must show that, for each v ∈ V ∪ {⊥}, the subgraph induced by dep′−1(v) is acyclic.
For each node v ̸= v1, we have that dep′−1(v) ⊆ dep−1(v), and hence, since dep−1(v) is acyclic,
so is dep′−1(v). Therefore, it remains only to consider dep′−1(⊥) and dep′−1(v1).

Suppose there were a cycle in the subgraph induced by dep′−1(⊥). This cycle must contain the
node v1, while all other nodes u on the cycle satisfy dep(u) = ⊥. However, it is easy to see that
there can be no edge connecting v1 to such a node u.

Finally, suppose there were a cycle
w1, . . . , wk

in the subgraph induced by dep′−1(v1). If dep(w1) = dep(w2) = . . . = dep(wk) = vi, then the
subgraph induced by dep−1(vi) would already have a cycle, which we have assumed is not the
case. Therefore, the cycle must include an edge connecting nodes wi and wi+1 where dep(wi) ̸=
dep(wi+1). Note that wi, wi+1 ̸∈ {v1, . . . , vn} and that dep(wi), dep(wi+1) ∈ {v1, . . . , vn}.
Such an edge cannot exist as it fails to satisfy the second property in the definition of ego-rank.

2. We assume dep satisfies property 1. Let dep(w) = v and suppose that property 2 fails, i.e., there
is a node w with dep(w) = v such that no node w′ reachable from w in the subgraph induced by
dep−1(v) is adjacent to v. Let dep′ be identical to dep except that, for all w′ reachable from w in the
subgraph induced by dep−1(v), we set dep′(w′) := dep(v). Note that, by property 1, v ̸∈ deps(v)
and hence the net effect of this change is that deps′(w′) = deps(w′) \ {v}. We claim that deps′ still
satisfies all requirements from the definition of ego-rank. Indeed:

• dep′(u) is still ⊥.

• Let (w1, w2) ∈ E be an edge. Then one of the following conditions holds:

(a) dep(w1) = dep(w2). Then the same holds for dep′ (note that w1 and w2 belong to the same
connected component of dep−1(dep(w1))).

(b) w1 ∈ deps(w2) or vice versa. It is easy to see that, in this case, the same still holds for deps′.

• Finally, we must show that, for each x ∈ V ∪ {⊥}, the subgraph induced by dep′−1(x) is
acyclic. It suffices to consider the case where x = dep(v), because, for all other x we have that
dep′−1(x) ⊆ dep−1(x). Therefore, let x = dep(v) and suppose for the sake of a contradiction
that dep′−1(x) contains a cycle. Since dep−1(x) and dep−1(v) were both acyclic, this cycle
must include an edge (w1, w2) such that dep(w1) = v and dep(w2) = x. It must then be the
case that w2 ∈ deps(w1), and, indeed, it must be the case that w2 = v, a contradiction since the
connected component of w1 in dep−1(v) was not supposed to be connected to v.

By repeating this operation, we obtain a dep-function satisfying property 2.

Proposition D.6. The rooted n× 2-grid (with n ≥ 1) as depicted in Figure 2 has ego-rank n− 1.

Proof. For the n− 1 upper bound, a witnessing dep-function is already depicted in Figure 2 for the
special case of n = 5, and it can be modified in the obvious way for the general case (note that there
are also other choices for the dep function that yield the same ego rank). In what follows, we prove
the n− 1 lower bound.

Let dep : V → V ∪ {⊥} be any function satisfying the requirements in the definition of ego-rank.
We may assume that it also satisfies the properties described in Lemma D.5.

Recall that u1 is the root of the rooted graph. We show there is a sequence

⟨π1, π2, . . . , πn⟩
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where π1 = u1, and for i > 1 the following holds:

1. πi ∈ {ui, vi}

2. Either (i) dep(πi) = πi−1 or (ii) dep(πi) = π′
i−1 and dep2(πi) = πi−1

where π′
i−1 =

{
ui−1 if πi−1 = vi−1

vi−1 if πi−1 = ui−1

We apply induction over i > 1. It follows from the induction hypothesis that deps(πi−1) doesn’t
contain any uj , vj with j ≥ i − 1. Suppose w.l.o.g. that πi−1 = ui−1. Note firstly that either
ui−1 ∈ deps(vi−1) or ui−1 ∈ deps(ui). For, if this would not hold then, by definition of dep,
dep(ui−1) = dep(vi−1) = dep(ui), which by well-foundedness leaves no possibility for dep(vi).

Since every connected component of dep−1(ui−1) is connected to ui−1 it follows that ui−1 =
dep(ui) or ui−1 = dep(vi−1). In the first case we let πi = ui.

Suppose then that ui−1 = dep(vi−1), then either ui−1 = dep(vi) or vi−1 ∈ deps(vi). In the
second case, by well-foundedness and the connectedness of dep−1(vi−1) to vi−1 it follows that
vi−1 = dep(vi). In both cases we let πi = vi, completing the induction.

Since |deps(πn)| ≥ n− 1 the lower bound follows.

Lemma D.7. Let (F, u) be a rooted graphs and N > 0. Then there exists a number M such that, for
all pointed graphs (G, v) of degree at most N , hom((F, u), (G, v)) ≤M .

Proof. Let r be the maximal distance from u to any other node of F . The radius-r neighborhood
of v in G contains at most (N + 1)r nodes. It follows that there can be at most M = ((N + 1)r)n

homomorphisms from (F, u) to (G, v), where n is the number of nodes of F .

Lemma D.8. ReLU-FFNNs can multiply small natural numbers. That is, for each N > 0 and k > 0,
there is a ReLU-FFNN with input dimension k and output dimension 1 that, on input (x1, . . . , xk)
with 0 ≤ xi ≤ N , outputs Πixi.

Proof. This is well-known (and holds not only for ReLU but also for other common non-linear
activation functions). For the sake of completeness we sketch a proof. First, for a fixed m, we can test
with a ReLU-FFNN, for a given natural number x, whether x ≥ m. Indeed, ReLU(1−ReLU(m−xi))
is 1 if this holds and 0 otherwise. Furthermore, the Boolean operators of conjunction and negation
can be implemented by ReLU-FFNNs as well (cf. the proof of Proposition 2.3). It follows that the
function

f(m1,...,mk)(x1, . . . , xk) =

{
1 if xi = mi for all i ≤ k

0 otherwise

can also be implemented by a ReLU-FFNN. Using this, we can represent the product Πixi by the
linear expression ∑

0≤m1,...,mk≤N

(
Πimi · f(m1,...,mk)(x1, . . . , xk)

)
Note that the Πimi factors are viewed as constant integer coefficient here.

Proposition 5.7. For all rooted graphs (G, v) with G = (V,E, lab),

1. tree-width(G)− 1 ≤ ego-rank(G, v) ≤ |V |.

2. ego-rank(G, v) = 0 if and only if G is acyclic.

3. ego-rank(G, v) = 1 whenever (G, v) is c-acyclic.

Proof. For the first part of the first claim, let dep be a function witnessing that (G, v) has ego-rank k.
We define a tree decomposition as follows:

• The nodes of the tree decomposition are (i) all nodes w of the graph G, and (ii) all edges (w, v)
of the graph G satisfying dep(w) = dep(v). The bag associated to each w is {w}∪ deps(w) and
the bag associated to each edge (w, v) is {w, v} ∪ deps(w).
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• The edges of the tree decomposition are pairs where one node is a node of G and the other is an
edge of G in which the node participates.

Note that, in this way, every edge of G is indeed contained in a bag. Furthermore, the third condition
in the definition of dependency functions guarantees that this tree decomposition is indeed a tree.

Consider any path in the tree decompositions of the form

w1 (w1, w2) w2 (w2, w3) . . . (wn−1, wn) wn

where dep(wi) = dep(wj) for all i < j < n, and hence wi ̸= wj for all i < j < n (because the
subgraph induced by dep−1(dep(wi)) is acyclic). Suppose, now, that some graph vertex x belongs to
the bag of w1 as well as to the bag of wn. In this case, x must belong to deps(w1) and to deps(wn)
and hence it belongs to the bag of each node on the path. A similar argument applies for paths
that start or end with an edge. This shows that the constructed tree decomposition is indeed a valid
tree-decomposition. Moreover, the maximal bag size is k + 2. Therefore, the tree-width of G is at
most k + 1.

For the second part of the first claim, it suffices to choose an arbitrary enumeration v1, v2, . . . vn of
the nodes of G, where v1 = v, and set dep(v1) = ⊥ and dep(vi+1) = vi.

The second claim follows immediately from the definition of ego-rank.

For the third claim, it suffices to take dep(v) = ⊥ and dep(v′) = v for all v′ ̸= v.

The next theorem is not stated in the body of the paper, but it’s a special case of Theorem 5.9(1)
below, and it serves as a warming up towards the proof of Theorem 5.9.
Theorem D.9. Let F be any finite set of acyclic rooted graphs. There is a (|P |, |P |+ |F|)-GNN A
such that, for all pointed graphs (G, v), runA(G)(v) = embG(v) ⊕ hom(F, (G, v)). The GNN in
question uses multiplication in the combination function.

Proof. In what follows, we will refer to acyclic rooted graphs (F, u) also as trees, where we think
of u as the root of the tree. By an immediate subtree of a tree (F, u) we will mean a rooted graph
(F ′, u′) where u′ is a neighbor of u and where F ′ is the induced subgraph of F consisting of all
nodes whose shortest path to u contains u′. We will write (F, u) ⇒ (F ′, u′) to indicate that (F ′, u′)
is an immediate subtree of (F, u). By the depth of a tree (F, u) we will mean the maximum, over all
nodes u′ of F , of the distance from u to u′. Note that (F, u) has depth zero if and only if it has no
immediate subtrees, and that the depth of an immediate subtree of (F, u) is always strictly smaller
than the depth of (F, u).

We may assume without loss of generality that F is closed under taking immediate subtrees. The
general case then follows by adding one additional layer on top that projects the resulting embedding
vectors to a subset of F.

Let |F| = {(F1, u1), . . . , (Fk, uk)} and let L be the maximal depth of a rooted graph in F. Let

A = ((COMi)i=1...L, (AGGi)i=1...L)

where

• COM1 : R2|P | → R|P |+k given by COM1(x1, . . . , x|P |, z1, . . . , z|P |) = (y1, . . . , y|P |+k) with
yi = xi for i ≤ |P |, and with

y|P |+i =

{
1 if Fi has depth 0 and xj = 1 for each pj ∈ labFi(ui)

0 otherwise

• For i > 1, COMi : R2(|P |+k) → R|P |+k given by COMi(x1, . . . , x|P |+k, z1, . . . , z|P |+k) =
(y1, . . . , y|P |+k) with yi = xi for i ≤ |P |, and with

y|P |+i =


∏

Fj with Fi ⇒ Fj

(z|P |+j) if xℓ = 1 for each pℓ ∈ labFi(ui)

0 otherwise

• Each AGGi is (pointwise) sum.
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It is not difficult to see that COMi can be implemented by a FFNN using ReLU and multiplication.

It follows from the above construction, and by induction on d, that, for all d ≥ 0 and for all
(Fj , uj) ∈ F of depth d, embiG(v)(|P | + j) = hom((Fj , uj), (G, v)) for i > d. Furthermore, it is
immediately clear from the construction that embiG(v)(j) = embG(v)(j) for all j ≤ |P |.

Theorem 5.9. Let F be any finite set of rooted graphs, let d = max{ego-rank(F, u) | (F, u) ∈ F}.

1. Then there is a (|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for all pointed graphs
(G, v), runA(G)(v) = embG(v) ⊕ hom(F, (G, v)). The HE-GNN uses multiplication in the
combination functions.

2. For each N > 0, there is a (|P |, |P |+ |F|)-HE-GNN A of nesting depth d such that, for pointed
graphs (G, v) of degree at most N , runA(G)(v) = embG(v)⊕ hom(F, (G, v)). The HE-GNN
uses only Sum as aggregation and ReLu-FFNNs as combination functions.

Proof. We prove the first statement. The proof of the second statement is identical, except that we can
replace the use of multiplication by a ReLU-FFNN due to the fact that the numbers being multiplied
are bounded by a constant (cf. Lemma D.7 and Lemma D.8).

We may assume that F consists of a single rooted graph (F, u). Let dep be the dependency function
witnessing the fact that (F, u) has ego-rank d. By Lemma D.5, we may assume that dep is well-
founded, and that for each node w, if dep−1(w) is non-empty, then each connected component of the
subgraph induced by dep−1(w) contains a neighbor (in the original graph F ) of w.

By the dependency depth of a node w of F , we will mean the largest number ℓ for which it is the
case that w = depℓ(w′) for some w′. Note that this is a finite number.

For a node w, we will denote by Fw the subgraph of F induced by the set of nodes deps−1(w) ∪
{w} ∪ deps(w), where deps−1(w) is the set of nodes w′ for which w ∈ deps(w).

We will now prove the following claim:

(*) For each node w of dependency depth ℓ ≥ 1 with deps(w) = {w1, . . . , wk}, there is a (|P | +
k + 1, 1)-HE-GNN Aw of nesting depth ℓ− 1 such that for all graphs G with vertices VG and
maps h : {w} ∪ deps(w) → VG,

runA(G, emb+hG )(h(w)) = homh(Fw, G)

where emb+h
G = {v′ : embG(v′)⊕ ⟨δv′h(w1), . . . , δv′h(wk), δv′h(w)⟩ | v′ ∈ VG}.

Recall that homh(Fw, G) denotes the number of homomorphisms from Fw to G extending the partial
function h. Also, note that the embedding vectors of emb+h

G , by construction, include features that
uniquely mark the h-image of each w′ ∈ deps(w) as well as w.

We will first prove (*) by induction on the dependency depth ℓ ≥ 1 of w, and then show that it implies
the main statement of our theorem.

The subgraph Fw can be decomposed as described in Figure 7. By Lemma D.5, each connected
component of the subgraph induced by dep−1(w) of F includes at least one neighbor of w. Let
(F ′, w) be the rooted tree that consists of the subgraph induced by {w} ∪ dep−1(w), after removing,
for each connected component of dep−1(w), all but one (arbitrarily chosen) connecting edge to w.
Note that, as explained in the caption of Figure 7, there may be more than one edge between w and a
given connected component of dep−1(w), but we only keep one in order to ensure that F ′ is a tree
rooted at w. We refer to the edges connecting w to nodes in dep−1(w) that we did not add, as well as
edges connecting nodes in deps(w) to nodes in dep−1(w) as “back-edges”.

Now, by construction, for every function h : {w} ∪ deps(w) → VG, we have that

homh(Fw, G) =
∑

homomorphisms f : (F ′, w) → (G, h(w))

∏
wi∈dep−1(w)

homh∪{(wi,f(wi))}(Fwi , G)

Note that the fact that we omitted the back-edges from F ′ does not impact the above equation. Indeed,
if a function f : (F ′, w) → (G, h(w)) fails to preserve a back-edge it will simply not extend to a
homomorphism from Fwi

to G, and hence will not contribute to the above sum.
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Figure 7: Decomposition of the subgraph Fw induced by deps(w) ∪ {w} ∪ deps−1(w) when w
has dependency depth greater than 1. The gray circles are disjoint. In addition to the edges drawn
in the picture, there may also be additional edges connecting nodes in deps−1(w) to nodes in
{w} ∪ deps(w). We omitted such edges from the drawing in order to not clutter the picture.

Now if ℓ = 1, homh∪{wi,f(wi)}(Fwi , G) is either 1 or 0 since every vertex of Fwi is in the domain
of h ∪ {(wi, f(wi)). Since all nodes in the range of this function are uniquely marked, this can be
computed by a (|P |+ k + 1, 1)- GNN Cwi

, i.e. a HE-GNN of nesting depth 0. More precisely, for
each v′ ∈ G:

runCwi
(G, emb+h∪{(wi,v

′)}
G )(v′) = homh∪{(wi,v′)}(Fwi

, G)

These can be combined using Lemma B.3 into a single GNN C computing their concatenation. We
now add layers, exactly as in the proof of Theorem D.9 that run through the tree (F ′, w) and aggregate
the respective counts according to the above equation to compute homh(Fw, G).

If l > 1 we can apply the induction hypothesis (*) to obtain a (|P | + k + 2, 1)-HE-GNN Bwi of
nesting depth at most ℓ − 2 for each wi ∈ dep−1(w), calculating the corresponding factor in the
above equation. Now for each v′ ∈ G:

runBwi
(G, emb+h∪{(wi,v

′)}
G )(v′) = homh∪{(wi,v′)}(Fwi

, G)

These can be combined using Lemma B.4 into a single HE-GNN (B, C) of nesting depth ℓ − 2
computing their concatenation. Now similarly to the case for ℓ = 1, we add layers to C that run
through the tree (F ′, w) and aggregate the respective counts according to the above equation and
call the result C′. Let I be a trivial GNN. Then A = ((B, C′), I) is a (|P |+ k + 1, 1)-HE-GNN of
nesting depth ℓ− 1 that computes homh(Fw, G), concluding the proof by induction of (*).

Finally, we must show that (*) implies the main statement of our theorem. Let (F ′, u) be the induced
subgraph of F with nodes in dep−1(⊥). Then again:

hom((F, u), (G, v)) =
∑

homomorphisms f : (F ′, u) → (G, v)

∏
wi∈F ′

hom{(wi,f(wi))}(Fwi
, G)

The argument now is very similar as the one we used in the inductive step. Since each wi ∈ F ′ has
dependency depth at most d, by (*) and theorem D.9 we obtain for each wi ∈ F ′, a (|P |+ 1, 1)-HE-
GNN Bwi of nesting depth d− 1 computing the corresponding factor in the above equation. These
can be combined using Lemma B.4 into a single (|P |+ 1, |F ′|)-HE-GNN (B, C) of nesting depth
d− 1 computing their concatenation. We again add layers to C as in the proof of Theorem D.9 that
run through the tree (F ′, u) and aggregate the respective counts according to the above equation, and
call this GNN C′. Then for trivial GNN I, It follows that A = ((B, C′), I) is a (|P |, 1)-HE-GNN of
nesting depth d that computes hom((F, u), (G, v)).

5.3. Higher order GNNs

Theorem 5.11. For d ≥ 0, ρ((d+ 1)-WL) = ρ((d+ 2)-GNN ) ⊆ ρ(HE-GNN-d).
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Proof. Let A be a HE-GNN with depth d such that clsA(G, v) ̸= clsA(G′, v′). By theorem 3.4 there
exists a GML(↓d)-sentence ϕ such that clsϕ(G, v) ̸= clsϕ(G′, v′).

ϕ is equivalent to a sentence that uses at most d variables xi. Hence there exists an equivalent formula
ψ in the d + 2-variable fragment of first-order logic with counting quantifiers (cf. Table 2). By
theorem 5.10 there then exists a (d+ 2)-GNN B such that clsB(G, v) ̸= clsB(G′, v′).

We apply a lemma by Morris et al. [37], which was slightly adjusted by Qian et al. [42].
Definition D.10. For a graph G = (V,E, lab), S ⊆ V forms a distance 2 clique if any two nodes in
S are connected by a path of length 2. We say S is colorful if for all v, v′ ∈ S, lab(v) = lab(v′) iff
v = v′.
Lemma D.11. For d ∈ N there exist graphs Gd, Hd such that:

1. Gd ≡(d−1)-WL Hd

2. There exists a colorful distance 2 clique of size d+ 1 in Gd.

3. There does not exist a colorful distance 2 clique of size d+ 1 in Hd.

Table 2: Translation from a GML(↓)-formula ϕ containing variables z1, . . . , zk to a Ck+2-formula
trx(ϕ) containing variables x, y, z1, . . . , zk.

trx(pi) = Pi(x) try(pi) = Pi(x)
trx(zi) = x = zi try(zi) = y = zi
trx(ϕ ∧ ψ) = trx(ϕ) ∧ trx(ψ) try(ϕ ∧ ψ) = try(ϕ) ∧ try(ψ)
trx(¬ϕ) = ¬trx(ϕ) try(¬ϕ) = ¬try(ϕ)
trx(♢≥nϕ) = ∃≥ny(Rxy ∧ try(ϕ)) try(♢≥nϕ) = ∃≥nx(Ryx ∧ trx(ϕ))
trx(↓ zi.ϕ) = ∃zi(zi = x ∧ trx(ϕ) try(↓ zi.ϕ) = ∃zi(zi = y ∧ try(ϕ))

Theorem 5.12. For d ≥ 0, HES-GNN-(d,3) can distinguish pointed graphs that cannot be distin-
guished by d-WL, or equivalently, by a (d+ 1)-GNN.

Proof. We show there exist formula ϕ ∈ GML(↓dW 3) and node v in Gd+1 such that Gd+1, v |= ϕ
but Hd+1, w ̸|= ϕ for all w in Hd+1.

Let v be in a distance 2 colorful clique S of size d+ 2, and let α1 . . . αd+2 be conjunctions of literals
matching the distinct labelings of nodes in S. Thus v, v′ only satisfy the same αi if lab(v) = lab(v′).
Further let Gd+1, v |= α1.

We let:
ϕ =↓ x1.W 3(♢♢ ↓ x2.W 3(♢♢ ↓ x3.W 3(. . . , ↓ xd.W 3(ξ ∧ ψ) . . . )))

ξ ensures that all xi have distinct values matching labeling as specified by α1, . . . αd, and form a
colorful distance 2 clique of size d.

ξ =
∧

1≤i≤d

(@xi
(αi ∧

∧
1≤j≤d,j ̸=i

(♢♢xj)))

ψ ensures that there are two more connected vertices with labelings matching αd+1, αd+2 that have
edges to all the xi:

ψ = ♢♢(αd+1 ∧
∧

1≤i≤d

(♢♢xi) ∧ ♢♢(αd+2 ∧
∧

1≤i≤d

(♢♢xi))

Now Gd+1, v |= ϕ and any node in Hd+1 satisfying ϕ would be in a distance 2 colorful clique. Hence
for all v′ in Hd+1:

Gd+1, v ̸≡GML(↓d
W2 )

Hd+1, v
′

We apply the logical characterization of HES-GNN (Theorem 4.1), the WL characterization of higher
order GNNs and the fact that Gd+1 ≡(d−1)-WL Hd+1 to obtain the theorem:

ρ((d+ 1)-GNN) = ρ(d-WL) ̸⊆ ρ(GML(↓dW 3)) = ρ(HES-GNN-(d,3))
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