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Abstract

Large Language Models (LLMs) have shown
remarkable reasoning capabilities in mathemat-
ical and scientific tasks. To enhance complex
reasoning, multi-agent systems have been pro-
posed to harness the collective intelligence of
LLM agents. However, existing collaboration
structures are either predefined or rely on ma-
jority voting or round-table debates, which can
suppress correct but less dominant agent con-
tributions. Recent approaches model multi-
agent systems as graph networks but optimize
purely for agent performance, neglecting the
quality of interactions. We hypothesize that
effective agent communication is crucial for
multi-agent reasoning and that debating qual-
ity plays a significant role. To address this,
we propose OPTAGENT, a multi-agent verbal
reinforcement learning algorithm that dynami-
cally constructs and refines multi-agent collab-
oration structures. Our method defines action
spaces and a feedback mechanism that evalu-
ates communication robustness and coherence
throughout the debate. The final decision is
achieved through a majority vote over all the
agents. We assess OPTAGENT on various rea-
soning tasks, including mathematical reason-
ing, creative writing, scientific reasoning, and
numerical sorting. Results demonstrate that
our approach significantly outperforms single-
agent prompting methods and state-of-the-art
multi-agent frameworks on diverse tasks.

1 Introduction

Large Language Models (LLMs) have exhibited
significant potential in reasoning across various
downstream tasks, including elementary mathemat-
ical reasoning, and fundamental science reason-
ing (Brown et al., 2020; Dubey et al., 2024; Wei
et al., 2022; Wang et al., 2023b). Despite these
initial successes, existing methodologies necessi-
tate meticulously crafted prompt strategies that are
often fixed for certain tasks (Yao et al., 2023; Besta
et al., 2024). This approach lacks flexibility, as

the users have to define different prompts under
different scenarios, especially for complex reason-
ing tasks. A promising solution that mitigates the
challenge is to explore multi-agent frameworks that
capitalize on the strengths of LLM-based agents.
Researchers proposed many multi-agent reason-
ing frameworks that enable collaborative debates
among multiple LLM agents (Khot et al., 2022;
Yao et al., 2023; Wang et al., 2023a; Chen et al.,
2023a), which are akin to human group problem-
solving scenarios.

Despite these initial successes, existing multi-
agent LLM reasoning methods often follow pre-
defined or simple group chatting collaboration
structures. For example, AutoGen (Wu et al.,
2023) and ChatEval (Chan et al., 2023) employs
pre-defined collaboration structures; ReConcile
(Chen et al., 2023b) employs group discussion with
confidence-based consensus decision; MAD (Liang
et al., 2024) employs group debate with a meta-
summarizer as the decision-maker. These methods
do not account for the varying interactions of dif-
ferently profiled agents, nor do they optimize the
sequence of communications to ensure the most
effective information flow for specific tasks. As a
result, correct but less dominant agent contributions
could be overlooked. We believe the interaction
schemas should be more flexible and further opti-
mized for task-specific communication efficacy.

Recent trends in multi-agent collaboration em-
phasize using graph optimization techniques to en-
able flexible, task-adaptable coordination among
agents, enhancing efficacy and scalability in com-
plex environments. Specifically, GPT-Swarm
(Zhuge et al., 2024) conceptualizes the multi-agent
framework as a computational graph. The inspi-
ration is drawn from a "Society-of-Mind" concept
and highlights the communication and collabora-
tion among agents. For optimization, the authors
use reinforcement learning to optimize the agent
interactions. While previous methods show rea-



sonable performance, they tend to overlook the
agents’ debate quality, an important aspect of a
multi-agent framework. We hypothesize that the
interaction quality between the agents should also
play an important role in the optimization process.
More specifically, we believe the optimization al-
gorithms should also consider metrics like wording
clarity and logical coherency apart from agent per-
formance metrics.

To tackle the above challenges, we propose
OPTAGENT, an LLM-based Verbal Reinforcement
Learning framework for Graph Optimization on
multi-agent collaboration. The goal of OPTAGENT
is to find the most effective interaction patterns
in a multi-agent collaboration graph. OPTAGENT
explicitly considers communication quality when
identifying the most effective connections between
agents. To refine the multi-agent collaboration
structure, OPTAGENT contains a feecback agent
that evaluates the quality of the agent interactions
and an action agent that updates the multi-agent col-
laboration graph based on the feedback. The final
decision is achieved through a majority vote over
all the agents. We evaluate OPTAGENT on various
downstream reasoning tasks, including mathemati-
cal reasoning, scientific reasoning, creative writing,
and sorting tasks. Our experimental results demon-
strate that OPTAGENT significantly outperforms
single-agent prompting methods and state-of-the-
art multi-agent debating schemas on diverse rea-
soning tasks across various LLM families. We also
present a case study to illustrate the efficacy of our
framework.

2 Related Work

LLM Reasoning Prompting The field of large
language models (LLMs) has seen significant ad-
vancements in recent years, particularly in the
area of reasoning prompting. Various prompt
engineering methods have been developed, aim-
ing to improve large language models’ reason-
ing ability across various tasks and domains.
Chain-of-thought (CoT) prompting (Wei et al.,
2022) prompts the large language models (LLMs)
to divide their reasoning process into smaller
steps when solving a question, forming a chain
of thoughts. Chain-of-thought self-consistency
prompting (Wang et al., 2023b) improves on the
CoT method by proposing different reasoning
chains and ensembles on the final result. Tree-of-
thought (ToT) prompting method (Yao et al., 2023)

actively maintains a tree of thoughts, where each
thought is a coherent language sequence that serves
as an intermediate step toward problem-solving.
Graph-of-thought (Besta et al., 2024) further im-
proves ToT by constructing a Directed Graph in-
stead of a tree. LLMs can loop over a thought to
refine it and aggregate thoughts or chains. There
are also other X-of-thought prompting methods de-
veloped for various different downstream tasks and
datasets (Chen et al., 2023c; Sel et al., 2024; Bi
et al., 2024; Jin et al., 2024). Another notable con-
tribution to the field is the systematic survey on
prompting techniques by the Prompt Engineering
Guide (Schulhoff et al., 2024). This survey cate-
gorizes various prompting methods and their ap-
plications, emphasizing the importance of prompt
design in enhancing LLM reasoning.

Multi-Agent Reasoning Recent advancements
in large language model (LLM) multi-agent frame-
works have garnered significant attention in the
field of artificial intelligence. Studies such as (Wu
et al., 2023; Chen et al., 2023a; Lu et al., 2024)
have highlighted the impressive reasoning capa-
bilities of LLMs, which have been leveraged to
create autonomous agent systems that are capable
of complex problem-solving and perform better
than single agents.

The question is how researchers can design ef-
fective multi-agent reasoning frameworks. There
have been several studies and analyses on the ef-
ficiency and effectiveness of multi-agent debating
systems over reasoning tasks (Wang et al., 2023a,
2024; Pezeshkpour et al., 2024). However, most
of the interaction schemas and decision strategies
are either pre-defined (Wu et al., 2023; Chan et al.,
2023), or follow a simple structure such as group
debate, majority voting, summarizer decision, or
a combination of the above strategies (Chen et al.,
2023b; Liang et al., 2024; Chan et al., 2023). Re-
cently, several researchers from KAUST proposed
GPTSwarm (Zhuge et al., 2024), in which they
suggest that the multi-agent system can be con-
sidered as a graph network and thus their inter-
action patterns can be optimized by optimization
algorithms. They also conduct individual opti-
mizations on agents by conducting prompt opti-
mization. However, their optimization is heavily
performance-oriented, overlooking the debating
quality of the agents. This is something that should
also be considered in LLM free generation.



3 OPTAGENT Framework

3.1 Problem Definition

Given a problem P, and N LLM agents
Aq, Ag, ..., A;, our goal is to find the answer to
question P. We achieve this goal through using
LLMs as agents to conduct logical reasoning and
structured discussions. Each agent is a distinctly
prompted Large Language Model capable of gen-
erating the answer and the corresponding CoT rea-
soning process.

3.2 Framework Overview

In our setting, we view the multi-agent collabora-
tion framework as a graph. Each agent is a node
in the graph, denoted by A;; the communications
between agents are the edges, denoted by e;;. We
hypothesize that the interaction quality will be dif-
ferent for differently profiled agents, and the best
connection order would allow the best informa-
tion propagation pattern for a particular task. The
goal of OPTAGENT is to optimize the connections
between the agents and improve the overall perfor-
mance of the multi-agent collaboration framework.
Agents are assigned different profiles to ensure di-
verse reasoning, and initial connection probabilities
are calculated based on self-evaluated confidence
scores derived from a sample of ten problems.

In our verbal reinforcement learning process, we
design two meta agents, LLM,.cfiec; and LL M.
which handle reflection and action processes, re-
spectively. The training process involves selecting
connections based on probability scores and updat-
ing them through reinforcement learning. Finally,
a majority voting strategy is used to determine the
final answer after executing the graph.

3.3 Initial Graph Setup

Agent Profiling and Force Decoding Given a
group of LLM agents Ay, ...A;, we ensure similar
but different reasoning by assigning the agents with
the same baseline reasoning prompt but different
agent profiles in system prompts. There are a total
of 7 profiles that we assign, which we provide in
Appendix B. For the 3-agent and 5-agent scenarios,
we randomly select 3 and 5 profiles, respectively.
To promote versatility, we force the model to gener-
ate three different outputs for each agent profile and
randomly choose one of the outputs as its initial
answer to the input question.

Connection Probabilities Given a group of
agents Aq, ...A;, and possible connections between

the agents e1g, ..., e;;, we first get the group of
utility scores u(A;), which is the average self-
evaluated confidence score given by the agent A;
for the given task. We first randomly sample ten
problems from the dataset, collect the confidence
score from each agent on each question, and then
calculate the average confidence score u(A4;).

Then, we calculate the connection score of an
edge, s(ej;) = u(A;) * u(A;), which is deter-
mined by the utility score of the two connecting
nodes. We will update the connection scores dur-
ing the reinforcement learning process. Based on
all of the connection scores, we assign the proba-
bility, p(e;j) = ei;j/sum(e;;) to each connection
ei;, which is the proportion of the connection score
of e;; to the sum of the connection scores. The
probabilities will serve as selection references in
the first epoch of our training process.

3.4 Verbal Reinforcement Learning

Inspired by the Reflexion framework (Shinn et al.,
2023), we design an LLM self-controlled verbal
optimization for graph generation. First, we design
two meta agents: LLM,.fiect and LLM . We
also create a set of action spaces that LL M ,.; can
choose from to alter the current graph network.

Reflection LL M,y is responsible for gener-
ating reflection text after LL M, makes a con-
nection between two agents (A;, A;). To generate
the feedback, LLM,fcc+ takes in the reasoning
arguments of A; and A; before and after the inter-
action process. Then, the reflection text is passed
on to LLM,. to guide its decision-making pro-
cess. Specifically, the feedback that LL M, fiect
generates is determined by two criteria:

¢ Criterion 1: Both agents should answer the ques-
tion correctly after making the connection;

* Criterion 2: Agents should be logical and coher-
ent in their reasoning process.

For the first criterion, LL M, fjec+ checks whether
the connection helps agent A; and A; with answer-
ing the question. If both agents got the answer
correct, then LL M, f10¢ Will give positive feed-
back. For the second criterion, LLM,..f;ct checks
whether the logical chains are sound and valid. If
both agents demonstrate good reasoning quality
during the interaction process after seeing each
other’s reasoning, LL M, fjc; Will give out good
feedback. Otherwise, LLM,.fc.+ Will have nega-
tive feedback on the connection (A4;, A;). Detailed
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Figure 1: Overview of OPTAGENT framework. The overall pipeline is on the left side; example process for verbal

reinforcement learning process is shown on the right.

instruction prompts for LLM;. e+ are provided
in the Appendix B.

Action LLM,. is responsible for conducting ac-
tions at each step, from the pre-defined action pool:

* Make a connection between the two agents
(A, Aj) to initiate debate;

* Keep a previously made connection (A4,,, A,,);

* Delete a previously made connection between
the two agents (A,,, A,,) to prohibit debate.

Firstly, after L L M, receives the verbal feedback,
it will make a decision to keep or delete the previ-
ously made connection. For instance, if LLM
decided to make a connection (A4;, A;) but conse-
quently received negative feedback in this round,
then L LM, would then remove the connection.
We decrease their connection score s(e;;) for re-
moved connections, which will not be included
in this training epoch’s graph construction. If
LLM,q receives positive feedback, it will keep
the connection (A;, A;) in the graph, and we in-
crease the connection score s(e;;).

After the decision, L LM, makes a connection
that hasn’t been explored during the current train-
ing epoch. The result of the newly created connec-
tion will be evaluated and passed on to LLM, . fiect
for the next round of reflection text generation.

3.5 Training Process

To start the Reinforcement learning process, we ran-
domly select a connection (A4,,, A,,) based on the
probability score of the connections from the above-
mentioned optimization section. At later epochs,

L LM, is responsible for choosing a connection
(A;, A;) based on the each agent’s profile as well
as the connection scores. After LLM,.; takes ac-
tion, we execute the debate process between A;
and A;, and then pass the results to LLM,cfiect
for feedback, which is then given to LL M, for
decision-making. We update the connection score
e;; after LL M, has decided whether to keep the
connection (A;, A;); the connection score e;; is
increased if LLM,. chooses to keep it and de-
creases otherwise. We repeat the above process
in each training epoch until every connection is
visited once for an update.

3.6 Inference Process

After the framework is trained with the connec-
tion weights updated, we construct the final graph
before doing inference.

Graph Construction Connections are estab-
lished based on the connection scores e;;. Con-
nections with higher scores are established first.
The construction process continues until all agents
have been visited. We define the information flow
within the graph as complete when each agent A;
has interacted with at least one other agent A;.

Inference At the inference phase, we first gather
the responses from each agent after executing the
connections in order. The final decision is deter-
mined using a majority voting strategy as the fi-
nal answer Ansyfing = mode(Ansi, ..., Ansy),
where Ansi, ..., Ans, are answers provided by dif-
ferent agents in the collaboration graph.



Model Prompt Framework GSMSK AdvGSM- AdvGSM- AdvGSM- GSM- MATH
Class Type M3 M2 M1 PLUS
DirectIO 35.0 52.0 28.0 15.0 27.0 8.0
Single Agent 0-Shot CoT 73.0 87.0 75.0 30.0 59.0 22.0
ToT 80.0 89.0 76.0 30.0 61.0 25.0
Simple Debate 71.0 90.0 79.0 31.0 62.0 25.0
3-Asent GPT-Swarm 79.0 91.0 81.0 33.0 62.0 28.0
& ReConcile 81.0 90.0 80.0 34.0 64.0 29.0
GPT-3.5-turbo Turbo
OPTAGENT 82.0 91.0 82.0 34.0 65.0 29.0
Simple Debate 78.0 91.0 82.0 33.0 62.0 30.0
5-Agent GPT-Swarm 80.0 93.0 85.0 35.0 67.0 32.0
-Age ReConcile 82.0 94.0 86.0 36.0 66.0 33.0
OPTAGENT 87.0 96.0 86.0 38.0 67.0 34.0
Simple Debate 97.0 98.0 85.0 420 86.0 41.0
GPTdo 5-Agent GPT-Swarm 97.0 98.0 87.0 44.0 88.0 42.0
ReConcile 98.0 99.0 87.0 44.0 89.0 42.0
OPTAGENT 98.0 98.0 88.0 45.0 88.0 45.0

Table 1: Main results table on Math Reasoning Task. The best-performing methods on each dataset under each
number-of-agent scenario are bolded, and the second-bests are underlined.

Multi-Agent Framework GSMSK  GSMSK-M3 GSM8K-M2 GSMS8SK-M1 GSM-PLUS MATH
3 GPT-3.5-turbo 82.0 91.0 82.0 34.0 65.0 29.0
1 LLaMa3.1 70B + 2 GPT-3.5-turbo 83.0 87.0 84.0 35.0 63.0 33.0
2 LLaMa3.1 70B + 1 GPT-3.5-turbo 84.0 83.0 73.0 34.0 61.0 34.0
3 LLaMa3.1 70B 92.0 71.0 56.0 26.0 62.0 33.0

Table 2: Mixture of Model Ablation Task. All the multi-agent frameworks are optimized with OPTAGENT.

4 [Experiments

4.1 Experimental Setup

Dataset and Tasks We experiment OPTAGENT
on four downstream tasks: math reasoning, creative
writing, science reasoning, and sorting. All exper-
iments were tested on publicly available datasets.
For the math reasoning task, we use two datasets:
GSMS8K (Cobbe et al., 2021), which contains
grade school arithmetic questions, and MATH
(Hendrycks et al., 2021), which contains high
school level mathematical questions spanning six
different fields. We also include two adversarial
reasoning datasets that are built on GSM8K: Adver-
sarialGSM (Xie et al., 2024) in which we will refer
to as AdvGSM in Table 3, and GSM-PLUS (Li
et al., 2024). AdvGSM contains questions that are
changed only in number magnitude, and have three
levels of difficulties, with M3 being the easiest us-
ing same magnitude with GSM8K, and M1 being
the hardest. For each of the reasoning datasets ex-
cept AdvGSM, we randomly select 100 questions
from the dataset for evaluation. For AdvGSM, we
randomly select 100 questions from each magni-
tude for evaluation. For creative writing, we follow
the setup in (Yao et al., 2023), where we test on 10
examples. For sorting, we randomly generate 100

numerical sequences at length 8, 16, 32.

Model and Implementation We experiment the
baselines and OPTAGENT utilizing GPT-3.5-turbo
(Brown et al., 2020), GPT-40 (OpenAl, 2023), or
the LLaMa 3.1-70B model (Dubey et al., 2024).
We direct call model APIs for prompting. For all
models, We set the temperature to 0.5, and topy,
to 1.0. For GPT-Swarm and OPTAGENT, we use
a total of three data points to train the framework.
All agents, including the baselines, are prompted
with the 0-shot CoT prompt. We train OPTAGENT
on three randomly sampled data points from the
dataset and report the performance on randomly
sampled evaluation datasets mentioned before. We
use majority voting as our final decision strategy
and a random choice when there is a tie. We pro-
vide a cost analysis under the 5-agent scenario for
some baselines in AppendixC.

Baselines We compared OPTAGENTwith six
single-agent prompting methods and state-of-the-
art multi-agent baseline methods as below:

* Single Model Prompts in which we include 3
prompts: DirectlO, where we ask the model
for a direct answer without explanations; 0-Shot
CoT, where we ask the model to provide step-



Number of Agents  Framework Type GSMSK GSMS8K-M3  GSMS8K-M2 GSMSK-M1 GSM-PLUS MATH

Simple Debate 77.0 90.0 79.0 31.0 62.0 25.0
3-Agent +Profiling 82.0 (+5.0) 90.0 (+0.0) 82.0 (+3.0) 33.0 (+2.0) 64.0 (+2.0) 29.0 (+4.0)
OPTAGENT 82.0 (+5.0) 91.0 (+1.0) 82.0 (+3.0) 34.0 (+3.0) 65.0 (+3.0) 29.0 (+4.0)

Simple Debate 78.0 91.0 82.0 33.0 62.0 30.0
5-Agent +Profiling 83.0 (+5.0) 94.0 (+3.0) 84.0 (+2.0) 35.0 (+2.0) 66.0 (+4.0) 31.0 (+1.0)
OPTAGENT 87.0 (+9.0) 96.0 (+5.0) 86.0 (+4.0) 38.0 (+5.0) 67.0 (+5.0) 34.0 (+4.0)

Simple Debate 78.0 92.0 81.0 34.0 62.0 30.0
7-Agent +Profiling 83.0 (+5.0) 95.0 (+3.0) 85.0 (+4.0) 35.0 (+1.0) 65.0 (+3.0) 31.0 (+1.0)
OPTAGENT 85.0 (+7.0) 98.0 (+6.0) 86.0 (+5.0) 37.0 (+4.0) 68.0 (+6.0) 33.0 (+2.0)

Table 3: Performance of OPTAGENT on GPT-3.5-turbo under 3, 5, and 7-agent scenarios. "Simple Debate" refers
to agents debating without profiles and forced generation. "+Profiling" refers to debating with added profiles.
OPTAGENT contains both Profiling and Verbal Reinforcement Learning. We bold the best performing variant. The
deltas stand for differences between variant from simple debate baseline.

by-step reasoning without providing any demon-
strating examples; ToT, where we follow (Yao
et al., 2023) and implement their framework.

Simple Debate, where we initiate several in-
stances of non-profiled agents with the same
0-shot CoT prompt. The agents are provided
with each other’s reasonings and answers, and
are asked to reflect on their own reasoning. We
let models debate for 2 rounds and utilize a ma-
jority voting to decide the final answer.

GPTSwarm (Zhuge et al., 2024), where we fol-
low the original implementation. We train the
framework using three randomly sampled data
points from the dataset and report the perfor-
mance.

ReConcile (Chen et al., 2023b), where we fol-
low the original implementation, using GPT-3.5-
turbo and gpt-40 models as backbone, respec-
tively. We report their performance in mathemat-
ical reasoning datasets.

4.2 Evaluation Metrics

Math and Science reasoning We report the per-
formance in terms of accuracy following prior
benchmarks and papers. The datasets include
GSMB8K, AdvGSM, GSM-PLUS, MATH, ARC
and GPQA. We report the detailed post-processing
and evaluation description in appendix.

Creative Writing We follow the metrics in (Yao
et al., 2023) and report the performance in terms
of Coherence score, which another GPT-4 model
evaluates. We provide the evaluation prompt in
Appendix B.

Sorting We follow the metrics in (Besta et al.,
2024) and report the performance in terms of error

scope, defined by the sum of the number of wrongly
sorted elements and missing elements.

4.3 Main Results

Math Reasoning We compare OPTAGENT with
multi-agent simple debating baselines on Math
Reasoning datasets in Table 1. The backbone
LLMs include GPT-3.5-turbo and LLaMa 3-
70B. OPTAGENT performs better on the original
datasets like GSM8K and MATH than the simple
debating baselines, and significantly outperforms
the single-agent baselines. The performance in-
crease is more prominent in 5-agent scenarios com-
pared with 3-agent scenarios, where OPTAGENT
demonstrates marginal improvements compared
with the baseline models.

We present two adversarial datasets in column
5 to 8. Column 5 to 7 are from (Xie et al.,
2024), where "M" stands for magnitude in num-
bers, and smaller numbers means greater magni-
tude. OPTAGENT demonstrates robustness in the
adversarial math reasoning datasets, outperforming
the baseline scheme and frameworks by a similar
margin compared with the original datasets.

We also conduct experiments on the mathemat-
ical datasets with GPT-40 as the backbone model.
With enhanced reasoning ability, even the simple
debating method performs near-perfectly on basic
math reasoning datasets. We still see a performance
increase using the multi-agent debating frame-
works on more challenging datasets. OPTAGENT
shows the best performance on the MATH dataset,
which is the most challenging dataset in the test
bank, scoring 3 points over the best baseline.

Creative Writing Results for creative writing
task is reported in Figure 2. OPTAGENT demon-
strates superiority over simple debating in terms of
coherency. Our multi-agent framework achieves
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Figure 2: Results on Creative Writing, measured in
terms of coherence scores.

slightly better performance than Tree-of-Thought,
which used a single model to explore different
branches. Similar to what we discovered in the
mathematical reasoning tasks, increasing the agents
only has marginal improvement, and adding more
agents from 5 to 7 does not seem to help with
the performance of the multi-agent framework.
OPTAGENT increase the coherence score by an
average of at least 0.1 points across different set-
tings under this task. The best-performing scenario
is under the 5-agent setting, where we score an
average of 7.5 points for coherence score.

4.4 Ablation Study

Effects of Profiling and Forced Generation We
present a more detailed performance report of
OPTAGENT on GPT-3.5-turbo in Table 3. Com-
pared with simple debating, profiling the agents
and forcing them to give out diversified answers
provide the most prominent improvement, with an
average of 5 points improvement on GSMS8K, and
an average of 2 points on more complex datasets,
such as AdvGSM and MATH. OPTAGENT further
add to the performance by doing only profiled de-
bate by an average of 2.5 points across the datasets.
The improvement is most significant in the 5-agent
scenario, where we have an average 6.5-point per-
formance increase on more straightforward math
reasoning datasets and an average 4.5 point in-
crease for a hardest subset of AdvGSM and MATH.

Number of Agents From Table 3, we see that
the performance enhancement is at its best in 5-
agent scenarios, where we have an average of 4.8
point improvement compared with simple debating
baseline. There’s a small amount of improvement
going from 3-agent to 5-agent in most datasets;

Robust Reasoner

Explainer 4 Logical Thinker

Deductive Reasoner

Expert

Figure 3: Case Study on the agent interaction graph.
Numbers beside the connections signify the order of
the interactions made. The collaboration frameworks is
trained on the GPT-PLUS dataset.

but for the 7-agent scenario, we find that adding
more agents does not seem to help with answering
the questions compared with using 5 agents. One
possible reason is that although we facilitate debate
by assigning different agents that output different
answers, the possible answers that the same type
of model could cover are still limited. We provide
a more detailed analysis in later sections.

Mixture of Models as Agents We study the ef-
fect of mixing two different backbone models as
agents in OPTAGENT. We conduct the experiment
in the 3-agent setting. Table 2 shows the results
of using different backbone models as agents in
OPTAGENT. On original math datasets such as
GSMS8K and MATH, where LLaMa performs com-
paratively well as GPT-3.5-turbo, OPTAGENT’s
performance stays the same when the majority
backbone model changes. On adversarial datasets,
we observe that the performance of using GPT-3.5-
turbo as the backbone model is better than using
LLaMa3.1 as the backbone model. This suggests
that the communication quality is heavily affected
by the performance of the backbone models.

4.5 Case Study: Generated Graphs

We provide a case study of the graphs in Figure
3. This graph is trained on GSM-PLUS, a grade-
school-level adversarial mathematical reasoning
dataset. Since the Explainer agent has the best ex-
plaining ability on its reasoning steps, we first let
the explainer and the expert talk with each other.
This interaction is the most promising and could
produce the most fruitful results. Then, we let the
Expert agent communicate with the Robust Rea-
soner agent, which is similar to the previous debat-
ing process and helps clear the logic for both ends.



Scenario GSMSK GSM8K-M3  GSMSK-M2  GSMSK-M1  GSM-PLUS MATH
OPTAGENT 87.0 96.0 88.0 38.0 68.0 34.0
3-Trial UpperBound  90.0 (+3.0) 95.0 (-1.0) 90.0 (+2.0) 37.0 (-1.0) 78.0 (+10.0) 38.0 (+4.0)
5-Trial UpperBound  92.0 (+5.0) 98.0 (+2.0) 92.0 (+4.0) 38.0 (+0.0) 80.0 (+12.0)  41.0(+7.0)
7-Trial UpperBound  92.0 (+5.0) 99.0 (+3.0) 92.0 (+4.0) 40.0 (+2.0) 80.0 (+12.0)  42.0 (+8.0)

Table 4: UpperBound analysis on GPT-3.5-turbo; Scenario for OPTAGENT represent the best performance under all
the numbers of agents settings. The deltas marks the difference between upperbounds and OPTAGENT performance.

The Explainer then moves on to exchange its ideas
with the Logical Thinker and Robust Reasoner, and
the latter two agents then coordinate after the Ex-
plainer fully elaborates its thoughts. The deductive
reasoner has the least connection, where the ex-
plainer agent exchanges its idea with the deductive
reasoner at the end. Our graph construction process
ends after all agents have been visited.

4.6 Upper Bound Analysis

We provide the upper bound statistics for GPT-3.5-
turbo in Table 5. This upper-bound is calculated
by the "choose-best" strategy, which, if the model
gets the correct answer at one of the trials, then we
count the problem as correctly solved. We found
that for easier datasets, including GSMS8K and the
easiest adversarial change for GSM8K, the upper-
bound is a full mark. In other words, for every
question, if we force the model to generate differ-
ent outputs, at least one of the outputs will contain
the correct answer. On harder tasks such as MATH,
we see that the upper bound is dramatically lower,
suggesting that the backbone model struggles to
get this question correctly even after multiple tries.

4.7 Additional Reasoning Tasks

We provide our experiment results for science rea-
soning and sorting in Table 5 in the appendix.

Science Reasoning Datasets like ARC contains
questions that does not require step-by-step reason-
ing, but direct knowledge retrieval. We provide a
comparison between the problem in ARC dataset
and GSMB8K dataset in Table 6. For these questions,
the model’s knowledge base and understanding of
the questions are more important than the logical
reasoning process. If the question is not in the
model’s knowledge base, involving more agents of
the same type won’t help. On more challenging
datasets such as GPQA, we find that the base back-
bone model’s reasoning ability significantly drags
down the overall performance of OPTAGENT. We
have difficulty forming coherent reasoning and ar-

guments for most complex science questions even
after different agents communicate.

Sorting Sorting task requires the base backbone
model to have good planning ability. We find that
asking the model to output its final sorted list di-
rectly outperforms CoT reasoning in shorter-list
scenarios. Any attempt asking the model to out-
put its reasoning process would decrease its per-
formance. As the number of elements in the list
increases, we notice that the model often fails to
recover all aspects after sorting the list. Also, the
debate between agents is not effective. Due to the
planning nature of the task, the model often strug-
gles to generate good explanations and reasoning
for each of its steps, which poses a significant hur-
dle when agents have discussions. In complex plan-
ning tasks, the more promising direction would be
to design task-specific prompts and structures that
takes any task unique characters into consideration.

5 Conclusion

This paper proposes OPTAGENT, an LLM-based
Verbal Reinforcement Learning framework for
Graph Optimization on multi-agent collaboration.
OPTAGENT explicitly considers communication
quality when identifying the most effective connec-
tions between agents. To dynamically refine the
multi-agent collaboration structure, OPTAGENT
contains a feedback agent that evaluates the quality
of the agent interactions and an action agent that
updates the multi-agent collaboration graph based
on the feedback. The final decision is achieved
through a majority vote over all the agents. We
evaluate OPTAGENT on several downstream rea-
soning tasks, including mathematical reasoning,
scientific reasoning, creative writing, and sorting
tasks. Our experimental results demonstrate that
OPTAGENT significantly outperforms significantly
outperforms single-agent prompting methods and
state-of-the-art multi-agent frameworks on diverse
tasks. Detailed analysis highlights the needs for
task-specific designs for complex planning tasks.



Limitations

Potential Risk We acknowledge that due to the
inherent training and dataset bias of the base back-
bone models, and our incomplete controls of the
models, our framework could potentially produce
harmful content.

Limited Experiments Due to computational cost
and timeconstraints, our experiments was con-
ducted on a limited number of tasks and datasets,
with a randomly chosen subset. Our conclusions
and analysis could be further enhanced by testing
on more tasks and datasets.

Computational Cost OPTAGENT relies on initi-
ating multiple model instances and requires mul-
tiple prompts per round. The repetitive callings
impose heavy time and output token costs for
OPTAGENT.

Model Reasoning Ability Dependency The abil-
ity of multi-agent framework is heavily influenced
by the ability of the individual backbone models.
Framework performance and optimization effec-
tiveness could vary between models and datasets.

Incomplete Control Over Models For the API-
based models, we note that we do not possess com-
plete control over their behavior, and the proba-
bility and confidence estimations are post-hoc in
nature.

Ethics Statement

This research adhered to the ethical standards and
best practices outlined in the ACL Code of Ethics.
Language Models can sometimes produce illogi-
cal or inaccurate reasoning paths, so their outputs
should be cautiously used. The outputs are only
examined to understand how a model arrives at
its answers and investigate why it makes certain
errors. All experiments used publicly available
datasets from previously published works and did
not involve ethical or privacy issues.
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A Additional Tasks

GSM Question ARC Question

Janet’s ducks lay 16 eggs
per day. She eats three
for breakfast every morn-
ing and bakes muffins for
her friends every day with
four. She sells the remain-
der at the farmers’ market
daily for $2 per fresh duck
egg. How much in dollars
does she make every day
at the farmers’ market?

Which of the following
statements best explains
why magnets usually stick
to a refrigerator door?

Given the interaction between two agents
, and the feedback for the
interaction, decide whether the
interaction should be kept or not.
Your decision should be either 'keep
' or 'delete'. Your answer should
follow the following format: '
DECISION: ###your\_decision###"'.
Response from Agent{agentl_num}:
responsel}; Response from Agent{
agent2_num}: {response2}; Feedback
from meta agent: {feedback}

{

Prompt2 for LLM,;

Table 6: Question comparison between GSM8K and
ARC.

Even though our multi-agent framework achieves
some improvement over the math reasoning and
the creative writing task, all multi-agent interac-
tion schemes, including multi-agent debate and our
optimization method, fail to enhance performance
over the science reasoning task and the sorting task.
The results are shown in Table 5

B Prompt Templates

B.1 Verbal Reinforcement Learning Meta
Agents

Prompt for LLM,,

Given a question, the golden answer, and
interactions between two agents,
generate some feedback on the
quality of the interaction. Your
feedback should consider two
standards: 1. Whether the agents got
the answers correctly. The debate
is not fruitful if either agents got
the question wrong. 2. whether the
agents' reasoning chains are logical
and convincing. Specifically, are
the steps logically connected and
easy to follow? Are there any
inconsistencies or contradictions?
Did the agent explain its reasoning
well? Question: {question} Golden
Answer: {answer} Previous response
from Agent{agentli_num}: {responsel};
Previous response from Agent{
agent2_num}: {response2}; Response
from Agent{agentl_num} after
interaction: {responsel}; Response
from Agent{agent2_num} after
interaction: {response2}

Promptl1 for LLM

r

Given a list of unexplored connections
between agents and their connection
score, choose from one of the
connections for the agents to
interact. Your action should follow
the following format: 'make
connection (@, 1)'. Your answer
should follow the following format:
"ACTION: ###your_action###".
Unexplored connections: {
matrix_connect}

B.2 Agent Profiles

Explainer

You are a {task} explainer focused on
breaking down complex questions/
tasks into simple, understandable
steps. Your goal is to answer the
question/solve the task by providing

clear, step-by-step explanations.

Expert

You are a {task} expert with extensive
knowledge in the {task}. Your role
is to provide accurate and detailed
solutions. Ensure your explanations
are thorough and precise.

Logical Thinker

You are a logical thinker who excels at
breaking down complex problems into
logical steps. Your role is to
approach {task} methodically,
ensuring each step follows logically

from the previous one. Focus on
clear, logical reasoning and
consistency.
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Robust Reasoner

You are a robust reasoner who excels at
tackling complex {task} with
thorough and resilient reasoning.
Your role is to ensure that every
step of the problem-solving process
is meticulously verified and
logically sound. Focus on providing
precise justifications for each step




Setting ARC GPQA  Sorting: 8-Number  Sorting: 16-Number  Sorting: 32-Number
DirectIO 68.0 23.0 0.0 0.0 5.2
0-Shot Chain of Thought 84.0 25.0 0.1 1.0 7.0
3-Agent Debate 82.0 27.0 0.1 0.9 6.2
3-Agent OPTAGENT 82.0 27.0 0.1 0.9 6.1

Table 5: Science Reasoning and Sorting Performance

Your goal is to develop solutions
that are not only correct but also
robust and reliable.

Deductive Reasoner

You are a deductive reasoner who uses
deductive logic to derive
conclusions from given premises.
Your task is to apply logical rules
and principles to reach sound
conclusions, ensuring each step is
justified by the previous one.\

Analytical Reasoner

B.4 Question Prompt for Math and Science
Reasoning

Given a question, give our your
reasoning process and the final
answer. MMake sure to include your
final answer in the format: ###
your_answer ###. Give our the answer

in numerical format. Question: {
question}. Think Step by Step.

B.5
Task Prompt

Creative Writing

You are an analytical reasoner who
excels at breaking down complex
problems into smaller, more
manageable parts. Provide precise,
step-by-step reasoning for each part

of the problem, clearly explaining
the logic and methodology behind
each step.

Write a coherent passage of 4 short
paragraphs. The end sentence of each
paragraph must be: {input}. Make a
plan then write. Your output should
be of the following format: 'Plan:
Your plan here. Passage: Your
passage here'.

Evaluation Prompts

Intuitive Reasoner

You are an intuitive reasoner who relies

on intuition and insight to solve
problems. Your role is to trust your
instincts and use your natural
understanding of {task} to find
solutions. Provide precise, step-by-
step reasoning for each part of the
problem, clearly explaining how your
intuition guides you through each
step.

Analyze the following passage, then at
the last line conclude "Thus the
coherency score is {s}", where s is
an integer from 1 to 10.

B.6 Prompt for Sorting

B.3 Debating Prompt

Given another potential answer and
reasoning given by another agent,
recheck your reasoning and answer.
If you think your previous answer is

wrong, provide the correct answer
and your reasoning for it. If you
think your previous answer is
correct, explain why it is correct.
Make sure to include your final
answer in the format: ###your_answer
###. Response from another agent: {
responsel}

<Instruction> Sort the following list of
numbers in ascending order. You can
generate any intermediate lists,
but the final output should be the
sorted list of numbers, prefixed
with "Output: ". </Instruction><
Approach>To sort the list of numbers
follow these steps: 1. Split the
list of numbers into two to four
unsorted sublists, each containing
an equal number of elements from the
original list (make sure they don't
overlap). 2. Sort each of the
unsorted sublists. 3. Merge the
sorted sublists into a single sorted
list using the merging algorithm
from merge sort.</Approach>
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C Cost Analysis

We provide a cost estimation table for all tested
frameworks under the 5-agent scenario. For Ad-




Framework Type Dataset and Setting  Prompt Tokens = Completion Tokens  Estimated Cost (USD)
GSM8K 40786 12097 0.038
OPTAGENT: Training AdvGSM 127349 38451 0.121
GSM-PLUS 41502 11834 0.039
MATH 80286 25003 0.078
GSM8K 223159 109008 0.275
OPTAGENT: Inference AdvGSM 814637 417360 1.033
GSM-PLUS 272091 139403 0.345
MATH 520376 276451 0.675
GSMBK 451063 92307 0.364
ReConcile Inference AdvGSM 1305208 269035 1.056
GSM-PLUS 435095 89339 0.352
MATH 851101 250936 0.802
GSM8K 352690 90023 0.311
Simple Debate Inference AdvGSM 1103691 290367 1.001
GSM-PLUS 360175 92036 0.318
MATH 780312 247603 0.762

Table 7: Cost estimation for tested models for GPT-3.5-turbo under 5-Agent scenario.

vGSM, the results are combined for all three mag-
nitudes. OPTAGENT takes more resources to train
on more challenging and lengthy tasks such as
MATH compared with less challenging tasks such
as GSM8K. Compared with the two debating base-
lines, OPTAGENT is more costly in input tokens but
less expensive in output tokens. This is due to the
pairwise connections in OPTAGENT: the agents are
provided with much less input from other agents,
but their reasoning output is about the same.

D Data Processing and Evaluation

For all reasoning datasets, we follow the conven-
tions of previous papers and report the performance
in accuracy, which is the ratio of the number of
questions the model got correct against all tested
questions. For answer parsing and post-processing,
we ask the model to output a specific format, and
use the parsing scripts provided with the origi-
nal dataset’s code repository. When random sam-
pling the evaluation datasets, for MATH and GSM-
PLUS, we notice that there are different types of
questions and the model’s performance varies with
types. For MATH and GSM-PLUS, we randomly
sample 14 questions from each of the 7 categories,
and then randomly sample 2 questions from the
remaining test set. There is a "critical thinking"
category in GSM-PLUS, but we omit this as base
model have very low performance on the sub cate-

gory.
E Usage of AI Assistant

In this paper, we used chatGPT and coPilot to help
with grammar mistakes and writing fluency only.

13



	Introduction
	Related Work
	OptAgent Framework
	Problem Definition
	Framework Overview
	Initial Graph Setup
	Verbal Reinforcement Learning
	Training Process
	Inference Process

	Experiments
	Experimental Setup
	Evaluation Metrics
	Main Results
	Ablation Study
	Case Study: Generated Graphs
	Upper Bound Analysis
	Additional Reasoning Tasks

	Conclusion
	Additional Tasks
	Prompt Templates
	Verbal Reinforcement Learning Meta Agents
	Agent Profiles
	Debating Prompt
	Question Prompt for Math and Science Reasoning
	Creative Writing
	Prompt for Sorting

	Cost Analysis
	Data Processing and Evaluation
	Usage of AI Assistant

