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ABSTRACT

The advancement of safe reinforcement learning (RL) faces numerous obstacles,
including the lack of simulation environments, demanding computational require-
ments, and a lack of widely accepted benchmarks. To address these challenges, we
introduce HASARD (A Benchmark for HArnessing SAfe Reinforcement Learning
with Doom), tailored for egocentric pixel-based safe RL. HASARD features a suite
of diverse and stochastic 3D environments. Unlike prior vision-based 3D task suites
with simple navigation objectives, the environments require spatial comprehension,
short-term planning, and active prediction to obtain high rewards while ensuring
safety. The benchmark offers three difficulty levels to challenge advanced future
methods while providing an easier training loop for more streamlined analysis.
Accounting for the variety of potential safety protocols, HASARD supports both
soft and hard safety constraints. An empirical evaluation of baseline methods
highlights their limitations and demonstrates the benchmark’s utility, emphasizing
unique algorithmic challenges. The difficulty levels offer a built-in curriculum,
enabling more efficient learning of safe policies at higher levels. HASARD utilizes
heatmaps to visually trace and analyze agent navigation within the environment,
offering an interpretive view of strategy development. Our work is the first bench-
mark to exclusively target vision-based embodied safe RL, offering a cost-effective
and insightful way to explore the potential and boundaries of current and future
safe RL methods. The environments, code, and baseline implementations will be
open-sourced.

Figure 1: Level 1 environments of the HASARD benchmark, offering rich diversity in visuals,
objectives, and unique features. Each setting poses unique safe RL challenges across dynamic 3D
landscapes that require strategic navigation, tactical decision-making, responsiveness to sudden
changes, and adherence to safety constraints. HASARD offers three difficulty levels, with higher
levels introducing novel features that expand beyond basic parameter adjustments.
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1 INTRODUCTION

Over recent decades, reinforcement learning (RL) has evolved from a theoretical concept into a
transformative technology that impacts numerous fields, including transportation scheduling (Kayhan
& Yildiz, 2023), traffic signal control (Liang et al., 2019), energy management (Wei et al., 2017),
and autonomous systems (Campbell et al., 2010). Its application ranges from optimizing complex
chemical processes (Quah et al., 2020) to revolutionizing the entertainment (Wang et al., 2017) and
gaming (Vinyals et al., 2017; Berner et al., 2019) industries. However, as RL continues to integrate
into more safety-critical applications such as autonomous driving, robotics, and healthcare, ensuring
the safety of these systems becomes paramount. This need arises because, in real-world scenarios,
failures in RL applications can lead to consequences ranging from minor inconveniences to severe
catastrophes.

Despite the importance of safe RL, the development of its systems faces significant hurdles, including
the lack of robust benchmarks that mimic real-world complexities where safety is crucial. Researchers
have often resorted to manually adapting existing RL environments (Alshiekh et al., 2018; Gronauer
et al., 2024) and simulation platforms (Müller et al., 2018; Lesage & Alexander, 2021) to test
safety features. This makes reproducibility difficult and often lacks the documentation and baseline
comparisons necessary for meaningful scientific progress. Existing safe RL benchmarks often rely
on simplistic 2D toy problems to test rudimentary capabilities (Leike et al., 2017; Chevalier-Boisvert
et al., 2024), or they focus on learning safe robotic manipulation and control from proprioceptive
data (Ray et al., 2019; Dulac-Arnold et al., 2020; Yuan et al., 2022; Gu et al., 2023). However, few
simulation environments have been developed that target embodied egocentric learning from imagery,
a critical component for applications where visual perception directly impacts decision-making and
safety. It allows agents to interpret and interact with the environment from a first-person perspective,
essential for complex scenarios such as autonomous driving and assistive robotics. By emphasizing
this approach, we can enhance an agent’s ability to navigate and operate in dynamic, visually diverse
settings, mirroring human perceptual and cognitive processes.

To address these gaps, we introduce HASARD, a novel benchmark tailored for egocentric pixel-based
safe RL. HASARD features a suite of diverse, stochastic environments in a complex 3D setting
that extends beyond mere navigation tasks, demanding comprehensive safety strategies and higher-
order reasoning. Unlike previous efforts which often rely on physics-based simulation engines like
MuJoCo (Todorov et al., 2012) or Robosuite (Zhu et al., 2020) that are computationally expensive
and slow, HASARD is built on the ViZDoom (Kempka et al., 2016) platform and integrated with
Sample-Factory (Petrenko et al., 2020), enabling up to 50,000 environment iterations per second on
standard hardware. In Appendix C we analyze the computational efficiency of HASARD. Instead
of focusing on learning safe control under complex physics simulations, our setting features semi-
realistic environments that effectively replicate critical aspects of real-world interaction such as
spatial navigation, depth perception, tactical positioning, target identification, and predictive tracking.
This approach models practical scenarios with reduced computational demands, allowing simulations
to effectively extrapolate to real-world challenges. Incorporating vision into safe RL is crucial for
enhancing realism and applicability by mirroring human perception in diverse, safety-critical tasks.
HASARD is not intended to replicate the full complexity of real-world applications. However, it
serves as an important foundation for vision-based Safe RL research. It offers means for developing
and analyzing algorithms that can be refined and applied to more complex and realistic scenarios. We
further motivate the significance of HASARD in Appendix F. It should be noted that HASARD is
based on an FPS video game, which inherently contains elements of violence. We do not endorse
these violent aspects in any way. Our motivation is solely to leverage the technical capabilities of the
platform to advance research in safe RL.

The contributions of our work are two-fold: (1) We design 6 novel ViZDoom environments1 in 3
difficulties, each with soft and hard safety constraints, and integrate them with Sample-Factory to
facilitate rapid simulation and training. We publicly release HASARD2, the first Safe RL benchmark
uniquely designed for vision-based embodied RL in complex 3D landscapes. (2) We evaluate
six popular baseline methods across various settings of our environments, demonstrating their
shortcomings in balancing performance and safety while adhering to constraints.

1Demo of a trained PPOLag agent navigating the environments: https://emalm.com/?v=dGLYX.
2The code is available at https://anonymous.4open.science/r/HASARD-9D33/.
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Table 1: Comparison of existing Safe Reinforcement Learning benchmarks with HASARD.

Benchmark 3D Hard
Constraints

Difficulty
Levels

Vision
Input

Stochastic
Environments

Fast
Simulation

AI Safety Gridworlds ✗ ✓ ✗ ✗ ✗ ✓
Safe-Control-Gym ✓ ✗ ✗ ✗ ✓ ✗
Safe MAMuJoCo ✓ ✗ ✗ ✗ ✗ ✗
Safety Gym ✓ ✗ ✗ ✗ ✓ ✗
Safety Gymnasium ✓ ✗ ✓ ✓ ✓ ✗

HASARD ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

Adapted RL Environments RL simulation environments have widely been adapted for safety
research. Specific tiles incorporated into Minigrid (Chevalier-Boisvert et al., 2024) environments
serve as hazards that the agent must avoid (Wachi et al., 2021; Wang et al., 2024). RWRL augments
RL environments with constraint evaluation, including perturbations in actions, observations, and
physical quantities with robotic platforms such as two-wheeled robots and a quadruped (Dulac-Arnold
et al., 2020). The CARLA simulator for autonomous driving has been used to directly penalize
unsafe actions like collisions and excessive lane changes in the reward function (Nehme & Deo, 2023;
Hossain, 2023). Similarly, the racing simulator TORCS incorporates penalties for actions that lead
to speed deviations and off-track movement into its reward structure (Wang et al., 2018).

Safety Environments Early safe RL environments like AI Safety Gridworlds (Leike et al., 2017)
are situated in 2D grid worlds and tackle challenges like safe interruptibility and robustness to
distributional shifts. Robotics platforms directly incorporate safety constraints into RL training for
tasks such as stabilization, trajectory tracking, and robot navigation. Safe-Control-Gym(Yuan et al.,
2022), effective for sim-to-real transfer, includes tasks like cartpole and quadrotor with dynamics
disturbances. Meanwhile, Safe MAMuJoCo, Safe MARobosuite, and Safe MAIG (Gu et al.,
2023) serve as benchmarks for safe multi-agent learning in robotic manipulation. Safety-Gym (Ray
et al., 2019) uses the pycolab engine for simple navigation tasks emphasizing safe exploration and
collision avoidance. Safety-Gymnasium (Ji et al., 2023a) enhances Safety Gym with more tasks,
agents, and multi-agent scenarios. The Safety Vision suite is the closest to our work, but despite
the 3D capabilities of MuJoCo, these environments do not leverage the physics-based nature of
the engine to increase the depth and realism of tasks but merely add a layer of control difficulty,
accompanied by increased computational overhead. Furthermore, all tasks can fundamentally be
reduced to two-dimensional problems as there is no vertical movement, limiting agents to navigation
objectives where the goal is to avoid collisions while moving toward a target. Notably, other entities in
these environments serving as hazards are either stationary or move along predetermined trajectories.
We present an extended comparison with Safety-Gymnasium in Appendix H.

3 PRELIMINARIES

In the context of embodied image-based safe reinforcement learning, we formulate the problem as
a Constrained Partially Observable Markov Decision Process (CPOMDP), which can be described
by the tuple (S,O,A, P,O,R, γ, p, C,d). In this model, S represents the set of states and O, the
set of observations including high-dimensional pixel observations, reflects the partial information
the agent receives about the state. Actions are denoted by A, and the state transition probabilities
by P = P(st+1|st, at). The observation function O(o|st+1, a) dictates the likelihood of receiving
an observation ot ∈ Ω after action at and transitioning to new state st+1. The reward function
R : S ×A → R, maps state-action pairs to rewards. C is a set of cost functions ci : S ×A → R for
each constraint i, while d is a vector of safety thresholds. The initial state distribution is given by p,
and the discount factor γ determines the importance of immediate versus future rewards. The goal in
a CPOMDP is to maximize the expected cumulative discounted reward, E[

∑∞
t=0 γ

tr(st, at)], subject
to the constraints that the expected cumulative discounted costs for each i, E[

∑∞
t=0 γ

tci(st, at)],
remain below the thresholds di. A policy π : S → ∆(A) maps states to a probability distribution
over actions. The value function V π(s) and action-value function Qπ(s, a) respectively measure the
expected return from state s under policy π, and after taking action a in state s. Considering the
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(a) Precipice Plunge: The agent adopts a safe
strategy (left), carefully descending the cave using the
staircase to minimize the risk of falling. The agent
engages in an unsafe leap to the bottom of the cave
(right), quickly achieving its objective at the cost of
incurring significant fall damage.

(b) Detonator’s Dilemma: The agent detonates
a barrel in a safe manner (left), ensuring no creatures
or other barrels are nearby while maintaining suffi-
cient distance. The agent demonstrates unsafe behavior
(right) by recklessly detonating a barrel in a crowded
area with nearby barrels while standing too close.

Figure 2: Illustrations of safe and unsafe agent behavior.

numerous constraint formulations in literature (Gu et al., 2022; Wachi et al., 2024b), for the scope of
this paper and our experiments, we adopt a CMDP approach where the aim is to optimize the expected
return from the initial state distribution ρ, constrained by a safety threshold on the cumulative safety
cost. Formally, the problem is defined as:

max
π

V π
r (ρ) s.t. V π

c (ρ) ≤ ξ,

where V π
r (ρ) and V π

c (ρ) represent the expected return and the cumulative safety cost of policy π,
respectively, and ξ ∈ R+ is the predefined safety threshold.

4 HASARD BENCHMARK

With the environment design inspired by previous benchmarks (Tomilin et al., 2022; 2024), HASARD
is built on the ViZDoom platform (Kempka et al., 2016), a highly flexible RL research tool that
enables learning from raw visual inputs using the engine of the classic FPS video game, Doom. One
of ViZDoom’s key advantages is its lightweight nature, which allows it to achieve up to 7000 FPS
with off-screen rendering. Table 1 compares HASARD with prior benchmarks.

HASARD comprises six distinct environments in three levels of difficulty, developed using the Action
Code Script (ACS) language. Table 2 outlines the core properties of each scenario, including (1)
the simplified action space, (2) the presence of enemies, (3) the availability of obtainable items,
(4) the primary objective of the environment, and (5) cost increasing criterion. Each scenario is
designed with a specific objective, incorporating multiple elements that introduce stochasticity to the
environment. Below, we will briefly discuss each scenario’s unique challenges and characteristics.

Armament Burden The agent must collect weapons scattered across the map and deliver them
to the starting zone. Each acquired weapon increases the carrying load, slowing the agent down
after the carrying capacity is exceeded. Heavier weapons yield higher rewards, creating a complex
decision-making problem for the agent to optimize its path and manage its carrying capacity. At any
given time, the agent can discard all carried items, losing any potential associated rewards.

Remedy Rush The agent navigates an area filled with various items: some grant health and others
incur costs. This challenges the agent to adeptly maneuver through the environment, strategically
avoiding cost-incurring items while maximizing the collection of health vials within a limited time
frame. Higher levels increase complexity by introducing periodical darkness.

Collateral Damage Armed with a rocket launcher and held stationary, the agent is tasked to
eliminate fast-moving distant targets while avoiding harm to neutral units in proximity. This demands
accurate targeting and anticipatory skills to accurately predict future positions of both hostile and
neutral units by the time the projectile reaches its destination.

Volcanic Venture In this floor is lava scenario, the agent must navigate platforms, skillfully leaping
between them to collect items. This compels the agent to assess the feasibility of reaching isolated
platforms and their potential rewards, balancing the risk of falling into the lava.

4
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Table 2: Key aspects of HASARD environments including the action space, presence of enemies,
availability of collectibles, primary objective, and associated costs. Actions in the table follow the
coding F: MOVE_FORWARD, B: MOVE_BACKWARD, L: TURN_LEFT, R: TURN_RIGHT, E: USE, J:
JUMP, S: SPEED, A: ATTACK, U: LOOK_UP, D: LOOK_DOWN.

Environment Actions Enemies Items Objective Cost
Armament Burden F L R E J ✓ ✓ Deliver weapons Breach capacity

Remedy Rush F L R J S ✗ ✓ Collect health items Obtain poison

Collateral Damage A L R ✓ ✗ Eliminate targets Harm neutrals

Volcanic Venture F L R J S ✗ ✓ Gather items Stand on lava

Precipice Plunge F B L R U D J ✗ ✗ Descend deeper Fall damage

Detonator’s Dilemma F L R J S A ✓ ✗ Detonate barrels Damage entities

Precipice Plunge Trapped in a cave environment, the agent is tasked with cautiously navigating to
the bottom. To descend safely, it must skillfully control its movement and velocity, accurately gauge
depth, and assess the safety of potential falls, as large leaps can result in losing health.

Detonator’s Dilemma Equipped with a pistol, the agent is tasked with carefully detonating ex-
plosive barrels scattered across the environment. The complexity lies in the presence of various
neutral units sporadically roaming the area. The agent must judiciously choose which barrels to shoot
and precisely time these detonations to prevent: 1) harming the neutrals, 2) harming itself, and 3)
unintended chain explosions. This demands adept timing, accurate distance assessment, and risk
assessment when identifying the units, as each type has varying health point levels.

All environments present a trade-off between achieving higher rewards and managing associated
costs. Even when unsafe behaviors are minimized and costs are fully controlled, no environment can
be deemed completely solved, as there is always potential for achieving higher rewards with a more
refined strategy. This design ensures that the benchmark remains relevant and challenging, even as
safe RL methods improve. We present further details regarding our environments in Appendix A.

4.1 BASIC SETUP

The agent interacts with the environment episodically. Each episode begins with a random con-
figuration and lasts for 2100 time steps unless specific conditions conclude it. All environments
feature stochastic elements, leading to a non-deterministic transition function P . The objective is to
maximize the reward while keeping the costs below a predefined threshold.

Observations The agent perceives the environment through a first-person perspective, capturing
each frame as a 320×240 pixel image in 8-bit RGB format. This resolution strikes a balance between
adequate detail and rapid rendering speeds. A head-up display (HUD) occupies the lower section of
the frame, displaying vital statistics such as armor, weapons, keys, ammo, and health. Limited by a
90-degree horizontal field of view, the agent’s observation is restricted to a subset of its surroundings,
defining the partially observable state space O of the CPOMDP.

Actions Doom was originally designed for keyboard use, supporting a basic set of button presses
for movement, shooting, opening doors, and switching weapons. Modern adaptations extend these
capabilities with mouse support and additional actions such as jumping and crouching. The ViZDoom
platform integrates mouse movement through two continuous actions C = {c1, c2}, where c1 and
c2 correspond to horizontal and vertical aiming adjustments respectively. Furthermore, it allows
for a combination of multiple simultaneous key presses, structured into a multi-discrete action
space D, formed by the Cartesian product of individual actions. This space includes 14 individual
actions that can be activated in various combinations to generate a total of |D| = 864 distinct actions,
encapsulated in D = {d1, d2, . . . , d14}. The total action space is thus formalized as the product of
these continuous and multi-discrete spaces: A = C ×D.

To shorten the training loop and emphasize Safe RL principles over general RL challenges, HASARD
provides the option to use a simplified action space for each environment, removing redundant

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Volcanic Venture: Under the soft constraint,
the agent can step on the lava to collect items or reach
other platforms, albeit at a health cost. Under the hard
constraint, any contact with lava results in immediate
termination of the episode due to total health loss.

(b) Armament Burden: Upon exceeding capacity
the soft constraint slows the agent, allowing continued
progress with reduced speed, whereas the hard con-
straint causes the agent to drop all weapons, forcing a
restart of the collection process.

Figure 3: The hard constraint setting affects the agent’s progression more severely.

actions that are not vital for solving the task and discretizing the continuous actions. For instance,
in Precipice Plunge, the agent can select from |D| = 54 possible actions, structured as
A = D = A1 × A2 × A3 × A4, where A1 = {MOVE_FORWARD,MOVE_BACKWARD,NO-OP},
A2 = {TURN_LEFT,TURN_RIGHT,NO-OP}, A3 = {LOOK_UP,LOOK_DOWN,NO-OP}, and
A4 = {JUMP,NO-OP}. This more controlled setting allows us to better assess the reward-cost
trade-offs of existing methods. The simplified action space promotes faster learning and enhances
computational efficiency while preserving core complexities of memory, short-term prediction, and
spatial awareness. Appendix B.1 compares the performance between these two settings.

Rewards The focus of HASARD is on safety aspects, rather than solving pure RL problems such
as sparse rewards. The environments are thus designed such that it is feasible to obtain high rewards
with an off-the-shelf RL algorithm. The environments feature relatively dense rewards, though agents
are not rewarded at every time step, such as for simply moving toward a target. However, through
random exploration over multiple episodes during early training, agents are likely to occasionally
trigger reward signals. For example, collecting a health item in Remedy Rush or firing a rocket at a
hostile unit in Collateral Damage. The rewards are directly tied to the environment objectives
specified in Table 2. Armament Burden features the most long-horizon rewards, as the agent
must not only obtain a weapon but also deliver it to the starting zone. Detailed descriptions of the
reward functions are provided in Appendix A.3.

Costs In each HASARD scenario, costs are closely tied to the agent’s actions, underscoring the
consequences of decision-making. The environments are designed to penalize naive or overly greedy
strategies that solely focus on maximizing immediate rewards. In Armament Burden, agents that
acquire heavy, high-reward weapons risk exceeding their carrying capacity, significantly slowing them
down and reducing their delivery efficiency. In Collateral Damage, indiscriminate combat
tactics can lead to neutral unit casualties, necessitating precise attacks and predictive strategies.
Similarly, careless navigation harms the agent in Volcanic Venture, Remedy Rush, and
Precipice Plunge, by respectively stepping on lava, collecting poisonous items instead of
remedies, and suffering fall damage from high altitudes.

4.2 SAFETY CONSTRAINTS

In real-world applications, safety requirements differ significantly depending on the scenario. For in-
stance, nuclear reactor control demands absolute precision with no margin for error, while autonomous
vehicle navigation faces inherent challenges that make completely safe behavior unattainable, such
as unpredictable pedestrian actions and sensor limitations. In such environments, the objective
shifts to minimizing unsafe behavior as much as possible. To address these diverse requirements,
HASARD provides both soft and hard constraint versions of each environment, allowing for flexible
adaptation to the specific safety needs of different scenarios. Figure 3 illustrates the effects of soft
and hard constraints in selected game scenarios, demonstrating the impact of each constraint type
on gameplay dynamics and strategy. Each environment is governed by a single safety constraint i,
which is associated with a specific cost threshold d = {ξi}.

Soft Constraints Soft constraints involve setting a cost threshold that the agent must not ex-
ceed, maximizing the reward

∑T
t=0 R(st, at) while keeping safety risks within acceptable limits

6
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∑T
t=0 C(st, at) ≤ ξ, where st and at represent the state and action at time t, respectively, and ξ is

the predefined safety cost threshold. For each environment within the benchmark, we empirically
determine and incorporate a default safety threshold, ξ, which is designed to balance the need for
safety with the pursuit of high performance.

Hard Constraints Under hard constraints (ξ = 0), any action that violates safety can lead to
one of two outcomes: (1) termination of the episode, where the trajectory is deemed a failure, all
rewards are withheld, and substantial costs are imposed. This approach redefines the episode’s
time horizon to T = min{t | ci(st, at) > 0}, effectively shortening the episode to the point of
the first safety violation. Alternatively, (2) it can result in severe in-game penalties that drastically
reduce progress and potential outcomes. This experimental setting highlights the importance of
how safety constraints are integrated and evaluated within RL training regimes. Whereas the soft
constraint setting assumes there is a cost budget in the bounds of which the agent can navigate, certain
applications are more safety-critical. Dealing with the potential of crashing a car into a wall presents
very different requirements. As there are several known formulations of safety in RL (Wachi et al.,
2024b), it is important to acknowledge what type of safety problem an algorithm is designed to solve.
With this setting, HASARD therefore aims to provide a versatile benchmark that facilitates evaluation
across different safety formulations.

4.3 DIFFICULTY LEVELS

To ensure that HASARD remains challenging for future methods, we design each environment with
three levels of difficulty. Generally, we vary certain configuration parameters to increase complexity.
For example, in Collateral Damage, we decrease the number of enemies while increasing the
number of neutrals, and boost everyone’s movement speed. These changes heighten the challenge of
avoiding unintended casualties. In some cases, we introduce entirely new mechanics. For instance, in
Level 1 of Volcanic Venture, the platforms remain static throughout the episode. However, at
higher levels, the layout of the platforms changes after a set interval. We aim to ensure that costs can
always be avoided. In this scenario, the agent is granted a short period of invulnerability following
each change. Appendix A.2 provides more detailed descriptions of the specific modifications for each
difficulty level.

5 EXPERIMENTS

To demonstrate the utility of HASARD, we evaluate six baseline algorithms on the benchmark in
this section. 1) To establish reward and cost upper bounds, we employ the standard PPO (Schulman
et al., 2017) algorithm, which ignores costs. 2) We introduce PPOCost, a variant that integrates
cost minimization directly by treating costs as negative rewards. The pitfalls of reward engineering
to satisfy cost constraints in this manner have been widely discussed (Roy et al., 2021; Kamran
et al., 2022). 3) We further employ PPOLag (Ray et al., 2019), a well-known safe RL approach that
uses the Lagrangian method to balance maximizing returns against reducing costs to a predefined
safety threshold. 4) PPOSauté (Sootla et al., 2022) uses state augmentation to ensure safety. 5)
PPOPID (Stooke et al., 2020) employs a proportional-integral-derivative controller to fine-tune
the trade-off between performance and safety dynamically. 6) Finally, P3O (Zhang et al., 2022)
combines elements of PPO, off-policy corrections, and a dual-clip PPO objective to optimize both
policy performance and adherence to safety constraints. We aim to examine how adherence to safety
constraints influences performance and necessitates strategic decision-making. We further investigate
the effect of hard constraints and how difficulty levels serve as a training curriculum.

Protocol We run each experiment for 500 million environment steps using the simplified action
space outlined in Section 4.1, repeated over five distinct seeds. We utilize the Sample-Factory (Pe-
trenko et al., 2020) framework, which reduces the wall time of an average run to approximately two
hours. All experiments are conducted on a dedicated compute node equipped with a 24-core 3.2 GHz
AMD EPYC 7F72 CPU and a single NVIDIA A100 GPU. For our network configuration, PPO setup,
and training processes, we predominantly utilize the default settings provided by Sample-Factory.
For a more detailed experimental setup and exact hyperparameters please refer to Appendix D.
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Table 3: Rewards and costs of baseline methods on all levels of the HASARD benchmark averaged
across ten final data points over five unique seeds. Maximum rewards and minimum costs are depicted
in bold. Costs under the safety threshold are displayed in green, and the highest rewards among
methods meeting the safety thresholds are highlighted in purple.

L
ev

el

Method
Armament

Burden
Volcanic
Venture

Remedy
Rush

Collateral
Damage

Precipice
Plunge

Detonator’s
Dilemma

R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓

1

PPO 9.68 109.30 51.64 172.93 50.78 52.44 78.61 41.06 243.42 475.62 29.67 14.28
PPOCost 5.47 3.67 30.73 5.44 28.21 6.75 68.71 24.04 237.72 0.69 27.60 8.45
PPOLag 7.51 52.41 42.40 52.00 36.37 5.25 29.09 5.61 147.24 44.96 21.49 5.62
PPOSauté 2.33 32.87 32.68 62.00 20.50 9.18 26.08 7.09 241.37 424.35 28.69 8.78
PPOPID 8.99 49.79 45.23 50.53 38.19 4.90 43.27 5.03 231.53 43.91 26.51 5.25
P3O 8.60 40.72 43.55 46.10 37.90 4.78 46.52 5.97 242.53 176.41 29.62 6.59

2

PPO 4.24 99.59 38.31 186.44 61.94 62.22 53.58 61.13 324.69 608.07 40.09 19.63
PPOCost 7.59 6.20 21.10 3.93 0.01 0.03 21.86 8.19 162.01 61.19 40.37 15.56
PPOLag 4.50 53.50 26.11 53.10 28.75 5.72 18.87 5.61 105.01 52.39 19.57 5.34
PPOSauté 1.55 30.47 23.68 75.39 3.72 4.80 6.37 3.21 119.42 159.30 20.79 9.97
PPOPID 5.50 50.30 33.52 50.38 32.92 5.15 27.23 5.12 162.16 50.77 20.84 4.92
P3O 5.33 39.82 32.38 45.89 31.91 4.85 27.41 5.12 247.05 178.56 25.48 6.97

3

PPO 1.99 118.22 42.20 347.77 53.16 68.27 34.86 84.44 487.17 894.22 49.36 23.72
PPOCost 0.04 0.05 10.61 14.76 0.01 0.02 3.93 1.35 15.39 6.64 49.95 19.79
PPOLag 2.03 31.89 22.77 52.54 8.02 9.74 12.22 5.29 23.87 34.98 19.27 5.26
PPOSauté 2.32 37.68 18.89 246.80 1.17 3.50 2.74 2.76 101.64 176.14 22.20 10.36
PPOPID 2.78 33.89 25.80 49.02 13.51 5.14 14.51 4.97 54.02 49.57 20.49 4.87
P3O 2.61 29.94 24.93 49.84 14.29 4.19 13.57 4.12 269.14 428.72 26.73 7.49
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Figure 4: Training curves of HASARD Level 1 with 95% confidence intervals across five seeds.

5.1 BASELINE PERFORMANCE

The objective in HASARD is to maximize the reward with the cost not exceeding the predefined
budget. As there is no principled way to choose a safety budget unless we have a particular application
in mind, we therefore empirically assign a cost threshold to each environment. Our choice for the
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default safety budgets is to establish a solvable but complex challenge, necessitating a substantial
reward sacrifice to meet the threshold. In Appendix B.2 we explore the effect of different safety
bounds. We present the main results in Table 3 and the Level 1 training curves in Figure 4. PPO
maximizes the reward irrespective of associated costs, setting an upper bound for reward and cost
in all environments with its unconstrained behavior. The cost penalty of PPOCost leads to random
reward-cost trade-offs, without any guarantee that the cost remains below the threshold. Note, that we
plot the original reward for PPOCost before the cost deduction. We analyze the impact of different
cost factors in Appendix B.3. PPOLag closely adheres to safety thresholds, yet frequently yields
some of the lowest rewards. Continuously adjusting the Lagrangian multiplier leads to fluctuations
around the safety threshold, preventing it from consistently staying within limits. PPOSauté and
P3O fail to satisfy the cost threshold in several environments, although P3O has noticeably higher
rewards. Conversely, PPOPID consistently meets the constraints, outperforming other baselines
most often, making it arguably the most effective method on HASARD.

5.2 HARD CONSTRAINTS

It has been shown that in environments with hard constraints, Safe RL agents suffer from the safe
exploration problem (Garcia & Fernández, 2012; Pecka & Svoboda, 2014). We observe the same
issue as indicated by our results in Table 4. The penalty for risky exploration is prohibitive, pushing
PPOCost and PPOLag towards overly cautious behaviors, as evidenced by their near-zero rewards.
Precipice Plunge is the only environment, where PPOLag manages to learn a safe policy,
allowing it to navigate to the bottom of the cave without falling a single time. Consequently, it
outperforms PPO and PPOCost, which only earn a small reward for their initial leap, as the episodes
terminate abruptly upon incurring fall damage. Interestingly, PPO learns to neglect heavier weapons
in the Armament Burden scenario without any explicit cost signal. This behavior appears to be a
response to the lack of rewards associated with these weapons, as exceeding the carrying capacity
results in the loss of all acquired weapons. This allows PPO to achieve returns similar to those of
the soft constraint setting. A potential approach to developing a successful policy involves using a
curriculum that progressively reduces the cost budget until it reaches zero. We leave this open for
future research.

Table 4: Performance on Level 1 of the HASARD benchmark with hard constraints across five unique
seeds. We show the average of the final ten data points. Maximum rewards and minimum costs are
highlighted in bold.

Method
Armament

Burden
Volcanic
Venture

Remedy
Rush

Collateral
Damage

Precipice
Plunge

Detonator’s
Dilemma

R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
PPO 13.97 0.70 15.47 1410 18.09 8.28 10.12 9.40 38.40 10.00 3.73 12.52
PPOCost 5.19 0.03 0.65 15.83 0.01 0.21 0.47 0.55 37.00 10.00 0.67 0.87
PPOLag 0.01 0.00 1.15 12.49 0.01 0.19 0.15 0.54 194.4 0.65 0.03 0.13

5.3 CURRICULUM LEARNING

Table 5: Difficulty levels of some HASARD envi-
ronments provide a successful curriculum to learn
a safe policy more efficiently.

Training
Remedy

Rush
Collateral
Damage

R ↑ C ↓ R ↑ C ↓
Regular 6.65 3.89 11.46 5.29

Curriculum 18.82 4.90 15.32 5.22

Training RL agents on progressively more com-
plex conditions to enhance learning efficiency
has been widely explored (Florensa et al., 2017;
Narvekar et al., 2020). This leads to an interest-
ing question in our setting: Can the increasing
difficulty levels of HASARD environments
provide a learning curriculum? To investi-
gate this, we train PPOPID sequentially on in-
creasing difficulty levels for 100M timesteps
each, then compare this to training directly on
Level 3 for 300M timesteps. We selected the
Remedy Rush and Collateral Damage
environments due to the significant performance gap between the levels, indicating the greatest poten-
tial for benefiting from competencies developed on easier tasks. We present the results in Table 5. We
can observe a nearly threefold performance increase for Remedy Rush and a 33% improvement

9
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in Collateral Damage over the same number of timesteps. This shows the knowledge transfer
potential to increasing levels of difficulty. There is little research on integrating curriculum learning
with safe RL. Prior works (Eysenbach et al., 2017; Turchetta et al., 2020) explore this integration
through the use of specialized resetting agents that manage task difficulty and safety. Since our level
design facilitates a curriculum, HASARD opens new avenues for exploration in this field.

5.4 NAVIGATIONAL ANALYSIS

To assess how the agent learns to solve the task, HASARD facilitates spatial tracking that aggregates
the agent’s visited locations across the last 1000 episodes. We then overlay these data as a heatmap
on the environment map, providing a visual representation of the agent’s movement patterns and
strategies. This analysis not only enhances our understanding of the comparative effectiveness of
different safe RL methods but also offers clearer insights into their strategic development over time.
Figure 5 depicts the progressive refinement of the PPOPID policy on Remedy Rush.

(a) In the early stages
of training the agent
is randomly explor-
ing. This leads to fre-
quent collisions with
surrounding walls.

(b) The agent learns
to navigate the map
with a risky strategy,
leading to high re-
wards at the expense
of elevated costs.

(c) To reduce costs
beneath the safety
threshold, the agent
adopts a conservative
strategy by limiting
its movements.

(d) Refinement of the
safe strategy contin-
ues as the agent op-
timizes for higher re-
wards while maintain-
ing low costs.

(e) The agent con-
verges on a policy that
consistently achieves
high rewards without
exceeding the cost
budget.

Figure 5: Heatmaps of visited locations superimposed on the map of Remedy Rush, illustrating
PPOPID’s policy evolution over 100M timesteps at Level 1.

6 CONCLUSION

Training proficient agents who can navigate varying tasks while upholding strict safety protocols
remains a significant challenge in RL. HASARD stands as a useful cost-effective tool in the field of
vision-based embodied safe RL, extending beyond mere 3D navigation tasks. It offers a suite of six
diverse and dynamic environments, designed to assess agent competency under safety constraints.
Our experimental evaluations underscore the utility of our benchmark. We expect our environments
to offer valuable insights into current algorithms and facilitate the development of future methods.
The hard constraint setting allows for minimal error and exploration. As safe RL methods evolve, we
anticipate that HASARD will remain a valuable asset, contributing to further advancements of safer
AI systems.

7 LIMITATIONS AND FUTURE WORK

The environments, though complex and visually diverse, are based on the ViZDoom game engine.
Despite its advantages, it does not fully capture the detailed physics and nuanced realism of real-world
settings. This limitation constrains the direct application of learned behaviors to real-life scenarios
without significant adaptations or fine-tuning. Doom operates with a discrete action space, inherently
simplifying the control challenges. To focus on safety and accelerate training, we simplified the
original Doom action space to only include actions vital for achieving each environment’s objective
while ensuring safety. This restricts multitask learning across environments and developing a general
agent capable of mastering all scenarios without expanding the action space. Our environments only
have a single objective and safety constraint. Future work could include multi-objective problems,
collaborative multi-agent scenarios, non-stationary environments with changing dynamics, and
continual or transfer learning scenarios. We discuss these directions more in-depth in Appendix E.
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A ENVIRONMENT DETAILS

In this section, we provide further details of HASARD’s environments.

A.1 DESCRIPTIONS

Table 6: Obtainable items found in the Armament Burden scenario with their associated delivery
rewards and weights.

Item Pistol Shot-
gun

Super
Shot-
gun

Chain-
gun

Rocket
Launcher

Plasma
Rifle

BFG
9000

Blur
Sphere

All
map

Back
pack

Rad
Suit

Weight 0.05 0.15 0.3 0.6 1.0 3.0 6.0 0.25 0.5 0.75 1.0
Reward 0.1 0.25 0.4 0.55 0.7 0.85 1.0 0 0 0 0

Armament Burden At the start of an episode, 10 random weapons are spawned at random locations.
The agent can obtain the weapons by simply walking over them without performing any extra actions
to pick them up. The agent’s movement speed v is dynamically adjusted based on the total weight w
of the weapons carried. If w exceeds the carrying capacity c, the agent’s speed is modified according
to the formula:

v = max

(
0.1 · v0, v0 −

w − c

c
· v0

)
where v0 is the agent’s initial speed. This mechanism ensures that the speed reduction is proportional
to the excess weight but does not drop below 25% of v0, thereby preventing total immobility. When
the agent reaches the delivery zone, it regains its original movement speed v0. Simultaneously, the
agent receives a reward based on the types and quantities of weapons delivered. Furthermore, the
same number of weapons previously carried by the agent is respawned at random locations outside
the delivery zone, with randomized weapon types. The agent can discard all its weapons by utilizing
the USE action, should it need to lighten its load to avoid penalties, having overestimated its carrying
capability.

(a) Level 1 features a simple layout
where the entire map is visible. The
agent’s task is to collect weapons
within its carrying capacity and de-
liver them to the starting zone, unim-
peded by any visual obstacles. The
delivery zone is depicted in blue,
making it visually distinguishable
from the rest of the map.

(b) Level 2 introduces obstacles and
a complex terrain that obstructs the
agent’s view of the weapons and
delivery zone, necessitating explo-
ration. The JUMP action is essential
to traverse elevated surfaces. The
floor and wall textures introduce a
degree of visual noise, making the
weapons harder to distinguish.

(c) Level 3 presents additional chal-
lenges with 1) decoy items that add
to the carrying load without offering
rewards and 2) lethal acid pits that
induce a high cost if fallen into. The
JUMP action is effective to avoid pit-
falls, but may not be feasible with
a heavy load, thus compelling the
agent to seek alternative routes.

Figure 6: Each difficulty level in Armament Burden incorporates novel environmental factors
that complicate the task.

Higher difficulty levels introduce new features, depicted in Figure 6. In Level 2, weapons may not
always be visible due to obstacles and complex terrain that obscure the agent’s view. The agent
can navigate more effectively with the use of the JUMP action. Level 3 introduces decoy items
that increase the agent’s carrying load without offering any reward for their delivery. This creates
a challenge in credit assignment, as the agent cannot implicitly discern which items picked up
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contributed to the delivery reward. Table 6 displays the rewards and weights of all weapons and
decoys. Another layer of complexity is introduced with the addition of acid pits. Each episode
features 20 acid pits of a fixed size, randomly placed throughout the level. Falling into one of these
pits results in the agent losing all its health, accompanied by a significant cost penalty.

Remedy Rush Many obtainable items are randomly distributed throughout the environ-
ment at the beginning of each episode. The agent’s objective is to collect health grant-
ing items D+ = {HealthBonus,Stimpack,Medikit} and avoid penalty items D− =
{ArmorBonus,RocketAmmo,Shell,Cell}. Additional items are spawned at random loca-
tions after every 120 in-game ticks (∼ 3.5s): two HealthBonus and one of each type from D−. A
new Stimpack, Medikit, and Infrared are spawned when picked up. By mastering precise
controls, the agent can strategically leap over and avoid collecting unwanted items. In levels 2 and 3,
the lighting of the environment alternates periodically between full brightness and complete darkness,
adding a layer of difficulty as items become temporarily invisible. This effect is illustrated in Figure
7a. The agent can find night vision goggles randomly spawned within the level, which allow for
uninterrupted visibility despite the fluctuating lights, though they cast a strong green hue on the
surroundings (Figure 7b). Note that unlike other obtainable items, night vision goggles are visible on
the ground during the darkness intervals.

(a) During the darkness interval, both health and penalty
items become imperceptible. The agent has a few strate-
gies to consider: it could choose to remain stationary,
avoiding the risk of collecting harmful items, or it could
memorize the positions of desirable items and navigate
by memory. Alternatively, the agent can seek out night
vision goggles, which remain visible on the ground
even in complete darkness, to maintain the ability to
discern the items.

(b) Once the agent acquires the night vision goggles, it
gains permanent visibility, unaffected by the darkness.
However, the goggles render all items and surroundings
less distinguishable by casting a pervasive green hue
over them. While this change in color may seem minor
to human players, it significantly affects image-based
learning agents. Alterations in color, saturation, or hue
necessitate learning to act in diverse conditions. This
introduces an interesting strategic trade-off.

Figure 7: Levels 2 and 3 of Remedy Rush impose an additional navigation challenge. The light in
the main sector is periodically switched off.

Collateral Damage The agent is armed with a RocketLauncher capable of firing a rocket every
eight frames. The task is to eliminate hostile units (Cacodemon) without harming neutral units
(Zombieman). The units spawn at random locations on the other side of the environment away from
the agent. A unit immediately respawns after being eliminated. The rocket’s high area of effect (AoE)
explosion presents an extra safety challenge, as illustrated in Figure 8. Due to the projectile’s travel
time across the environment, there is a delay before impact, during which the entities’ positions may
change. The agent’s distance from the units increases across difficulty levels. Higher levels further
increase the challenge by featuring more neutral and less hostile units. Neutral units exhibit slow,
random movements, adding an element of unpredictability. In contrast, enemy units move more
swiftly between designated points on the left and right sides of the map from the agent’s perspective.
Hostile unit speed increases with the difficulty level. In this scenario, the agent cannot move or harm
itself.
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(a) The agent launches a rocket di-
rectly towards an enemy unit.

(b) The target unit takes a direct hit
from the rocket.

(c) An adjacent neutral unit is
harmed by the explosion.

Figure 8: The explosion from the rocket has a high area of effect (AoE), potentially causing casualties
even if the enemy unit has taken a direct hit.

Volcanic Venture The agent has to collect items in an environment, where a percentage of random
floor tiles are covered with lava. ArmorBonus collectible items are randomly distributed across the
map, which may also appear on the lava tiles. An additional item is spawned after every 60 in-game
ticks (∼ 2s). The agent starts with H0 = 1000 health points. Stepping on lava results in a loss of 1
health point per timestep. Higher difficulty levels have less of the surface area covered by platforms.
Platform heights vary in Levels 2 and 3, and their locations change after a fixed time interval. When
this occurs, the agent is granted a short period of invulnerability to ensure that health loss and cost
can entirely be avoided. Figure 9 further describes the complexity introduced by terrain variations
across levels. With hard constraints, the agent suffers a severe penalty by losing all remaining health
upon contact with lava, instantly ending the episode.

(a) Level 1 features a layout where the environment
lava surface is partially covered with platforms, which
remain at fixed positions throughout an episode. The
agent’s objective is to collect items that spawn continu-
ously while avoiding contact with the lava.

(b) In higher levels, platform heights vary, creating a
more challenging terrain to navigate. Their locations
also change at regular intervals. Level 3 introduces fur-
ther complexity by sporadically waggling the platforms
up and down.

Figure 9: Difficulty Levels in Volcanic Venture progressively increase complexity with dy-
namic and non-stationary terrain features.

Precipice Plunge In Level 1 of the task, the agent must navigate down a staircase in a cave where
each step is 24 vertical units lower from the previous. In Levels 2 and 3, the heights of the platforms
are randomized. As the agent descends deeper into the cave, the environment becomes progressively
darker. The starting vertical height for the agent is denoted as h0 = 0. For each subsequent row of
platforms k, the vertical height decreases by a fixed amount ∆, with the actual platform height at row
k being hk = −k ·∆+ rand

[
− ∆

2 ,
∆
2

]
, where rand[·, ·] generates a random variation within this

range. The agent must avoid fall damage D, which is calculated by

D =

{
(d− θ) · α, if d > θ

0, if d ≤ θ
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where d is the vertical distance fallen by the agent, θ = 96 is the threshold for fall damage (below
which no damage occurs), and α = 0.1 is the damage multiplier. The agent can choose to restart the
episode if it believes that it is unable to take a safe step without incurring fall damage. This design
enables avoiding cost entirely. It’s important to note that the ViZDoom engine does not support
vertical aiming (looking upwards or downwards), resulting in heavy distortions, as illustrated in
Figure 10. Although the ability to look up and down is essential for effectively completing the task, it
introduces visual compromises due to the limitations of the engine.

Figure 10: The ViZDoom game engine employs a rendering technique called "non-perspective correct
texture mapping" for vertical adjustments, leading to noticeable distortions when the player looks
up or down. This causes the textures and environment to stretch or squash, resulting in a fisheye
effect (right). In contrast, the more advanced GZDoom engine accurately renders views for vertical
perception, avoiding such distortions (left).

Detonator’s Dilemma The agent begins with 100 health points and is equipped with a pistol and
unlimited ammunition to detonate the explosive barrels in the environment. Firing a single bullet
is sufficient to detonate a barrel, but missed shots may hit nearby creatures, potentially harming
them. Given the barrels’ fragility, chain reactions are easy to occur. An example is depicted in Figure
11. Some creatures carry weapons that can be collected upon their elimination and can be used
to detonate barrels more efficiently compared to the pistol. This can be employed as a sacrificial
strategy to destroy more barrels. Two creatures of each type are spawned at the beginning of an
episode at random locations throughout the map. The creatures vary in resilience: LostSoul
(10 HP), ZombieMan (25 HP), ShotgunGuy (40 HP), ChaingunGuy (55 HP), DoomImp (70
HP), Demon (85 HP), and Revenant (100 HP). Level 3 incorporates all the listed creatures,
whereas Level 1 only includes ShotgunGuy, DoomImp, and Revenant. Level 2 additionally
adds LostSoul and ChaingunGuy. When a creature is eliminated, it respawns at a random
location. The environment features seven designated patrol points, to which every five seconds, each
creature is randomly assigned one to navigate toward. The patrol points are depicted in Figure 12.

Figure 11: Detonating a barrel may cause a chain explosion of adjacent barrels. The impact thrusts
the agent backward and causes severe neutral casualties.

A.2 DIFFICULTY LEVELS

Table 7 displays the difficulty attributes of each level.

A.3 REWARD FUNCTIONS

In this section, we define how rewards R(t) are incurred at any given time step t in each environment.
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Figure 12: Patrol points of Detonator’s Dilemma. After every 5 seconds, each neutral unit is
randomly assigned one of the seven depicted locations to navigate toward. This strategy ensures that
units are almost constantly in movement, and makes their movement patterns more predictable.

Table 7: Level Difficulty Attributes of Environments. The attributes are explained in Appendix A.1

Environment Attribute Level 1 Level 2 Level 3

Armament Burden

Complex Terrain ✗ ✓ ✓
Obstacles ✗ ✓ ✓

Pitfalls ✗ ✗ ✓
Decoy Items ✗ ✗ ✓

Remedy Rush

Health Vials 30 20 10
Hazardous Items 40 60 80

Darkness Duration N/A 20 40
Night Vision Goggles N/A 2 1

Collateral Damage

Hostile Targets 4 3 2
Target Speed 10 15 20
Neutral Units 4 5 6
Neutral Health 60 40 20

Distance From Units 256-456 400-600 544-744

Volcanic Venture

Lava Coverage 60% 70% 80%
Changing Platforms ✗ ✓ ✓

Random Platform Height ✗ ✓ ✓
Platform Waggle ✗ ✗ ✓

Precipice Plunge
Step Decrement 24 128 192

Darkness Fluctuation 30 30 50
Randomized Terrain ✗ ✓ ✓

Detonator’s Dilemma
Creature Types 3 5 7
Creature Speed 8 12 16

Explosive Barrels 10 15 20

Armament Burden R(t) =
∑

i∈Wt
ri, where Wt represents the set of weapons picked up at

time t, and ri is the reward associated with each weapon i picked up. The rewards for weapons are
Rw = {0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1.0}, corresponding to the collection {Pistol, Shotgun,
SuperShotgun, Chaingun, RocketLauncher, PlasmaRifle, BFG9000}.
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Remedy Rush R(t) = r1 ·vt+ r2 · st+ r3 ·mt, where r1 = 1.0, r2 = 3.0, r3 = 6.0 are the reward
scalars for vials nt, stimpacks st and medikits mt collected at time t.

Collateral Damage R(t) = r · nt, where r = 1.0 is the reward for eliminating an enemy and nt is
the number enemies eliminated at time t.

Volcanic Venture R(t) = r · nt, where r = 1.0 is the reward for collecting an armor bonus and nt

is the number of resources collected at time t.

Precipice Plunge R(t) = α ·max(0, zt−1 − zt), where α = 0.05 is a positive constant scaling the
reward for each unit of depth reached, zt is the current z-coordinate of the agent, and zt−1 is the
previous one.

Detonator’s Dilemma R(t) = r · nt, where r = 1.0 is the reward for detonating a barrel and nt is
the number of barrels exploded at time t.

A.4 COST FUNCTIONS

In this section, we define how cost C(t) is incurred at any given time step t in each environment.

Armament Burden Csoft(t) = (1 + (ρ− 1) · 1(ωt = 0)) · max(0,
∑

i∈Wt
wi−c)

c , where Wt is the
collection of weapons carried at time step t, wi denotes the weight of weapon i, 1(·) is an indicator
function, ωt is a binary variable indicating whether a weapon is obtained at time t, ρ = 0.1 is the
penalty coefficient for carrying excess weight, and c is the carrying capacity. The weights of weapons
are W = {0.05, 0.15, 0.3, 0.6, 1.0, 3.0, 6.0}, corresponding to the collection {Pistol, Shotgun,
SuperShotgun, Chaingun, RocketLauncher, PlasmaRifle, BFG9000}. In the hard
constraint scenario, we employ Chard(t) = H · 1(

∑
i∈Wt

wi > c), where H = 10 represents the
hard constraint penalty applied instantaneously when the weight of the weapons exceeds the carrying
capacity.

Remedy Rush C(t) =
∑

i∈It
1(it ∈ D−), where It is the set of items obtained at timestep t, D−

is the set of incorrect items, and 1(·) is an indicator function.

Collateral Damage C(t) = nt, where nt is the number neutral entities eliminated at time t.

Volcanic Venture C(t) = Ht−1 −Ht, where Ht is the agent’s health at time step t.

Precipice Plunge C(t) = Ht−1 −Ht, where Ht is the agent’s health at time step t.

Detonator’s Dilemma C(t) = nt + α · (Ht−1 − Ht), where nt denotes the number of neutral
entities eliminated at time t, Ht−1 and Ht are the agent’s health at the previous and current timesteps,
respectively, and α = 0.04 is the health penalty scaling factor.

B EXTENDED BENCHMARK ANALYSIS

B.1 FULL ACTION SPACE

The full action space incorporates the following array of actions: D = { MOVE_FORWARD,
MOVE_BACKWARD, MOVE_RIGHT, MOVE_LEFT, SELECT_NEXT_WEAPON,
SELECT_PREV_WEAPON, ATTACK, SPEED, JUMP, USE, CROUCH, TURN180,
LOOK_UP_DOWN_DELTA, TURN_LEFT_RIGHT_DELTA }. Some actions, such as USE, only
have an effect in certain environments like Armament Burden and Precipice Plunge. In
other scenarios, such actions are redundant, adding an extra overhead for the agent to discern their
irrelevance. Other actions could offer quicker alternatives for achieving certain objectives. For
example, MOVE_LEFT directly allows sidestepping to the left, whereas a sequence of TURN_LEFT
→ MOVE_FORWARD→ TURN_RIGHT accomplishes the same, however much slower. Therefore, in
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theory, each task could be solved more effectively with the full action space; however, its complexity
presents a more challenging learning problem. To demonstrate this complexity, we run PPOLag
on the easy level of all environments with the full action space. We present the evaluation results
in Table 8 and the training curves in Figure 13. For a fair comparison with the original results, we
restrict movement in Collateral Damage and acceleration in Armament Burden. PPOLag
adheres to the default safety budget when using the full action space, but experiences a significant
reduction in reward. We have made the use of the full action space a configurable option, allowing
benchmark users to tailor it according to their needs.

Table 8: The full action space setting presents a far greater challenge to PPOLag.

Action Space
Armament

Burden
Volcanic
Venture

Remedy
Rush

Collateral
Damage

Precipice
Plunge

Detonator’s
Dilemma

R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
Simplified 7.51 52.41 42.40 52.00 36.37 5.25 29.09 5.61 147.24 44.96 21.49 5.62

Full 4.97 52.74 26.43 49.58 24.96 9.26 14.03 4.85 40.84 76.41 4.98 4.42
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Figure 13: While the complete DOOM action space potentially facilitates more efficient task resolu-
tion with a wider array of actions at the disposal of the agent, PPOLag fails to leverage this advantage,
even at Level 1 of HASARD. Although PPOLag consistently meets the default safety budgets across
environments, it significantly lags behind in achieving rewards comparable to those obtained using a
simplified action space. The full DOOM action space therefore presents a much more complicated
Safe RL learning problem.

B.2 VARYING SAFETY THRESHOLDS

As real-life applications vary in their safety-critical requirements, the safety bounds in HASARD
can also be adjusted accordingly. In this section, we explore the effects of varying cost budgets
by running PPOLag and PPOSauté on Level 1 of HASARD, selecting both a higher and a lower
value than the original safety budget. We report the training curves in Figure 14. Unsurprisingly, a
stricter safety bound leads to lower rewards. PPOSauté exhibits greater sensitivity to these variations
compared to PPOLag. Specifically, in the scenario Precipice Plunge, the impact on the reward
is particularly pronounced, illustrating different reward-cost trade-offs.
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(a) PPOLag consistently adheres to all set safety budgets. We can observe a mild, yet clear decrease in rewards
to achieve lower cost values.
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(b) PPOSauté successfully meets the set safety thresholds in Armament Burden and Collateral
Damage but falls short in other environments. Generally, the rewards follow a consistent pattern in which
stricter safety bounds lead to lower rewards.

Figure 14: The default safety budgets in HASARD ensure solvability while requiring a sacrifice in
rewards to meet these thresholds. The safety bounds offer a challenging yet achievable goal. However,
the safety budgets are adjustable for each environment.
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B.3 COST FACTOR SCALING

The PPOCost baseline, while simple and straightforward in approach, has demonstrated its potential in
our experiments. On Level 1 of Precipice Plunge, it achieved nearly zero cost while securing
the highest reward among methods that adhere to the safety threshold. Similarly, in Level 2 of
Armament Burden, PPOCost again obtained the highest reward among all methods compliant
with the given budget. However, its effectiveness hinges on determining the appropriate cost scaling
factor, which requires manual tuning through a time-consuming and costly trial-and-error process.
Consequently, we explore how sensitive PPOCost is to variations in the penalty scaling factor. We
evaluate the cost scaling values of [0.1, 0.5, 1.0, 2.0] on Level 1 of all environments. Note that in
the main experiments, we arbitrarily chose a coefficient of 1.0. We present the training curves in
Figure 15 and the evaluation results in Table 9. We can observe that the reward and cost are tightly
bound: a reduction of cost necessitates a reward sacrifice. Note, that we introduced PPOCost as a
proof of concept to demonstrate this direct trade-off in our environments along with the extent to
which cost can function as a negative reward on the benchmark.

Table 9: Performance metrics of PPOCost across varying cost scales.

Cost Scale
Armament

Burden
Volcanic
Venture

Remedy
Rush

Collateral
Damage

Precipice
Plunge

Detonator’s
Dilemma

R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓ R ↑ C ↓
0.1 16.40 9.09 128.61 92.23 94.94 50.49 109.61 41.34 609.65 408.35 35.27 13.25
0.5 3.86 1.64 42.30 19.13 57.04 23.06 86.67 33.23 441.61 399.14 27.93 10.28
1.0 0.13 0.10 25.93 6.00 18.30 6.03 64.79 24.60 196.93 2.29 18.39 6.37
2.0 0.00 0.04 17.64 2.12 0.00 0.03 30.41 8.55 203.46 1.20 0.57 0.20
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Figure 15: PPOCost treats costs as negative rewards without providing a general method for scaling
these costs relative to rewards. Training with various cost scaling values indicates that PPOCost is
highly sensitive to this parameter, resulting in a wide range of reward-cost trade-offs. For the main
results of the paper, we adopted a scaling factor of 1.0, ensuring equal weight between rewards and
negative costs. With extensive manual tuning, PPOCost can find diverse trade-offs, however, it cannot
satisfy a given safety budget.
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C FRAMEWORK EFFICIENCY

To demonstrate the training efficiency of HASARD, we conducted a comparative analysis with
Safety-Gymnasium (Ji et al., 2023a) on the same hardware. Among existing benchmarks tailored
for Safe RL research, Safety-Gymnasium is arguably the most comprehensive suite and closest to
our work, as it uniquely facilitates vision-based learning within 3D environments. We arbitrarily
selected the SafetyPointGoal1-v0 task and ran the PPOLag implementation with default settings in
Omnisafe (Ji et al., 2023b), a popular recent Safe RL library. We allowed two hours of training time
for each framework. In Figure 16 and Table 10 we compare how many environment iterations is the
framework able to facilitate and how frequent are the policy updates. We can see that HASARD
outperforms Safety Gymnasium in both metrics by a large magnitude.

Table 10: Efficiency Comparison of Benchmarks

Benchmark Frames Per Second Updates Per Second
Safety-Gymnasium 180 0.03
HASARD 53985 15.12
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(a) HASARD is capable of accumulating frames
at a rate several magnitudes greater than Safety-
Gymnasium on the same hardware.
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(b) The lack of effective parallelization results in a CPU
rollout bottleneck due to which Safety-Gymnasium
achieves far fewer policy updates.

Figure 16: Performance comparison of benchmarks over two hours of training on identical
hardware. We trained a PPOLag agent on VolcanicVenture1-v0 from HASARD and
SafetyPointGoal1-v0 from Safety-Gymnasium using default configurations.

D EXPERIMENTAL SETUP

We adopt most of our experimental setup from the PPO implementation for ViZDoom environments
in Sample-Factory (Petrenko et al., 2020).

D.1 NETWORK ARCHITECTURE

The pixel observations from the environment are first processed by a CNN encoder from (Mnih
et al., 2015), incorporating ELU for nonlinearity. The convolutions are passed through two dense
layers, each with 512 neurons. A GRU with 512 hidden units processes the sequential and temporal
information from the environment. Afterward, the architecture splits into an actor and critic network,
sharing the same backbone. The actor produces a categorical distribution of action probabilities for
each single action set, while the critic outputs a scalar value estimate for state-action pairs to guide
policy improvements.

D.2 HYPERPARAMETERS

We present the extensive list of hyperparameters used in our experiments in Table 11.
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D.3 IMPLEMENTATION DETAILS

Each action selected by the agent’s policy is repeated for four frames, reducing the need for frequent
policy decisions and conserving computational resources. During preprocessing, the RGB obser-
vations are downscaled from 160 × 120 pixels to 128 × 72 pixels. We accumulate a maximum of
two training batches at a time, preventing data collection from outpacing training and maintaining a
balance between throughput and policy lag. We split an environment into two for a double-buffered
experience collection. Each policy has a designated worker responsible for the forward pass, and we
maintain a policy lag limit of 1000 steps to ensure data relevance. Parallel environment workers are
dynamically set based on CPU availability. The training cycle involves collecting batches to form a
dataset size defined by the product of batch size and the number of batches per epoch, with a standard
batch size set at 1024. Rollouts are conducted over 32 timesteps, aligned with the recurrence interval
necessary for RNN policies, facilitating efficient data processing and learning accuracy.

E EXTENDED FUTURE WORK

In this section, we will elaborate on several extensions to broaden the benchmark’s application for
other settings.

Multi-Objective In the current HASARD framework, each environment only has a single safety
constraint. Given the focus on Safe RL, incorporating multiple safety constraints presents a com-
pelling avenue. In the current version only Detonator’s Dilemma, has two factors that increase
the cost: (1) the agent harming neutral units and (2) the agent harming itself. Instead of combining
them into one single value, we could decouple them into separate safety constraints. Similarly, a
second constraint could be incorporated into Armament Burden for how frequently the agent is
allowed to visit the delivery zone, and into Volcanic Venture for how often the agent can use
the JUMP action.

Multi-Agent The ViZDoom platform supports synchronous operations among multiple agents,
allowing HASARD to be extended to collaborative MARL scenarios. Precipice Plunge does
not provide any meaningful ways of collaboration, but in other environments multiple agents could
collaborate by dividing the workload of the task, focusing on separate areas of the map.

Transfer/Continual/Multi-task Learning The full action space setting is unified across all
HASARD environments, allowing agents to use a consistent policy across all tasks. Moreover,
there are many common elements, such as spatial navigation, entity behaviour, and environment
dynamics. This paves the way for training a versatile agent capable of mastering all six tasks across
three difficulty levels. This can be done in a multi-task or continual learning setting. A further inter-
esting area of exploration is to what extent learned competencies are transferable across environments.
For instance, the ability to successfully navigate an area without colliding with walls could be shared
across tasks.

F SIGNIFICANCE OF HASARD

HASARD’s discrete simplified physics and pixelated graphics do not mirror the high-resolution
imagery and complex dynamics required for autonomous driving or assistive robotics. Naturally,
an agent excelling in HASARD would not be anywhere near capable when deployed in any of the
aforementioned real-life scenarios. Nevertheless, there is substantial value in utilizing unrealistic
simulation environments for foundational research in Safe RL. We list several key points motivating
HASARD’s design and utility:

Computational Accessibility Incorporating highly realistic physics and visual rendering signifi-
cantly increases the computational cost of simulations. HASARD is designed to be accessible for
low-budget research settings, allowing more researchers to engage with vision-based Safe RL. Train-
ing RL algorithms in ultra-realistic environments with accurate physics and complex decision-making
problems is not only costly but also time-intensive. By maintaining a balance between realism and
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Parameter Value Description
Batch Size (B) 1024 Minibatch size for SGD
Gamma (γ) 0.99 Discount factor
Learning Rate (α) 1× 10−4 Learning rate
Hidden Layer Sizes 512, 512 Number of neurons in the dense layers after the

convolutional encoder
RNN GRU Type of the RNN
RNN Size (h) 512 Size of the RNN hidden state
Policy Init Gain (g) 1.0 Gain parameter of neural network initialization

schemas
Exploration Loss Coeff. (Cexpl) 0.001 Coefficient for the exploration component of the

loss function
Value Loss Coeff. (Cval) 0.5 Coefficient for the critic loss
Lambda Lagrange (λlagr) 0.0 Lambda coefficient for the Lagrange multiplier
Lagrangian Coeff. Rate (rlagr) 1× 10−2 Change rate of the Lagrangian coefficient
KL Threshold (θKL) 0.01 Threshold for the KL divergence between the

old and new policy
GAE Lambda (λGAE) 0.95 Generalized Advantage Estimation discounting
PPO Clip Ratio (ϵclip) 0.1 PPO clipping ratio, unbiased clip version
PPO Clip Value (∆clip) 1.0 Maximum absolute change in value estimate un-

til it is clipped
Nonlinearity (ϕ) ELU Type of nonlinear activation function used in the

network
Optimizer Adam Type of the optimizer
Adam Epsilon (ϵAdam) 1× 10−6 Adam epsilon parameter
Adam Beta (β1, β2) 0.9, 0.999 Adam first and second momentum decay coeffi-

cient
Max Grad Norm 4.0 Max L2 norm of the gradient vector
Policy Initialization orthogonal Neural network layer weight initialization

method
Frame Skip 4 Number of times to repeat a selected action in

the environment
Frame Stack 1 Number of consecutive environment pixel-

observation to stack
Env Workers 32 Number of parallel environment CPU workers
Num Envs per Worker 10 Number of environments managed by a single

CPU actor
Accumulate Batches 2 Max number of training batches the learner ac-

cumulates before stopping
Worker Num Splits 2 Enable double buffered experience collection,

vector environment splits
Policy Workers per Policy 1 Number of workers that compute the forward

pass for each policy
Max Policy Lag 1000 Beyond how many steps to discard older experi-

ences

Table 11: Hyperparameters

computational demand, HASARD enables a tight feedback loop that facilitates rapid experimentation
and iteration.

Focus on Vision-Based Safety Much of recent Safe RL research has predominantly concentrated on
continuous control problems, exemplified by the widely-used environments in Safety-Gymnasium (Ji
et al., 2023a). HASARD aims to bridge the gap in safety considerations within vision-based learning,
a domain with a wide range of applicability. The egocentric embodied perception in HASARD
environments further introduces the problem of partial observability, which is often absent in prior
works. The ultimate goal for many applications is to enable complex decision-making and precise
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manipulation under realistic physics, leveraging multimodal inputs of visual imagery and LIDAR.
However, fulfilling all these criteria simultaneously poses a significant challenge for Safe RL research.
To manage this, HASARD narrows the focus and decouples the problem, concentrating on visual
perception of 3D environments, spatial awareness, and high-level control.

Precedent in Research Video games, despite their lack of realism, have been instrumental in
advancing AI research (Hu et al., 2024). They provide a controlled yet challenging environment for
developing and testing new methodologies. Many game-based 3D benchmarks are adopted as useful
tools within the community (Chevalier-Boisvert et al., 2024; Gong et al., 2023; Jeon et al., 2023),
supporting the development of algorithms that can later be adapted to more realistic applications.
Similarly, simulation environments in Doom remain viable and relevant, as they have been widely
used in recent research (Park et al., 2024; Kim et al., 2023; Zhai et al., 2023; Valevski et al., 2024).

Solving Toy Problems Simulation environments with simplified physics and visuals can roughly
emulate critical aspects of more complex systems. For example, much recent Safe RL research utilizes
gridworld environments (Wachi et al., 2024a; Den Hengst et al., 2022), which, while basic, allow for
the exploration of key concepts and strategies in safety and exploration. Similarly, HASARD, with
its lower-resolution visuals and basic physics, still captures essential elements of navigating in a 3D
space and introduces significant challenges related to egocentric Safe RL, such as depth perception,
short-term prediction, and memory.

G TRAINING CURVES

Figure 18 depicts the training curves for levels 2 and 3, while Figure 17 shows the corresponding
curves for the hard constraint setting of level 1.
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Figure 17: Baseline results of PPO variants employing hard constraints, with 95% confidence intervals
across five seeds on the HASARD benchmark. PPO maintains high returns due to a lack of an
explicit safety feedback mechanism. In contrast, PPOCost and PPOLag exhibit overly conservative
behavior by consistently selecting the passive NO-OP action, failing to learn a policy that achieves
noticeable rewards while strictly adhering to safety constraints. Note that the cost threshold is ξ = 0
under hard constraints.
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(a) Level 2. In most scenarios, PPO sets the upper bounds for reward and cost. PPOLag is the only baseline that
consistently maintains the accumulated cost near the safety budget. Conversely, PPOSauté struggles to lower its
cost and stay within the safety budget in several environments.
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(b) Level 3. PPO consistently dominates with high rewards accompanied by high costs. PPOLag and PPOSauté
are unable to improve rewards while effectively controlling the cost in Remedy Rush, Collateral
Damage, and Precipice Plunge, as the curves remain relatively flat. Remedy Rush demonstrates
the fluctuating behavior of PPOLag originating from the Lagrangian optimization. Notably, PPOCost manages
to obtain equal rewards to PPO in Detonator’s Dilemma while maintaining a lower cost.

Figure 18: Training curves of higher HASARD levels.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H COMPARISON WITH SAFETY-GYMNASIUM

Safety-Gymnasium is the most comprehensive and closely related benchmark to our work, making
it an essential point of comparison. Although it consists of 28 environments, there are strong
similarities between them. For instance, the six environments in the Safe Velocity suite all share the
identical objective of the agent moving forward and are visually identical. These could effectively be
considered a single environment with variations in the robot type.

Similarly, the four tasks in the Safe Navigation suite featuring different robots like
Point, Car, RaceCar, Doggo, Ant share a single navigation objective and only slightly
vary the objects within the environment. We argue that the variations within a single envi-
ronment in HASARD offer equal or greater diversity than the differences observed among the
Goal, Button, Push, Circle tasks in Safety-Gymnasium.

The Safe Vision suite does introduce more visually diverse settings with environments such as
Building, Race, FormulaOne. However, the core tasks remain focused on navigation, with
higher difficulty levels merely introducing additional obstacles. Furthermore, these environments lack
dynamic elements. The few other entities in the Building task move in predictable, fixed patterns,
and the environment itself remains static throughout the episode. The only changes observed are
those directly caused by the agent’s actions.

In contrast, HASARD extends beyond mere navigation-based tasks, necessitating higher-order
reasoning for task resolution. It incorporates randomly moving units, and exploits the third dimension
more effectively, enabling entities to navigate vertical surfaces, resulting in a richer and more complex
dynamic. Leveraging the ViZDoom game engine, HASARD allows for rapid environment simulation.
The six environments of HASARD, along with difficulty levels, offer a broad and dynamic challenge
that provides a comprehensive evaluation of many agent competencies, such as memory, short-term
prediction and distance perception.

29


	Introduction
	Related Work
	Preliminaries
	HASARD Benchmark
	Basic Setup
	Safety Constraints
	Difficulty Levels

	Experiments
	Baseline Performance
	Hard Constraints
	Curriculum Learning
	Navigational Analysis

	Conclusion
	Limitations and Future Work
	Environment Details
	Descriptions
	Difficulty Levels
	Reward Functions
	Cost Functions

	Extended Benchmark Analysis
	Full Action Space
	Varying Safety Thresholds
	Cost Factor Scaling

	Framework Efficiency
	Experimental Setup
	Network Architecture
	Hyperparameters
	Implementation Details

	Extended Future Work
	Significance of HASARD
	Training Curves
	Comparison with Safety-Gymnasium

