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ABSTRACT

The Gromov-Wasserstein (GW) distance is a powerful tool for comparing ob-
jects across different metric spaces, but its high computational complexity lim-
its its applicability. Although the Sliced Gromov-Wasserstein (SGW) discrep-
ancy addresses this issue by projecting onto 1D distributions, it sacrifices key
isometric properties such as reflection and rotation invariance. In this work,
we introduce the max-min Sliced Gromov-Wasserstein (MSGW), a new vari-
ant that preserves the computational efficiency of SGW while ensuring essential
isometric properties. This metric can be viewed as an adversarial game and is
closely tied to the Hausdorff distance. Empirical results demonstrate that MSGW
achieves competitive performance with a limited number of projections and ex-
cels in scenarios with varying dimensions, making it a practical and robust al-
ternative to existing methods. Our anonymous implementation is available at
https://anonymous.4open.science/r/MSGW-iclr2026-7600.

1 INTRODUCTION

In various applications within machine learning and data science, objects such as point clouds,
images, graphs, and documents can be represented as probability measures by normalizing their
relevant weights or frequencies. This modeling approach enables the comparison of these objects
through metrics and methods designed to measure differences between probability measures. Opti-
mal Transport (OT), or, based on it, the Wasserstein distance, has been widely used as a method to
compare such objects in numerous domains. However, while the Wasserstein distance is effective
within the same metric space, it does not allow us to define a loss function across different spaces.
It thus fails to compare objects that are best described in different metric spaces. To address this
limitation, the Gromov-Wasserstein (GW) distance was introduced (Mémoli, 2011; Peyré & Cuturi,
2019). The GW distance relies on the intra-relationships within each object’s space, enabling cross-
space comparisons. Both Wasserstein and GW distance have proven to be powerful in a wide range
of tasks, including generative models (Arjovsky et al., 2017; Salimans et al., 2018), image process-
ing Papadakis (2015), graph alignment (Vayer et al., 2019a; Pan et al., 2024), with real-world use
cases in genomics (Demetci et al., 2020), and quantum chemistry (Peyré et al., 2016).

Despite the advantages of the GW distance, its computational difficulty is a long-standing problem.
While the original Wasserstein distance involves a linear program, the GW distance defines a non-
convex quadratic assignment problem, which is NP-hard in general. In this work, we introduce a
novel computational method for solving the GW problem, based on the idea of sliced OT. Sliced
OT has been particularly useful for high-dimensional datasets by projecting them onto one- or low-
dimensional subspaces (Zhang et al., 2023). The approach has been applied accordingly for the
Wasserstein distance (Julien et al., 2011; Bonneel et al., 2015; Paty & Cuturi, 2019), and also to the
GW distance (Vayer et al., 2019b). However, previous sliced GW methods are either computation-
ally prohibitively expensive or lose some of the structural properties of the original GW distance.
We address both these issues by incorporating a max-min optimization in the sliced GW problem.
Our approach is thus named Max-Min Sliced Gromov Wasserstein (MSGW). Our method appears
to be the first sliced GW distance that preserves the rotation and reflection invariance of the GW
distance, while remaining computationally feasible. A comparison of our proposed method with
existing works is summarized in Table 1.

Related work Our work is most closely related to the sliced Gromov-Wasserstein distance intro-
duced in Vayer et al. (2019b). Therein, the authors proposed a naive sliced GW (SGW) distance,
which loses the rotation and reflection invariance of the GW distance. To address this, they also in-
troduced a rotational invariant SGW (RISGW), which however requires optimizing over the Stiefel
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Distance Rotation & reflection Complexity1 Empirical
invariant optimality

GW Yes NP-hard; O(n4); O(n3) good
Entropic GW Yes O(n4); O(n3) good

SGW No O(Ln log(n)) good
RISGW Yes O(niter(Ln(p+ log(n)) + p3)) not reliable enough

MSGW (ours) Yes O(L2n log(n)) good

Table 1: Characteristics of several sliced Gromov-Wasserstein distances. The original GW distance
is NP-hard and prohibitively expensive to compute. For local convergence, naive implementation
gives O(n4). Another widely-adopted method introduced in Peyré et al. (2016) further reduces
complexity to O(n3) for decomposable loss functions, for both GW and entropic GW. Previously
proposed sliced versions in Vayer et al. (2019b) either lose the rotation and reflection invariance of
GW (SGW), or are numerically expensive and unstable (RISGW). Our proposed method MSGW
preserves the invariance properties of GW while being computationally affordable and stable.

manifold and therefore introduces a huge computational cost in higher dimensions. The paper builds
on a line of research that leverages the closed-form solution of the one-dimensional Wasserstein
problem, which have first been proposed in Julien et al. (2011); Bonneel et al. (2015); Paty & Cuturi
(2019). Several variants of sliced methods include Max-Sliced Wasserstein Deshpande et al. (2019),
Generalized Sliced Wasserstein Kolouri et al. (2019b), Spherical Sliced Wasserstein Bonet et al.
(2022), Hierarchical Sliced Wasserstein Nguyen et al. (2022), and Energy-Based Sliced Wasserstein
Nguyen & Ho (2023). The corresponding applications include generative models Wu et al. (2019);
Deshpande et al. (2019); Kolouri et al. (2018); Bunne et al. (2019), image processing Nguyen &
Ho (2024); Julien et al. (2011), and kernel methods Kolouri et al. (2016). Slicing techniques have
also been applied to general probability divergences, including Sliced Mutual Information Goldfeld
& Greenewald (2021); Fayad & Ibrahim (2023), Sliced-Cramér Kolouri et al. (2019a), and Max-
Sliced Mutual Information Tsur et al. (2023). The statistical and topological properties of general
divergences are explored in (Nadjahi et al., 2020). A similar approach to slicing is the ”linear” OT,
where distances are computed by projecting the manifold onto the tangent plane. This category in-
cludes Linear Wasserstein Wang et al. (2013), Linear GW Beier et al. (2022), and Linear Fused GW
Nguyen & Tsuda (2023).

Recent works have considered globally solving the GW problem and Gromov-Hausdorff problem,
but this requires special conditions or relaxations Villar et al. (2016); Mula & Nouy (2024); Ryner
et al. (2023); Chen et al. (2024); Dumont et al. (2025). Thus, various other methods have been
proposed to approximate the solution of GW, thus reducing the computational burden. An original
approach is to use entropic regularization Gold & Rangarajan (1995); Solomon et al. (2016) and the
Sinkhorn algorithm Cuturi (2013) celebrated for OT problems. Recent work Zhang et al. (2024)
further reduces the time complexity of this entropic problem by fast gradient computation. Other
works focus on the computational bottleneck caused by the cost matrices, specifically the tensor-
matrix product. That is, Peyré et al. (2016) introduced a technique for decomposable loss functions.
For more general cases, a iterative sampled method is introduced in Kerdoncuff et al. (2021); low-
rank approaches were introduced for the cost matrices and couplings in Scetbon et al. (2022); a
randomized sparsification method for the cost matrices was proposed in Li et al. (2023).

Contributions We introduce MSGW - a max-min sliced Gromov Wasserstein distance. Our con-
tributions are detailed as follows:

• We define the novel MSGW distance, which improves on the existing sliced GW distance by
combining it with a max-min formulation. The MSGW formulation can be seen as two adver-
saries playing a game to find one-dimensional projection directions (that is, slices) that yield the
maximum discrepancy between the associated one-dimensional probability distributions. This
approach thus has a computational cost similar to that of the naive SGW distance and is signifi-
cantly cheaper than its adaptation RISGW.

• We prove that MSGW preserves the metric properties of the original GW distance (Theorem
3.3), and MSGW is a metric up to measure-preserving isometries, i.e., it induces the same
equivalence relation as GW on metric measure spaces.

1n = number of data points; L = number of projection directions; p = dimension of the problem; niter =
number of iterations for internal optimization method.
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• We show that MSGW can be seen as a pseudo Hausdorff distance (Theorem 3.4). Based on this
observation we prove an error bound for the practical case, where only a finite set of projection
directions can be computed (Proposition 4.2).

• We experimentally validate the competitive performance of MSGW, resulting from its isometric
properties and computational advantages, on various point cloud datasets and as a loss function
in a generative adversarial network (GAN).

To the best of our knowledge, MSGW is the first sliced formulation of the GW distance that preserves
the invariance of the GW distance to rotations and reflections while being computationally efficient,
see Table 1.

Notations We denote by P(Rp) the space of probability measures on Rp, and let ∥ ·∥2,p denote the
Euclidean distance in Rp. We often omit the subindex p when the space is clear from the context.
The p-dimensional hypersphere is denoted as Sp−1 = {θ ∈ Rp : ∥θ∥2 = 1}. For θ ∈ Sq−1 denote
Pθ : Rq → R the projection in direction θ, i.e., Pθ(x) = ⟨θ, x⟩. The delta measure δx′ ∈ P(Rp) for
a point x′ ∈ Rp is defined as δx′(x) = 1 if x = x′, and δx′(x) = 0 otherwise. The push-forward
operator for a continuous function f is denoted as f#. Note that the push-forward of the delta
function is given by f#δx = δf(x).

2 BACKGROUND AND PREVIOUS WORKS

In this Section, we introduce the Gromov-Wasserstein distance and discuss existing computational
methods for solving it. In particular, we present the sliced Gromov-Wasserstein method with its
variations and their limitations. In the present work, we propose a new variant of the sliced Gromov-
Wasserstein distance, which addresses these limitations.

Gromov-Wasserstein distance In this work, we consider the discrete GW distance, where the
structured data is given by discrete measures µ =

∑n
i=1 piδx(i) and ν =

∑m
j=1 qjδy(j) that lie on

two possibly different Euclidean spaces Rp and Rq . Here x(i) ∈ Rp and y(j) ∈ Rq are the support
points of the two measures, and p ∈ Rn and q ∈ Rm are probability vectors that describe the mass
on each of the support points. The structure of the measures µ and ν is captured in two matrices
Cµ ∈ Rn×n and Cν ∈ Rm×m, where the elements are defined as Cµ

i,i′ = ∥x(i) − x(i′)∥22,p and
Cν

j,j′ = ∥y(j) − y(j′)∥22,q . This gives rise to the GW distance

GW (µ, ν)
def.
= min

T∈T (p,q)

∑
i,i′,j,j′

∣∣CX
i,i′ −CY

j,j′

∣∣2 Ti,jTi′,j′ , (1)

where T (p, q) = {T ∈ Rn×m :
∑m

j=1 Tij = pi,
∑n

i=1 Tij = qj} is the set of all possible cou-
plings between the probability vectors. Thus, the product Ti,jTi′,j′ represents the joint probability
of matching two pairs of points (x(i),y(j)) and (x(i′),y(j′)) (Vayer, 2020). Note that the structure
matrices Cµ and Cν indicate the similarity of pairs of support points within each measure. Hence,
the GW distance measures the distortion of the similarity between each pair of support points in the
two measures (Chowdhury & Needham, 2020).

Mathematically, the GW distance is interesting for comparing structured data, because it is a metric
on the space of probability distributions, up to measure-preserving isometries. More precisely, GW
is non-negative, symmetric, and satisfies the triangle equation. Moreover, GW (µ, ν) = 0 if and
only if the measures µ and ν are isomorphic in the following sense, cf. Vayer et al. (2019b).
Definition 2.1 (Measure-preserving isometry). Two measures on Euclidean spaces µ ∈ P(Rp) and
ν ∈ P(Rq) are called isomorphic if there exists a measure-preserving isometry between them, that
is, a bijective mapping f : Rp → Rq such that

1. (f is measure preserving) f#µ = ν,
2. (f is an isometry) for all x, x′ ∈ Rp it holds that ∥x− x′∥2,p = ∥f(x)− f(x′)∥2,q .

Unfortunately, the quadratic optimization problem in equation 1is non-convex and therefore in gen-
eral NP hard (Vayer, 2020). A global minimum can only be found efficiently in special cases (Ryner
et al., 2023; Dumont et al., 2025).

Sliced Gromov-Wasserstein distance Inspired by the popular sliced Wasserstein distance (Julien
et al., 2011), where high-dimensional measures are projected on a one-dimensional space, in which
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the computation of the Wasserstein distance is significantly cheaper, Vayer et al. (2019b) proposed
to approximate the GW distance in equation 1 by a sliced Gromov-Wasserstein (SGW) distance.
Without loss of generality, we here assume that p ≤ q. Let ∆ : Rp → Rq be a function that
maps from the lower to the higher-dimensional space, and let µ∆ = ∆#µ ∈ P(Rq) be the measure
mapped to that space2. Then the SGW distance is defined as

SGW∆(µ, ν) = E
θ∼unif(Sq−1)

[GW ((Pθ)#µ∆, (Pθ)#ν)] . (2)

This distance can be computed at a significantly lower cost than the GW distance, as it only requires
solving GW problems (equation 1) of measures in P(R). If the measures have the same number of
support points n = m with uniform weights pi = qj = 1/n, the optimization problem can often
be solved at the cost of a sorting algorithm, i.e., O(n log(n)). For more details, we refer the reader
to (Vayer et al., 2019b, Section 3) and Appendix B. Although follow-up works (Beinert et al., 2022;
Dumont et al., 2025) showed that counter-examples to this observation exist, the sorting approach in
(Vayer et al., 2019b) typically works well in practice and is the standard method used in the field3.

However, a disadvantage with SGW is that it is not rotation and reflection invariant. To see this,
consider the setting where p = q. If ν is a rotated (or reflected) version of µ, SGW is only zero if
∆ is chosen to be exactly this rotation. However, since the rotation is unknown, a canonical choice
in this setting is typically the identity map. The issue becomes even worse when p ̸= q and ∆ is a
zero-padding function, as this introduces additional bias in equation 2.

Rotation Invariant Sliced Gromov-Wasserstein distance To remedy the fact that the SGW dis-
tance is not rotation invariant, Vayer et al. (2019b) introduced the Rotation Invariant SGW (RISGW)
distance, which also optimizes over the function ∆ in equation 2. More precisely, they allow for all
choices of ∆ that are linear isometries. These can be described as the set of matrices in Rq×p

with orthonormal columns, i.e., ∆ ∈ Vp (Rq) =
{
Ψ ∈ Rq×p | ΨTΨ = Ip

}
, also called the Stiefel

manifold. The RISGW distance reads thus

RISGW (µ, ν) = min
Ψ∈Vp(Rq)

SGWΨ(µ, ν). (3)

In contrast to the SGW distance, the RISGW distance is therefore invariant to rotations and re-
flections. However, it requires optimizing over the Stiefel manifold, which is typically done by a
gradient descent over the manifold. Assuming the gradient descent requires niter iterations until
convergence, the total complexity is O

(
niter(Ln(p+ log(n)) + p3)

)
Vayer et al. (2019b). Unfor-

tunately, this is prohibitively expensive in high-dimensional problems.

3 MAX-MIN SLICED GROMOV-WASSERSTEIN DISTANCE

As discussed in Section 2 and summarized in Table 1, existing sliced Gromov-Wasserstein dis-
tances either lose the isometric invariance of the GW distance, or come with a prohibitively high
computational cost. These limitations call for a novel sliced GW method that addresses both these
limitations, which we will introduce in this section.
Definition 3.1 (Max-min sliced Gromov-Wasserstein distance). For measures µ ∈ P(Rp) and ν ∈
P(Rq), we define the max-min sliced Gromov-Wasserstein distance as

MSGW (µ, ν) =

max

{
sup

θ∈Sp−1

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν) , sup
ϕ∈Sq−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pϕ)#ν)

}
.

(4)

Similar to SGW, our proposed distance exploits the computational advantage of comparing only
one-dimensional projections of the given measures. However, instead of projecting both measures
into the same direction, we instead allow for them to be projected onto different directions, and
thus maintain the rotation invariance of the GW distance. Compared with the RISGW distance,
MSGW optimizes directly over the projection directions and therefore circumvents the expensive
optimization over the Stiefel manifold.

2For instance, ∆ can be a ”zero-padding” function that adds zeros to the support of µ such that it becomes
the same dimension as ν. If p = q we can choose ∆ to be the identity map.

3Thus, we also utilize this method for our novel sliced GW distance, see Section 4
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(a) (b)

(c) (d)

Figure 1: Intuitive illustration of MSGW. The supports of two measures µ and ν are shown in
orange shade and green shade, respectively. For simplicity of illustration, the supports are all rect-
angular, with possibly different lengths. The blue line and red line show the projection directions
θ and ϕ. (a) The two measures are isometric with a rotation in difference. We can easily see that
with an arbitrary θ, we can always find a corresponding ϕ such that GW ((Pθ)#µ, (Pϕ)#ν) = 0.
(b) Now we make the support of ν shorter, so the two measures are not isometric anymore. For
certain θ (e.g., if we pick the direction as shown in the figure), we can still find a corresponding ϕ
such that GW ((Pθ)#µ, (Pϕ)#ν) = 0. This projection setting is not suitable for distinguishing the
two measures, since it does not show the important difference in the ”length” of supports. (c) We
want to choose two projections that can distinguish the two supports maximally, as shown in this
subfigure. This can be achieved with a max-min formulation maxθ minϕ GW ((Pθ)#µ, (Pϕ)#ν).
(d) We note that there is a ”bias” or ”asymmetry” in the single max-min formulation - it only works
if the support of ν is shorter than the support of µ. To remedy this, we symmetrize the problem by
maximizing over two max-min formulations, which yields the final form of MSGW.

Intuitively, MSGW searches for each projection direction θ ∈ Sp−1 the ”best” direction ϕ ∈ Sq−1

such that the projected measures (Pθ)#µ and (Pϕ)#ν become as similar as possible, as measured
by the one-dimensional GW distance. These terms can thus be seen as two actors ”playing a game”,
where the inf-term aims to preserve isometry and the sup-term represents an adversary who finds
the worst scenario, in order to distinguish different objects. The outer maximization in Defintion 3.1
guarantees that MSGW is symmetric in the two measures. This procedure is illustrated in Figure 1.

Theorem 3.2 (Dual property between MSGW and GW.). For any µ ∈ P(Rp) and ν ∈ P(Rq), it
holds that

MSGW (µ, ν) = 0 ⇐⇒ GW (µ, ν) = 0. (5)

Theorem 3.3 (MSGW is a metric up to measure-preserving isometries.). MSGW is a metric up to
measure-preserving isometries, i.e., for any µ ∈ P(Rp), ν ∈ P(Rq), and γ ∈ P(Rr) it holds that

1. (Positivity) MSGW (µ, ν) ≥ 0, with equality if and only if µ and ν are isomorphic4.
2. (Symmetry) MSGW (µ, ν) = MSGW (ν, µ).
3. (Triangle inequality) MSGW (µ, ν) ≤ MSGW (µ, γ) +MSGW (γ, ν).

Theorems 3.2 and 3.3 indicate that MSGW satisfies the same metric properties as the original GW,
including translation, rotation, and reflection invariance, which are not inherited by SGW.

4”isomorphic” means ”measure-preserving isometric”. More formally, two metric measure spaces
(X, dX , µ) and (Y, dY , ν) are isomorphic if and only if there exists a measure-preserving isometry f : X → Y
between them (Mémoli, 2011; Vayer et al., 2018).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

It is worth noting that MSGW has a similar structure as the Hausdorff distance, which defines a
metric between two sets A and B within the same metric space (Z, d) as

dZH(A,B) := max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
. (6)

In fact, MSGW can be formulated as a pseudo Hausdorff distance between sets of one-dimensional
measures, as follows.
Theorem 3.4 (MSGW is equivalent to a pseudo Hausdorff distance). Define the two sets consisting
of one-dimensional measures

µSp−1

= {(Pθ)#µ | θ ∈ Sp−1} ⊂ P(R), νSq−1

= {(Pϕ)#ν | ϕ ∈ Sq−1} ⊂ P(R). (7)

Then it holds that
MSGW (µ, ν) = d

P(R)
H (µSp−1

,νSq−1

),

where d
P(R)
H denotes the Hausdorff distance defined in equation 6 on the pseudo-metric space

(P(R), GW ).

4 COMPUTATIONAL APPROXIMATION OF MSGW DISTANCE

Evaluating the MSGW distance exactly would require solving the nested sup-inf problems in equa-
tion 4 over the unit spheres. In order to compute the MSGW distance in practice, we solve the
problems over discrete direction sets Θ ⊂ Sp−1 and Φ ⊂ Sq−1. We denote this finite direction-
sample approximation of MSGW as

MSGWΘ,Φ(µ, ν) = max

{
max
θ∈Θ

min
ϕ∈Φ

GW ((Pθ)#µ, (Pϕ)#ν) ,max
ϕ∈Φ

min
θ∈Θ

GW ((Pθ)#µ, (Pϕ)#ν)

}
.

(8)
Remark 4.1 (Complexity). The one-dimensional GW distances in equation 8 can typically be solved
by an ordering algorithm, as described in Appendix B. These have complexity O(n log(n)), where
n is the number of support points of µ and ν. If we sample L projection directions in both spaces,
i.e., |Θ| = |Φ| = L, then L2 one-dimensional GW distances must be compared to solve the max-min
problems in equation 8. The total complexity of computing MSGW is thus O(L2n log(n)). This
is slightly higher than the naive SGW distance in equation 2, which has complexity O(Ln log(n)),
but preserves the metric properties of the GW distance. Moreover, note that the complexity of our
method is significantly lower than the previous rotational invariant method RISGW in equation 3.
In Section 5, we will also confirm empirically that the computation time of RISGW is often much
higher than that of MSGW.

The error incurred by using the finite sample approximation of MSGW depends on how well the 1D
projections on the unit spheres, defined in equation 7, are approximated by their discrete counterparts

µΘ = {(Pθ)#µ | θ ∈ Θ} ⊂ P(R), νΦ = {(Pϕ)#ν | ϕ ∈ Φ} ⊂ P(R). (9)

More precisely, we get the following error bound.
Proposition 4.2. For measures µ ∈ P(Rp) and ν ∈ P(Rq) it holds∣∣∣MSGW (µSp−1

,νSq−1

)−MSGW (µΘ,νΦ)
∣∣∣ ≤ MSGW (µSp−1

,µΘ) +MSGW (νSq−1

,νΦ)

(10)

5 EXPERIMENTS

This section presents experiments that validate the properties of MSGW, compare them with SGW
and RISGW, and illustrate its use in GANs.

Translation, rotation and reflection invariance We first performed experiments on the spiral
datasets shown in Vayer et al. (2019b) and verified the invariance of MSGW under translation and
reflection. Since a rotation can be viewed as a composition of multiple reflections, reflection invari-
ance automatically implies rotation invariance. Figure 2 shows the values of GW, SGW, MSGW, and
RISGW with respect to the different reflection angles, i.e., the angle of the reflection line through

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Translation, rotation and reflection invariance: Using MSGW, SGW, RISGW, and GW
to compare spiral datasets with different reflection angles with 5 trials. (Left) The plots of the spiral
distributions in the first trial, including the source and the targets with different reflections. (Right)
Distance values of MSGW, SGW, GW, and RISGW with n = 100 samples and L = 20 projection
directions regarding the reflection angle of the target. The maximum number of optimization itera-
tions of GW and RISGW is set to 600. The shaded area indicates the 20%-80% percentiles.
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Figure 3: Runtime comparison between GW, SGW,
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Figure 4: Meshes: Using SGW and
MSGW to compare the mesh data.

the origin with the x-axis. Targets are also added with arbitrary translations. Empirically, RISGW is
less stable than MSGW in general, i.e., the curve is not always flat, though we pick a relatively flat
result to show here with random seed set as 12. This is likely due to the difficulty in optimizing its
non-convex objective on the Stiefel manifold. The results with different random seeds and different
L are shown in Appendix D.1 in Figure 11.

Runtime comparison Figure 3 compares the runtime of the proposed MSGW with entropic GW
(with ϵ = 100), SGW, and RISGW with different numbers of samples n, all of which were imple-
mented in PyTorch and run on an RTX 2080Ti GPU. The number of projection directions for SGW,
MSGW, and RISGW is chosen as L = 20. The result of entropic GW is not available when n = 105

as it causes memory overflow. It can be observed that the runtime of MSGW is modest compared to
that of RISGW.

Meshes We used SGW and MSGW on the horse mesh data set in Vayer et al. (2019b) and show
the difference between these two distances. The dataset consists of 48 horse meshes with cyclical
motions. Each horse is constructed by n = 8431 sampled points of 3 dimensions. We use L = 500
projection directions for both SGW and MSGW. Figure 4 shows the distances between the source
horse (the green one) and the 48 target horses (we show three examples in yellow). We also observe
the numerical error when we compute the SGW and MSGW distances with finite numbers of projec-
tions, especially when we compute the distance between two identical horses (the bottoms of the two
plots). The MSGW shows slightly greater numerical errors than SGW, possibly due to the difficulty
in finding the two exact projection directions that lead to the zero distance, instead of one in SGW.
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Figure 5: MSGW GAN: Using MSGW distance as the loss function of the generator in GAN with
L = 20. (1st) The loss value evolution regarding iteration. (2nd to 6th) The generated datasets of
different iterations. (7th or last) The target 3D-4mode Gaussian dataset.
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Figure 6: SGW GAN: Using the same experiment settings as Figure 5, but use SGW instead of
MSGW.

GAN The GW and SGW distances have been proposed to act as a loss function in the generator of
a generative adversarial network (GAN) (Bunne et al., 2019; Vayer et al., 2019b) to compare across
different spaces. Following the experiments conducted in (Vayer et al., 2019b), the following exper-
iments are conducted for MSGW loss accordingly without training the adversary, and the number
of projection directions as L = 20. The target dataset is constructed as 3D-4mode Gaussian, i.e.,
4 clusters of Gaussian points, each cluster centered around a fixed center. We also maintain the
same experimental settings used in Bunne et al. (2019), i.e., the generator is a multi-layer percep-
tron constructed with 3 hidden layers, each of 128 neurons with ReLU activation functions, with the
input layer of 256 neurons and output layer of 2 neurons. We set the number of sample points for
training as 40,000, batch size as 256, and use 1,000 data points for plotting. The latent dimension
of the generator is set as 256. We use the Adam optimizer with a learning rate of 2 × 10−4 and
β1 = 0.5, β2 = 0.99.

Figure 5 shows the evolution of loss values and the generated dataset regarding the number of iter-
ations with a maximum of 20,000. The generator is able to generate satisfying datasets after 5000
iterations, and the loss value becomes relatively stable after 10,000 iterations. The results of the
same experiment settings using SGW instead of MSGW are shown in Figure 6. We can observe
that SGW performs poorly with such settings. Experiments conducted with different numbers of
projection directions L and target as a 4D-4mode Gaussian mixture are shown in Appendix D.2.
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Figure 7: Number of projections and error bound: Illustration of SGW, RISGW, and MSGW
on Gaussian datasets for varying number of projections. The shaded area indicates the 20%-80%
percentiles of distance values. (Left) The SGW, RISGW, and MSGW distance values regarding the
increasing number of projections (with 50 trials). (Right) Error bounds of MSGW distance with 5
trials, with target set as 2D-4mode and source set as {2D-4mode,3D-4mode,4D-4mode}.

Number of projections To investigate the influence of the increasing number of projections, for
SGW, RISGW, and MSGW, we use the 2D-4mode and 3D-4mode Gaussian mixtures as the source
and target. Each trial uses a different set of projection directions. Figure 7 (Left) indicates that,
compared with SGW and RISGW, MSGW exhibits greater stability with random projection samples
and converges more quickly as the number of projections increases.

Error bound We compute the error bound described on the RHS of equation 10. Since we do not
have access to the ground truth for the infinite sets µSp−1

and µSp−1

, we approximate the continuous
unit spheres Sp−1 and Sq−1, by L1 = 1000 projection directions. Moreover, we set L2 = |Θ| =
|Φ| = {1, 2...10, 20, ..., 100}. Figure 7 (Right) shows the evolution of the MSGW error bound
as a function of the size of the discrete sets, L2, for various source modes. The source is set to
{2D-4mode,3D-4mode,4D-4mode} Gaussian mixtures, and the target is always set to be 2D-4mode
Gaussian mixtures. The sample size of all datasets is n = 256. The lines are plotted with 5 trials.
The figure shows that all error bounds drop significantly around L2 = 10, indicating that already a
small number of projections can yield to a promising approximation of MSGW. We also notice that
the higher-dimensional dataset has higher error bounds and experiences more fluctuations.

Robustness Following the experiments shown in Paty & Cuturi (2019), we conduct the experi-
ments on how noise affects the distances. The source and target are randomly generated with 256
samples in each trial. We test the case when the source µ0 and the target ν0 are respectively 2D-
Gaussian and 3D-Gaussian distributions. By adding different levels of zero-mean Gaussian noise
σN (0, I) to the original dataset, we have new datasets µσ and νσ , then compute the relative error
with respect to σ as

σ 7→ | d (µσ, νσ)− d (µ0, ν0) |
d (µ0, ν0)

where d can be SGW, GW, RISGW, and MSGW. The results with L = 20 and 50 trials are shown
in Figure 8. We can see that for high noise, MSGW is the most robust method out of the tested ones.

6 CONCLUSION AND FUTURE WORK

We introduced the MSGW distance, the first sliced formulation of GW that preserves invariance to
rotations and reflections while remaining computationally efficient (to the best of our knowledge).
Experiments confirm that MSGW achieves strong performance with few projections and scales well
across dimensions, establishing it as a practical and robust alternative for cross-metric space com-
parisons.

Future research may include how different factors in various applications will affect the performance
of MSGW, such as the construction of a multilayer perception and optimizer in GAN. More proper-
ties of MSGW can also be explored, including its further connections to the Hausdorff distance, GW

9
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Figure 8: Relative error in noisy cases: Relative error of GW, SGW, RISGW and MSGW with
different noise levels shown in log-log scale (with 50 trials). The shaded areas represent the 10%-
90% percentiles.

distance, and the ∞-Wasserstein distance. It may also be beneficial to adopt continuous optimization
regarding θ and ϕ in the max-min formulation in certain applications.
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Supplementary material for
Max-Min Sliced Gromov-Wasserstein

Here, we provide supplementary material for the submission titled ”Max-Min Sliced Gromov-
Wasserstein”. The supplementary material is structured as follows: In Section B we provide techni-
cal details on the Gromov-Wasserstein distance in one-dimensional space. This is a basic ingredient
in all sliced Gromov-Wasserstein methods. In Section C we prove the theoretical results stated in
the main paper. Finally, Section D.2 contains additional experimental results.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs have been used for partial code generation and text revision.

B GROMOV-WASSERSTEIN IN ONE DIMENSION

In this section, we present a summary of the sorting method for solving 1D GW, originally shown
in Vayer et al. (2019b), and its counterexamples. We also follow a new result that shows that the
sorting method is indeed true when GW = 0.

B.1 THE SORTING METHOD FOR 1D GW

The idea of sliced Gromov-Wasserstein distances is to project the given measures onto one-
dimensional lines, where the optimization problem becomes significantly cheaper to solve. In par-
ticular, we consider the case where the measures µ and ν have the same number of support points
n = m with uniform weights pi = qi = 1/n. In this case, the solution T to the optimization
problem in equation 1 is a permutation matrix. Then, equation 1 can be formulated as the so-called
Gromov-Monge problem

min
σ∈perm{1,...,n}

1

n2

∑
i,j

|CX
i,j −CY

σ(i),σ(j)|
2. (11)

If we let CX
i,j = |xi − xj |α and CY

σ(i),σ(j) = |yσ(i) − yσ(j)|α with α > 0, equation 11 is equivalent
to

max
σ∈perm{1,...,n}

1

n2

∑
i,j

|xi − xj |α · |yσ(i) − yσ(j)|α (12)

If additionally the support points of the two distributions, x1, . . . , xn ∈ R and y1, . . . , yn ∈ R are
ordered, i.e., x1 < . . . , xn and y1 < . . . , yn, then the permutation σ is often either an identity
mapping or an anti-identity mapping. This is illustrated in Figure 9.

It has been shown that one can construct counterexamples to this observation Beinert et al. (2022).
However, in practice, the observation holds true in most relevant numerical settings Vayer et al.
(2019b); Dumont et al. (2025). Specifically, it is shown in Dumont et al. (2025, Proposition 3.8) that
this observation holds true under suitable conditions, providing evidence on why this obervation
works well in practice. In these cases, the optimization problem in equation 11 reduces to ordering
the support points. It can thus be solved at a computational cost of O(n log(n)).

B.2 COUNTEREXAMPLES OF THE SORTING METHOD

The counterexample proposed in Beinert et al. (2022) is shown in the following proposition.
Proposition B.1. Let the objective function be denoted as

Fσ(x, y) :=
1

n2

∑
i,j

|xi − xj |α · |yσ(i) − yσ(j)|α (13)
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 9: The optimal Gromov-Wasserstein matching in 1D is typically either an identity mapping
or an anti-identity mapping.

The identity mapping and anti-identity mapping result in the objective values denoted as Fid(x, y)
and Fa-id (x, y).

For given n > 3 and α > 0, the explicit instance is constructed by x(ϵ) = (xi)
n
i=1 and y(ϵ) =

(yi)
n
i=1 with ϵ ∈ (0, 2/(n− 3)) given by

xi :=

 −1, i = 1,
2i−n−1

2 ϵ, i = 2, . . . , n− 1,
1, i = n

and yi :=


−1, i = 1,

−1 + ϵ, i = 2,

(i− 2)ϵ, i = 3, . . . , n.

Such instance gives

Fid(x, y) < max
σ∈Sn

Fσ(x, y) and Fa−id(x, y) < max
σ∈Sn

Fσ(x, y).

Moreover, the gap can become arbitrary large for increasing n ∈ N.

B.3 THE TRUE CASE WHEN GW = 0

Despite the counterexamples shown above, when the GW distance between two one-dimensional
measures is zero, the optimal matching is always given by the identity or the anti-identity map, as
shown by the following theorem.

Theorem B.2. Let x1 < · · · < xn and y1 < · · · < yn be two strictly increasing sequences in
R, and let µ = 1

n

∑n
i=1 δxi

and ν = 1
n

∑n
i=1 δyi

associated with the Euclidean metric on R. If
GW(µ, ν) = 0, then the permutation σ in equation 11 is the identity or anti-identitiy map.

Proof. If GW(µ, ν) = 0, then the solution to the Gromov-Monge problem equation 11 is a permu-
tation σ such that |xi−xj | = |yσ(i)−yσ(j)|. This implies that for any i < j < k, xj lies between xi

and xk are mapped to yσ(j) which also lies between yσ(i) and yσ(k). Repeat this for any consecutive
triple j − 1 < j + 1 < j + 2, we obtain that yδ(j) always lie between yσ(j−1) and yσ(j+1). Thus
δ is monotone, either monotonic increasing or monotonic decreasing. That is, the permutation σ is
either the identity or the anti-identity map.

C PROOFS

In this Section, we provide the proofs of our theoretical results.

C.1 PROOF OF THEOREM 3.2

Note that both GW = 0 and MSGW = 0 hold trivially if the two measures are with n ̸= m or they
are not endowed with uniform weights. Thus, it is sufficient to prove the theorem of two measures
µ ∈ P(Rp) and ν ∈ P(Rq) with the same number of support points n and with uniform weights,
i.e.,

µ =
1

n

n∑
i=1

δxi
, ν =

1

n

n∑
i=1

δyi
.
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C.1.1 PROOF OF MSGW = 0 ⇐= GW = 0

Since GW (µ, ν) = 0 and due to Definition 2.1, there exists a measure-preserving isometry between
µ and ν. Without loss of generality, we assume that p < q. The measure ν must then lie on a p-
dimensional manifold in Rq . Hence, the GW problem is equivalent to a GW problem between two
measures on Rp. Therefore, for this proof, it is sufficient to consider the case p = q. The measure-
preserving isometry f in Definition 2.1 is then a linear bijective map, which can be described by
an orthogonal matrix Ψ ∈ Rp×p (Berger, 2009, Theorem 9.1.3). More concretely, we adopt the
following Lemma.
Lemma C.1. An isometry of Euclidean space is an affine translation whose linear part is an or-
thogonal transformation.

For a given projection direction θ ∈ Sp−1, we define ϕ = Ψθ ∈ Sp−1. Due to the isometric property
of Ψ, for any x ∈ supp(µ), there is a y ∈ supp(ν) such that y = Ψx. Also consider a second point
x′ ∈ supp(µ) and the corresponding y′ = Ψx′ ∈ (µ). Then, it holds that∣∣θTx− θTx′∣∣ = ∣∣(Ψϕ)Tx− (Ψϕ)Tx′∣∣ = ∣∣ϕTΨ−1x− ϕTΨ−1x′∣∣ = ∣∣ϕT y − ϕT y′

∣∣ ,
where we used that ΨT = Ψ−1. Thus, for all θ ∈ Sp−1 there is a ϕ ∈ Sp−1 such that
GW ((Pθ)#µ, (Pϕ)#ν) = 0.

Similarly, for any projection direction ϕ ∈ Sp−1, we can define θ = Ψ−1ϕ ∈ Sp−1, and with the
points x, x′, y, y′ ∈ Rp defined as before, we get∣∣ϕT y − ϕT y′

∣∣ = ∣∣θTx− θTx′∣∣ .
Thus, for all ϕ ∈ Sp−1 there is a θ ∈ Sp−1 such that GW ((Pθ)#µ, (Pϕ)#ν) = 0.

It follows that MSGW (µ, ν) = 0.

C.1.2 PROOF OF MSGW = 0 =⇒ GW = 0

Moreover, in order to simplify notation, we assume without loss of generality that the measures are
normalized to be zero-mean, i.e.,

∑n
i=1 xi = 0 and

∑n
i=1 yi = 0. In the case of unnormalized

measures, the results below hold with adding a shift b ∈ Rp in Lemma C.3 and the construction of
the measure-preserving map.

To prove the result, we will use Theorem B.2 and the following two lemmas. More precisely, we
study the maps

Θµ : Sn−1 → P(R), Θµ(θ) = (Pθ)#µ, and Φν : Sn−1 → P(R), Φν(ϕ) = (Pϕ)#ν.

Note that the two sets µSp−1

and νSq−1

in equation 7 are the images of the maps Θµ and Φν ,
respectively. Moreover, note that the maps Θµ and Φν are continuous with respect to the Wasserstein
distance, since for small changes of θ (or, respectively, ϕ) each support point of the 1D projection
Θµ(θ) (or, respectively, Φν(ϕ)) moves smoothly in R.

Lemma C.2. The sets of elements in µSp−1

(defined in equation 7) that have less than n support
points are the images of the hyperspheres

Sp−2
x,x′ = {θ ∈ Sp−1 : ⟨x− x′, θ⟩ = 0; x, x′ ∈ supp(µ)}

with respect to Θµ. Analogously, the sets of elements in νSq−1

(defined in equation 7) that have less
than n support points are the images of the p− 2 dimensional hyperspheres

Sp−2
y,y′ = {ϕ ∈ Sp−1 : ⟨y − y′, ϕ⟩ = 0; y, y′ ∈ supp(ν)}

with respect to Φν .

Proof. Note that the projection (Pθ)#µ has at most n support points, and it has strictly less than n
support points if there are x, x′ ∈ supp(µ) such that ⟨x − x′, θ⟩ = 0, i.e., x and x′ are projected
onto the same point in R. This gives rise to the hypersphere Sp−2

x,x′ . An analogous argument yields
the expression for Sp−2

y,y′ .
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Figure 10: Sketch of the unit sphere S2 with four lower dimensional hypershperes S1
x,x′ .

It should be noted that a finite set of p − 2 dimensional hyperspheres in Sp−1 has measure zero
with respect to the Lebesgue measure over Sp−1, as illustrated for p = 3 in Figure 10. Thus, by
the lemma, almost every element in µSp−1

and νSq−1

has n support points, which leads us to the
following result.
Lemma C.3. Assume MSGW (µ, ν) = 0. Then, there exist linearly independent vectors
θ1, . . . , θp ∈ Sp−1 such that there is a permutation σ : {1, . . . , n} → {1, . . . , n} and linearly
independent vectors ϕ1, . . . , ϕp ∈ Sp−1 such that ⟨xi, θk⟩ = ⟨yσ(i), ϕk⟩, for all i = 1, . . . , n and
k = 1, . . . , p.

Proof. Since MSGW (µ, ν) = 0, we know that for each θ ∈ Sp−1 there is a permutation
σ : {1, . . . , n} → {1, . . . , n} and a vector ϕ ∈ Sp−1 such that ⟨xi, θ⟩ = ⟨yσ(i), ϕ⟩, for all
i = 1, . . . , n. We first show that there is a set of linearly independent vectors θ1, . . . , θp ∈ Sp−1,
for which the statement holds with the same permutation σ. Then we show that the corresponding
vectors ϕ1, . . . , ϕp ∈ Sp−1 are linearly independent.

1. Existence of permutation: Two support points x, x′ ∈ Rp can change order in the 1D projection
Θµ(θ), when θ crosses the hyperplane Sp−2

x,x′ defined in Lemma C.2. However, by Theorem B.2,
after crossing the hyperplane Sp−2

x,x′ , the optimal 1D GW map σ must again be either the identity
or the anti-identity map. Since each hyperplane Sp−2

x,x′ has Lebesgue measure zero in Sp−1 and
there are only a finite number of hyperplanes, it follows that there exist linearly independent vectors
θ1, . . . , θp ∈ Sp−1 such that for some permutation σ and some vectors ϕ1, . . . , ϕp ∈ Sp−1 it holds
⟨xi, θk⟩ = ⟨yσ(i), ϕk⟩, for all i = 1, . . . , n and k = 1, . . . , p.

2. Linear independence of ϕ1, . . . , ϕp. Define Yσ := [ yσ(1) · · · yσ(n) ] ∈ Rp×n and u(θ) :=[
⟨x1, θ⟩ · · · ⟨xn, θ⟩

]⊤ ∈ Rn. For each k, the identity ⟨xi, θk⟩ = ⟨yσ(i), ϕk⟩ for all i is equivalent to
the linear system

Y⊤
σ ϕk = u(θk). (14)

By construction, Yσ has full row rank p, so equation 14 is consistent and its solution ϕk is unique.
Now suppose

∑p
k=1 akϕk = 0. Multiply equation 14 by ak and sum over k: for every i,

0 =
〈
yσ(i),

∑
k

akϕk

〉
=
∑
k

ak ⟨xi, θk⟩ =
〈
xi,

∑
k

akθk

〉
.

Since {xi} spans Rp and {θk} are linearly independent, this forces ak = 0 for all k. Hence {ϕk}pk=1
is linearly independent.

We are now ready to explicitly construct a measure-preserving map between µ and ν. Based on the
matrices Θ :=

[
θ1 · · · θp

]
∈ Rp×p and Φ :=

[
ϕ1 · · · ϕp

]
∈ Rp×p with the two bases defined

by Lemma C.3, we consider the linear map L = ΘΦ−1 ∈ Rp×p. With this linear operator it holds
yσ(i) = L⊤xi for all i = 1, . . . , n. Next, for each θ ∈ T choose a partner ϕ(θ). For all i,

⟨xi, θ⟩ = ⟨L⊤xi, ϕ(θ)⟩ = ⟨xi, Lϕ(θ)⟩.
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Since {xi} spans Rp, we get for all θ ∈ T :

θ = Lϕ(θ) .

Let A := LL⊤ ≻ 0 on Rp. Then for all θ ∈ T ,

⟨A−1θ, θ⟩ = ∥L−1θ∥2 = ∥ϕ(θ)∥2 = 1.

By the fact that a nonzero quadratic form cannot vanish on a positive-measure subset of the sphere,
apply this to B := A−1 − I: if A−1 ̸= I , then ⟨Bθ, θ⟩ = 0 could hold only on a set with measure
zero. This contradicts to that the set T has positive measure.

This forces A−1 = Ip, i.e.

LL⊤ = Ip .

Thus, L defines a measure-preserving map.

C.2 PROOF OF THEOREM 3.3

Property 1. (Positivity) MSGW (µ, ν) ≥ 0.

The positivity follows directly from the positivity of the Gromov-Wasserstein distance.

Property 2. (Symmetry) MSGW (µ, ν) = MSGW (ν, µ).

The symmetry follows from the symmetry of the two arguments in the max-operation in equation 4.

Property 3. (Triangle inequality) MSGW (µ, ν) ≤ MSGW (µ, γ) +MSGW (γ, ν).

It remains to show the triangle inequality. Given measures µ ∈ Rp, ν ∈ Rq, γ ∈ Rr, by the triangle
inequality for the Gromov-Wasserstein distance, it holds that

GW ((Pθ)#µ, (Pϕ)#ν) ≤ GW ((Pθ)#µ, (Pδ)#γ) +GW ((Pδ)#γ, (Pϕ)#ν) , (15)

for all θ ∈ Sp−1, ϕ ∈ Sq−1, δ ∈ Sr−1. Taking the infimum over ϕ ∈ Sq−1 on both sides, it holds

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν) ≤ GW ((Pθ)#µ, (Pδ)#γ) + inf
ϕ∈Sq−1

GW ((Pδ)#γ, (Pϕ)#ν) ,

for all θ ∈ Sp−1, δ ∈ Sr−1. Then taking the infimum over δ ∈ Sr−1, we get

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν)

≤ inf
δ∈Sr−1

(
GW ((Pθ)#µ, (Pδ)#γ) + inf

ϕ∈Sq−1
GW ((Pδ)#γ, (Pϕ)#ν)

)
≤ inf

δ∈Sr−1
GW ((Pθ)#µ, (Pδ)#γ) + sup

δ∈Sr−1

inf
ϕ

GW ((Pδ)#γ, (Pϕ)#ν) ,

for all θ ∈ Sp−1. Finally, taking the supremum over θ ∈ Sp−1 on both sides, yields

sup
θ∈Sp−1

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν) ≤ sup
θ∈Sp−1

inf
δ∈Sr−1

GW ((Pθ)#µ, (Pδ)#γ)

+ sup
δ∈Sr−1

inf
ϕ∈Sq−1

GW ((Pδ)#γ, (Pϕ)#ν) .
(16)

Similarly, taking the infimum over θ ∈ Sp−1 and δ ∈ Sr−1, and the supremum over ϕ ∈ Sq−1 in
equation 15, we arrive at the bound

sup
ϕ∈Sq−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pϕ)#ν) ≤ sup
ϕ∈Sq−1

inf
δ∈Sr−1

GW ((Pδ)#γ, (Pϕ)#ν)

+ sup
δ∈Sr−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pδ)#γ) .
(17)
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Taking the maximum of the two inequalities in equation 16 and equation 17 leads to

MSGW (µ, ν)

= max

(
sup

θ∈Sp−1

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν) , sup
ϕ∈Sq−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pϕ)#ν)

)

≤ max

(
sup

θ∈Sp−1

inf
δ∈Sr−1

GW ((Pθ)#µ, (Pδ)#γ) + sup
δ∈Sr−1

inf
ϕ∈Sq−1

GW ((Pδ)#γ, (Pϕ)#ν) ,

sup
ϕ∈Sq−1

inf
δ∈Sr−1

GW ((Pδ)#γ, (Pϕ)#ν) + sup
δ∈Sr−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pδ)#γ)

)

≤ max

(
sup

θ∈Sp−1

inf
δ∈Sr−1

GW ((Pθ)#µ, (Pδ)#γ) , sup
δ∈Sr−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pδ)#γ)

)
+max

(
sup

δ∈Sr−1

inf
ϕ∈Sq−1

GW ((Pδ)#γ, (Pϕ)#ν) , sup
ϕ∈Sq−1

inf
δ∈Sr−1

GW ((Pδ)#γ, (Pϕ)#ν)

)
=MSGW (µ, γ) +MSGW (γ, ν)

C.3 PROOF OF THEOREM 3.4

Note that the sets µ̃ ∈ µSp−1

and ν̃ ∈ νSq−1

are parameterized by the sets θ ∈ Sp−1 and ϕ ∈
Sq−1, respectively. More precisely, for each θ ∈ Sp−1 a one-dimensional measure µ̃ ∈ µSp−1

is
constructed, and similarly for each ϕ ∈ Sq−1 a one-dimensional measure ν̃ ∈ νSq−1

is constructed.
Thus, there are correspondences (θ, µ̃) and (ϕ, ν̃) such that GW ((Pθ)#µ, (Pϕ)#ν) = GW (µ̃, ν̃).
Therefore, we can rewrite the definition of MSGW in equation 4 as

MSGW (µ, ν)

= max

{
sup

θ∈Sp−1

inf
ϕ∈Sq−1

GW ((Pθ)#µ, (Pϕ)#ν) , sup
ϕ∈Sq−1

inf
θ∈Sp−1

GW ((Pθ)#µ, (Pϕ)#ν)

}

= max

{
sup

µ̃∈µSp−1

inf
ν̃∈νSq−1

GW (µ̃, ν̃) , sup
ν̃∈νSq−1

inf
µ̃∈µSp−1

GW (µ̃, ν̃)

}
= d

P(R)
H

(
µSp−1

,νSq−1
)
.

C.4 PROOF OF PROPOSITION 4.2

Note that, similar to Theorem 3.4 the discrete approximation of MSGW is equivalent to a Hausdorff
distance, MSGWΘ,Φ(µ, ν) = d

P(R)
H (µΘ,νΦ). The result follows then from Mémoli (2011) (Re-

mark 2.1), which states that for any continuous sets A,B,⊂ Z and their finite sample sets Â ⊂ A

and B̂ ⊂ B it holds that∣∣∣dZH(A,B)− dZH

(
Â, B̂

)∣∣∣ ≤ dZH

(
A, Â

)
+ dZH

(
B, B̂

)
.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS FOR REFLECTION AND ROTATION INVARIANCE

This section shows additional results of using GW, SGW, RISGW, and MSGW with spiral datasets,
as a complement to Figure 2.

Figure 11 shows that MSGW is more stable with respect to discrete sampling compared with SGW.
In particular, with an increasing number of projections (from L = 10 to L = 30), though both
MSGW and SGW gain more stability, MSGW shows a much greater gain.
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Figure 11: Reflection invariance: Comparison across different number of projection directions L
and different random seeds.
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Figure 12: GAN with GW loss. L = 20 and 3D-4mode Gaussian target.

D.2 ADDITIONAL RESULTS FOR GAN

This section shows additional results of using GW, SGW, and MSGW in GAN, as a complement to
Figure 5.

3D-4mode for GW and SGW We repeat the same experiments on GANs as introduced in Section
5 for GW and SGW with L = 20. Results are shown in Figure 12 and 13 for the GAN with
GW loss and SGW loss, respectively. As expected, the GAN with GW loss converges quickly
with respect to the number of iterations and generates well-constructed datasets. However, for this
specific experimental setting, the GAN with SGW loss fails to generate high-quality datasets even
with 20,000 iterations.

Larger number of projections for SGW We tried to remedy the poor performance of the GAN
with SGW loss by using a larger number of projection directions L. Figure 14 shows the experi-
mental results when using L = 20, 400, 1000 number of projections. Although the evolution of the
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Figure 13: GAN with SGW loss. L = 20 and 3D-4mode Gaussian target.
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Figure 14: GAN with SGW loss with different number of projections (columns from left to right)
L = 20, 400, 1000, and 3D-4mode Gaussian target.

loss values seems to converge more quickly as the number of projections increases, limited to the
current experiment settings, it still fails to generate satisfying datasets.

Generate 2D data from 4D Gaussian Figures 15 and 16 show the performance of using a SGW
and MSGW loss in a GAN, where the target dataset is a 4D-4mode Gaussian. Notw that we are thus
not able to plot the 4D data points in the figures. The number of projections is also set as L = 20.
We can see that the GAN with MSGW loss still performs well in this higher-dimensional case.
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Figure 15: GAN with SGW loss with L = 20 and 4D-4mode Gaussian target.

0 10000 20000
Iterations

20

40

M
SG

W
 lo

ss

2.5 0.0 2.5
x1

5

0

5

x2

iteration 100

0.0 2.5
x1

0

5

x2

iteration 5000

0 2 4
x1

5

0

5

x2

iteration 10000

2 0 2
x1

2.5

0.0

2.5

x2

iteration 15000

2 0 2
x1

5

0

5

x2

iteration 20000

Figure 16: GAN with MSGW loss with L = 20 and 4D-4mode Gaussian target.
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