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Abstract

The ability of generative commonsense rea-001
soning (GCR) reflects how well an AI sys-002
tem can produce trustworthy outputs that003
align with real-world commonsense knowl-004
edge. Despite the growing research ef-005
forts towards improved GCR, current stud-006
ies still fall short in robustness and token-by-007
token generation. In this work, we propose008
a novel Retrieval-augmented Diffusion Lan-009
guage Model for Generative Commonsense010
Reasoning (RaDi4GCR). RaDi4GCR not only011
allows for gradually refining the output via012
the denoising process, but also improves gen-013
eration quality by injecting contextually rele-014
vant retrieved information, especially for low-015
resource scenarios that purely relying on para-016
metric knowledge would suffer from. A com-017
prehensive evaluation on the CommonGen018
benchmark demonstrates that RaDi4GCR sig-019
nificantly outperforms the state-of-the-art base-020
line (a 9.5% improvement in terms of SPICE),021
as well as surpassing multiple cutting-edge022
LLMs (such as GPT-4o and Llama3).023

1 Introduction024

Benefiting from the revolution of generative AI,025

modern systems based on large language models026

(LLMs) can smoothly interact with users and au-027

tomate numerous tasks, relieving people from the028

tedious process of searching, extracting, and digest-029

ing information on their own. However, develop-030

ing AI systems that can perform human-like natu-031

ral communication and reasoning remains an open032

challenge. A fundamental problem is the so-called033

commonsense intelligence (Choi, 2022). In this034

work, we focus on generative commonsense reason-035

ing (GCR), which reflects how well an AI system036

can generate trustworthy outputs that align with037

real-world commonsense knowledge. Although038

LLMs (e.g., GPT series (Brown et al., 2020) and039

Llama (Touvron et al., 2023)) have demonstrated040

remarkable performance in many tasks, such as ma- 041

chine translation (Zhu et al., 2024) and arithmetic 042

reasoning (Li et al., 2023), they still fall short in 043

robustness on GCR. The primary limitations are 044

that: (1) The generating capability is constrained to 045

the embedded parametric knowledge, which may 046

result in the problem of hallucination (Huang et al., 047

2024). For instance, the generated content some- 048

times violates real-world commonsense knowledge 049

(Cui et al., 2024). (2) Most LLMs are trained in a 050

generalized autoregressive manner (Brown et al., 051

2020). The generation process is formulated as a 052

Markov chain, where the next token is predicted 053

with the condition of previously generated tokens. 054

As a result, autoregressive LLMs usually suffer 055

from higher latency in inference (Gu et al., 2018). 056

Moreover, the diversity of generated sequences has 057

been limited since the next-token prediction ob- 058

jective subsequently decoded high-likelihood, non- 059

diverse sequences that only captured a limited input 060

context (Gao et al., 2024a). 061

Motivated by the aforementioned shortcomings, 062

we propose a novel Retrieval-augmented Diffusion 063

Language Model for Generative Commonsense 064

Reasoning (RaDi4GCR) by effectively fusing 065

retrieval-augmented generation (RAG) and the dif- 066

fusion language model. Specifically, by integrating 067

RAG, RaDi4GCR enables us to inject factual or 068

contextually relevant retrieved knowledge, poten- 069

tially reducing the burden and reliance on the inter- 070

nal model parameters. Benefiting from the adop- 071

tion of the diffusion language model, RaDi4GCR 072

can handle continuous latent representations (Ho 073

et al., 2020) and generate sequences in a non- 074

autoregressive manner, leading to faster decod- 075

ing and iterative refinement (Ghazvininejad et al., 076

2019; Lee et al., 2018). In order to effectively eval- 077

uate the effectiveness of RaDi4GCR, we conduct 078

a series of experiments based on the benchmark 079

dataset CommonGen (Lin et al., 2020). The experi- 080

mental results show that: (1) RaDi4GCR not only 081
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significantly outperforms the state-of-the-art base-082

line (a 9.5% improvement in terms of the key met-083

ric SPICE), but also shows superior performance084

over multiple cutting-edge LLMs (such as GPT-4o085

and Llama3) under the same RAG setting.086

2 Related Work087

2.1 Diffusion Language Models088

Diffusion models (Sohl-Dickstein et al., 2015; Ho089

et al., 2020) have emerged as a new paradigm090

of generative models and have achieved signifi-091

cant progress in various generation tasks, such as092

image synthesis (Dhariwal and Nichol, 2021; Ho093

et al., 2020), video generation (Ho et al., 2022)094

and human motion generation (Tevet et al., 2023).095

Inspired by their success in computer vision, re-096

searchers have explored adopting diffusion models097

for text generation tasks, where the discrete nature098

is a key challenge (Li et al., 2022; Gong et al., 2023;099

Yuan et al., 2024; Hoogeboom et al., 2021; Savinov100

et al.; Lin et al., 2023). Hoogeboom et al. (2021);101

Savinov et al. transfer the diffusion models to dis-102

crete space and adopt the discrete diffusion model103

for text generation tasks; Li et al. (2022); Gong104

et al. (2023); Yuan et al. (2024) encode discrete105

text tokens to continuous word embeddings, thus106

leveraging the strong power of continuous diffu-107

sion models; GENIE (Lin et al., 2023) introduces a108

novel diffusion language model pretraining frame-109

work for text generation tasks that consists of an110

encoder and a diffusion-based decoder, which can111

generate text by gradually transforming a random112

noise sequence into a coherent text sequence. In113

this work, we adopt GENIE as the base for integrat-114

ing RAG.115

2.2 RAG and Its Usage with Diffusion Models116

RAG (Lewis et al., 2020; Guu et al., 2020; Ram117

et al., 2023) has been proposed as a promising ap-118

proach to cope with LLMs’ inherent problem of119

hallucination, especially on knowledge-intensive120

tasks (Gao et al., 2024b), such as question answer-121

ing and fact verification. By retrieving relevant in-122

formation from external knowledge sources, RAG123

provides additional supplement contexts to LLMs124

through techniques like in-context learning (Ram125

et al., 2023), thereby improving their generation126

quality and reliability. The existing studies on RAG127

mainly focus on knowledge-intensive tasks, while128

the way of incorporating fine-grained common-129

sense knowledge has not been well explored yet. In130

recent years, the CV community has also started to 131

explore leveraging RAG to improve image genera- 132

tion. RDM (Blattmann et al., 2022) performs image 133

synthesis conditioned on the CLIP (Radford et al., 134

2021) embedding of retrieved nearest neighbors 135

images; knn-diffusion (Sheynin et al.) leverages 136

large-scale retrieval methods to train a substantially 137

small and efficient text-to-image diffusion model 138

without any text and generates out-of-distribution 139

images by simply swapping the retrieval database 140

at inference time; Re-Imagen (Chen et al.) uses 141

retrieved information to produce high-fidelity and 142

faithful images even for rare or unseen entities. 143

Motivated by their progress, this work explores the 144

integration of RAG with diffusion language models 145

for generative commonsense reasoning tasks. 146

2.3 Generative Commonsense Reasoning 147

Lin et al. (2020) proposed the task of generative 148

commonsense reasoning together with the Com- 149

monGen benchmark as generating coherent sen- 150

tences following common sense given a set of com- 151

monsense concepts. After that, Zhao et al. (2022) 152

revisited the performance of pre-trained models 153

(PTM) on the generative commonsense reasoning 154

task and proposed a pre-ordering approach to elab- 155

orately manipulate the order of the given concepts 156

before generation. Recently, DimonGen (Liu et al., 157

2023) proposed a new benchmark focusing on the 158

diversity in generative commonsense reasoning 159

based on CommonGen. SituatedGen (Zhang and 160

Wan) introduced a challenging task to incorporate 161

geographical and temporal contexts into genera- 162

tive commonsense reasoning as a complement to 163

CommonGen. As a further endeavor to the afore- 164

mentioned studies, we focus on how to improve 165

GCR by effectively fusing RAG and the diffusion 166

language model. 167

3 Retrieval-augmented Diffusion 168

Language Model 169

In this section, we detail how to tailor RaDi4GCR 170

for the generative commonsense reasoning task. 171

We start by briefly introducing the continuous dif- 172

fusion model and the CommonGen task. Then we 173

describe the overall framework of RaDi4GCR, fol- 174

lowed by the details on training and inference. 175
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3.1 Preliminary176

3.1.1 Continuous Diffusion Model177

The continuous diffusion model (Ho et al., 2020) is178

a latent variable model that contains two processes:179

forward diffusion process and reverse denoising180

process, each of which is a Markov chain.181

The forward diffusion process gradually corrupts182

the data sample by adding Gaussian noise accord-183

ing to a variance schedule β1...βt. Specifically,184

given a data point x0 sampled from a real-world185

data distribution x0 ∼ q(x0), for each time step186

t ∈ {1, 2, ..., T}, the corrupted latent variable xt is187

sampled from the distribution:188

xt ∼ q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)189

where βt ∈ (0, 1) is the variance schedule that190

controls the noise scale added at each time step t.191

As t increases, data sample xt will gradually and192

ultimately be corrupted to the standard Gaussian193

noise xT ∼ N (xT ; 0, I).194

The reverse denoising process starts from the195

standard Gaussian noise xT ∼ N (xT ; 0, I) and196

inverts the diffusion process by gradually recon-197

structing the data sample through the learned pa-198

rameterized denosing distribution.199

xt−1 ∼ pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)200

where µθ and Σθ represent the approximated mean201

and variance of the denoising Gaussian distribution.202

Following DDPM (Ho et al., 2020), the variance203

Σθ is ignored and the parameterized mean µθ is204

further factorized as:205

µθ(xt, t) =
1√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) (3)206

where αt = 1− βt, ᾱt =
∏t

s=1 αs, and ϵθ predicts207

the noise ϵ ∼ N (0, I) determing xt from x0 at208

each time step t, which is parameterized by a neural209

network like U-Net (Ronneberger et al., 2015) or210

Transformer (Vaswani, 2017).211

Finally, the continuous diffusion model is trained212

by optimizing the variational lower bound (VLB)213

on the negative log likelihood −logpθ(x0), which214

can be simplified to the mean squared error loss215

between ϵ and ϵθ (Ho et al., 2020):216

Lθ = Et∼Unif(1..T ),ϵ∼N (0,I)[||ϵ−ϵθ(xt, t)||2] (4)217

3.1.2 The Evaluation Task on GCR218

Our proposed approach is evaluated on Common-219

Gen (Lin et al., 2020), which is a widely used220

benchmark dataset for evaluating GCR. Given a set 221

of unordered concepts C = {c1, c2, ..., ck}, where 222

ci ∈ C is either a common object or an action and 223

C denotes the concept vocabulary, the goal is to 224

generate a coherent sentence y ∈ Y using all given 225

concepts. Meanwhile, the sentence should describe 226

an everyday scenario that should not contradict 227

real-world commonsense knowledge. 228

3.2 The Framework of RaDi4GCR 229

Inspired by the previous studies on the integration 230

of RAG for text generation (Guu et al., 2020; Lewis 231

et al., 2020; Izacard and Grave, 2021; Ram et al., 232

2023), RaDi4GCR consists of three stages for GCR 233

as illustrated in Figure 1, which will be further 234

discussed in the following sections. 235

3.2.1 Retriever 236

In the first stage, a retriever is employed to re- 237

trieve relevant documents from an external knowl- 238

edge base to provide factual or contextually rel- 239

evant knowledge (the leftmost module of Figure 240

1). In this work, we investigate two types of re- 241

trievers for retrieval augmentation. (1) Sparse re- 242

triever. Specifically, we adopt BM25 (Robertson 243

and Zaragoza, 2009) as the sparse retriever, which 244

represents documents into bag-of-words represen- 245

tation. The relevance score of a document w.r.t. 246

a specific query is determined based on the term 247

frequency of the query terms in the document and 248

the number of documents in the corpus that con- 249

tains the query terms. (2) Dense retriever. We 250

fine-tune the DPR model (Karpukhin et al., 2020), 251

which employs a dual-encoder structure to gener- 252

ate query and document embeddings using separate 253

query and document encoders. The similarity be- 254

tween these embeddings is calculated using the 255

inner product. 256

3.2.2 Text Input Encoder 257

After retrieving the relevant information, it is cru- 258

cial to bridge the gap between the discrete nature 259

of textual data and the continuous input space of 260

the diffusion model to effectively apply it to the 261

GCR task. To address this challenge, we employ a 262

6-layer transformer encoder architecture to map the 263

input text sequences into continuous embeddings 264

(the middle module of Figure 1). 265

Formally, given a concept set C = 266

{c1, c2, . . . , cm} = {wc
1, w

c
2, ..., w

c
m} com- 267

prising m concepts cm, each of which is a text 268

token wc
m, and the corresponding top-k relevant 269
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Figure 1: The overall framework of RaDi4GCR. The process contains three stages: 1) in Stage-1, the inputs are
served as queries and relevant documents are retrieved through a retriever; 2) in Stage-2, the inputs and retrieved
documents are concatenated and embedded to continuous embedding as the conditional signal through a text
encoder; 3) in Stage-3, the diffusion language model performs the diffusion and denoising process to generate target
sequences conditioned on the embeddings of Stage-2.

documents Dk = {d1, d2, . . . , dk} retrieved from270

an external knowledge source D, where dk is a271

specific relevant document that contains j distinct272

tokens: dk = {wdk
1 , wdk

2 , . . . , wdk
j }, the input273

sequence is constructed by concatenating C and274

Dk:275

s = [C;Dk]276

= {wc
1, w

c
2, . . . , w

c
m, wd1

1 , wd1
2 , . . . , wdk

j } (5)277

which is then encoded into the continuous embed-278

ding representation Hs by the input encoder:279

Hs = {h1, h2, ..., hn} = Encoder(s) (6)280

where hi is the encoded continuous embedding of281

the i-th token in s. By leveraging the input encoder,282

the discrete input texts are transformed into the283

continuous space, making them compatible with284

the diffusion language model.285

3.2.3 Diffusion-based Generator286

In the third stage, the diffusion-based generator is287

leveraged for generating high-quality sequences288

based on the input concepts and retrieved docu-289

ments. In this work, we construct our diffusion290

language model generator of RaDi4GCR based on291

GENIE (Lin et al., 2023). Specifically, we adopt292

a 6-layer transformer decoder architecture with293

cross-attention layers as our generator, denoted as294

ϵ
′
θ(t, xt, Hs), which predicts the Gaussian noise ϵ295

in Eq-4 at each denoising step conditioned on the296

current time step t, the continuous latent represen-297

tation of the target text xt, and the source input298

representation Hs.299

Cross-Attention Conditioning To integrate RAG 300

with the diffusion language model, it is essential 301

to effectively incorporate retrieved relevant docu- 302

ments into the generating process. In RaDi4GCR, 303

we draw inspiration from the retrieval-augmented 304

diffusion framework RDM proposed in (Blattmann 305

et al., 2022). Specifically, we incorporate the cross- 306

attention mechanism within the diffusion decoder 307

model to enable conditional generation (the right- 308

most module of Figure 1). During the reverse de- 309

noising process, at each denoising step t, the aug- 310

mented state x
′
t is computed by performing cross- 311

attention on the retrieval augmented input source 312

embedding computed in Eq-6: 313

x
′
t = CrossAttn(xt, Hs) (7) 314

The predicted Gaussian noise ϵθ at the time step t 315

in Eq-4 is then calculated by the diffusion generator 316

as: 317

ϵ
′
θ(t, xt, Hs) = 318

ϵθ(CrossAttn(xt, Hs), t) = ϵθ(x
′
t, t) (8) 319

3.3 Training and Inference 320

To train RaDi4GCR for CommonGen, in the dif- 321

fusion process, the target sentence S is converted 322

to continuous embedding representation using the 323

text encoder and incrementally corrupted to Gaus- 324

sian noise xt in t steps as in Eq-1. Then we use 325

the concept sets C as queries and retrieve top-k 326

relevant documents Dr and compute the retrieval 327

augmented source input embedding Hs as in Eq-6. 328

Finally, we perform the reverse denoising process 329

with xt conditioning on Hs as in Eq-8 to predict 330

4



the Gaussian noise added at step t and compute the331

loss Lθ as in Eq-4.332

In the inferencing stage, we start at the time step333

t and directly sample xt from a standard Gaus-334

sian distribution. Similar to the training stage, we335

retrieve top-k relevant documents using source con-336

cept sets as queries and compute Hs, which is then337

used as the condition in the denoising process with338

xt. After arriving at step t = 0, the predicted final339

outputs x
′
0 are decoded to discrete text tokens based340

on the clamping trick (Li et al., 2022) that replaces341

the predicted x
′
0 with its closest word embedding.342

4 Experiments343

4.1 Dataset and External Corpus344

The proposed RaDi4GCR model is trained and ver-345

ified on the CommonGen datasets (Lin et al., 2020),346

which is constructed by utilizing several existing347

corpora to sample frequent commonsense concepts,348

and the golden sentences are collected by employ-349

ing AWT crowd-sourcing workers. Basic statistics350

of the datasets can be found in Table 1.351

Statistics Train Dev Test
# Concept-Sets 32,651 993 1,497
# Sentences 67,389 4,018 6,042
Avg. Sentences per Set 2.06 4.04 4.04
Avg. Sentence Length 10.54 11.55 13.34

Table 1: Statistics of CommonGen datasets.

Commonsense Knowledge Corpus. We adopt352

the RACo (Yu et al., 2022) corpus as our external353

knowledge base for retrieval. RACo is a collection354

of over 20 million commonsense documents from355

three knowledge sources, including 1) human an-356

notated facts (HAF); 2) commonsense benchmark357

datasets (CBD); and 3) commonsense relevant cor-358

pus (CRC) for commonsense knowledge retrieval,359

as illustrated in table 2.360

Corpus # Instance Avg. Word

HAF-corpus 3,561,762 11.06 ± 5.86
CBD-corpus 2,881,609 12.78 ± 9.31
CRC-corpus 14,587,486 17.76 ± 10.4

Table 2: Statistics of the RACo corpus.

4.2 Evaluation Metrics361

We evaluate the performance from two perspec-362

tives: token-level similarity and semantic-level363

similarity. Token-level similarity is assessed by 364

comparing the generated sentences with reference 365

human-written sentences, where BLEU-4 (Pap- 366

ineni et al., 2002), ROUGE-L (Lin, 2004), and 367

METEOR (Banerjee and Lavie, 2005) are used. 368

Semantic-level similarity is measured through 369

CIDEr (Vedantam et al., 2015) and SPICE (Ander- 370

son et al., 2016). We note that SPICE is viewed as 371

the primary metric since it demonstrates the highest 372

alignment with human evaluation (Lin et al., 2020). 373

4.3 Baseline Methods 374

In this work, we compare RaDi4GCR with two 375

types of representative methods. 376

Retrieval-augmented Baselines: 1) DKMR2 377

(He et al., 2022) is a retrieval-enhanced method 378

for generative commonsense reasoning that uses 379

metric-guided distillation to improve the ranker 380

and a progressive distillation strategy to improve 381

the retriever. 2) KFCNet (Li et al., 2021) is a 382

novel knowledge filtering and contrastive learn- 383

ing framework for retrieval-augmented common- 384

sense sequence generation. 3) RACo (Yu et al., 385

2022) proposed a unified framework of retrieval- 386

augmented commonsense reasoning. 4) MORE 387

(Cui et al., 2024) proposed a novel multi-modal 388

retrieval augmentation framework that leverages 389

both text and images to enhance the commonsense 390

ability of language models. 391

Cutting-edge LLMs To evaluate the effective- 392

ness of utilizing the diffusion language model 393

for text generation, we compare the performance 394

of our proposed RaDi4GCR framework against 395

several LLM baselines under the same RAG set- 396

ting. Specifically, we exploit Llama3-8B-Instruct, 397

Llama3-70B-Instruct (Dubey et al., 2024), and 398

GPT-4o (Hurst et al., 2024) as representative base- 399

lines. 400

4.4 Implementation Details 401

For the diffusion generator, we fine-tune 402

RaDi4GCR based on the released GENIE check- 403

point that is pretrained on 160GB text data from 404

news, books, stories, and web text (Lin et al., 405

2023). The model consists of a 6-layer encoder 406

and a 6-layer decoder, with totally around 140 407

million parameters. Following GENIE, we use 408

Adam opimizer (Kingma and Ba, 2015) with the 409

learning rate of 5e-5 and batch size 128. All 410

models were trained on a total of 120000 steps 411

with 7200 warm-up steps. The diffusion step is set 412

to 2000 with the sqrt noise schedule. For the dense 413
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Method BLEU-4 ROUGE-L METEOR CIDEr SPICE*

KFCNet† 51.46 47.52 38.92 20.98 39.15
RACo† 42.76 48.19 35.80 18.89 33.89
RACo‡ 45.91 62.96 40.90 17.50 39.23
MORE_OPT2.7b† 32.78 57.07 32.15 17.04 32.94
DKMR2† 64.19 49.22 46.01 24.85 43.37

GENIE w/o retrieval† 19.6 36.0 - 10.3 23.4
RaDi4GCR w/ BM25-top10‡ 66.56 75.47 53.65 23.64 47.49

Table 3: The overall experiment results of RaDi4GCR on CommonGen (v1.0) compared with baseline methods. *
denotes the primary metric that should be focused on. † denote results reported in their paper. ‡ denotes results
reproduced in our experiments. The best performances are in bold, and the second-best ones are underlined.

retriever, we fine-tuned the DPR model following414

the same training setting as RACo (Yu et al., 2022).415

For the sparse retriever, we built the inverted index416

of RACo Commonsense corpus using Pyserini417

(Lin et al., 2021). The RAG pipeline is constructed418

based on the FlashRAG toolkit (Jin et al., 2024).419

All the metrics are computed using NLGEval420

(Sharma et al., 2017). All models are trained using421

2x A100 80GB GPUs.422

5 Results and Analysis423

5.1 Results Overview424

The experimental results are shown in Table 3 ,425

where we present the performance of our best-426

performing model, RaDi4GCR w/ BM25-top10427

that adopts BM25 sparse retrieval and utilizes the428

top-10 relevant documents, compared with results429

from baselines. As demonstrated in the table, our430

proposed approach outperforms all baseline meth-431

ods across most evaluation metrics. RaDi4GCR432

achieved the highest scores in BLEU-4 (66.56),433

ROUGE-L (75.47), METEOR (53.65), and SPICE434

(47.49), and competitive scores in CIDEr (23.64),435

reflecting its superior ability to generate coherent436

and contextually relevant commonsense sentences.437

Notably, RaDi4GCR significantly outperforms438

the multi-modal RAG baseline, MORE, which uti-439

lizes both relevant texts and images. In contrast,440

RaDi4GCR relies solely on retrieved knowledge in441

a single modality of text. These results emphasize442

RaDi4GCR’s strong ability to effectively utilize443

retrieved information to enhance generation. The444

overall results underscore the model’s robust capa-445

bility to leverage retrieved knowledge for improved446

text generation, positioning it as a highly effective447

solution for the task of generative commonsense448

reasoning.449

5.2 Analysis 450

In order to further assess the effectiveness of our 451

proposed methods, we examine the performance of 452

different variants of RaDi4GCR to demonstrate the 453

impacts of various aspects of RaDi4GCR. 454

5.2.1 Impact of Retrieval Augmentation 455

In Table 3, the last two bold rows demonstrate re- 456

sults of the pre-trained diffusion language model 457

GENIE fine-tuned on CommonGen and our pro- 458

posed RaDi4GCR with the top 10 relevant docu- 459

ments from bm25 sparse retrieval augmented gen- 460

eration. While the pre-trained diffusion language 461

model shows moderate performance, after aug- 462

menting the generation with retrieval from external 463

knowledge corpus, our proposed RaDi4GCR out- 464

performs the vanilla diffusion language model by 465

a large margin. These results demonstrate the ef- 466

fectiveness of leveraging retrieval augmentation 467

with the diffusion language model for generative 468

commonsense reasoning tasks. 469

5.2.2 Impact of Different Retrieval Methods 470

As illustrated in Figure 2, the sparse retrieval 471

method that adopts BM25 generally outperforms 472

the dense retrieval method that adopts DPR in met- 473

rics of both token-level and semantic level. Al- 474

though dense retrievers provide substantial per- 475

formance improvements when compared to tradi- 476

tional sparse retrievers (Arabzadeh et al., 2021), 477

the observed counterfactual result may stem from 478

the distinct task design of CommonGen, which 479

requires the model to generate coherent common- 480

sense sentences that contain the provided concepts. 481

While dense retrieval methods retrieve relevant in- 482

formation based on the semantic similarity between 483

the query and the candidate documents computed 484

by the inner products of their dense embeddings, 485

sparse retrieval methods like BM25 retrieve rel- 486

evant information based on the token matching 487
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Figure 2: The experiment results of RaDi4GCR with different retrieval methods and different retrieval depths on
BLEU-4 and SPICE.

Method BLEU-4 ROUGE-L METEOR CIDEr SPICE
Diffusion Language Model (140M)
w/o RAG 19.6 36.0 - 10.3 23.4
RaDi4GCR w/ BM25 top3 64.10 73.17 51.72 22.77 46.28
RaDi4GCR w/ BM25 top5 65.27 74.43 52.63 23.25 46.91
RaDi4GCR w/ BM25 top10 66.56 75.47 53.65 23.64 47.49
Llama3-8B-instruct
w/o RAG 18.76 42.84 29.49 9.10 27.01
w/BM25 top3 29.42 51.63 35.08 12.97 35.44
w/ BM25 top5 29.53 51.50 34.92 13.13 35.21
w/ BM25 top10 29.47 51.79 35.07 13.05 35.33
Llama3-70B-instruct
w/o RAG 17.85 42.55 29.90 8.05 27.19
w/ BM25 top3 26.62 49.52 33.48 12.04 32.57
w/ BM25 top5 26.21 49.52 33.42 12.01 32.74
w/ BM25 top10 26.69 49.09 33.54 12.11 32.60
GPT-4o
w/o RAG 38.45 57.87 37.54 15.82 37.69
w/ BM25 top3 38.16 57.87 37.56 15.81 37.59
w/ BM25 top5 38.29 58.08 37.62 15.86 37.33
w/ BM25 top10 38.77 57.62 37.43 15.85 36.83

Table 4: Comparison between LLM with RAG and RaDi4GCR. Both LLM and RaDi4GCR adopt the same retrieval
setting of BM25 sparse retrieval.

between the candidate documents and the query,488

e.g., the given concept sets, which could retrieve489

and provide more useful relevant information that490

contains the concept tokens, thus better integrated491

with the diffusion language models for generating492

target sequences.493

5.2.3 Impact of Different Retrieval Depth494

As illustrated in Figure 2, when the number of495

adopted relevant documents is below top-10, the496

performance of RaDi4GCR, whether using a dense497

(DPR) or sparse (BM25) retriever, improves as the498

number of retrieved relevant documents increases.499

This result aligns with our expectations, as incorpo-500

rating more relevant documents provides additional501

complementary information, thereby enhancing the502

model’s reasoning and generation capabilities.503

Specifically, for RaDi4GCR with BM25, increas-504

ing the number of adopted relevant documents 505

from top-3 to top-10 yields a 3.7% improvement 506

in BLEU-4 and a 2.5% improvement in SPICE. In 507

contrast, for RaDi4GCR with DPR, the same in- 508

crease in the number of relevant documents leads 509

to significantly larger gains: 12.1% in BLEU-4 510

and 5.7% in SPICE. These results suggest that 511

RaDi4GCR benefits more from additional context 512

when using a dense retriever (DPR) compared to a 513

sparse retriever (BM25). 514

However, for both retrieval methods, when the 515

number of adopted relevant documents exceeds 516

10, the performance on BLEU-4 and SPICE re- 517

mains unchanged or even decreases. This finding 518

is consistent with prior work (Yu et al., 2022) as 519

incorporating more relevant documents may also in- 520

troduce more noisy information, thus degrading the 521
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model’s performance. Compared to BM25, the per-522

formance degradation of DPR is more prominent,523

which aligns with with the findings in (Cuconasu524

et al., 2024) as introducing semantically aligned yet525

non-relevant documents increased the complexity526

of inputs thus potentially misguides models away527

from the correct response.528

5.2.4 Comparison of LLM and DLM529

To evaluate the performance of the diffusion lan-530

guage model (DLM) as the generator compared531

with LLMs, in this work we also conduct extensive532

experiments of leveraging LLMs as the generator533

within the same RAG pipeline. The comparison534

of LLM with RAG and RaDi4GCR is illustrated535

in Table 4. We report the results of our fine-tuned536

RaDi4GCR as well as the results of different LLMs537

in a few-shot prompt setting. The prompt used in538

the experiments can be found in A.539

As demonstrated in the first block of the table,540

after fine-tuning with RAG, the DLM beats all541

other LLMs with only around 140 million param-542

eters across all metrics, which demonstrates the543

efficiency and effectivity of DLM on the generative544

commonsense reasoning tasks and highlights the545

potential of DLM as an alternative of generalized546

LLMs for domain-specific text generation tasks.547

From the second and third blocks of the ta-548

ble, we found that the Llama3 model with 8 bil-549

lion parameters consistently outperforms its 70550

billion-parameter counterpart across all retrieval-551

augmentation settings. For both versions of the552

Llama3 model, utilizing RAG in the generation en-553

hances the performances prominently. In the last554

block, although the performance of GPT-4o outper-555

forms Llama3 of both 8B and 70B even without556

RAG, the overall performance still falls behind557

that of RaDi4GCR. Different from Llama3, adding558

RAG to the generation barely improves the perfor-559

mance.560

These findings underscore that the generator561

model is crucial in a RAG pipeline for the gen-562

erative commonsense reasoning task. While LLMs563

demonstrate impressive general-purpose capabil-564

ities, they struggle with commonsense reasoning565

due to their lack of commonsense knowledge with-566

out task-specific fine-tuning, which is costly in567

computational resources. In contrast, DLM with568

RAG could effectively capture and integrate com-569

monsense knowledge after fine-tuning with signifi-570

cantly smaller model sizes. When compared with571

other fine-tuned LMs of competitive model size,572

DLM still strongly outperforms all the baselines, 573

as demonstrated in Table 3, which demonstrates its 574

effectiveness. Its ability to gradually refine output 575

sequences in reasoning steps allows for more coher- 576

ent and contextually grounded responses, making 577

them well-suited for generative commonsense rea- 578

soning. 579

6 Conclusion 580

In this work, we propose a novel method, 581

RaDi4GCR, for GCR by effectively integrating 582

RAG and the diffusion language model. We con- 583

duct a series of experiments over the CommonGen 584

dataset. The experimental results demonstrate that 585

RaDi4GCR significantly outperforms the state-of- 586

the-art baseline method, as well as surpassing mul- 587

tiple cutting-edge LLMs. This study highlights the 588

potential of a diffusion language model with RAG 589

as an alternative to autoregressive LLMs for GCR. 590

In particular, the factors, such as different retrieval 591

strategies and the number of relevant documents, 592

significantly affect the performance of RaDi4GCR. 593

Careful examinations of these factors are highly 594

recommended in the development of GCR methods 595

when RAG is used. 596

7 Limitations 597

To the best of our knowledge, our work has two 598

main limitations that should be further explored in 599

the future. First, our method employs a relatively 600

easy RAG setting (Gao et al., 2024b), where we use 601

a pre-fixed number of relevant documents without 602

further assessing the relevance of retrieved docu- 603

ments w.r.t. the final generation target. As a result, 604

the augmentation could be suboptimal. A possible 605

future work may incorporate more advanced RAG 606

techniques like adaptive retrieval for better integra- 607

tion of the retrieved documents with the diffusion 608

language model. Second, we only verify our ap- 609

proach on the CommonGen dataset. We leave the 610

evaluation of our proposed approach on more ad- 611

vanced scenarios, including other generation tasks 612

and multimodal tasks, to future work. 613
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SYSTEM Prompt

Given several concepts together with sev-
eral reference documents, write a short and
simple sentence that contains all the re-
quired words. Only give me the sentence
and do not output any other words. The sen-
tence should describe a common scene in
daily life, and the concepts should be used
in a natural way.

Examples:

• Example 1:
Concepts: dog, frisbee, catch, throw
Sentence: The dog catches the frisbee
when the boy throws it into the air.

• Example 2:
Concepts: apple, place, tree, pick
Sentence: A girl picks some apples
from a tree and places them into her
basket.

938

USER Prompt

Concepts: {concepts}; References: {refer-
ences}

939
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