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Abstract

Elicitation of user preferences is an effective way to improve the quality of recommenda-
tions, especially when there is little or no user history. In this setting, a recommendation
system interacts with the user by asking questions and recording the responses. Various cri-
teria have been proposed for optimizing the sequence of queries to improve understanding
of user preferences, and thereby the quality of downstream recommendations. A compelling
approach is expected value of information (EVOI), a Bayesian approach which computes
the expected gain in user utility for possible queries. Previous work on EVOI has focused
on probabilistic models of user preferences and responses to compute posterior utilities.
By contrast, in this work, we explore model-free variants of EVOI which rely on function
approximation to obviate the need for strong modeling assumptions. Specifically, we pro-
pose to learn a user response model and user utility model from existing data, which is
often available in real-world systems, and to use these models in EVOI in place of the
probabilistic models. We show promising empirical results on a preference elicitation task.
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1. Introduction

Recommendation systems (RSs) are crucial in making massive amounts of online content
accessible to users in domains such as e-commerce, news, movies, videos, and others (Abel
et al., 2011; Hallinan and Striphas, 2016; Linden et al., 2003; Pal et al., 2020; Covington
et al., 2016). They typically leverage past user interactions to learn about a user’s pref-
erences and improve their future recommendations. However, in many cases, information
about such preferences is lacking. For example, new users do not have enough interactions
in their history. Alternatively, privacy considerations may prevent recording past interac-
tions altogether. This is known as the cold-start problem (Lam et al., 2008; Bobadilla et al.,
2012). In addition, past interactions may not always represent the user’s taste accurately,
such as when they share their account with others or their preferences change. In such
cases, it may be challenging to accurately infer the user’s true preferences.

Rather than relying solely on behavioral data, preference elicitation (PE) can be used
to increase user agency by allowing them to communicate their true preferences (Keeney
and Raiffa, 1976; Salo and Hamalainen, 2001; Rashid et al., 2008). In this setting, the RS
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presents queries to the user. Various types of queries can be used for PE. For example, we
can ask the user about individual items (“Do you like movie X?”) or comparisons (“Do
you prefer movie X to Y ?”). In this work, we focus on attribute-based queries (e.g., “Do
you like science fiction movies?”).

The central challenge, then, is how to select queries. This is a sequential decision
problem, since the value of a query (hence its choice) at any point may be influenced by
subsequent queries and responses. Several approaches for query optimization have been
proposed in the literature. For example, maximum information gain uses a distribution
over user preferences and selects the query whose expected response maximizes some mea-
sure of information (Rokach and Kisilevich, 2012; Zhao et al., 2018; Canal et al., 2019),
as do related entropy-based methods Abbas (2004). Bourdache et al. (2019) proposes an
approach based on Bayesian logistic regression. Alternative approaches include polyhe-
dral/volumetric methods Iyengar et al. (2001); Toubia et al. (2003); ellipsoidal algorithms
Salo and Hamalainen (2001) methods; and minimax-regret-based techniques Boutilier et al.
(2006); Braziunas and Boutilier (2010); Boutilier (2013).

In this work we focus on expected value of information (EVOI). EVOI selects queries by
considering the expected improvement of downstream recommendation quality for each can-
didate query (Howard and Matheson, 1984; Guo and Sanner, 2010; Viappiani and Boutilier,
2010; Vendrov et al., 2020). It is a Bayesian approach that requires maintaining a proba-
bilistic user model and computing a posterior distribution for user utility. For example, a
user can be modeled as a multivariate Gaussian distribution in embedding space. However,
even for such simple distributions, the posterior is intractable and requires approximations.
As an alternative, we propose a model-free approach that does not make strong assump-
tions about the user distribution. Specifically, we show that it is possible to directly train
predictive models from observational data and use their predictions for all required EVOI
computations.

2. Model-Based Preference Elicitation

Let Q be the a set of queries, Rq be a set of responses to q ∈ Q, and X be a set of items.
Let U ⊆ Rd be a set of users, modeled as points in an embedding space. The user response
model specifies the probability P (r|q, u) of u ∈ U responding to q ∈ Q with r ∈ Rq, while
the user utility model v(x, u) specifies the utility of item x ∈ X to u ∈ U . Initially, the
RS starts with a prior belief P (u). At each step of the session, the RS issues a query
q ∈ Q and the user provides a response r ∈ Rq. After observing a history of query-response
pairs H = ((q1, r1), . . . , (qt, rt)), the RS updates its posterior belief P (u|H) using Bayes’
rule. If the utility function is linear, that is, v(x, u) = x · u, then the expected utility of
recommending x ∈ X is Eu|Hv(x, u) = Eu|Hx·u = x·

(
Eu|Hu

)
= x·ū where ū = Eu|Hu. Since

it is optimal to recommend the item with the highest expected utility, the expected utility
given a history H is EU(H) = maxx∈X x · ū. If the posterior is modeled as a multivariate
Gaussian, ū is easy to compute.

This approach is model-based, since it assumes a specific form of the value function
and posterior distribution. However, linearity and Gaussianity assumptions might be too
simplistic to capture user preferences in realistic settings. For example, the mean of the
user distribution might not capture the user’s preferences well when the user has multiple
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interests in the item space (multimodality). Moreover, even with these simplifications, the
posterior is still intractable to compute. In Section 3, we propose to explore more flexible,
model-free representations of user utility and user response.

Computing optimal query strategies can be cast as a full-blown sequential decision
making problem (Holloway and White, 2003; Boutilier, 2002). A simpler approach is to
select queries myopically according to some criterion. One criterion which has been used
successfully in previous work is EVOI (Chajewska et al., 2000; Guo and Sanner, 2010;
Viappiani and Boutilier, 2010; Vendrov et al., 2020). To define EVOI, we first define the
posterior expected utility (PEU) of a query: PEU(q|H) =

∑
r∈Rq

P (r|H, q)EU(H; (q, r)),

where H; (q, r) denotes H with (q, r) appended. The expected value of information is
EV OI(q|H) = PEU(q|H)−EU(H). (The query that maximizes PEU(q|H) also maximizes
EV OI(q|H), since EU(H) does not depend on q.) EVOI measures the improvement in
expected utility offered by the query compared to not asking any query. This serves not only
as a means for ranking potential queries, but also as a useful stopping criterion for elicitation.
Notice that the two components required for computing PEU above are P (r|H, q) and
EU(H). We next propose an alternative approach for their computation.

3. Model-Free Preference Elicitation

Our approach is motivated by real-world deployment of PE policies, where an existing policy
is deployed and can be used to collect training data for new policies. In this setting, we
have access to a dataset of episodes. Each episode contains a history H and the utility of
the subsequent recommendation from the RS, as measured by user satisfaction with the
recommended content (either by running user surveys or by using proxy measures such
as engagement). Using this data, we can fit a function approximator to directly predict
both P (r|H, q) and EU(H), which can be used to compute the PEU. Compared to the
Bayesian approach in Section 2, this model-free approach obviates the need to model the
full posterior P (u|H), replacing posterior computation via Bayesian inference with model
prediction. Apart from avoiding posterior approximations and unnecessary assumptions
about user utility, this formulation facilitates sequential query optimization.

Furthermore, instead of doing one-step lookahead with respect to user response, we
can do multi-step lookahead using algorithms like depth-limited search (DLS) and Monte
Carlo tree search (MCTS) (Coulom, 2007), which lets the search tree grow asymmetrically
toward more promising paths. Recent variants of MCTS use value function approximation
to guide the search, including AlphaGo (Silver et al., 2016a), AlphaGo Zero (Silver et al.,
2017), AlphaZero (Silver et al., 2018), MuZero (Schrittwieser et al., 2020), Gumbel Muzero
(Danihelka et al., 2022), and Stochastic MuZero (Antonoglou et al., 2022). Stochastic
MuZero, in particular, extends MuZero to plan with a stochastic model. This is useful in
our setting, since user responses are stochastic. We use the open-source JAX implementation
(Babuschkin et al., 2020) of Stochastic MuZero in our experiments. We could use a fully
model-free RL approach, with the set of queries as the action space and the history as
the state; however, fitting a separate response model lets us exploit the known structure
of our PE problem (specifically, the space of qurey-response pairs) for planning. Planning
at execution time has been shown to improve performance in many settings (Tamar et al.,
2016; Guez et al., 2018, 2019; Farquhar et al., 2018; Oh et al., 2017; Silver et al., 2016b).
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4. Experimental Setting

To evaluate our approach, we apply it to the movie recommendation domain with simulated
users based on the MovieLens 1M dataset (Harper and Konstan, 2016). The dataset consists
of movie ratings by users as well as a set of genres for each movie.1 In our PE setting,
the system presents queries to the user in the form “Do you like genre X?”, and the user
responds with either “yes” (1) or “no” (0). After a sequence of T = 10 rounds of elicitation,2

the RS recommends a single movie and receives a response from the user indicating their
satisfaction with the recommended movie.

To simulate user responses and utilities, we first use collaborative filtering to embed
users, movies, and genres in a joint embedding space. Matrix factorization (Salakhut-
dinov and Mnih, 2007) is a common approach for computing embeddings. We solve an
optimization problem of the form minU,X,Qw1LR(U>X,R) + w2LA(X>Q,A) + w3‖U‖22 +
w4‖X‖22 +w5‖Q‖22 where U,X,Q,R,A are matrices representing the user embeddings, item
embeddings, query embeddings, user-item ratings, and item-genre attributes (or relevances),
respectively. As a preprocessing step, we rescale ratings to the unit interval using min-max
normalization. We use LR(x, y) = (σ(x) − y)2 as a regression loss for ratings, where σ is
the logistic sigmoid function (used to map its real-valued input to the unit interval). LA
is a classification loss for attributes, and uses sigmoid binary cross-entropy loss. The last
three terms are L2 regularization terms.

We solve for U,X,Q using gradient descent. As shown in Figure 2, we obtain low
regression and classification error. After generating user, movie and genre embeddings, we
generate synthetic episodes by drawing queries from a base PE policy and a user response
model. For simplicity, we employ a random policy for data generation, where the query is
selected uniformly at random. In practice, a deployed elicitation policy will have a lower
coverage of the query space than a random policy, but we use the latter here for illustrative
purposes. The response of a user u to a query q is sampled from a Bernoulli distribution
with parameter σ(u · q). Given a recommended movie x ∈ X , a user’s utility is computed as
u·x.3 We assume a Bayesian RS which uses a multivariate Gaussian distribution to represent
users, with an MCMC-based approximation for posterior update P (u|H). To recommend
a movie, it computes ū (see Section 2) and returns the best movie, argmaxx∈X x · ū. Notice
that our approach is general and uses the RS as a black-box; therefore, any RS which
recommends items based on histories H can be incorporated. Finally, each episode consists
of the history H together with the utility to the user of the final recommended item.

We emphasize that the user embeddings are only used to generate the synthetic dataset.
The elicitation system does not have access to the user embeddings.

5. Architectures

The data generated above is used to train a model that takes as input a history and outputs
both a utility prediction and a response prediction for each possible subsequent query. That
is, the model has type (Q × R)∗ → R × (Q → 4R), where 4R is the set of probability

1. The genres are: action, adventure, animation, children’s, comedy, crime, documentary, drama, fantasy,
film-noir, horror, musical, mystery, romance, sci-fi, thriller, war, and western.

2. We use a fixed T here, but extending to variable T is straightforward by considering session abandonment.
3. We use a linear utility for simplicity, but, as noted above, our approach supports non-linear utilities.
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distributions on R. (For binary responses, this is captured by a single scalar, the binary
logit.) We consider several models:

Affine Multiplies each query embedding with the sign of the corresponding response (±1
for positive/negative responses), sums the results, and passes the result to an affine layer.

Recurrent Applies a recurrent neural network (RNN) (Rumelhart et al., 1986; Werbos,
1988), specifically the Gated Recurrent Unit (GRU) (Cho et al., 2014), since it is commonly
used in the literature and has competitive performance (Yang et al., 2020). RNNs are
permutation-sensitive and can learn temporal dependencies, if they exist.

DeepSets Zaheer et al. (2017) introduced DeepSets, a special case of Janossy pooling
(Murphy et al., 2018). This architecture applies an encoder to each element of the input
(in our case, a sequence of pairs of a query-embedding and response), aggregates the results
through a pooling operation (such as summation), and applies a decoder to the result. For
the encoder and decoder, we use feedforward networks.

Attention Concatenates each query embedding with its corresponding response and ap-
plies multi-head self-attention (Vaswani et al., 2017).

Multiset Converts the query-response history to a N|Q|×|R| table of counts for each pos-
sible query-response pair, flattens it, and passes it to a feedforward network.

6. Results

We now describe our experimental results. For the models, we use a hidden layer size of
256 and four heads for the attention model. We use the Radam optimizer (Liu et al., 2019)
with a learning rate of 10−5, and a weight decay parameter of 10−3. For training, we use a
validation set split of 0.1, 100 epochs, a batch size of 32, and 20 trials.

First, we show the performance of various models in learning the response and utility
functions from the synthetic dataset. Figure 1 shows the utility and response loss on the
validation set for various architectures over the course of training. Solid lines indicate the
mean across trials. Bands indicate a 0.95 confidence interval for this mean. The latter is
computed using bootstrapping (Efron, 1979), specifically the bias-corrected and accelerated
(BCa) method (Efron, 1987).

Second, we combine the best-performing model with different elicitation algorithms
(e.g., those based on DLS or MCTS) to create an elicitation policy. The user response
model is used at the search tree’s chance nodes, and the utility model is used at its leaves.
We evaluate the resulting policy by deploying it with the synthetic users, generating new
episodes, and recording the resulting episode utilities. Results are shown in Figure 3. We
include different planning depths for DLS and simulation budgets for MCTS. Dots show
means across trials, while error bars indicate a 0.95 confidence interval for this mean. Our
results show that planning-based policies yield better performance.

7. Conclusion

In this work, we propose a model-free approach to preference elicitation. It avoids simplistic,
restrictive modeling assumptions and instead leverages function approximation to learn the
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Figure 1: Utility and response loss on the validation set for various architectures.

Figure 2: Embedding loss. Figure 3: Episode utility.

quantities needed for PE. We explore multiple architectures and planning algorithms and
demonstrate improvements in recommendation quality with respect to a natural baseline.

In future work, we intend to explore additional datasets and elicitation policies. Another
important direction is training in an online fashion (like AlphaZero and MuZero) with
simulated users, to learn more accurate value/policy functions. Finally, we hope to test
an approach that first learns an environment dynamics model (user responses and item
recommendation utilities) from offline data, and then runs online reinforcement learning
against this learned model. We speculate that it may be useful to learn an ensemble of
such models (or an uncertainty-aware model, such as a Bayesian neural network) to prevent
overfitting the policy to a learned model that is different from the true environment.
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