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ABSTRACT

The use of latent diffusion models (LDMs) such as Stable Diffusion has signifi-
cantly improved the perceptual quality of All-in-One image Restoration (AiOR)
methods, while also enhancing their generalization capabilities. However, these
LDM-based frameworks suffer from slow inference due to their iterative denoising
process, rendering them impractical for time-sensitive applications. Visual autore-
gressive modeling (VAR), a recently introduced approach for image generation,
performs scale-space autoregression and achieves comparable performance to that
of state-of-the-art diffusion transformers with drastically reduced computational
costs. Moreover, our analysis reveals that coarse scales in VAR primarily capture
degradations while finer scales encode scene detail, simplifying the restoration
process. Motivated by this, we propose RestoreVAR, a novel VAR-based gen-
erative approach for AiOR that significantly outperforms LDM-based models in
restoration performance while achieving over 10 x faster inference. To optimally
exploit the advantages of VAR for AiOR, we propose architectural modifications
and improvements, including intricately designed cross-attention mechanisms and a
latent-space refinement module, tailored for the AiOR task. Extensive experiments
show that Restore VAR achieves state-of-the-art performance among generative
AiOR methods, while also exhibiting strong generalization capabilities. The code
will be made publicly available after the review process.

1 INTRODUCTION

Image restoration is a complex inverse problem that aims to recover clean images from degradations,
such as haze, rain, snow, blur, and low-light conditions. Recently, the paradigm of All-in-One image
Restoration (AiOR) has emerged, where a single network is trained to handle multiple degradation
types. Existing AiOR methods can be broadly categorized into non-generative and generative
approaches. Non-generative models such as AirNet (Li et al., 2022), PromptIR (Potlapalli et al.,
2024), InstructIR (Conde et al., 2025), AWRaCLe (Rajagopalan & Patel, 2024)), and AdalR (Cui
et al.,2024)), deterministically map degraded images to their clean counterparts. While these methods
offer fast inference and reliable pixel-level restoration performance, they often fail to generalize
to diverse degradations encountered in real-world scenarios. To overcome this challenge, recent
works have adopted generative models that aim to capture the distribution of clean images and
produce more perceptually realistic outputs. Early works (Chen et al., [2022}; Kupyn et al., 2018)
based on GANs (Goodfellow et al.| [2020) attempted this through adversarial learning, but suffered
from mode collapse and unstable training. To improve fidelity and training stability, DiffUIR (Zheng
et al.l 2024) and DA-CLIP (Luo et al. 2023) employed pixel-space diffusion models (Ho et al.|
2020). However, their high computational cost makes large-scale pretraining infeasible, limiting their
ability to learn strong generative priors. In contrast, recent methods such as Diff-Plugin(Liu et al.,
2024])), AutoDIR(Jiang et al.,[2023)), and PixWizard (Lin et al.,|2024])) leverage latent diffusion models
(LDMs), such as Stable Diffusion (Rombach et al., [2022). By operating in a latent space, LDMs
significantly reduce computational costs, enabling large-scale pretraining which equips them with
strong generative priors of natural images. These priors allow LDM-based AiOR methods to deliver
perceptually realistic restoration and improved generalization to real-world degradations.

Despite their advantages, LDM-based AiOR methods have some shortcomings. (1) LDMs require
multiple denoising steps during inference, resulting in significantly longer runtimes compared to
non-generative models. Their slow inference speeds pose challenges for applications that demand



Under review as a conference paper at ICLR 2026

10
Method

Diff-Plugin [CVPR 2024]
AutoDIR [ECCV 2024]
PixWizard [ICLR 2025]

mmm RestoreVAR (Ours)

Inference Time (s)

RestoreVAR
R
o
‘mm Diff-Plugin [CVPR 2024] PixWizard [ICLR 2025] 1 1o 50 100
" AUtoDIR [ECCV 2024] mm—RestoreVAR (Ours) TFLOPs (log scale)
(a) Overview (b) PSNR (dB)T (c) Model complexity (bubble size ox parameter count)

Figure 1: Restore VAR, our proposed VAR-based (Tian et al., 2024} scale-space generative AiOR
model (a), significantly outperforms LDM-based methods as shown in (b). Restore VAR also offers
drastic reductions in computational complexity as shown in (c).

real-time processing, such as video surveillance or autonomous navigation. (2) LDMs rely on
variational autoencoders (VAEs) (Kingmal |2013)) which are primarily trained for generative diversity,
rather than accurate pixel-level reconstruction. Consequently, the restored images obtained from
LDM-based AiOR methods exhibit loss of fine structural details, hindering their performance.

Autoregressive models have driven rapid advances in natural language processing through large
language models (LLMs) such as GPT-3 (Radford et al., 2019b) and LLaMA (Touvron et al.| 2023).
These models generate outputs by predicting the next token, conditioned on previously generated
tokens. Recently, Visual AutoRegressive (VAR) Modeling (Tian et al., 2024) introduced scale-space
autoregression for image generation, performing next-scale prediction in the latent space of a multi-
scale vector-quantized VAE (VQVAE). VAR achieves performance comparable to state-of-the-art
diffusion models such as DiT-XL/2 (Peebles & Xie, 2023), while operating 45 x faster. Despite its
success in generative tasks, the application of VAR to low-level vision tasks such as image restoration
remains largely unexplored. To the best of our knowledge, only two prior works—VarSR (Qu et al.|
2025)) and Varformer (Wang & Zhaol |2024)—have used VAR for image restoration. VarSR focused
exclusively on the super-resolution task, while Varformer utilized intermediate VAR features to
guide a separate non-generative network for AiOR. In contrast, our approach is generative and fully
exploits the strong priors of the pretrained VAR model by training it directly for the AiOR task. Our
analysis in Sec.[3.2]also reveals that the scale-space decomposition of VAR captures degradations
predominantly in coarse scales and scene-level details in fine scales, making it well-suited for AiOR.

To this end, we introduce Restore VAR, a novel generative approach for AiOR that addresses some
of the key limitations of LDM-based approaches. Firstly, RestoreVAR adopts the autoregressive
structure of VAR, achieving state-of-the-art generative AiOR performance with over 10x faster
inference than LDM-based methods (see Fig. [I). Secondly, RestoreVAR employs cross-attention
mechanisms conditioned on the degraded image latents, enabling the model to maintain spatial
consistency and minimize hallucinations. Thirdly, to mitigate the loss of fine details by the vector
quantization and VAE decoding processes, we propose a lightweight (only ~ 3% overhead) non-
generative latent refinement transformer which predicts de-quantized latents from the outputs of VAR.
Additionally, we fine-tune the VAE decoder to operate on these continuous latents, further enhancing
reconstruction quality. Finally, through extensive experiments, we demonstrate that Restore VAR
achieves state-of-the-art performance among generative restoration models, while also exhibiting
strong generalization to real-world degradations. To summarize, our key contributions are:

1. We propose Restore VAR, the first VAR-based generative AiOR framework that achieves
superior performance and a 10 x faster inference than LDM-based methods.

2. To achieve semantically coherent restoration, we introduce degraded image conditioning
through cross-attention at each block of the VAR transformer.

3. To mitigate the loss of fine details in the vector quantization and VAE decoding processes,
we introduce a non-generative latent refiner transformer which converts discretized latents
into continuous ones, and fine-tune the VAE decoder to operate on continuous latents.

4. Extensive experiments show that Restore VAR attains state-of-the-art performance among
generative AiOR approaches, with perceptually preferable results and strong generalization.
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2 RELATED WORKS

2.1 IMAGE RESTORATION

Early restoration models primarily addressed specific degradations (He et al.,[2009; |[Zhang et al.|
2020; |Wang et al.|[2019; Yasarla & Patell [2019; Zhang et al.,[2021a; [Nah et al.,|2017). Other methods
such as Restormer (Zamir et al., [2022), MPRNet (Zamir et al., |2021)) and SwinIR (Liang et al.,
2021)) introduced architectures for any single restoration task. However, they are restricted to handle
one degradation at a time, making them ineffective for multiple degradations. All-in-One image
Restoration (AiOR) methods aim to tackle multiple corruptions with a single model. Early approaches
include non-generative models such as All-in-one (Li et al.,2020) and Transweather (Valanarasu et al.}
2022). PromptIR (Potlapalli et al., [2024) used learnable prompts while AWRaCLe (Rajagopalan &
Patell [2024) utilized visual in-context learning to extract degradation characteristics. Other approaches
such as InstructIR (Conde et al.,|2025)) adopted textual guidance, and DCPT (Hu et al.,[2025)) proposed
a novel pre-training strategy for AiOR. DFPIR (Tian et al.l|2025) proposed a feature perturbation
strategy for AiOR. Recent AiOR methods have adopted diffusion models. Pixel-space diffusion
models (PSDMs) such as DA-CLIP (Luo et al.,[2023) and DiffUIR (Zheng et al., 2024) demonstrated
improved AiOR performance but lacked robust generative priors. Recent methods have utilized the
strong priors of LDMs for AiOR. Diff-Plugin (Liu et al., 2024)) adopts task plugins to guide an LDM
for AiOR. AutoDIR (Jiang et al., |2023) automatically detects and restores degradations using an
LDM. PixWizard (Lin et al.||2024) is a multi-task SD-XL (Podell et al.}|2023)) based model capable
of performing AiOR among other tasks. However, LDM-based approaches are slow at inference
time—a limitation we aim to overcome using visual autoregressive modeling (VAR).

2.2 AUTOREGRESSIVE MODELS IN VISION

Recent works (Van Den Oord et al., 2016} Tian et al., | 2024) have extended autoregressive (AR)
models to vision and can be categorized as pixel-space AR (Van Den Oord et al.| 2016; [Van den
Oord et al., 2016; [Chen et al., [2018)), token-based AR (Van Den Oord et al., 2017 Yu et al., [2023;
Ramesh et al., [2021) and scale-space AR (Tian et al.l 2024} Ren et al., [2024; |Guo et al., [2025]).
Pixel-space AR predicts raw pixels one by one in raster order, as in PixeIRNN (Van Den Oord et al.|
2016) and Pixel CNN++ (Salimans et al.,[2017), but is very slow at high resolutions. Token-based AR
compresses images into discrete latent codes via vector quantization (e.g., VQ-VAE (Van Den Oord
et al.l 2017), VQGAN (Esser et al.|[2021))) and then models code sequences with transformers (e.g.
ImageGPT (Chen et al., [2020)). This trades-off codebook size and transformer capacity against
tractability for high-resolution generation. Scale-space AR, as introduced in VAR (T1an et al., [2024),
generates latents from coarse to fine scales and matches the quality of Diffusion Transformers (Peebles
& Xiel [2023) at a fraction of the inference cost. HART (Tang et al.| |2024) scales VAR to higher
resolution and uses a MLP-based diffusion refiner to convert discrete VAR latents into continuous
representations. Despite VAR’s success in generative tasks, it remains underexplored for image
restoration with only two prior works-VarSR (Qu et al., [2025) and Varformer (Wang & Zhao} 2024).
VarSR addressed super-resolution, while Varformer used VAR’s features to guide a non-generative
AiOR model. In contrast, Restore VAR is a generative model which directly trains VAR for AiOR.

3 PROPOSED METHOD

We first explain the working principles behind VAR for image generation. We then describe our
scale-space analysis of VAR and detail Restore VAR, our proposed VAR-based approach for AiOR.

3.1 PRELIMINARIES: VISUAL AUTOREGRESSIVE MODELLING

Visual Autoregressive Modelling, or VAR, is a novel autoregressive class-conditioned image genera-
tion method which uses a GPT-2 (Radford et al.||2019a) style decoder-only transformer architecture
for next-scale prediction. The VAR transformer operates in the latent space of a multi-scale VQ-
VAE which uses K scales. Given an image I € R”*Wx3 the VQVAE encoder outputs a latent
representation fon € RHxxWkxC Hereafter, we will refer to feont as the continuous latent, and the
latent obtained after quantization as discrete latent. Instead of directly quantizing foon, a multi-scale
residual quantization using a shared codebook across K spatial scales is performed. First, the residual
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and accumulated quantized (or discrete) reconstruction of f.oy are initialized as fr(;i) := feont and

fch?a)m := 0, respectively. Ateachscale k = 1,..., K, an index map r, € ZH+**Wr is obtained by

quantizing the downsampled residual feature:

T := quantize (downsample (fr%’i_” :

The indices r, are then decoded using the codebook embeddings e(-), upsampled to match the full
resolution, and refined using a convolutional module ¢y (+) to obtain

hy, := ¢ (upsample (e(ry))) , € RA>XWkxC,
This is done to approximate the information captured at the current scale which is used to update the
residual continuous features to be modelled by subsequent scales as

fq(L];)nt = fq(l.]fa;tl) + hi, frelg) = foont — fq(f;nt'
This process is repeated for all scales and yields a set of index maps {r1, 72, ..., 7k }, each consisting
of the code-book indices of residual information at an increasingly finer scale.

For training, VAR uses teacher-forcing, where the ground-truth index maps {r1,r2,...,7x } are
used to autoregressively predict the next scale. For each scale k, the accumulated reconstruction

fcffa;tl) = Zf:_ll ¢; (upsample(e(r;))) is interpolated to the resolution of scale k to obtain fq(f;m,
which is then flattened into tokens, and concatenated with the remaining tokens to form the input
sequence. A start-of-sequence (SOS) token, derived from the class label embedding, is then prepended
to this input sequence. A block-wise causal attention mask is used to ensure that predictions for
scale k attend only to the previous scales. VAR is trained to minimize the cross-entropy loss between

predicted logits and the ground-truth index ma[I)(s, modeling the likelihood
p(rlar27 s 7TK) = H p(rk | T1,725. -, rk—l)-
k=1

During inference, the SOS token is created from the target class label. VAR then autoregressively
predicts each index map r, one scale at a time. After predicting r, its embedding is upsampled,
refined and accumulated to form the input for the next scale, mimicking the same procedure used
during training. The VAR model uses only K = 10 latent scales with key-value (KV) caching,
enabling significantly faster inference compared to latent diffusion models.

3.2 SCALE-SPACE ANALYSIS OF VAR

Degraded GT+coarse GT-fine GT

In addition to VAR’s competitive perfor-
mance to LDMs with far superior infer-
ence speed, we found that its residual scale-
space decomposition focuses on degrada-
tions and scene-level details across different
scales. To demonstrate this, we consider clean
(GT)—degraded image pairs and compute their
scale-wise residual indices {r¢T}X | and

=]
(P} |, respectively, where K = 10. S
We define coarse scales as k = 1,...,5
(low-resolution index maps) and fine scales =,
as k = 6,...,10 (higher-resolution index :
maps). The first and last columns of Fig. 2] 2

show reconstructions from r],geg and r8T, re-
spectively. In column 2, we replace the coarse
scales of 70T with those from 7, €. This in-
troduces the degradation, although fine scales
remain unchanged. Next, in column 3 we re-
place the fine scales of r{T with those from

=

=
=
[aa}

Figure 2: VAR captures degradations in early scales
(coarse) and scene-level details in later scales (fine).
Deg ] ) ) ) Degraded and GT are VQVAE reconstructions of
7}, > Which yields a clean image with some  (he degraded and ground truth images. GT-+coarse
loss of fine details. These observations indi- yeplaces early GT scales with degraded ones, while
cate that coarse scales in VAR capture degra- - GTtfine replaces the late GT scales.

dations, while finer scales encode scene-level

detail. Notably, this observation holds across multiple degradations and simplifies restoration for
VAR as removing degradations requires correctly predicting only the early scales which contain a
small number of tokens, while scene details can be reconstructed in subsequent scales.
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Figure 3: Illustration of Restore VAR for training and inference. (a) Shows the training procedure for
each component of Restore VAR, and (b) shows the overall pipeline during inference.

3.3 RESTOREVAR

We now describe Restore VAR, our proposed approach that effectively adapts VAR for AiOR, leverag-
ing its substantial inference speed advantage over LDMs. Given a degraded image Igey € RF W >3,
the goal is to predict a clean output I¢jean, close to the ground-truth Ig. Adapting VAR to AiOR
is non-trivial due to the need for high-quality pixel-level reconstruction, which is compromised
by two factors: (1) VAR’s strong generative priors can cause hallucinations in the restored images
without proper conditioning. (2) Vector quantization and VAE decoding introduce artifacts that hinder
pixel-level restoration. Restore VAR addresses these challenges through architectural enhancements,
including cross-attention to incorporate semantic guidance from the degraded image, and a novel
non-generative transformer that refines discrete latents into their continuous form to preserve fine
details in the restored image. We describe these components below.

3.3.1 AUTOREGRESSIVE TRANSFORMER ARCHITECTURE

For training, the multi-scale teacher-forcing input is constructed from the ground-truth image I, (see
Sec.[3.1). The start-of-sequence (SOS) token is computed from a fixed label index and augmented
with a global context vector derived from the degraded image (see supplementary for details).
These features are flattened and concatenated into a token sequence fquam € REXC where L is the
total number of tokens across all scales (see Fig. Eka)(l)) The VAR transformer is then trained to
autoregressively predict the next-scale indices {rg[} K_| € RE of the clean image.

To enable semantically consistent restoration, we inject information from the degraded image through
cross-attention at each transformer block. At block 7, the queries are given by the output of the
feed-forward network (Tpjock; € REXD where D is the embedding dimension), while keys and values

are derived from the continuous latent of the degraded image, f; d(ffl € RHx*xWkxC This latent is
reshaped into a sequence of conditioning tokens and is appropriately projected to the embedding
dimension of the transformer. As shown in Sec.[d.4] conditioning on continuous latents significantly

outperforms conditioning on discrete ones. To summarize, cross-attention (CA(-, -)) is applied as
d
Tolockea = Tblock; 1 Ji X CA(Thlock, > foont)-

We initialize g; = 0 to retain VAR’s pretrained behavior and gradually introduce conditioning. Fur-
thermore, we replace absolute positional embeddings in VAR with 2D Rotary Positional Embeddings
(RoPE) for scaling resolution from 256 x 256 to 512 x 512, as RoPE is well-suited for handling vary-
ing sequence lengths 2024). We also remove AdaLN layers, reducing ~ 100M parameters
with negligible impact on performance. Inference closely follows that of VAR (see Sec.[3.1)), except
that each scale prediction is now guided by the degraded latent. The output is a sequence of predicted

indices {rpred} 1> which is then used to construct the discrete restored latent fpszﬁt € RHxXWkxC,

The above steps are shown in Fig. 3[a)(ii). More architectural details are given in the supplementary.
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3.3.2 DETAIL-PRESERVING RESTORATION

The discrete latent ( fgﬂi&) predicted by the Restore VAR transformer is decoded by the VQVAE to
produce the restored image. However, vector-quantization and VAE decoding cause a noticeable loss
of fine details in the pixel-space, leading to distorted reconstructions. This presents a major challenge
for using VAR in AiOR, as the scene semantics may not be accurately preserved. To address this,
we introduce VAE decoder fine-tuning on continuous latents, and a lightweight latent refinement

transformer (LRT) that converts discrete latents to continuous latents for decoding.

VAE Decoder Fine-Tuning. HART (Tang et al., 2024) addressed VAE-induced distortions by fine-
tuning the VAE decoder on both discrete and continuous latents. While effective for generative tasks,
the VAE decoder of HART produces overly textured outputs, compromising accurate reconstruction
(see supplementary). Instead, we fine-tune the decoder only on continuous latents, bypassing the
quantizer. The encoder and quantizer are kept frozen, and the decoder is trained on ( e T ot) Pairs.
To avoid overly smooth outputs, we use a PatchGAN (Isola et al.|[2017) discriminator (see Sec.
and optimize the decoder using pixel-wise, perceptual, and adversarial losses as

»Cdec = )\1£L1 + )\Q»CSSIM + )\SAcpercep + >\4£advv
where Ly is the L1 loss, Lssiv is the SSIM loss, Lpercep is the perceptual loss, Lagy is the adversarial
loss and ); are their respective weights (see Fig.[3[a)(iv)). Our fine-tuning approach yields a decoder
that is well-aligned with the objectives of AiOR, achieving mean (over 1000 samples) reconstruction
PSNR/SSIM scores of 28.14dB/0.842, outperforming both the VAR VQVAE (22.59dB/0.679) and
HART decoders (26.48dB/0.804). Qualitative comparisons are given in the supplementary.

Refining Discrete Latents. Since the VAE decoder is fine-tuned for continuous latents,

the predicted discrete latent, fgzgt, must be converted into a continuous form for decoding.

While HART uses a 37M parameter diffusion- =y
based MLP for this, it incurs a ~ 20% inference &y

overhead due to iterative denoising. Instead, we ?;% -

propose a lightweight, non-generative latent re- _yl]
finement transformer (LRT) that predicts a resid- [
ual, which when added to fé’jﬁﬁt, produces a con- Input Discrete  Refiner ~ Continuous
tinuous latent, fcom e RHxk xWk xC 44 Figure 4: Illustration of images decoded from
f e pred + LRM( fpred 2) discrete and continuous latents, along with the
cont — Jquant quant>

where z € RIXP is the output from the final refiner’s predicted residuals.

Restore VAR transformer block. z is passed through cross-attention and provides pseudo-continuous
guidance to the LRT which is critical for performance (see Sec.[#.4). The LRT is trained using £q
loss between the predicted and ground-truth continuous latents (f5 ) as Lirr = £, ( fcom, fcggm). Our
LRT introduces only 3% additional overhead and significantly outperforms HARTs refiner in PSNR
and SSIM scores (see Sec. @) The training procedure of the LRT is shown in Fig. Eka)(iii) and
Fig. @ provides a visual example of its predictions.

Thus, RestoreVAR combines the VAR transformer, LRT, and fine-tuned decoder to deliver fast,
perceptually realistic, and structurally faithful results. Fig. [3(b) depicts inference of Restore VAR.

4 EXPERIMENTS

In this section, we provide implementation details, comparisons with existing All-in-One image
Restoration (AiOR) approaches, and present ablations on key components of our framework.

4.1 IMPLEMENTATION DETAILS

Each component of Restore VAR was trained independently to disentangle learning objectives. We
used the VAR model of depth 16 as the transformer backbone and trained it with the AdamW
optimizer (Loshchilov & Hutter;|2017), a learning rate (LR) of 10—, batch size of 48, for 100 epochs.
The latent refiner was trained for 100 epochs with the AdamW optimizer, LR= 10~ and a batch
size of 96. The VAE decoder was fine-tuned using a weighted loss combination (see Sec. [3.3.2)
with empirically chosen weights: A\; = 2.0, A2 = 0.4, A3 = 0.2, and A4 = 0.01. Fine-tuning was
performed for 5 epochs with a learning rate of 3 x 10~* and a batch size of 12, using AdamW.
Training was conducted on 8 RTX A6000 GPUs, while inference was done on an RTX 4090 GPU.
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Table 1: Quantitative comparisons of Restore VAR with the state-of-the-art LDM-based generative
AiOR approaches, and non-generative methods. Restore VAR significantly outperforms generative
methods on PSNR, SSIM and LPIPS scores. The best generative approach is indicated in bold.

RESIDE Snow100k Rain13K LOLv1 GoPro

Method Venue
PSNR?T SSIMf LPIPS| PSNRT SSIM?T LPIPS| PSNRt SSIM? LPIPS| PSNRT SSIMT LPIPS] PSNR?T SSIMtT LPIPS|
Non-generative methods
PromptIR NeurIPS’23 32.02 0952 0.013 31.98 0924 0.115 29.56 0.888 0.087 2289 0.847 0296 27.21 0817 0.250
InstructIR ECCV’'24 2690 0.952 0.017 - - - 2956 0.885 0.088 22.81 0.836 0.132 2826 0870 0.146
AWRaCLe AAAI'25  30.81 0979 0013 3056 0904 0.088 3126 0.908 0.068 21.04 0.818 0.146 26.78 0.820 0.248
DCPT ICLR’25 29.10 0.968 0.017 - - - 24.11 0.766 0.203 23.67 0.863 0.106 27.92 0.877 0.169
DFPIR CVPR’25 31.39 0979 0.012 - - - 24.87 0.794 0.171 23.12 0.853 0.123 28.66 0.884 0.158
Generative methods
Diff-Plugin CVPR’24 2323 0.765 0.091 21.02 0.611 0.196 21.71 0.617 0.169 1938 0.713 0.195 21.76 0.633 0.217
AutoDIR ECCV’24 2448 0.780 0.081 19.00 0.515 0.347 23.02 0.642 0.162 19.43 0.766 0.135 23.55 0.700 0.168
PixWizard ICLR’25 21.28 0.738 0.142 2124 0.594 0.206 21.38 0.596 0.180 15.84 0.629 0.305 2049 0.602 0.223
RestoreVAR (Ours) 24.67 0.821 0.074 24.05 0.713 0.156 23.97 0.700 0.153 21.72 0.782 0.126 23.96 0.737 0.167
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Figure 5: Qualitative comparisons of Restore VAR with LDM-based generative AiOR approaches.
Restore VAR achieves consistent restoration with enhanced preservation of fine-details.

4.2 DATASETS

We trained Restore VAR for five tasks: dehazing, desnowing, deraining, low-light enhancement and
deblurring. For dehazing, we used the RESIDE (Li et all,2019) dataset comprising 72135 training
and 500 test images. The Snow100k dataset (Liu et al.,|2018]) was used for desnowing, with 50000
training and 16801 test images (heavy subset). For deraining, we used Rain13K (Zamir et al., 202T)
consisting of 13711 training and 4298 test images. The LOLv1 dataset was used
for low-light enhancement, consisting of 485 training and 15 test images. For deblurring, we used
the GoPro dataset comprising 2103 training and 1111 test images. We also assess
generalization performance on real-world, unseen and mixed degradation datasets, namely, LHP
(1000 images), REVIDE (Zhang et al 2021b)) (284 images), TOLED
(30 images), POLED (Zhou et al., 2021) (30 images), CDD 2024) (200 images, mix of
haze and rain), and LOLBlur (Zhou et al., (482 images, mix of low-light and blur). TOLED
and POLED datasets contain unseen degradation of under-display camera restoration.

4.3 COMPARISONS

We compare RestoreVAR with state-of-the-art generative and non-generative methods for AiOR. For

non-generative approaches, we include PromptIR [2024), InstructIR
[2025), AWRaCLe (Rajagopalan & Patel, [2024), DCPT 2025) and DFPIR 2025).
Among generative methods, we compare with the LDM-based approaches Diff-Plugin
[2024), AutoDIR and PixWizard 2024). To ensure a fair comparison,
we retrained PromptIR and AWRaClLe, as their official checkpoints were not trained for most of
our AiOR tasks. All other methods were evaluated using their publicly released checkpoints. For
AutoDIR, we report results without the structure correction module, as this module functions as
an independent, non-generative restoration network (more details in supplementary). The results
reported for PixWizard were obtained using its publicly released checkpoint. We do not compare
with task-specific restoration models, as Restore VAR is proposed for the AiOR setting.

Tablempresents PSNR, SSIM and LPIPS scores on the RESIDE, Snow100k, Rain13K, LOLv1 and
GoPro datasets. Restore VAR surpasses LDM-based AiOR methods at a fraction of their computa-
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Table 2: Quantitative comparisons of RestoreVAR against state-of-the-art non-generative approaches
on real-world, unseen and mixed degradations. The best result is indicated in bold.

LHP REVIDE TOLED POLED LOLBlur (L +B)  CDD(H +R) Average
MUSIQT CLIPIQAT MUSIQt CLIPIQAT MUSIQT CLIPIQAT MUSIQT CLIPIQAT MUSIQt CLIPIQAT MUSIQf CLIPIQAT MUSIQT CLIPIQAT

PromptIR 56.780 0.366 61.191 0.459 43.218 0.281 34.536 0.303 33.693 0.166 65.895 0.483 49.219 0.343
InstructIR 58.269 0.359 63.116 0.416 44.985 0.298 23.317 0.241 40.221 0.202 65.491 0.482 49.900 0.333
AWRaCLe  57.889 0.333 59.287 0.368 44.670 0.285 40.533 0.332 38.186 0.171 66.253 0.484 51.470 0.329
DCPT 58.044 0.372 60.011 0.446 44.062 0314 38.138 0.345 37.393 0.175 68.440 0.544 51.681 0.366
DFPIR 56.483 0.330 61.009 0.450 43.820 0.276 35.668 0.289 36.277 0.163 54.408 0.349 47.611 0.310
RestoreVAR  57.662 0.414 63.562 0.483 52.374 0.338 48.118 0.276 46.644 0.214 68.941 0.572 56.217 0.383

Method

Input InstructIR AWRaCLe DCPT DFPIR RestoreVAR
BT ] BT EEL T ] I_-

POLED TOLED REVIDE

=

Figure 6: Qualitative comparisons of RestoreVAR with non-generative methods on real, unseen and
mixed degradations. RestoreVAR consistently achieves better results.

tional cost (inference time (s) per image)—Diff-Plugin:2.04s, AutoDIR: 8.477s, PixWizard: 8.247s
and RestoreVAR: 0.201s, highlighting the efficacy of our framework. More detailed complexity
comparisons are given in the supplementary along with a derivation showing that the time complexity
of VAR with maximum latent resolution n x n is O(log n) lower than an LDM operating at the same
latent resolution. Qualitative comparisons with LDM-based methods in Fig. 5| further illustrate that
Restore VAR produces restored images of high quality while better preserving fine details. Visual re-
sults for the Snow100k and LOLv1 datasets are provided in the supplementary. While non-generative
methods achieve better scores, it is important to recognize that the performance of Restore VAR is
inherently influenced by the quality of the VAE decoder; a limitation shared by all latent generative
approaches. Despite this constraint, Restore VAR narrows the gap with non-generative methods while
maintaining the benefits of a generative framework, i.e., perceptually realistic results and strong gen-
eralization capabilities. To demonstrate these strengths, we evaluate generalization using no-reference

image quality metrics (following prior works (Liu et al,[2024}; Jiang et al., 2023} Rajagopalan &
2024)), and assess perceptual realism through a user study.

For testing generalization, we report MUSIQ 2021)) and CLIPIQA 2023)

scores in Table [2 on the real-world, unseen and mixed degradation datasets discussed in Sec. 4.2]
RestoreVAR achieves higher scores than non-generative models (on average),

indicating better robustness under these degradations. Qualitative results Lable 3: Mean scores
for this experiment are shown in Fig. [6] where Restore VAR consistently from user study.
outperforms non-generative approaches. Due to space constraints, qualitative =~ ————————

. . . . . Method Score 1
comparisons with PromptIR and visual results for LOLBlur are given in —
the supplementary. To further evaluate perceptual quality, we conducted a promptR  Zan
user study in which participants rated outputs from non-generative models, =~ AWRaCLe 233

AutoDIR (LDM-based) and RestoreVAR, for 50 real-world scenes. We nglll; %;‘3%
received 36 responses with each participant scoring outputs based on scene AutoDIR 3.68

consistency, restoration quality, and overall appeal on a 5-point scale. Table 3] ET—
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Validation Accuracy (%)

Input image w/o Disc w Disc

7 9 1 13 15
Epoch

Figure 8: Image reconstructed by VAE decoders
Figure 7: Validation accuracy of RestoreVAR  fine-tuned on continuous latents with (w) and with-
under discrete vs. continuous conditioning. out (w/0) a discriminator (Disc).

shows that Restore VAR received the highest average ratings (across all three criteria), highlighting its
ability to produce images that align closely with human preferences.

These results highlight the effectiveness of Restore VAR for AiOR. We discuss limitations of Restore-
VAR in the supplementary.

4.4 ABLATIONS

Continuous vs. Discrete Conditioning. The Restore VAR transformer conditions on the continuous
latent of the degraded image ( ff(f,‘i). While conditioning with discrete multi-scale latents appears more
aligned with VAR’s multi-scale prediction objective, it results in significantly worse performance. To
demonstrate this, we train RestoreVAR with discrete and continuous conditioning for 15 epochs each.

As shown in Fig.[7| Restore VAR with discrete conditioning exhibits much lower validation accuracy.

Discriminator for VAE fine-tuning. As described in Sec. [3.3.2] we fine-tune the VAE decoder
on continuous latents using a combination of pixel-level loss and an adversarial loss. To analyze
the impact of the discriminator, we compare the reconstructions of VAE decoders fine-tuned with
and without the adversarial loss. As shown in Fig. [8] removing the discriminator leads to blurrier
reconstruction while including it yields sharper and perceptually better looking outputs.

Latent Refiner Transformer. The Latent Refiner Table 4: Ablations on the types of latent refin-
Transformer (LRT) is critical for preserving pixel- ers. Our proposed latent refiner transformer
level detail in restored images. To analyze its impact, (LRT) performs best, with minimal overhead.
we compare four Restore VAR variants: (i) No refiner,
(ii) HART’s diffusion refiner, (iii) LRT without final

block outputs, and (iv) our proposed LRT. As shown E(’Ag%ﬁggner 00455 36.06 %;:Zé;g:g?g
in Table @] our LRT achieves the best PSNR and  LRT w/o Last-Block 0.0036 1461 21.23/0.660
SSIM, while maintaining low inference time and a ~ Proposed LRT 0.0061  22.97  24.67/0.821
low parameter count. Using no refiner yields poor

PSNR/SSIM scores. Removing the last block outputs significantly reduces performance, indicating
its importance as pseudo-continuous guidance for refinement. HART’s MLP diffusion-based refiner
performs worse than our LRT while having a much higher parameter count and runs ~ 7 x slower.

Refiner Type Time (s) Params (M) PSNR / SSIM

More ablations are provided in the supplementary.

5 CONCLUSIONS

We proposed Restore VAR, a fast and effective generative approach for AiOR. Built on the VAR
backbone, Restore VAR benefits from VAR'’s strong generative priors and significantly faster inference
compared to LDMs. To tailor VAR for AiOR, we introduced cross-attention mechanisms that inject
semantic information from the degraded image into the generation process. Additionally, we proposed
a non-generative latent refiner transformer to convert discrete latents to continuous ones, along with
a VAE decoder fine-tuned on continuous latents, which together improve reconstruction fidelity.
Restore VAR achieves state-of-the-art performance among generative AiOR models, outperforming
LDM-based methods while delivering over 10x faster inference and strong generalization.
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A OVERVIEW OF SUPPLEMENTARY

In this supplementary, we first present detailed computational complexity comparisons of Restore VAR
and LDM-based AiOR approaches. We then provide a theoretical analysis comparing the time
complexities of VAR and LDMs. Subsequently, we analyze the effect of using Absolute Positional
Embeddings (APE) versus Rotary Positional Embeddings (RoPE) (Su et al.|[2024) when scaling the
resolution from 256 x 256 to 512 x 512. Next, we present more architectural details of Restore VAR,
followed by a breakdown of the runtime and parameter count for each component of RestoreVAR.
We then provide additional visual results, which include qualitative results for the continuous vs.
discrete conditioning ablation, visual comparisons of VAE decoders, refiner ablation, and more
qualitative comparisons with other methods. Subsequently, we provide experiments to show that the
structure correction module of AutoDIR (Jiang et al.,[2023) behaves as an independent non-generative
restoration network. We then discuss the limitations of our approach and scope for future work.
Finally, we mention the usage of LLMs in the paper. To summarize, the supplementary discusses the
following:

1. Detailed computation complexity comparisons (Sec.
. Theoretical complexity comparison with LDM (Sec. [C)
. Performance analysis: APE vs. RoPE (Sec. D)

. Additional Architectural Details (Sec.

. Runtime and Parameter Breakdown (Sec.

. Additional Visual Results (Sec.

(a) Continuous vs. Discrete Conditioning (Sec. [G.T)

(b) Qualitative comparisons of VAE decoders (Sec.[G.2)
(c) Visual Comparison of Refiner Variants (Sec.|G.3)
(d) Additional Qualitative Comparisons (Sec. [G.4)

7. More details about AutoDIR comparison (Sec.

AN L B W

8. Limitations and scope for future work (Sec. [I|
9. LLM Usage (Sec.[l)

B DETAILED COMPUTATION COMPLEXITY COMPARISONS

Restore VAR achieves substantial performance

improvements over LDM-based AiOR ap- Table 5: Comparison of the computational com-

proaches at a fraction of their computational cost. plexity of RestoreVAR with LDM-based AiOR
To show this, we compared RestoreVAR with  3pproaches.

Diff-Plugin (Liu et al.,[2024)), AutoDIR (Jiang

et al.,[2023)), and PixWizard (Lin et al.| 2024)) in N

terms of inference steps, runtime, TeraFLOPs, Method Steps Time (s) TFLOPs Params (M)
and total parameter count. As shown in Ta-  Diff-Plugin 20~ 2.04 = 16.08  859.50
ble 5] RestoreVAR achieves a 10x speed-up AutoDIR 100 8477  67.80 859.50
over Diff-Plugin and a ~ 16X reduction in Eﬁlerzez{;il{ ?8 gggz 119557 2209161'9450
TFLOPs. Compared to AutoDIR and PixWizard, i i i
Restore VAR is over 40 x faster in inference.

Additionally, we conducted an experiment to speed up LDM sampling using DDIM [Song et al.| (2020)
sampling and compared the performance with Restore VAR. Specifically, we varied the number of
DDIM sampling steps as 50, 40, 30, 20, 10, 5 and 2. Figs.[(a) and (b) shows the variation of mean
(across the datasets from Table 1) PSNR (dB) scores with inference time (seconds) and DDIM
sampling steps. Diffusion models match the inference time of Restore VAR only when using around 2
sampling steps, but show over a 3dB decrease in PSNR compared to RestoreVAR. Even at higher
step counts with DDIM sampling, diffusion models lag by over 1dB, highlighting RestoreVAR’s clear
advantages in both speed and performance over LDM-based methods.
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Figure 9: Comparison of LDM-based methods accelerated using DDIM sampling and Restore VAR.
Restore VAR achieves best results.

C THEORETICAL COMPLEXITY COMPARISON WITH LDM

We now provide a theoretical comparison of the run-time complexities of VAR and diffusion transform-
ers (DiT), offering fundamental insights into their efficiency differences. The VAR time complexity
derivation closely follows that in the original VAR paper.

Let a > 1 be the geometric factor of the vector quantized (VQ) scale pyramid and let the largest scale
have dimensions i = w = n. Let the number of scales be K = log, n + 1 so that the side length
at scale i is n; = a*~! and the largest scale is ng = n = a®~1. Assume a standard self-attention
transformer as in VAR with time complexity O(T?) for T tokens.

VAR. At the generation of the k-th scale the total number of tokens across the current and previous

scales (71,...,7%) 1S
_ 2(i—1) _
Z” Za -5

Hence the cost of generation of the k: th scale is

CYAR — a? — 1\
S \a2-1) "
Summing over all K scales gives

v K a%—l K
CAR:Z((G2_1)> _122 2a* +1).

k=1

Substituting K = log, n + 1 (so that a>% = a2n? and a*X = a*n?) yields

VAR _ 1 a*(n* — 1) 2a%(a’*n? — 1)
(a2—1)2 | a*-1 a? -1
The asymptotic time complexity is governed by the dominant term:

8
a
CVAR ~ (a4 — 1)(a2 — 1)2 n4 — (/)(n4)

+ (log,n + 1)

Diffusion. Assume a self-attention DiT where each diffusion step uses the fixed largest resolution
n X m,i.e., n? tokens. So, a single step costs

CPIf — (n2)2 = p?.
With the same number of forward steps as VAR, namely K = log, n + 1, we get
K
CcPIt — Z n* = (log, n + 1)n* = O(n*logn).
k=1
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Comparison. From the above,

CDiff 4 8

(log, n)n B a B
(VAR ~ (@ —1)(a>—1)° o = <a4 — 1)(@2 — 1)2 logan = O(log‘n)
aS

That is, with the same number of forward passes, VAR totals O(n*) complexity while diffusion totals
O(n*logn), yielding a O(log n) speedup for VAR.

D PERFORMANCE ANALYSIS: APE vs. ROPE

As discussed in Sec. we replace the absolute position embeddings (APE) used in VAR (Tian
et al., [2024) with Rotary Positional Embeddings (Su et al., [2024) (RoPE). We found that us-
ing RoPE yields better performance when scaling the resolution from 256 x 256 to 512 x 512.
To demonstrate this, we conducted an ablation
where both APE and RoPE-based variants were —
fine-tuned at 512 x 512 resolution for 10 epochs.
As shown in Fig. the RoPE-based model
achieves higher validation accuracy compared
to the APE-based model, indicating its effective-
ness.

w w w
u ] W
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w
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E ADDITIONAL
ARCHITECTURAL DETAILS
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We now provide additional architectural details poc

for the RestoreVAR framework. We first de-
scribe the details for the Restore VAR trans-
former, followed by the Latent Refiner Trans-
former (LRT).

RestoreVAR Transformer. We adopted the
VAR model with a transformer depth of 16,
i.e., the architecture consists of 16 transformer
blocks. The structure of each block is illustrated in Fig.[TT(a). The embedding dimension was set
to 1024, and the number of attention heads used was 16. Furthermore, the transformer predicted
discrete latents at the following spatial resolutions in the latent space: 1 x 1,2 x 2,3 x 3,4 x 4,6 x 6,
9 x 9,13 x 13, 18 x 18, 24 x 24, and 32 x 32. The start-of-sequence (SOS) token is constructed
by augmenting the class embedding with the mean value (along spatial dimensions) of the features

obtained after a learnable projection applied on ff;i. Specifically,
SOS = classemp + gsos X Mean(Proj(f<2), SOS € R'*C.

Here, classenp is the class token embedding and g5 is initialized as 0 for gradual incorporation of
degradation conditioning. Other notations follow Sec. 3.

Figure 10: Validation accuracy comparison of APE
and RoPE-based fine-tuning at 512 x 512 resolu-
tion. RoPE demonstrates better performance.

Latent Refiner Transformer. The LRT follows a similar structure for the blocks as the Restore VAR
transformer, as shown in Fig. [TT[b). It was configured with a depth of 12, six attention heads, and an
embedding dimension of 384.
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Figure 11: Illustration of a transformer block in (a) Restore VAR transformer and (b) Latent Refiner
Transformer.

F RUNTIME AND PARAMETER BREAKDOWN

16



Under review as a conference paper at ICLR 2026

In this section, we provide a breakdown of the run-
time and parameter count for the following com-
ponents of the RestoreVAR framework: the VAE, Time (s) 0.0086  0.1863  0.0061
the Restore VAR transformer, and the Latent Refiner ~Farameters (M) 108.95 ~ 273.98 22.97
Transformer (LRT). This analysis provides insights
into the distribution of the computational cost across
the pipeline. As shown in Table[6] the majority of
inference time is taken by the autoregressive Restore-
VAR transformer.

Component VAE Transformer Refiner

Table 6: Compute time and parameter count
breakdown for each component of Restore-
VAR. VAE time includes both encoding and
decoding.

G ADDITIONAL VISUAL RESULTS

We now present additional visualizations for some of the ablations discussed in Sec.[d.4] along with
more qualitative comparisons across methods.

G.1 CONTINUOUS VS. DISCRETE CONDITIONING

As shown in Sec.[4.4] conditioning Restore VAR on the continuous latent of the degraded image yields
significantly better performance compared to using the quantized or discrete latent. Fig. [T2] further
illustrates this using visual comparisons between the model trained with discrete and continuous
conditioning. The model trained with discrete conditioning exhibits noticeably more hallucinations
than the one trained with continuous conditioning.

s

(a) Input (b) Discrete (c) Continuous (d) GT
Figure 12: Qualitative comparisons of RestoreVAR under discrete vs. continuous conditioning.

Restore VAR with discrete conditioning exhibits more hallucinations than the variant with continuous
conditioning.

G.2 QUALITATIVE COMPARISONS OF VAE DECODERS

As mentioned in Sec. [3.3.2} our
fine-tuned VQ-VAE decoder achieves
superior reconstruction performance
compared to the decoders of VAR and
HART. Fig. [13] provides qualitative i e =} e L
results to illustrate the same. Our de- (a) Input (b) VAR (c) HART (d) Ours

coder produces the best reconstruc-  Figure 13: Qualitative comparisons of the input reconstructed
tion. using VAR 2024), HART (Tang et al} 2024) and

Our VAE decoder. Our result has minimal distortions.
17
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(a) Input (b) No refiner (c) w/o last block (d) HART (e) Our LRT ) GT

Figure 14: Qualitative results for the ablation on latent refiner configurations. Our proposed LRT
preserves fine details better than the other configurations.

G.3 VISUAL COMPARISON OF REFINER VARIANTS

In Sec.[4-4] we demonstrated that our proposed Latent Refiner Transformer (LRT) achieves the best
performance compared to using no refiner, a refiner without last-block conditioning, and HART
2024)’s diffusion-based refiner. Quantitative results, reported in Table d] included mean PSNR
and SSIM scores on the RESIDE test set. Fig.[T4]presents qualitative comparisons
for these configurations. It can be observed that our LRT preserves fine details more effectively than
the other variants.

G.4 ADDITIONAL QUALITATIVE COMPARISONS

In this section, we provide additional qualitative comparisons of Restore VAR with state-of-the-art
LDM-based and non-generative all-in-one image restoration (AiOR) methods. Fig. [I3] presents
results from RestoreVAR alongside Diff-Plugin(Liu et al., 2024), AutoDIR (Jiang et al. 2023),
and PixWizard [2024)) on the RESIDE (Li et all 2019), Snow100k (Liu et al.l 2018),
Rain13K (Zamir et al.l 2021), LOLv1 2018), and GoPro (Nah et al., [2017) datasets.

Restore VAR consistently produces outputs that are more semantically aligned with the ground truth
(see zoomed-in patches).

Fig. [16] provides comparisons with non-generative methods—PromptIR(Potlapalli et all, 2024),
InstructIR 2025), AWRaCLe (Rajagopalan & Patel| [2024), DCPT
and DFPIR 2025)—for real-world, mixed and unseen degradation generalization on
LHP 2023), REVIDE (Zhang et al}} 2021b), TOLED 2021), POLED
2021), CDD 2024) and LOLBlur datasets. Restore VAR generates

sharper, more realistic outputs with fewer artifacts than non-generative models. For instance, for the
TOLED and POLED cases, Restore VAR outputs are visibly sharper than non-generative methods.
Similarly, the results of Restore VAR are superior in the case of mixed degradations.

H MORE DETAILS ABOUT AUTODIR COMPARISON

As mentioned in the main paper, comparisons with AutoDIR 2023) were conducted
without its structure correction module (SCM). AutoDIR consists of a latent diffusion model (LDM)
for initial restoration, followed by an SCM which is a non-generative post-processing network. The
intuition behind this approach is that the SCM predicts a residual based on the degraded input image
and the restored output of the LDM, to correct the VAE-induced distortions. In short,

Iresult = Isd +F ([Isda Ideg]) 3

where Iyq is the restored output from the LDM, I, is the original degraded input image, and F (-)
denotes the SCM which operates on the concatenated inputs [Iy4, I4ee]. However, we found that
instead of slightly modulating the structural details in Iy, the SCM behaves like a separate non-
generative restoration model which directly restores Jgee. To show this, we evaluated AutoDIR with
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Figure 15: Additional qualitative comparisons of RestoreVAR with LDM-based AiOR approaches.
Restore VAR consistently preserves fine details more effectively than the LDM-based methods.

the SCM on the RESIDE dataset for two cases: (1) using Iy as the actual LDM
output and (2) setting I,q = 0, effectively removing any structural information from the LDM. If the
SCM were functioning as a corrective module, performance in the second case should deteriorate
significantly. However, we found that the SCM was able to independently restore the degraded input
in the second case, as shown in Fig.[T8] This suggests that the SCM largely ignores the LDM output
and instead performs direct restoration on g, thereby behaving as a non-generative restoration
network. Therefore, to ensure a fair comparison with other generative models, we evaluated only the
LDM output of AutoDIR.

I LIMITATIONS AND SCOPE FOR FUTURE WORK

Despite the strengths of Restore VAR, there remains scope for improvement. First, its performance
is inherently constrained by the latent refiner transformer (LRT) and the VAE decoder. While the
LRT significantly improves results over using no refiner, it does not reach the upper bound set by
directly decoding from ground-truth continuous latents. Exploring improved VQVAE and refiner
architectures could help address this. Another promising direction is to employ our non-generative
LRT in fully generative VAR models, given its strong performance for AiOR. Finally, future work
can investigate how the performance of Restore VAR scales with larger VAR backbones.

J  LLM USAGE

LLM was used only for polishing writing in parts of the main paper and supplementary.
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Figure 16: Additional qualitative comparisons of RestoreVAR with non-generative methods on
real-world, unseen and mixed degradations. Restore VAR achieves better results, highlighting its
superior generalization.

Input PromptIR InstructIR AWRaCLe DCPT DFPIR Restore VAR

LOLBIlur

LOLBIlur

Figure 17: Qualitative comparisons with non-generative methods on samples from the real mixed-
degradation dataset LOLBIur.
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Figure 18: Illustration of the behavior of AutoDIR’s structure correction module
(SCM). The second column shows outputs when the SCM is applied to the LDM output /54, while the
third column shows results when I is set to zero. Despite no structural information (third column),
the SCM still restores the image, indicating that it functions as a separate non-generative restoration
model.
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