
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Automatic Instruction Data Selection for Large Language Models
via Uncertainty-Aware Influence Maximization

Anonymous Author(s)

Abstract
Recent years have witnessed the prevalent integration of Large Lan-
guage Models (LLMs) in various Web applications, such as search
engines and recommender systems. As an emerging technique, in-
struction tuning aims to align pre-trained LLMs as capable chatbots
that excel at following human instructions. Previous research in-
dicates that selecting an appropriate subset of a large instruction
dataset can enhance the capabilities of LLMs and reduce training
costs. However, existing works tend to overlook external correla-
tions between instruction examples during data selection process,
which can introduce potential bias and lead to sub-optimal perfor-
mance. To bridge this gap, we formalize this problem from graph in-
fluence maximization perspective and propose Uncertainty-aware
influenceMaximization (UniMax), a data selection framework that
explicitly incorporates the complex inter-dependencies within in-
struction data. Specifically, we first define a latent instruction graph,
treating each instruction example as a graph node and represent-
ing their implicit relations as graph edges. Instead of solely re-
lying on heuristic metrics for graph construction, we develop a
self-supervised graph learner to uncover the latent structure be-
yond surface-level feature correlations. After that, we propose an
uncertainty-aware influence function to score each example on the
instruction graph, allowing a simple greedy algorithm to select a
valuable subset that embodies both high influence and uncertainty
with an approximation guarantee. Extensive experiments on public
datasets show that the proposed approach can significantly enhance
model capabilities, underscoring the importance of exploiting data
dependencies in instruction data selection.

CCS Concepts
• Do Not Use This Code→ Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

Keywords
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
Anonymous Author(s). 2018. Automatic Instruction Data Selection for Large
Language Models via Uncertainty-Aware Influence Maximization. In Pro-
ceedings of Make sure to enter the correct conference title from your rights

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In recent years, we are witnessing the widespread adoption of
Large Language Models (LLMs) (e.g., GPT-4o [1] and LLaMA [35])
in various Web-based applications and services, including search
engines [48, 54], recommender systems [52, 55], and content gen-
eration tools [1]. Typically, LLMs are pre-trained on extensive text
corpora from the Web [27], which learn universal representations
that can be transferred to a wide range of language-related tasks.
However, the pre-trained models often struggle with following
human instructions. To unlock such capabilities, instruction tun-
ing [26, 42, 51] has become a common practice, in which pre-trained
LLMs are further refined to adeptly follow instructions using mas-
sive instruction-response pairs. Such a process not only enables
non-experts to interact with LLMs in a controllable way, but also
facilitates model generalization to unseen tasks.

Considerable efforts have been made to scale up instruction
datasets by manually or automatically creating more instruction-
response pairs [9, 33, 42]. Nevertheless, the prevalence of large-scale
instruction datasets also poses significant computational challenges
for training LLMs, particularly for small organizations and compa-
nies with limited resources. More dramatically, the computational
cost continually increases under specific scenarios that require
fine-tuning the LLMs multiple times, e.g., continual learning and
model selection, resulting in slower model iteration and experi-
mentation. On the other hand, there is increasing evidence that
data quality is more critical than quantity for improving instruc-
tion tuning. The superficial alignment hypothesis, introduced by
LIMA [53], suggests that all the necessary knowledge in LLMs is
already acquired during pre-training, and a small number of valu-
able instruction examples are sufficient for teaching them to follow
specific response styles or formats. LIMA shows that fine-tuning
LLMs with only 1,000 high-quality instruction examples can in-
duce remarkably strong generalization capabilities. Therefore, data
selection is worth exploring in instruction tuning, as it not only
improves the instruction-following skills but also speeds up model
development and deployment in online scenarios.

Manually selecting instruction data is a laborious, costly, and
error-prone process. As a result, it is desirable to develop auto-
mated methods that can economically and efficiently find the most
informative data examples. Existing approaches primarily focus on
evaluating individual data points through either pre-defined indi-
cators [21] or powerful reference LLMs [6, 25], e.g., ChatGPT. For
instance, AlpaGasus [6] calculates the quality score of each instruc-
tion example by directly prompting ChatGPT and filters out low-
quality data. IFD [21] selects instruction data using a prior metric
that quantifies the discrepancy between model output and expected
response. In addition, another branch of methods [23, 46] have been

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

developed recently to select data relevant to specific model capabil-
ities. The most representative work is LESS [46], which identifies
valuable instruction data by using gradient features to measure the
similarity with a handful of examples that reflect a target capability.

While the aforementioned methods have achieved decent re-
sults, they mainly rely on internal information within the individ-
ual instruction example, overlooking potential correlations with
other examples. In fact, instruction data often exhibit complex inter-
dependence nature, e.g., two semantically different examples may
share similar reasoning process [46]. Unlike pre-training stage, the
primary focus of instruction tuning is to learn the response style
rather than semantic knowledge, failing to consider inter-example
correlations might introduce similar, redundant, or even counter-
productive examples, leading to sub-optimal performance. How to
effectively incorporate such external information for instruction
data selection remains an open question.

To address the above limitation, we propose Uncertainty-aware
influenceMaximization (UniMax), a relation-powered data selec-
tion framework for instruction tuning. Specifically, we first for-
mulate instruction data selection as an influence maximization
problem, which aims at finding a data subset in a graph connecting
instruction examples that maximize the spread of influence. We
start with representing the target instruction dataset as a latent
graph, where each node is an instruction example and edges indi-
cate implicit relations between them. However, a critical challenge
is that due to the heavy computational overhead, directly applying
LLMs to quantify correlations among arbitrary instruction pairs
can be expensive and time-consuming. To address this issue, we
devise a small self-supervised instruction graph learner as a proxy
for uncovering implicit data dependencies. The graph learner can
efficiently distill adaptive hidden graph structure among all the
instruction embeddings generated from a pre-trained LLM, under
the guidance of the instructions themselves.

Then, with such a graph structure, the data selection can be
regarded as solving influence maximization problem on the instruc-
tion graph. Nevertheless, simplymaximizing influence within graph
neglects the inherent uncertainty of each example with respect to
target model, which introduces systematic bias to the selected set
and thus undermine the effectiveness of instruction tuning. To this
end, we further propose uncertainty-aware influence function to
balance the effect of influence and uncertainty. Concretely, we ex-
plicitly incorporate the instruction-following uncertainty score to
amplify the influence of nodes with high uncertainty scores while
restricting the influence of low uncertainty nodes. Moreover, the
function also satisfies properties of monotonicity and submodular-
ity, allowing a fast greedy selection algorithm to find a near-optimal
solution with theoretical guarantee.

Our contributions are summarized as follows: (1) We reframe
instruction data selection as an influence maximization problem,
which aims to select an instruction subset that maximizes the num-
ber of instruction examples that are influenced. (2) We develop
a self-supervised graph learner to capture the latent instruction
graph structure. The complexity scales linearly with the number of
instruction examples. (3) We further propose a new metric for in-
struction data selection by unifying data influence and uncertainty
into an uncertainty-aware influence maximization framework. (4)
Extensive experimental results show significant improvements of

the proposed approach over instruction data selection baselines.
Notably, by selecting 10% of the data, our method often yields on-
par or even better results than training on the full dataset, and the
performance remains robust across different model scales.

2 Preliminaries
In this section, we first briefly introduce the backgrounds of instruc-
tion tuning and influence maximization. Then, we formally define
the instruction selection problem.

2.1 Instruction Tuning
Instruction tuning refers to the process of fine-tuning pre-trained
LLMs using a set of instruction-response pairs [40], i.e., instruc-
tion examples. This is an essential step for adapting LLMs to un-
seen tasks and scenarios, as well as for stimulating the instruction-
following capabilities of LLMs. Formally, an instruction example
can be defined as follows.

Definition 1. Instruction example. An instruction example
is formatted as a chatbot-style example consisting of interactions
{(𝑥,𝑦)}1 between the user and the LLM, where 𝑥 is a user prompt
and 𝑦 denotes expected response.

Given an instruction set {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, where 𝑁 is the number
of examples, instruction tuning trains the LLMs in a supervised
learning manner, i.e., only computing the loss on the tokens (i.e.,
words) belonging to the response 𝑦, defined as

𝑚 𝑗 =

{︄
1, if 𝑡 𝑗 ∈ 𝑦
0, otherwise

(1)

L = −
∑︂
𝑗

𝑚 𝑗 log 𝑝𝜃
(︁
𝑡 𝑗 | 𝑡< 𝑗

)︁
, (2)

where 𝑡 𝑗 denotes the 𝑗-th token that can be either from user prompt
𝑥 or response 𝑦, 𝑝𝜃 is the probability of generating 𝑡 𝑗 given 𝑡< 𝑗 ,
and𝑚 𝑗 = 1 if 𝑡 𝑗 ∈ 𝑦 otherwise𝑚 𝑗 = 0. In practice, the success of
instruction tuning is powered by two critical components: (1) a pow-
erful pre-trained LLM model, and (2) a diverse and representative
instruction dataset.

2.2 Influence Maximization
The goal of Influence Maximization (IM) is to find a set of 𝐾 users
(i.e., seed set) that result in the highest spread of influence to other
users in a given social network [18]. Formally, suppose we have a
social network represented as a graph G = (V, E), whereV and
E are the set of nodes and edges, respectively. The goal of IM is
to select 𝐾 nodes from the graph G as the seed set 𝑆 to maximize
influence in information diffusion, defined as

𝑆∗ = argmax
𝑆

𝜎 (𝑆), 𝑠 .𝑡 .𝑆 ∈ V, |𝑆 | = 𝐾 (3)

where 𝜎 (·) is the influence function that estimates the expected
number of nodes influenced by 𝑆 , following specific diffusion mod-
els like the independent cascade model [22]. The diffusion model
typically involves two steps. First, it marks the status of nodes in
seed set as active and other nodes as inactive. Then, it allows active
1For the sake of simplicity, we assume multi-turn instructions as single-turn
instructions.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Automatic Instruction Data Selection for Large Language Models via Uncertainty-Aware Influence Maximization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

5K 10K 20K 30K 40K
of instruction examples

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

×103

Linear attention
Softmax attention

(a) Training time per epoch.

5K 10K 20K 30K 40K
of instruction examples

0

8

16

24

32

40

M
em

or
y

us
ag

e
(G

B)

Linear attention
Softmax attention

(b) Memory usage.

Figure 1: Efficiency comparison between linear attention and
Softmax attention.

nodes to activate their neighbors through information spread until
no new nodes can be activated. Although the IM problem is NP-
hard in general, the optimal solution 𝜎 (𝑆∗) can be approximated
with theoretical guarantee. In particular, if 𝜎 (·) is monotone and
submodular, a simple greedy algorithm can return a node set 𝑆 such
that 𝜎 (𝑆) ≥ (1 − 1/𝑒)𝜎 (𝑆∗).

2.3 Problem Statement
In this paper, we study the instruction selection problem, i.e., iden-
tifying the most informative instruction examples for instruction
tuning, which is defined below.

Problem Statement 1. Given a large pool of instruction examples
V = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 and a fixed data budget 𝐾 < 𝑁 , the goal is to select
a subset B∗ of size 𝐾 from the full setV to maximize the instruction
tuning effectiveness:

B∗ = argmax
B

𝐸 (M𝜃 ,B), 𝑠 .𝑡 .B ∈ V, |B| = 𝐾, (4)

where 𝐸 (M𝜃 ,B) is the performance of the language modelM𝜃 (·)
trained under the supervision of instruction set B.

3 Methodology
This section elaborates the proposed UniMax framework. Unlike
prior works, we explicitly incorporate relational information of
instruction examples into the data selection process. We will intro-
duce each module of our method in detail below.

3.1 Overall Pipeline
Figure 2 shows an overview of the proposed approach, which con-
sists of three major tasks: (1) instruction graph structure learning,
(2) uncertainty-aware influence estimation, and (3) instruction data
selection. To be specific, in the first task, we encode all instruc-
tion examples into embedding vectors via a pre-trained LLM and
learn the latent graph structure among instruction embeddings
with contrastive learning. In the second task, we quantify the value
of each instruction example by jointly considering its influence on
the graph and the inherent instruction-following uncertainty. In
the third task, we adopt a simple greedy algorithm to select the
most valuable data points by maximizing the uncertainty-aware
influence within the latent graph.

3.2 Instruction Graph Structure Learning
Consider a set of instruction examples {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, we measure
their correlations using a latent graph G = (V, E), where each in-
struction is represented as a node 𝑣 ∈ V on graph and edge 𝑒𝑖, 𝑗 ∈ E
captures relation between node 𝑖 and 𝑗 . To learn the graph, we
first concatenate the prompt 𝑥𝑖 and response 𝑦𝑖 to obtain the com-
plete example 𝑥𝑖 | |𝑦𝑖 , and then encode all examples into embedding
vectors through a pre-trained LLMM𝜃 (·), i.e., x𝑖 = M𝜃 (𝑥𝑖 | |𝑦𝑖).
Specifically, we extract the last token embeddings in the final layer
as instruction embeddings, which will be utilized in subsequent
graph construction.

We regard the graph G as a fully-connected graph and lever-
age a single layer self-attention operator to calculate edge weight
between instruction node 𝑖 and 𝑗 , denoted as

𝑒𝑖, 𝑗 = q⊤𝑖 k𝑗 , (5)

q𝑖 = W𝑞x𝑖 , k𝑗 = W𝑘x𝑗 , (6)
whereW𝑞 andW𝑘 denote learnable projection matrices. We fur-
ther normalize 𝑒𝑖, 𝑗 across all choice of 𝑗 via Softmax operator and
compute the output representation for node 𝑖 as follows

𝛼𝑖, 𝑗 =
exp(𝑒𝑖, 𝑗)∑︁𝑁
𝑘=1 exp(𝑒𝑖,𝑘)

, (7)

x′𝑖 =
𝑁∑︂
𝑗=1

𝛼𝑖, 𝑗W𝑣x𝑗 , (8)

whereW𝑣 is a learnable matrix. To reduce the quadratic complexity
of self-attention computation and boost the graph structure learning
efficiency, we replace the Softmax attention operator with linear
attention [5, 45], defined as

x′𝑖 =
𝑁∑︂
𝑗=1

(q′
𝑖
)𝑇 k′

𝑗∑︁𝑁
𝑟=1 (q′𝑖)𝑇 k

′
𝑟

v𝑖 =
(q′
𝑖
)𝑇 ∑︁𝑁

𝑗=1 k
′
𝑗
v𝑗

(q′
𝑖
)𝑇 ∑︁𝑁

𝑟=1 k
′
𝑟

, (9)

where q′
𝑖
= 𝜎 (q𝑖)/∥𝜎 (q𝑖)∥2, k′𝑖 = 𝜎 (k𝑖)/∥𝜎 (k𝑖)∥2, where 𝜎 (·) rep-

resents ReLU activation function. With the above operator, we only
need to compute

∑︁𝑁
𝑗=1 k

′
𝑗
v𝑗 and

∑︁𝑁
𝑟=1 k

′
𝑟 once and reuse them for

each query, thus reducing the computational and storage complex-
ity to linearity. Figure 1 shows that linear attention is faster and has
a lower memory footprint than Softmax attention, which is more
suitable for graph structure learning.

After obtaining the aggregated representation x′
𝑖
for each node,

we leverage the input feature vector x𝑖 itself as supervision signal to
guide the graph structure learning process. However, x′

𝑖
has already

incorporated the information of centered nodes through the self-
loop propagation, which may lead to potential information leakage.
Thus, we eliminate the centered node information through x𝑖,ℎ =

x′
𝑖
− 1
𝑑𝑖
· v𝑖 , where 𝑑𝑖 =

(q′𝑖)𝑇 k′𝑖
(q′

𝑖
)𝑇 ∑︁𝑁

𝑟=1 k
′
𝑟

is the self-loop edge weight.

Afterward, we maximize mutual information between instruction
embedding x𝑖 and aggregated neighborhood embedding x𝑖,ℎ via
contrastive learning [8]. In specific, we map x𝑖 and x𝑖,ℎ to the
representation space where contrastive loss is applied

z𝑖 = MLP1 (x𝑖), z𝑖,ℎ = MLP2 (x𝑖,ℎ), (10)

where MLP1 (·) and MLP2 (·) are Multi-Layer Perceptrons (MLPs).
Then, we randomly sample a minibatch of𝑚 instruction nodes and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Stage 1: Instruction Graph Structure Learning

Stage 2: Uncertainty-Aware Influence Estimation Stage 3: Instruction Data Selection

Instruction Set

Prompt: What is the capital city in
the United Sates?
Response: Washington, D.C.

Prompt: Give the result of the
following equation: 6+4*5.
Response: The result is 26.

Prompt: Who is Einstein?
Response: Einstein was a German-
born theoretical physicist …

Pre-trained LLM
ℳ! (⋅)

Uncertainty
Score 𝑑"

Influence Score
I(v#, v", l)

Uncertainty
Score 𝑑"

Instruction
Embeddings

…

Contrastive Learning
MLP! (⋅)

MLP" (⋅)

…

Graph Learner

…

…

Linear Attention

Neighborhood
Embeddings

Center Node
Embeddings

… …𝐱'

𝐱',)

ℒ
Positive Pairs Negative Pairs

Representation Space

Pull

Push

Learned Graph
Structure

Influence
EstimationI*(v+, v', l)

v#

v$

Combine

Original LLM

The Desired LLM

Fine-tuning

Selected
Instruction Set Greedy

Selection

Marginal Gain
Calculation

Figure 2: An overview of the proposed UniMax framework.

utilize contrastive loss to learn the graph structure by maximizing
the agreement between z𝑖 and z𝑖,ℎ of the same node 𝑖

L = − log
exp(sim(z𝑖 , z𝑖,ℎ)/𝜏)∑︁𝑚
𝑘=1 exp(sim(z𝑖 , z𝑘,ℎ)/𝜏)

, (11)

where 𝜏 stands for temperature parameter and sim(·) is the cosine
similarity function. Finally, we can derive the adaptive graph ad-
jacency matrix by A = 𝑓𝑠𝑝 (Q′ (K′)⊤) + 𝑓𝑠𝑝 (XX⊤), where the 𝑖-th
row of Q′, K′, and X are q′

𝑖
, k′
𝑖
, and x𝑖 respectively, 𝑓𝑠𝑝 (·) sparsifies

matrix by a threshold 𝑠 .

3.3 Uncertainty-Aware Influence Estimation
Building upon the learned graph structure, we quantify the influ-
ence of node 𝑣𝑖 on 𝑣 𝑗 by using the sum of probabilities of all possi-
ble paths with a length of 𝑙 from 𝑣𝑖 to 𝑣 𝑗 on the graph [37, 47, 49].
Formally, we define the node influence score of node 𝑖 on 𝑗 as
𝐼 (𝑣 𝑗 , 𝑣𝑖 , 𝑙) =

∑︁
P𝑣𝑖→𝑣𝑗

𝑙

∏︁
𝑘 𝐴𝑣𝑘 ,𝑣𝑘+1 , where P

𝑣𝑖→𝑣𝑗
𝑙

is a path from 𝑣𝑖

to 𝑣 𝑗 and 𝐴𝑣𝑘 ,𝑣𝑘+1 denotes the edge weight of A.
However, simply selecting influential examples based on scoring

function 𝐼 (𝑣 𝑗 , 𝑣𝑖 ; 𝑙) may lead to a subset with skewed distribution
over instruction-following uncertainty, which could degrade the
performance of instruction tuning. As a result, we develop a new
metrics to account for the influence and uncertainty of each data
instance simultaneously. Given a user prompt 𝑥 , we can measure
the degree to which the output of pre-trained LLMM𝜃 (·) matches

Algorithm 1: Instruction Data Selection.

Input: Instruction datasetV = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, data budget 𝐾 ,
influential path length 𝑙 , pre-trained LLMM𝜃 (·).

Output: Selected instruction set B
B = ∅;
Learn latent instruction graph structure G by Equation 11;
Calculate uncertainty score 𝑑𝑖 for each instruction example
by Equation 13;
for 𝑘 = 1, 2, . . . , 𝐾 do

Select the instruction example
𝑣∗ = argmax𝑣∈V\B (Φ(B ∪ {𝑣}) − Φ(B));
Update the instruction set B ← B ∪ {𝑣∗};

end
return B

the corresponding response 𝑦 by the following function

𝑑 (𝑦 | 𝑥) = − 1
𝑇

𝑇∑︂
𝑖=1

log 𝑝𝜃 (𝑡
𝑦

𝑖
| 𝑥, 𝑡𝑦1 , 𝑡

𝑦

2 , . . . , 𝑡
𝑦

𝑖−1), (12)

where 𝑡𝑦
𝑖
indicates the 𝑖-th token in the response 𝑦, and 𝑝𝜃 (·) cal-

culates the probability of generating the next token based on the
user prompt and its preceding tokens. A higher 𝑑 (𝑦 | 𝑥) implies
that the instruction is more challenging for the target model to
follow. Subsequently, we normalize 𝑑 (𝑦 | 𝑥) and introduce the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatic Instruction Data Selection for Large Language Models via Uncertainty-Aware Influence Maximization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Details of instruction datasets used in our experiments, which is from Tulu [40].

Datasets Sourced from # Instance Instruction Length Response Length

Flan-V2 NLP datasets and human-written instructions 100,000 355.7 31.2
CoT NLP datasets and human-written CoTs 100,000 266.0 53.2
Code-Alpaca Generated from Davinci-003 20,022 35.6 67.8

uncertainty-aware influence score 𝐼𝑑 as follows

𝑑𝑖 =
2𝑑 (𝑦 | 𝑥)
𝑑 (𝑥) + 𝑑 (𝑦) , (13)

𝐼𝑑 (𝑣 𝑗 , 𝑣𝑖 , 𝑘) = 𝑑𝑖 𝐼 (𝑣 𝑗 , 𝑣𝑖 , 𝑙), (14)
where 𝑑𝑖 represents the normalized uncertainty score of instruction
node 𝑖 . Intuitively, 𝐼𝑑 (𝑣 𝑗 , 𝑣𝑖 , 𝑘) demonstrates that the impact of
node 𝑣𝑖 on 𝑣 𝑗 is more significant if (1) The instruction is harder to
follow and thus has higher uncertainty score 𝑑𝑖 ; (2) There are more
influential paths with high probabilities from node 𝑣𝑖 to 𝑣 𝑗 and thus
leads to larger 𝐼 (𝑣 𝑗 , 𝑣𝑖 , 𝑙). Given a set of instruction nodes B ∈ V ,
we define the node set activated by B as follows

Φ(B) = |{𝑣 |𝐼𝑑 (𝑣,B, 𝑙) > 𝜖, 𝑣 ∈ V}|, (15)

where 𝐼𝑑 (𝑣,B, 𝑙) = max𝑣𝑖 ∈B 𝐼𝑑 (𝑣, 𝑣𝑖 , 𝑙) is themaximumuncertainty-
aware influence score of B on node 𝑣 , and 𝜖 is a hyper-parameter
filtering weakly influenced nodes.

3.4 Instruction Data Selection
Finally, we select instructional examples by optimizing the follow-
ing uncertainty-aware influence maximization objective

max
B

Φ(B), 𝑠 .𝑡 . B ⊆ V, |B| = 𝐾. (16)

By jointly considering both the magnitude of influence and the
inherent uncertainty, our goal is to identify a node subset of size 𝐾
such that the maximum number of activated nodes can be attained.

Greedy instruction selection. As discussed in Section 2.2, the
optimal solution of influence maximization can be approximated
by greedy algorithm if Φ(B) has two properties: monotonicity and
submodularity [18, 22], i.e., ∀B ⊆ B′ ⊆ V, 𝑣 ∈ V\B′,Φ(B′) ≥
Φ(B) and Φ(B ∪ {𝑣}) − Φ(B) ≥ Φ(B′ ∪ {𝑣}) − Φ(B′). Thus, we
validate the properties of Φ(B) for influence maximization below.

Theorem 1. The uncertainty-aware influence function Φ(B) is
monotone and submodular.

Proof of Theorem 1 is in Appendix A. Given such a function, we
can apply a simple greedy algorithm for data selection in influence
maximization with an approximation ratio of 1 − 1/𝑒 , i.e., Φ(B̂) ≥
(1 − 1/𝑒)Φ(B∗). Specifically, we first initialize an empty node set
B. Then, we iteratively select the node generating the maximum
marginal gain Φ(B ∪ {𝑣}) − Φ(B) and add it into B. This process
is repeated until there are 𝐾 nodes in B. The overall pipeline is
illustrated in Algorithm 1.

Scaling to large instruction datasets. Our approach exhibits
high efficiency and scalability, as it enables instruction graph struc-
ture learning with linear complexity. For larger instruction datasets
that cannot be loaded into a single GPU, we can leverage the data
partitioning strategy. The core idea is to divide the input dataset
into multiple clusters, which largely reduces the computational

cost for subsequent graph structure learning and data selection. For
example, we can use K-Means clustering [3] for data partitioning.
Moreover, due to the linear complexity of graph structure learn-
ing, we can utilize large cluster size to preserve critical instruction
connectivity as much as possible.

3.5 Experimental Setup
Datasets. We closely follow Tulu [39] and construct three rep-
resentative instruction datasets for our experiments. Specifically,
we use the following datasets: (1) Flan V2 consists of various NLP
tasks created from existing datasets or written by humans [10],
(2) CoT is a collection of instructions annotated by using chain-of-
thoughts [43], (3) Code-Alpaca is an instruction dataset generated
from GPT-4 using the Alpaca dataset [34] as inputs. These datasets
cover different style of instructions ranging from synthetic, man-
ually curated to distilled from commercial LLMs. We unify the
diverse instructions to chatbot-style training examples with the
formatting strategy of Tulu [39]. The details of data statistics are
provided in Table 1.

Evaluation. As different instruction datasets reflect distinct ca-
pabilities, we chooseMMLU [16], TyDiQA [11], GSM [12], BBH [32],
and Codex-Eval (i.e., HumanEval) [7] for model evaluation, which
cover multi-faceted capabilities including factual knowledge, rea-
soning, multilinguality, and coding. Specifically, we evaluate the
fine-tuning performance of Flan-V2 dataset on MMLU and TyDiQA.
MMLU contains a set of multiple-choice questions across 57 sub-
jects spanning from STEM, humanity to social science, which can be
utilized for factual knowledge evaluation. TyDiQA is a question an-
swering benchmark consisting of 11 typologically diverse languages
for testing the model’s multilingual capability. For CoT dataset, we
leverage GSM and BBH, two commonly adopted benchmarks for
measuring the mathematical and general reasoning capabilities. Be-
sides, we also evaluate the models trained on Code-Alpaca dataset
through Codex-Eval. We follow the evaluation pipeline of previous
study [39] to test the model performance on target dataset. More
evaluation details can be found in Appendix B.

Baselines. We compare our approach with the following base-
lines: (1) Random selection uniformly sample instruction examples
from the dataset for instruction tuning; (2) Perplexity measures
generated response perplexity and selects instruction data with
high perplexity; (3) K-Center-Greedy (KCG) [30] algorithm selects
instruction data by iteratively choose the data point farthest from
the current set; (4) IFD [21] first quantifies the discrepancy between
model output and desired response by using an entropy-based met-
ric and then selects the most difficult data samples; (5) DEITA [25]
is a score-first, diversity-aware instruction selection approach that
identifies the most valuable data by jointly considering data com-
plexity, quality, and diversity. Notably, we do not compare with

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Comparison of our approach with baseline methods on LLaMA-2-7B and LLaMA-2-13B. Full indicates training on full
dataset, and otherwise we select 10% of data using different instruction data selection methods. Bold numbers represents the
best-performing data subset.

Training Datasets Flan V2 CoT Code-Alpaca

Methods MMLU TydiQA Average GSM BBH Average Codex-Eval

Instruction tuning on LLaMA 7B

Full (100%) 48.0 50.4 49.2 33.0 36.4 34.7 32.6

Random 42.1 47.4 44.8 22.5 39.4 31.0 25.5
Perplexity 40.4 41.1 40.8 7.5 34.4 20.9 15.3
KCG 31.9 49.2 40.1 14.0 37.3 25.7 28.6
IFD 44.6 39.9 42.3 22.0 31.6 26.8 26.8
DEITA 45.9 48.4 47.2 26.5 36.7 31.6 30.1
Ours 47.3 51.2 49.3 28.5 39.9 34.2 31.3

Instruction tuning on LLaMA 13B

Full (100%) 51.8 53.2 52.5 47.5 46.2 46.7 38.3

Random 48.1 51.9 50.0 31.0 47.1 39.1 35.4
Perplexity 52.5 45.9 49.2 12.5 43.9 28.2 16.1
KCG 47 45.3 46.2 21.5 50.1 35.8 35.2
IFD 51.1 46.4 48.8 37 45.7 41.4 38.2
DEITA 50.5 52.1 51.3 36 46.3 41.2 39.6
Ours 53.3 54.6 54.0 39.5 47.7 43.6 41.7

noLG noPG noIF noUnc Comp35

40

45

50

55

Ex
ac

t M
at

ch
 S

co
re

MMLU

(a) MMLU

noLG noPG noIF noUnc Comp35

40

45

50

55

F1
 S

co
re

TydiQA

(b) TydiQA

noLG noPG noIF noUnc Comp10

15

20

25

30

35

Ex
ac

t M
at

ch
 S

co
re

GSM

(c) GSM

noLG noPG noIF noUnc Comp25

30

35

40

45
Ex

ac
t M

at
ch

 S
co

re
BBH

(d) BBH

noLG noPG noIF noUnc Comp15

20

25

30

35

Pa
ss
@
10

Code-Eval

(e) Code-Eval

Figure 3: Ablation study on LLaMA-2-7b.

noLG noPG noIF noUnc Comp40

45

50

55

60

Ex
ac

t M
at

ch
 S

co
re

MMLU

(a) MMLU

noLG noPG noIF noUnc Comp40

45

50

55

60

F1
 S

co
re

TydiQA

(b) TydiQA

noLG noPG noIF noUnc Comp25

30

35

40

45

Ex
ac

t M
at

ch
 S

co
re

GSM

(c) GSM

noLG noPG noIF noUnc Comp35

40

45

50

55

Ex
ac

t M
at

ch
 S

co
re

BBH

(d) BBH

noLG noPG noIF noUnc Comp25

30

35

40

45

Pa
ss
@
10

Code-Eval

(e) Code-Eval

Figure 4: Ablation study on LLaMA-2-13b.

targeted data selection methods, such as LESS [46], as they highly
rely on small reference set reflecting target capability, while our
approach is non-targeted.

Implementation details. In this work, we choose two base
models, i.e., LLaMA-2-7B and LLaMA-2-13B, for our experiments.
Concretely, we leverage a pre-trained LLaMA-2-7B modelM𝜃 to
generate embeddings and uncertainty scores for all instruction sam-
ples in the original dataset. Afterward, we train a one-layer graph

learner to learn the dependencies from instruction embeddings.
The number of hidden units in the graph learner is set to 2048, and
we randomly sample𝑚 = 8, 192 instruction nodes to calculate the
contrastive loss in each training iteration. In uncertainty-aware
influence scoring, we fix the path length 𝑙 to 1 for computing the
influence score among nodes. The threshold 𝑠 and 𝜖 are set to 0.95
and 0.1. Finally, based on the selected data, we fully fine-tune the
LLaMA-2-7B and LLaMA-2-13Bmodels. The learning rate and batch

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatic Instruction Data Selection for Large Language Models via Uncertainty-Aware Influence Maximization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

size are set to 2𝑒 − 5 and 128, respectively. Besides, we also fix the
maximum input sequence length to 2048, truncating samples if nec-
essary. We conduct all experiments on a GPU cluster, where each
computing node is equipped with 8 NVIDIA A100 GPUs, along with
71 TB disk storage and Intel (R) Xeon (R) Platium 8352Y 128-Core
Processor. During training, we exploit the ZeRO optimizer [28] and
DeepSpeed library [29] for large-scale model fine-tuning.

3.6 Performance Comparison
Table 1 shows the overall performance of our selection approach
and all the baselines with respect to fine-tuned LLaMA-2-7B and
LLaMA-2-13B on five evaluation datasets.We report the exactmatch
score on MMLU, GSM, and BBH using 0, 8, and 3 few-shot in-
context examples, respectively. For TydiQA, we compute the 1-shot
F1 score across all multilingual questions under the Gold Passage
(GP) setting, i.e., the reference answer is provided to the model. For
Code-Eval, we report the pass@10 results with a temperature of
0.8 to measure the correctness of model output. We summarize the
key observations as follows.

Overall, our method consistently outperforms baseline methods
across different model scales and evaluation datasets, indicating
the effectiveness of selecting both influential and difficult examples
for instruction tuning. Moreover, the proposed approach performs
comparable or even surpasses the results achieved by training with
the entire dataset. This implies that the full dataset may encompass
low-quality data samples, which adversely affect the instruction
tuning process. Our approach is able to identify the most valuable
data while filtering negative samples, resulting in improved per-
formance. Additionally, going deep into the baselines, we have the
following findings: (1) perplexity-based selection strategy has the
worst performance, which suggests that perplexity may not be a
reliable metric for instruction data selection. (2) KGC and IFD out-
perform Perplexity by a large margin, underscoring the importance
of data diversity and difficulty for instruction tuning, respectively.
(3) Random selection selects data uniformly and achieves surpris-
ingly good performance. The possible reason is that each example
has an equal chance of being chosen, thereby maintaining represen-
tativeness of the entire dataset, whereas baselines like Perplexity
and IDF usually leads to a subset that is biased towards a specific
group of data samples. (4) DEITA attains the best performance
among these baselines, demonstrating the advantage of jointly
considering multi-dimensional factors, namely quality, complexity,
and diversity, for data assessment. However, DEITA neglects fine-
grained and latent dependencies within instruction data, which is
also essential for data selection.

3.7 Ablation Studies
In this section, we conduct an ablation study to verify the effec-
tiveness of each component. Specifically, we evaluate the following
four variants: (1) noLG replaces the learned graph by pre-defined
graph built with cosine similarity, (2) noPG only utilizes the graph
structure learned via contrastive learning (i.e., removing the second
term in A = 𝑓𝑠𝑝 (Q′ (K′)⊤) + 𝑓𝑠𝑝 (XX⊤)), (3) noIF removes influence
score for data selection, (4) noUnc excludes uncertainty score in
uncertainty-aware scoring function, (5) Complete represents the
original selection approach.

The results are reported in Figure 3 and 4. First, there is a perfor-
mance degradation when using pre-defined graph for data selection.
The possible reason is that pre-defined graph fails to capture com-
plicated relationships between instruction examples, resulting in
selection bias. Second, only leverage the learned graph structure
without prior knowledge hinder the performance of instruction tun-
ing. This is because the geometric prior of instruction embeddings
also contains critical relational information, which can complement
the purely learned graph. Third, the performance will decrease in
all five datasets if the influence score is neglected in data selection,
which demonstrates the effectiveness of maximizing the influence
of selected instruction set. Finally, by adding uncertainty score to
the influence function, we can achieve on-par or better performance,
which further emphasizes the importance of uncertain examples.
Besides, the data influence has more substantial impact on model
performance than example uncertainty, as there is a more evident
performance drop with the removal of influence score.

3.8 Parameter Sensitivity
Finally, we evaluate the impact of hyper-parameters on the perfor-
mance of instruction tuning. Specifically, we examine the impact
of the data budget 𝐾 , the length of influential path 𝑙 , and the ac-
tivation threshold 𝜖 , three crucial hyper-parameters that relate to
our approach. We conduct analysis using LLaMA-2-13B. The re-
sults on LLaMA-2-7B are consistent with LLaMA-2-13B. All other
hyper-parameters are set to their default values when evaluating
the target one.

First, we adjust the data budget𝐾 from 1% of data to 100% of data.
The results across five evaluation datasets are presented in 5(a),
where we find that in most cases, training with 10% of the data
achieves acceptable balance between performance and efficiency.
Besides, if researchers are more interested in improving model
capabilities, we suggest searching an optimal value of data budget
on a held-out validation dataset.

Then, we study the effect of influential path 𝑙 by increasing 𝑙
from 1 to 4. The results are reported in 5(b). We can see that the
performance remain stable between 1 and 3; however, performance
degrades when 𝑙 is further increased from 3 to 4. The potential
explanation is that larger 𝑙 may cover more noisy instruction nodes
that are weakly influenced by the target node, leading to inaccurate
data selection.

Finally, we vary the activation threshold 𝜖 from 0.05 to 0.25.
The results are illustrated in 5(c). Overall, the best performance
is obtained when 𝜖 = 0.1. We observe a performance gain when
increasing 𝜖 from 0.05 to 0.1, further increasing 𝜖 from 0.1 to 0.25
results in performance deterioration. This decline occurs because
larger 𝜖 may weaken the influence of some valuable instruction
nodes, making them hard to be selected during the influence maxi-
mization process.

4 Related Works
4.1 Instruction Tuning
Instruction tuning aims to refine the pre-trained LLMs on a collec-
tion of datasets expressed via natural language instructions [51].
Early studies [36, 42] leverage instruction tuning to improve zero-
shot generalization performance. For example, FLAN [42] fine-tunes

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1% 5% 10% 20% 50% 100%
Data Budget

25

40

55

70

M
et

ric
MMLU
TydiQA
GSM

BBH
Code-Eval

(a) Effect of data budget 𝐾 .

1 2 3 4
Path Length

25

40

55

70

M
et

ric

MMLU
TydiQA
GSM

BBH
Code-Eval

(b) Effect of path length 𝑙 .

0.05 0.1 0.15 0.2 0.25
Activation Threshold

25

40

55

70

M
et

ric

MMLU
TydiQA
GSM

BBH
Code-Eval

(c) Effect of threshold 𝜖 .

Figure 5: Parameter sensitivity analysis on LLaMA-2-13b.

a pretrained LLM on a broad range of NLP tasks described as in-
structions, which substantially enhances the model capability to
perform tasks unseen during training. Conversely, InstructGPT [26]
aims to align LLM with human preferences by fine-tuning with
human-labeled instructions. Recently, a series of works have been
done to improve the instruction following abilities of open-source
LLMs [9, 33, 41, 53]. Among them, LIMA [53] suggests that data
quality is more important than quantity during instruction tuning
stage, which has sparked considerable efforts for instruction data
selection [6, 20, 21, 23–25, 38]. To name a few, AlpaGasus [6] eval-
uates the quality of each instructional example through ChatGPT
and filters out low-quality data. DEITA [25] introduces a multifac-
eted assessment strategy to select instruction data by simultane-
ously considering data complexity, quality, and diversity. However,
existing approaches overlooks the complex dependencies within
instruction data, such as semantically different examples that shares
similar reasoning process, which largely limits the performance.
In this work, we resolve this issue by formalizing instruction data
selection as an influence maximization problem.

4.2 Data Selection
Data selection aims to improve data efficiency of machine learn-
ing models by choosing the most representative training samples,
which has been widely used in various fields, such as computer
vision [31] and graph mining [49, 50]. Existing studies mainly fall
into two categories: active learning and core-set selection. Specifi-
cally, active learning focuses on identifying the most informative
unlabeled samples for human labeling to maximize model perfor-
mance [2, 14]. This process involves iteratively training a model
on a labeled dataset and then selecting additional samples for label-
ing based on predefined metrics, such as the entropy of predicted
distributions [17]. In contrast, the goal of core-set selection is to
find a small subset that achieves performance comparable to the
full dataset. In the past decade, many efforts are dedicated to devel-
oping data selection approaches, such as uncertainty sampling [15],
greedy k-centers [30] and submodularity-based approaches [44].
Unfortunately, traditional data selection methods usually suffer
from high computation cost when applying to deep learning, as
they require retraining a deep model after each selection. Several
studies [19, 30] focus on selecting samples in large batches to avoid

frequent model retraining, but they are still costly for large mod-
els. To address this issue, SVP [13] leverages a small proxy model,
i.e., the model with less hidden layers or fewer training epochs, to
perform data selection more efficiently. In this paper, we explore
instruction tuning data selection and devise a uncertainty-aware
influence maximization framework to balance the effect of both
data dependency and uncertainty.

5 Discussion and Future Work
While the proposed method demonstrate superior performance in
our experiments, it still has room for improvement. We outline
three major limitations of our approach as follows. First, we rely
on an external graph structure learner to capture dependencies
within instruction data. This approach might not accurately re-
flect the true data relationships from the perspective of the target
model, potentially leading to bias towards spurious data correla-
tions. Although we empirically demonstrate the effectiveness of
this method, ensuring consistency between the graph structure
learner and target model remains under-explored. Second, we lever-
age a data partitioning strategy to enhance the scalability for large
instruction datasets, but data partitioning may induce information
loss. To resolve this issue, additional efforts are required to explore
advanced acceleration algorithms for influence maximization on
extremely large graphs. Finally, our experiments are conducted
on carefully curated open-source instruction datasets and do not
explicitly consider the impact of noisy or incorrect instruction ex-
amples. We leave the exploration of instruction data selection under
noisy setting for future work.

6 Conclusion
This paper studies instruction data selection from a new perspective
of influence maximization. We propose an uncertainty-aware influ-
ence maximization framework for instruction data selection, which
can exploit the interactions among data points by maximizing the
number of examples influenced by selected instruction examples.
To be specific, we first develop a self-supervised instruction graph
learner as a proxy to capture dependencies among instructional ex-
amples. Then, we propose to unify example influence in the graph
and its inherent uncertainty for instruction data selection. Finally,
empirical results on public datasets verify the effectiveness of the
proposed framework.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Automatic Instruction Data Selection for Large Language Models via Uncertainty-Aware Influence Maximization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and S Yu Philip.
2014. Active learning: A survey. In Data classification. Chapman and Hall/CRC,
599–634.

[3] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. 2020.
The k-means algorithm: A comprehensive survey and performance evaluation.
Electronics 9, 8 (2020), 1295.

[4] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).

[5] Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. 2023. Efficientvit:
Lightweight multi-scale attention for high-resolution dense prediction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 17302–
17313.

[6] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,
Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. 2023. Alpagasus:
Training a better alpaca with fewer data. arXiv preprint arXiv:2307.08701 (2023).

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[9] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/

[10] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay,William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2024.
Scaling instruction-finetuned language models. Journal of Machine Learning
Research 25, 70 (2024), 1–53.

[11] Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski,
Vitaly Nikolaev, and Jennimaria Palomaki. 2020. Tydiqa: A benchmark for
information-seeking question answering in ty pologically di verse languages.
Transactions of the Association for Computational Linguistics 8 (2020), 454–470.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
et al. 2021. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168 (2021).

[13] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman,
Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. 2019. Selection via
Proxy: Efficient Data Selection for Deep Learning. In International Conference on
Learning Representations.

[14] Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A survey on instance selection for
active learning. Knowledge and information systems 35 (2013), 249–283.

[15] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. Deep bayesian active
learning with image data. In International conference on machine learning. PMLR,
1183–1192.

[16] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300 (2020).

[17] Alex Holub, Pietro Perona, and Michael C Burl. 2008. Entropy-based active
learning for object recognition. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. IEEE, 1–8.

[18] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. 137–146.

[19] Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. 2019. Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning. Advances in
neural information processing systems 32 (2019).

[20] Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and Nanyun Peng. 2023. Active
Instruction Tuning: Improving Cross-Task Generalization by Training on Prompt
Sensitive Tasks. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. 1813–1829.

[21] Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, LichangChen, Ning Cheng, Jianzong
Wang, Tianyi Zhou, and Jing Xiao. 2023. From quantity to quality: Boosting
llm performance with self-guided data selection for instruction tuning. arXiv
preprint arXiv:2308.12032 (2023).

[22] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence maximization
on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering
30, 10 (2018), 1852–1872.

[23] Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng
Si, Junhao Liu, Tongliang Liu, Fei Huang, et al. 2023. One shot learning as instruc-
tion data prospector for large language models. arXiv preprint arXiv:2312.10302
(2023).

[24] Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu,
and Min Zhang. 2024. SelectIT: Selective Instruction Tuning for Large Language
Models via Uncertainty-Aware Self-Reflection. arXiv preprint arXiv:2402.16705
(2024).

[25] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. 2023. What
Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Se-
lection in Instruction Tuning. In The Twelfth International Conference on Learning
Representations.

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730–27744.

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[28] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[29] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[30] Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neu-
ral Networks: A Core-Set Approach. In International Conference on Learning
Representations.

[31] Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. 2019. Variational adversar-
ial active learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5972–5981.

[32] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay,
Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. 2022. Challenging big-bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261 (2022).

[33] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[34] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Stanford alpaca: An
instruction-following llama model.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[36] Sanh Victor, Webson Albert, Raffel Colin, Bach Stephen, Sutawika Lintang,
Alyafeai Zaid, Chaffin Antoine, Stiegler Arnaud, Raja Arun, Dey Manan, et al.
2022. Multitask prompted training enables zero-shot task generalization. In
International Conference on Learning Representations.

[37] Hongwei Wang and Jure Leskovec. 2020. Unifying graph convolutional neural
networks and label propagation. arXiv preprint arXiv:2002.06755 (2020).

[38] Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu.
2024. A Survey on Data Selection for LLM Instruction Tuning. arXiv preprint
arXiv:2402.05123 (2024).

[39] YizhongWang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al.
2024. How far can camels go? exploring the state of instruction tuning on open
resources. Advances in Neural Information Processing Systems 36 (2024).

[40] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khy-
athi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz
Beltagy, et al. 2023. How Far Can Camels Go? Exploring the State of Instruction
Tuning on Open Resources. arXiv preprint arXiv:2306.04751 (2023).

[41] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2022. Self-instruct: Aligning language model
with self generated instructions. arXiv preprint arXiv:2212.10560 (2022).

[42] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, AndrewMDai, and Quoc V Le. 2021. Finetuned LanguageModels
are Zero-Shot Learners. In International Conference on Learning Representations.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[44] Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submodularity in data subset
selection and active learning. In International conference on machine learning.
PMLR, 1954–1963.

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] QitianWu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang,
Yatao Bian, and Junchi Yan. 2024. Simplifying and empowering transformers for
large-graph representations. Advances in Neural Information Processing Systems
36 (2024).

[46] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi
Chen. 2024. Less: Selecting influential data for targeted instruction tuning. arXiv
preprint arXiv:2402.04333 (2024).

[47] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International conference on machine learn-
ing. PMLR, 5453–5462.

[48] Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua.
2024. Search-in-the-Chain: Interactively Enhancing Large Language Models
with Search for Knowledge-intensive Tasks. In Proceedings of the ACM on Web
Conference 2024. 1362–1373.

[49] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong
Shan, Zhi Yang, and Bin Cui. 2021. Rim: Reliable influence-based active learning
on graphs. Advances in Neural Information Processing Systems 34 (2021), 27978–
27990.

[50] Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin
Cui. 2021. GRAIN: improving data efficiency of gra ph neural networks via
diversified in fluence maximization. Proceedings of the VLDB Endowment 14, 11
(2021), 2473–2482.

[51] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[52] Zhi Zheng, Wenshuo Chao, Zhaopeng Qiu, Hengshu Zhu, and Hui Xiong. 2024.
Harnessing large language models for text-rich sequential recommendation. In
Proceedings of the ACM on Web Conference 2024. 3207–3216.

[53] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206 (2023).

[54] Yujia Zhou, Qiannan Zhu, Jiajie Jin, and Zhicheng Dou. 2024. Cognitive per-
sonalized search integrating large language models with an efficient memory
mechanism. In Proceedings of the ACM on Web Conference 2024. 1464–1473.

[55] Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, and Jundong Li. 2024. Collab-
orative large language model for recommender systems. In Proceedings of the
ACM on Web Conference 2024. 3162–3172.

A Proof for Theorem 1
We provide more details about the monotonicity and submodularity
properties for the proposed uncertainty-aware influence function
Φ(B). Given any B ⊆ B′ ⊆ V , we have

Φ(B) = |{𝑣 |𝐼𝑑 (𝑣𝑖 ,B, 𝑙) > 𝜖, 𝑣𝑖 ∈ V}|, (17)

Φ(B′) = |{𝑣𝑖 |𝐼𝑑 (𝑣𝑖 ,B′, 𝑙) > 𝜖, 𝑣𝑖 ∈ V}|. (18)

Clearly,Φ(B′) tends to covermore activated nodes thanΦ(B)when
B ⊆ B′, i.e., Φ(B) ≤ Φ(B′). Thus, function Φ(B) is monotonically
increasing.

In terms of submodularity, the function should satisfy Φ(B ∪
{𝑣}) − Φ(B) ≥ Φ(B′ ∪ {𝑣}) − Φ(B′). Here Δ = Φ(B ∪ {𝑣}) −
Φ(B) represents the additional influence gained by adding node 𝑣 .
Intuitively, it signifies the number of newly activated nodes, which
can be written as

Δ = |{𝑣 |𝐼𝑑 (𝑣𝑖 , 𝑣, 𝑙) > 𝜖, 𝐼𝑑 (𝑣𝑖 ,B, 𝑙) ≤ 𝜖, 𝑣𝑖 ∈ V}|. (19)

Similarly, we have

Δ′ = |{𝑣 |𝐼𝑑 (𝑣𝑖 , 𝑣, 𝑙) > 𝜖, 𝐼𝑑 (𝑣𝑖 ,B′, 𝑙) ≤ 𝜖, 𝑣𝑖 ∈ V}|. (20)

By definition 𝐼𝑑 (𝑣𝑖 ,B, 𝑙) = max𝑣𝑗 ∈B 𝐼𝑑 (𝑣𝑖 , 𝑣 𝑗 , 𝑙) we have

𝐼𝑑 (𝑣𝑖 ,B, 𝑙) ≤ 𝐼𝑑 (𝑣𝑖 ,B′, 𝑙), (21)

{𝑣 |𝐼𝑑 (𝑣𝑖 ,B′, 𝑙) ≤ 𝜖} ⊆ {𝑣 |𝐼𝑑 (𝑣𝑖 ,B, 𝑙) ≤ 𝜖}. (22)

As a result, we can obtain 𝜎 (B∪{𝑣})−𝜎 (B) ≥ 𝜎 (B′∪{𝑣})−𝜎 (B′).
In summary, the function 𝜎 (B) is both monotone and submodular.

Table 3: Efficiency analysis.

Module Flan V2 CoT Code-Alpaca
GSL (Time) 32 Min 35 Min 8 Min

GSL (Memory) 8.8 GB 10.5 GB 4.7 GB
IM (Time) 127 Min 84 Min 60 Min

IM (Memory) - - -

B Evaluation Setups
We elaborate on the evaluation setups utilized in our study. For the
MMLU dataset, we use the official MMLU prompts and evaluation
script, following the original MMLU configuration and employing
a zero-shot setting to assess performance. For the GSM and BBH,
we utilize Chain-of-Thought (CoT) prompting for model evaluation.
Specifically, we adopt 8 and 3 few-shot examples for GSM and BBH
respectively, where each CoT example include detailed reasoning
steps. Since GSM answers are numerical numbers, we extract the
last number from the model’s response as the answer. To accelerate
the evaluation process, we select a subset of 200 samples from
the 1,319 test examples, which was shown to have performance
similar to the full set previously [40]. For the BBH evaluation, we
extract the first word following the phrase “so the answer is” and
if this phrase was absent, we extract the entire response. For the
TydiQA dataset, as described in the PaLM 2 technical report [4],
we evaluate the model’s ability to answer multilingual questions
given the gold paragraph containing the answer (GoldP/GP). We
use one in-context example to help the model get familiar with the
answer format. Additionally, we employ the HumanEval dataset
from the Codex paper [7] to evaluate the model’s programming
capabilities. This dataset comprises 164 programming problems
where themodel is prompted to complete Python functions based on
their docstrings. Consistent with the original paper, we compute the
unbiased pass@10 estimate to evaluate the functional correctness
of the model’s output, with a temperature coefficient of 0.8.

C Efficiency Analysis
In this section, we examine the efficiency of the proposed graph
structure learning (GSL) module and influence maximization (IM)
module. Specifically, we adopt the total running time and GPU
memory usage as evaluation metrics. The results are reported in
Table 3. As can be seen, our approach only spend around two hours
for selecting 10% data from an instruction set containing 100,000
samples, which is efficient compared with instruction tuning stage,
e.g., fine-tuning LLaMA-2-7B on 100,000 instruction samples require
over 12 hours in practice.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

10

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Instruction Tuning
	2.2 Influence Maximization
	2.3 Problem Statement

	3 Methodology
	3.1 Overall Pipeline
	3.2 Instruction Graph Structure Learning
	3.3 Uncertainty-Aware Influence Estimation
	3.4 Instruction Data Selection
	3.5 Experimental Setup
	3.6 Performance Comparison
	3.7 Ablation Studies
	3.8 Parameter Sensitivity

	4 Related Works
	4.1 Instruction Tuning
	4.2 Data Selection

	5 Discussion and Future Work
	6 Conclusion
	References
	A Proof for Theorem 1
	B Evaluation Setups
	C Efficiency Analysis

