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Abstract

The ability of generative commonsense rea-
soning (GCR) reflects how well an Al sys-
tem can produce trustworthy outputs that
align with real-world commonsense knowl-
edge. Despite the growing research ef-
forts towards improved GCR, current stud-
ies still fall short in robustness and token-by-
token generation. In this work, we propose
a novel Retrieval-augmented Diffusion Lan-
guage Model for Generative Commonsense
Reasoning (RaDi4GCR). RaDi4GCR not only
allows for gradually refining the output via
the denoising process, but also improves gen-
eration quality by injecting contextually rele-
vant retrieved information, especially for low-
resource scenarios that purely relying on para-
metric knowledge would suffer from. A com-
prehensive evaluation on the CommonGen
benchmark demonstrates that RaDi4GCR sig-
nificantly outperforms the state-of-the-art base-
line (a 9.5% improvement in terms of SPICE),
as well as surpassing multiple cutting-edge
LLMs (such as GPT-40 and Llama3).

1 Introduction

Benefiting from the revolution of generative Al,
modern systems based on large language models
(LLMs) can smoothly interact with users and au-
tomate numerous tasks, relieving people from the
tedious process of searching, extracting, and digest-
ing information on their own. However, develop-
ing Al systems that can perform human-like natu-
ral communication and reasoning remains an open
challenge. A fundamental problem is the so-called
commonsense intelligence (Choi, 2022). In this
work, we focus on generative commonsense reason-
ing (GCR), which reflects how well an Al system
can generate trustworthy outputs that align with
real-world commonsense knowledge. Although
LLMs (e.g., GPT series (Brown et al., 2020) and
Llama (Touvron et al., 2023)) have demonstrated

remarkable performance in many tasks, such as ma-
chine translation (Zhu et al., 2024) and arithmetic
reasoning (Li et al., 2023), they still fall short in
robustness on GCR. The primary limitations are
that: (1) The generating capability is constrained to
the embedded parametric knowledge, which may
result in the problem of hallucination (Huang et al.,
2024). For instance, the generated content some-
times violates real-world commonsense knowledge
(Cui et al., 2024). (2) Most LLMs are trained in a
generalized autoregressive manner (Brown et al.,
2020). The generation process is formulated as a
Markov chain, where the next token is predicted
with the condition of previously generated tokens.
As a result, autoregressive LLMs usually suffer
from higher latency in inference (Gu et al., 2018).
Moreover, the diversity of generated sequences has
been limited since the next-token prediction ob-
jective subsequently decoded high-likelihood, non-
diverse sequences that only captured a limited input
context (Gao et al., 2024a).

Motivated by the aforementioned shortcomings,
we propose a novel Retrieval-augmented Diffusion
Language Model for Generative Commonsense
Reasoning (RaDi4GCR) by effectively fusing
retrieval-augmented generation (RAG) and the dif-
fusion language model. Specifically, by integrating
RAG, RaDi4GCR enables us to inject factual or
contextually relevant retrieved knowledge, poten-
tially reducing the burden and reliance on the inter-
nal model parameters. Benefiting from the adop-
tion of the diffusion language model, RaDi4GCR
can handle continuous latent representations (Ho
et al.,, 2020) and generate sequences in a non-
autoregressive manner, leading to faster decod-
ing and iterative refinement (Ghazvininejad et al.,
2019; Lee et al., 2018). In order to effectively eval-
uate the effectiveness of RaDi4GCR, we conduct
a series of experiments based on the benchmark
dataset CommonGen (Lin et al., 2020). The experi-
mental results show that: (1) RaDi4GCR not only



significantly outperforms the state-of-the-art base-
line (a 9.5% improvement in terms of the key met-
ric SPICE), but also shows superior performance
over multiple cutting-edge LLMs (such as GPT-40
and Llama3) under the same RAG setting.

2 Related Work

2.1 Diffusion Language Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have emerged as a new paradigm
of generative models and have achieved signifi-
cant progress in various generation tasks, such as
image synthesis (Dhariwal and Nichol, 2021; Ho
et al., 2020), video generation (Ho et al., 2022)
and human motion generation (Tevet et al., 2023).
Inspired by their success in computer vision, re-
searchers have explored adopting diffusion models
for text generation tasks, where the discrete nature
is akey challenge (Li et al., 2022; Gong et al., 2023;
Yuan et al., 2024; Hoogeboom et al., 2021; Savinov
et al.; Lin et al., 2023). Hoogeboom et al. (2021);
Savinov et al. transfer the diffusion models to dis-
crete space and adopt the discrete diffusion model
for text generation tasks; Li et al. (2022); Gong
et al. (2023); Yuan et al. (2024) encode discrete
text tokens to continuous word embeddings, thus
leveraging the strong power of continuous diffu-
sion models; GENIE (Lin et al., 2023) introduces a
novel diffusion language model pretraining frame-
work for text generation tasks that consists of an
encoder and a diffusion-based decoder, which can
generate text by gradually transforming a random
noise sequence into a coherent text sequence. In
this work, we adopt GENIE as the base for integrat-
ing RAG.

2.2 RAG and Its Usage with Diffusion Models

RAG (Lewis et al., 2020; Guu et al., 2020; Ram
et al., 2023) has been proposed as a promising ap-
proach to cope with LLLMs’ inherent problem of
hallucination, especially on knowledge-intensive
tasks (Gao et al., 2024b), such as question answer-
ing and fact verification. By retrieving relevant in-
formation from external knowledge sources, RAG
provides additional supplement contexts to LLMs
through techniques like in-context learning (Ram
et al., 2023), thereby improving their generation
quality and reliability. The existing studies on RAG
mainly focus on knowledge-intensive tasks, while
the way of incorporating fine-grained common-
sense knowledge has not been well explored yet. In

recent years, the CV community has also started to
explore leveraging RAG to improve image genera-
tion. RDM (Blattmann et al., 2022) performs image
synthesis conditioned on the CLIP (Radford et al.,
2021) embedding of retrieved nearest neighbors
images; knn-diffusion (Sheynin et al.) leverages
large-scale retrieval methods to train a substantially
small and efficient text-to-image diffusion model
without any text and generates out-of-distribution
images by simply swapping the retrieval database
at inference time; Re-Imagen (Chen et al.) uses
retrieved information to produce high-fidelity and
faithful images even for rare or unseen entities.
Motivated by their progress, this work explores the
integration of RAG with diffusion language models
for generative commonsense reasoning tasks.

2.3 Generative Commonsense Reasoning

Lin et al. (2020) proposed the task of generative
commonsense reasoning together with the Com-
monGen benchmark as generating coherent sen-
tences following common sense given a set of com-
monsense concepts. After that, Zhao et al. (2022)
revisited the performance of pre-trained models
(PTM) on the generative commonsense reasoning
task and proposed a pre-ordering approach to elab-
orately manipulate the order of the given concepts
before generation. Recently, DimonGen (Liu et al.,
2023) proposed a new benchmark focusing on the
diversity in generative commonsense reasoning
based on CommonGen. SituatedGen (Zhang and
Wan) introduced a challenging task to incorporate
geographical and temporal contexts into genera-
tive commonsense reasoning as a complement to
CommonGen. As a further endeavor to the afore-
mentioned studies, we focus on how to improve
GCR by effectively fusing RAG and the diffusion
language model.

3 Retrieval-augmented Diffusion
Language Model

In this section, we detail how to tailor RaDi4GCR
for the generative commonsense reasoning task.
We start by briefly introducing the continuous dif-
fusion model and the CommonGen task. Then we
describe the overall framework of RaDi4GCR, fol-
lowed by the details on training and inference.



3.1 Preliminary

3.1.1 Continuous Diffusion Model

The continuous diffusion model (Ho et al., 2020) is
a latent variable model that contains two processes:
forward diffusion process and reverse denoising
process, each of which is a Markov chain.

The forward diffusion process gradually corrupts
the data sample by adding Gaussian noise accord-
ing to a variance schedule 5;...5;. Specifically,
given a data point x¢ sampled from a real-world
data distribution 2y ~ ¢(xg), for each time step
t € {1,2,...,T}, the corrupted latent variable x; is
sampled from the distribution:

zy ~ q(@e| 1) = N(ze; /1 = Bexe1, BeI) (1)

where 3; € (0,1) is the variance schedule that
controls the noise scale added at each time step ¢.
As t increases, data sample z; will gradually and
ultimately be corrupted to the standard Gaussian
noise xp ~ N (z7;0,1).

The reverse denoising process starts from the
standard Gaussian noise zp ~ N(x7;0,1I) and
inverts the diffusion process by gradually recon-
structing the data sample through the learned pa-
rameterized denosing distribution.

Ti—1 ~ po(ze—1|ze) = N(@i—1; po(ze, 1), So(ze, 1)) (2)

where g and Yy represent the approximated mean
and variance of the denoising Gaussian distribution.
Following DDPM (Ho et al., 2020), the variance
Y9 is ignored and the parameterized mean pyg is
further factorized as:

pro (e, 1) = J%m - %eamt)) 3)

where oy = 1 — B4, ¢y = Hi:l s, and g predicts
the noise ¢ ~ N(0,I) determing z; from ¢ at
each time step ¢, which is parameterized by a neural
network like U-Net (Ronneberger et al., 2015) or
Transformer (Vaswani, 2017).

Finally, the continuous diffusion model is trained
by optimizing the variational lower bound (VLB)
on the negative log likelihood —logpy(xg), which
can be simplified to the mean squared error loss
between € and ¢y (Ho et al., 2020):

Lo = EtNUmf(l..T),ENN(O,I)H’6_69($tat)||2] 4)

3.1.2 The Evaluation Task on GCR

Our proposed approach is evaluated on Common-
Gen (Lin et al., 2020), which is a widely used

benchmark dataset for evaluating GCR. Given a set
of unordered concepts C' = {c1, c2, ..., ¢ }, where
¢; € C is either a common object or an action and
C denotes the concept vocabulary, the goal is to
generate a coherent sentence y € ) using all given
concepts. Meanwhile, the sentence should describe
an everyday scenario that should not contradict
real-world commonsense knowledge.

3.2 The Framework of RaDi4GCR

Inspired by the previous studies on the integration
of RAG for text generation (Guu et al., 2020; Lewis
et al., 2020; Izacard and Grave, 2021; Ram et al.,
2023), RaDi4GCR consists of three stages for GCR
as illustrated in Figure 1, which will be further
discussed in the following sections.

3.2.1 Retriever

In the first stage, a retriever is employed to re-
trieve relevant documents from an external knowl-
edge base to provide factual or contextually rel-
evant knowledge (the leftmost module of Figure
1). In this work, we investigate two types of re-
trievers for retrieval augmentation. (1) Sparse re-
triever. Specifically, we adopt BM25 (Robertson
and Zaragoza, 2009) as the sparse retriever, which
represents documents into bag-of-words represen-
tation. The relevance score of a document w.r.t.
a specific query is determined based on the term
frequency of the query terms in the document and
the number of documents in the corpus that con-
tains the query terms. (2) Dense retriever. We
fine-tune the DPR model (Karpukhin et al., 2020),
which employs a dual-encoder structure to gener-
ate query and document embeddings using separate
query and document encoders. The similarity be-
tween these embeddings is calculated using the
inner product.

3.2.2 Text Input Encoder

After retrieving the relevant information, it is cru-
cial to bridge the gap between the discrete nature
of textual data and the continuous input space of
the diffusion model to effectively apply it to the
GCR task. To address this challenge, we employ a
6-layer transformer encoder architecture to map the
input text sequences into continuous embeddings
(the middle module of Figure 1).

Formally, given a concept set C =
{c1,¢2,...,cm} {w§,ws§,...,wt,} com-
prising m concepts ¢,,, each of which is a text
token wy,, and the corresponding top-k relevant
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Figure 1: The overall framework of RaDi4GCR. The process contains three stages: 1) in Stage-1, the inputs are
served as queries and relevant documents are retrieved through a retriever; 2) in Stage-2, the inputs and retrieved
documents are concatenated and embedded to continuous embedding as the conditional signal through a text
encoder; 3) in Stage-3, the diffusion language model performs the diffusion and denoising process to generate target

sequences conditioned on the embeddings of Stage-2.

documents Dy, = {dy,ds,...,d;} retrieved from
an external knowledge source D, where d, is a
specific relevant document that contains j distinct
tokens: di = {wf’“, wg’“, e ,w;l’“}, the input
sequence is constructed by concatenating C' and
Dk:

S = [C,Dk]

_ c c dy d1
= {wf, ws, ..

d
 Why, WY, WY ,...,fwj’“} 5)
which is then encoded into the continuous embed-
ding representation H by the input encoder:

Hg = {hi,ha,...,h,} = Encoder(s) (6)
where h; is the encoded continuous embedding of
the ¢-th token in s. By leveraging the input encoder,
the discrete input texts are transformed into the
continuous space, making them compatible with
the diffusion language model.

3.2.3 Diffusion-based Generator

In the third stage, the diffusion-based generator is
leveraged for generating high-quality sequences
based on the input concepts and retrieved docu-
ments. In this work, we construct our diffusion
language model generator of RaDi4GCR based on
GENIE (Lin et al., 2023). Specifically, we adopt
a 6-layer transformer decoder architecture with
cross-attention layers as our generator, denoted as
¢y(t, 24, Hs), which predicts the Gaussian noise e
in Eq-4 at each denoising step conditioned on the
current time step ¢, the continuous latent represen-
tation of the target text z;, and the source input
representation H.

Cross-Attention Conditioning To integrate RAG
with the diffusion language model, it is essential
to effectively incorporate retrieved relevant docu-
ments into the generating process. In RaDi4GCR,
we draw inspiration from the retrieval-augmented
diffusion framework RDM proposed in (Blattmann
et al., 2022). Specifically, we incorporate the cross-
attention mechanism within the diffusion decoder
model to enable conditional generation (the right-
most module of Figure 1). During the reverse de-
noising process, at each denoising step ¢, the aug-
mented state x; is computed by performing cross-
attention on the retrieval augmented input source
embedding computed in Eq-6:

z; = CrossAttn(z,, Hy) 7

The predicted Gaussian noise €g at the time step ¢
in Eq-4 is then calculated by the diffusion generator
as:

Ele(ta T, Hs) -
eg(CrossAttn(zy, Hy), t) = eg(zy,t)  (8)

3.3 Training and Inference

To train RaDi4GCR for CommonGen, in the dif-
fusion process, the target sentence S is converted
to continuous embedding representation using the
text encoder and incrementally corrupted to Gaus-
sian noise x; in t steps as in Eq-1. Then we use
the concept sets C' as queries and retrieve top-k
relevant documents D, and compute the retrieval
augmented source input embedding H as in Eq-6.
Finally, we perform the reverse denoising process
with x; conditioning on H; as in Eq-8 to predict



the Gaussian noise added at step ¢ and compute the
loss Ly as in Eq-4.

In the inferencing stage, we start at the time step
t and directly sample x; from a standard Gaus-
sian distribution. Similar to the training stage, we
retrieve top-k relevant documents using source con-
cept sets as queries and compute H g, which is then
used as the condition in the denoising process with
x¢. After arriving at step ¢ = 0, the predicted final
outputs z, are decoded to discrete text tokens based
on the clamping trick (Li et al., 2022) that replaces
the predicted a:E) with its closest word embedding.

4 Experiments

4.1 Dataset and External Corpus

The proposed RaDi4GCR model is trained and ver-
ified on the CommonGen datasets (Lin et al., 2020),
which is constructed by utilizing several existing
corpora to sample frequent commonsense concepts,
and the golden sentences are collected by employ-
ing AWT crowd-sourcing workers. Basic statistics
of the datasets can be found in Table 1.

Statistics Train Dev  Test
# Concept-Sets 32,651 993 1,497
# Sentences 67,389 4,018 6,042
Avg. Sentences per Set  2.06 4.04 4.04
Avg. Sentence Length  10.54 1155 13.34

Table 1: Statistics of CommonGen datasets.

Commonsense Knowledge Corpus. We adopt
the RACo (Yu et al., 2022) corpus as our external
knowledge base for retrieval. RACo is a collection
of over 20 million commonsense documents from
three knowledge sources, including 1) human an-
notated facts (HAF); 2) commonsense benchmark
datasets (CBD); and 3) commonsense relevant cor-
pus (CRC) for commonsense knowledge retrieval,
as illustrated in table 2.

Corpus # Instance  Avg. Word
HAF-corpus 3,561,762 11.06 £+ 5.86
CBD-corpus 2,881,609 12.78 +9.31
CRC-corpus 14,587,486 17.76 + 104

Table 2: Statistics of the RACo corpus.

4.2 Evaluation Metrics

We evaluate the performance from two perspec-
tives: token-level similarity and semantic-level

similarity. Token-level similarity is assessed by
comparing the generated sentences with reference
human-written sentences, where BLEU-4 (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005) are used.
Semantic-level similarity is measured through
CIDEr (Vedantam et al., 2015) and SPICE (Ander-
son et al., 2016). We note that SPICE is viewed as
the primary metric since it demonstrates the highest
alignment with human evaluation (Lin et al., 2020).

4.3 Baseline Methods

In this work, we compare RaDi4GCR with two
types of representative methods.

Retrieval-augmented Baselines: 1) DKMR?
(He et al., 2022) is a retrieval-enhanced method
for generative commonsense reasoning that uses
metric-guided distillation to improve the ranker
and a progressive distillation strategy to improve
the retriever. 2) KFCNet (Li et al., 2021) is a
novel knowledge filtering and contrastive learn-
ing framework for retrieval-augmented common-
sense sequence generation. 3) RACo (Yu et al.,
2022) proposed a unified framework of retrieval-
augmented commonsense reasoning. 4) MORE
(Cui et al., 2024) proposed a novel multi-modal
retrieval augmentation framework that leverages
both text and images to enhance the commonsense
ability of language models.

Cutting-edge LLMs To evaluate the effective-
ness of utilizing the diffusion language model
for text generation, we compare the performance
of our proposed RaDi4GCR framework against
several LLM baselines under the same RAG set-
ting. Specifically, we exploit Llama3-8B-Instruct,
Llama3-70B-Instruct (Dubey et al., 2024), and
GPT-40 (Hurst et al., 2024) as representative base-
lines.

4.4 Implementation Details

For the diffusion generator, we fine-tune
RaDi4GCR based on the released GENIE check-
point that is pretrained on 160GB text data from
news, books, stories, and web text (Lin et al.,
2023). The model consists of a 6-layer encoder
and a 6-layer decoder, with totally around 140
million parameters. Following GENIE, we use
Adam opimizer (Kingma and Ba, 2015) with the
learning rate of 5e-5 and batch size 128. All
models were trained on a total of 120000 steps
with 7200 warm-up steps. The diffusion step is set
to 2000 with the sgrt noise schedule. For the dense



Method BLEU-4 ROUGE-L METEOR CIDEr SPICE*
KFCNett 51.46 47.52 38.92 20.98 39.15
RACot 4276 48.19 35.80 18.89 33.89
RACof 45.91 62.96 40.90 17.50 39.23
MORE_OPT2.7bt 32.78 57.07 32.15 17.04 32.94
DKMR?t 64.19 49.22 46.01 24.85 43.37
GENIE w/o retrievalt 19.6 36.0 - 10.3 23.4
RaDi4GCR w/ BM25-top10;  66.56 75.47 53.65 23.64 47.49

Table 3: The overall experiment results of RaDi4GCR on CommonGen (v1.0) compared with baseline methods. *
denotes the primary metric that should be focused on.  denote results reported in their paper. 1 denotes results
reproduced in our experiments. The best performances are in bold, and the second-best ones are underlined.

retriever, we fine-tuned the DPR model following
the same training setting as RACo (Yu et al., 2022).
For the sparse retriever, we built the inverted index
of RACo Commonsense corpus using Pyserini
(Lin et al., 2021). The RAG pipeline is constructed
based on the FlashRAG toolkit (Jin et al., 2024).
All the metrics are computed using NLGEval
(Sharma et al., 2017). All models are trained using
2x A100 80GB GPUs.

S Results and Analysis

5.1 Results Overview

The experimental results are shown in Table 3 ,
where we present the performance of our best-
performing model, RaDi4GCR w/ BM25-top10
that adopts BM25 sparse retrieval and utilizes the
top-10 relevant documents, compared with results
from baselines. As demonstrated in the table, our
proposed approach outperforms all baseline meth-
ods across most evaluation metrics. RaDi4GCR
achieved the highest scores in BLEU-4 (66.56),
ROUGE-L (75.47), METEOR (53.65), and SPICE
(47.49), and competitive scores in CIDEr (23.64),
reflecting its superior ability to generate coherent
and contextually relevant commonsense sentences.

Notably, RaDi4GCR significantly outperforms
the multi-modal RAG baseline, MORE, which uti-
lizes both relevant texts and images. In contrast,
RaDi4GCR relies solely on retrieved knowledge in
a single modality of text. These results emphasize
RaDi4GCR’s strong ability to effectively utilize
retrieved information to enhance generation. The
overall results underscore the model’s robust capa-
bility to leverage retrieved knowledge for improved
text generation, positioning it as a highly effective
solution for the task of generative commonsense
reasoning.

5.2 Analysis

In order to further assess the effectiveness of our
proposed methods, we examine the performance of
different variants of RaDi4GCR to demonstrate the
impacts of various aspects of RaDi4GCR.

5.2.1 Impact of Retrieval Augmentation

In Table 3, the last two bold rows demonstrate re-
sults of the pre-trained diffusion language model
GENIE fine-tuned on CommonGen and our pro-
posed RaDi4GCR with the top 10 relevant docu-
ments from bm25 sparse retrieval augmented gen-
eration. While the pre-trained diffusion language
model shows moderate performance, after aug-
menting the generation with retrieval from external
knowledge corpus, our proposed RaDi4GCR out-
performs the vanilla diffusion language model by
a large margin. These results demonstrate the ef-
fectiveness of leveraging retrieval augmentation
with the diffusion language model for generative
commonsense reasoning tasks.

5.2.2 Impact of Different Retrieval Methods

As illustrated in Figure 2, the sparse retrieval
method that adopts BM25 generally outperforms
the dense retrieval method that adopts DPR in met-
rics of both token-level and semantic level. Al-
though dense retrievers provide substantial per-
formance improvements when compared to tradi-
tional sparse retrievers (Arabzadeh et al., 2021),
the observed counterfactual result may stem from
the distinct task design of CommonGen, which
requires the model to generate coherent common-
sense sentences that contain the provided concepts.
While dense retrieval methods retrieve relevant in-
formation based on the semantic similarity between
the query and the candidate documents computed
by the inner products of their dense embeddings,
sparse retrieval methods like BM25 retrieve rel-
evant information based on the token matching



The Impact of Retrieval Depth on BLEU-4

The Impact of Retrieval Depth on SPICE
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Figure 2: The experiment results of RaDi4GCR with different retrieval methods and different retrieval depths on

BLEU-4 and SPICE.

Method BLEU-4 ROUGE-L METEOR CIDEr SPICE
Diffusion Language Model (140M)

w/o RAG 19.6 36.0 - 10.3 234
RaDi4GCR w/ BM25 top3 64.10 73.17 51.72 22.77 46.28
RaDi4GCR w/ BM25 top5 65.27 74.43 52.63 23.25 46.91
RaDi4GCR w/ BM25 top10 66.56 75.47 53.65 23.64 47.49
Llama3-8B-instruct

w/o RAG 18.76 42.84 29.49 9.10 27.01
w/BM25 top3 29.42 51.63 35.08 12.97 35.44
w/ BM25 top5 29.53 51.50 34.92 13.13 35.21
w/ BM25 top10 29.47 51.79 35.07 13.05 35.33
Llama3-70B-instruct

w/o RAG 17.85 42.55 29.90 8.05 27.19
w/ BM25 top3 26.62 49.52 33.48 12.04 32.57
w/ BM25 top5 26.21 49.52 3342 12.01 32.74
w/ BM25 top10 26.69 49.09 33.54 12.11 32.60
GPT-40

w/o RAG 38.45 57.87 37.54 15.82 37.69
w/ BM2S top3 38.16 57.87 37.56 15.81 37.59
w/ BM25 top5 38.29 58.08 37.62 15.86 37.33
w/ BM2S top10 38.77 57.62 37.43 15.85 36.83

Table 4: Comparison between LLM with RAG and RaDi4GCR. Both LLM and RaDi4GCR adopt the same retrieval

setting of BM25 sparse retrieval.

between the candidate documents and the query,
e.g., the given concept sets, which could retrieve
and provide more useful relevant information that
contains the concept tokens, thus better integrated
with the diffusion language models for generating
target sequences.

5.2.3 Impact of Different Retrieval Depth

As illustrated in Figure 2, when the number of
adopted relevant documents is below top-10, the
performance of RaDi4GCR, whether using a dense
(DPR) or sparse (BM25) retriever, improves as the
number of retrieved relevant documents increases.
This result aligns with our expectations, as incorpo-
rating more relevant documents provides additional
complementary information, thereby enhancing the
model’s reasoning and generation capabilities.
Specifically, for RaDi4GCR with BM25, increas-

ing the number of adopted relevant documents
from top-3 to top-10 yields a 3.7% improvement
in BLEU-4 and a 2.5% improvement in SPICE. In
contrast, for RaDi4GCR with DPR, the same in-
crease in the number of relevant documents leads
to significantly larger gains: 12.1% in BLEU-4
and 5.7% in SPICE. These results suggest that
RaDi4GCR benefits more from additional context
when using a dense retriever (DPR) compared to a
sparse retriever (BM25).

However, for both retrieval methods, when the
number of adopted relevant documents exceeds
10, the performance on BLEU-4 and SPICE re-
mains unchanged or even decreases. This finding
is consistent with prior work (Yu et al., 2022) as
incorporating more relevant documents may also in-
troduce more noisy information, thus degrading the



model’s performance. Compared to BM25, the per-
formance degradation of DPR is more prominent,
which aligns with with the findings in (Cuconasu
et al., 2024) as introducing semantically aligned yet
non-relevant documents increased the complexity
of inputs thus potentially misguides models away
from the correct response.

5.24 Comparison of LLM and DLM

To evaluate the performance of the diffusion lan-
guage model (DLM) as the generator compared
with LLMs, in this work we also conduct extensive
experiments of leveraging LLMs as the generator
within the same RAG pipeline. The comparison
of LLM with RAG and RaDi4GCR is illustrated
in Table 4. We report the results of our fine-tuned
RaDi4GCR as well as the results of different LLMs
in a few-shot prompt setting. The prompt used in
the experiments can be found in A.

As demonstrated in the first block of the table,
after fine-tuning with RAG, the DLM beats all
other LLMs with only around 140 million param-
eters across all metrics, which demonstrates the
efficiency and effectivity of DLM on the generative
commonsense reasoning tasks and highlights the
potential of DLM as an alternative of generalized
LLMs for domain-specific text generation tasks.

From the second and third blocks of the ta-
ble, we found that the Llama3 model with 8 bil-
lion parameters consistently outperforms its 70
billion-parameter counterpart across all retrieval-
augmentation settings. For both versions of the
Llama3 model, utilizing RAG in the generation en-
hances the performances prominently. In the last
block, although the performance of GPT-40 outper-
forms Llama3 of both 8B and 70B even without
RAG, the overall performance still falls behind
that of RaDi4GCR. Different from Llama3, adding
RAG to the generation barely improves the perfor-
mance.

These findings underscore that the generator
model is crucial in a RAG pipeline for the gen-
erative commonsense reasoning task. While LLMs
demonstrate impressive general-purpose capabil-
ities, they struggle with commonsense reasoning
due to their lack of commonsense knowledge with-
out task-specific fine-tuning, which is costly in
computational resources. In contrast, DLM with
RAG could effectively capture and integrate com-
monsense knowledge after fine-tuning with signifi-
cantly smaller model sizes. When compared with
other fine-tuned LMs of competitive model size,

DLM still strongly outperforms all the baselines,
as demonstrated in Table 3, which demonstrates its
effectiveness. Its ability to gradually refine output
sequences in reasoning steps allows for more coher-
ent and contextually grounded responses, making
them well-suited for generative commonsense rea-
soning.

6 Conclusion

In this work, we propose a novel method,
RaDi4GCR, for GCR by effectively integrating
RAG and the diffusion language model. We con-
duct a series of experiments over the CommonGen
dataset. The experimental results demonstrate that
RaDi4GCR significantly outperforms the state-of-
the-art baseline method, as well as surpassing mul-
tiple cutting-edge LLMs. This study highlights the
potential of a diffusion language model with RAG
as an alternative to autoregressive LLMs for GCR.
In particular, the factors, such as different retrieval
strategies and the number of relevant documents,
significantly affect the performance of RaDi4GCR.
Careful examinations of these factors are highly
recommended in the development of GCR methods
when RAG is used.

7 Limitations

To the best of our knowledge, our work has two
main limitations that should be further explored in
the future. First, our method employs a relatively
easy RAG setting (Gao et al., 2024b), where we use
a pre-fixed number of relevant documents without
further assessing the relevance of retrieved docu-
ments w.r.t. the final generation target. As a result,
the augmentation could be suboptimal. A possible
future work may incorporate more advanced RAG
techniques like adaptive retrieval for better integra-
tion of the retrieved documents with the diffusion
language model. Second, we only verify our ap-
proach on the CommonGen dataset. We leave the
evaluation of our proposed approach on more ad-
vanced scenarios, including other generation tasks
and multimodal tasks, to future work.
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A Appendix

The few-shot prompt we used in our experiments
is as below:
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SYSTEM Prompt

\.

Given several concepts together with sev-
eral reference documents, write a short and
simple sentence that contains all the re-
quired words. Only give me the sentence
and do not output any other words. The sen-
tence should describe a common scene in
daily life, and the concepts should be used
in a natural way.

Examples:

¢ Example 1:
Concepts: dog, frisbee, catch, throw
Sentence: The dog catches the frisbee
when the boy throws it into the air.

* Example 2:
Concepts: apple, place, tree, pick
Sentence: A girl picks some apples
from a tree and places them into her
basket.

J

USER Prompt

Concepts: {concepts}; References: {refer-
ences}
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