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ABSTRACT

The primary focus of most recent works on open-vocabulary neural fields is ex-
tracting precise semantic features from the VLMs and then consolidating them
efficiently into a multi-view consistent 3D neural fields representation. However,
most existing works over-trusted SAM to regularize image-level CLIP without any
further refinement. Moreover, several existing works improved efficiency by di-
mensionality reduction of semantic features from 2D VLMs before fusing with
3DGS semantic fields, which inevitably leads to multi-view inconsistency. In
this work, we propose econSG for open-vocabulary semantic segmentation with
3DGS. Our econSG consists of: 1) A Confidence-region Guided Regularization
(CRR) that mutually refines SAM and CLIP to get the best of both worlds for
precise semantic features with complete and precise boundaries. 2) A low dimen-
sional contextual space to enforce 3D multi-view consistency while improving
computational efficiency by fusing backprojected multi-view 2D features and fol-
low by dimensional reduction directly on the fused 3D features instead of operat-
ing on each 2D view separately. Our econSG show state-of-the-art performance
on four benchmark datasets compared to the existing methods. Furthermore, we
are also the most efficient training among all the methods. We will make our
source-code open source upon paper acceptance.

1 INTRODUCTION

The advances in neural 3D scene representation techniques have revolutionized many research and
applications in computer vision and graphics. Among these neural 3D scene representation tech-
niques, Neural Radiance Field (NeRF) (Mildenhall et al., 2021) stands out for its ability to learn 3D
neural fields directly from 2D images with excellent performance in important real-world applica-
tions such novel view synthesis. Recently, the explicit 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) has been proposed as an alternative to the implicit NeRF. This technique has demonstrated
remarkable reconstruction quality while maintaining high training and rendering efficiency. Con-
current to neural 3D scene representation techniques, large visual-language models (VLMs) such as
the CLIP model (Radford et al., 2021) have shown extremely strong capability in zero-shot transfer
to the open-world setting for various downstream tasks such as image semantic segmentation, etc.

The parallel rapid developments of neural 3D scene representation and large multi-modality foun-
dation models naturally lead to research on open-vocabulary 3D scene understanding by leveraging
the neural rendering capability of neural fields to align the visual-language models to 3D scenes. To
this end, almost all existing works (Kerr et al., 2023; Liu et al., 2024; Qin et al., 2023; Liao et al.,
2024; Shi et al., 2023; Zhou et al., 2024; Ye et al., 2023; Guo et al., 2024) unanimously adhered to
the fundamental pipeline of first extracting semantic features of the given multi-view images from
open-world 2D visual-language models (VLMs), followed by using the multi-view semantic fea-
tures to train semantic fields appended to NeRF or 3DGS. Following the fundamental pipeline, the
primary focus of most existing works is on extracting precise semantic features from the VLMs and
then consolidating them efficiently into a multi-view consistent 3D neural fields representation.

Early approach LeRF (Kerr et al., 2023) leverages CLIP to get semantic features from each of the
input multi-view images. However, this often results in semantic features that are incomplete or
with ambiguous boundaries since CLIP is trained on image-level captions despite the attempt in
LeRF to improve the granularity with multi-scale CLIP features. Several subsequent works utilize
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Segment Anything Model (SAM) (Kirillov et al., 2023) or DINOv2 (Oquab et al., 2023) to improve
the accuracy of the semantic features from CLIP. 3DOVS (Liu et al., 2024) and LEGaussians (Shi
et al., 2023) use the semantic features with better boundaries from DINO to complement CLIP.
Feature-3DGS (Zhou et al., 2024) extracts semantic features from either SAM or LSeg (Li et al.,
2022). Gaussian Grouping (Ye et al., 2023) leverages only the masks from SAM, leading to class-
agnostic segmentation. Semantic Gaussian (Guo et al., 2024) and OV-NeRF (Liao et al., 2024)
unify 2D CLIP features with the class-agnostic instance masks generated from SAM. All the above-
mentioned works over-trusted DINOv2 or SAM without making any refinement, which we show
empirically (cf. Fig. 3 Column (b) shows missing regions in the mask proposals from SAM) to be
imperfect too.

Several approaches such as OV-NeRF (Liao et al., 2024), LeRF (Kerr et al., 2023), 3DOVS (Liu
et al., 2024) and Feature-3DGS (Zhou et al., 2024) naively adopt the same dimension for the 3D
neural semantic fields as the high dimensional semantic features from 2D VLMs, which inevitably
incurs high computational complexity for training and querying. Methods such as LangSplat (Qin
et al., 2023) and LeGaussians (Shi et al., 2023) propose the use of autoencoder or quantization to
reduce the dimension of the multi-view 2D semantic features, and therefore result in similar reduc-
tion of dimension in the 3D neural semantic fields for efficient training and querying. However, the
reduction of feature dimension are carried out in the 2D space before lifting into the 3D space, and
this can lead to multi-view inconsistency that hurts performance. Although Gaussian Grouping (Ye
et al., 2023) is efficient by learning 3DGS only for class-agnostic mask rendering, it consequently
lacks semantic language information for each Gaussian.

In this paper, we propose efficient and multi-view consistent 3D semantic Gaussians (econSG), a
simple yet effective zero-shot model for 3D semantic understanding. Our proposed econSG con-
sists of: 1) Confidence-region Guided Regularization (CRR) to alleviate the incompleteness
and ambiguous boundaries of the semantic features obtained from VLMs. In contrast to other ap-
proaches which over-trusted SAM or DINO, our CRR is designed to get the best from both worlds of
OpenSeg (Ghiasi et al., 2022) (or LSeg) and SAM with strong 3D multi-view consistency. Specif-
ically, our CRR first fuses backproject high confidence OpenSeg semantic features from multiple
views using the depth maps obtained from Colmap (Schönberger et al., 2016). We then fit a bound-
ing box on the fused features reprojected onto each view to prompt SAM for better region masks,
which we use to guide refine the OpenSeg semantic features towards well-defined boundaries. 2)
Low-Dimensional 3D Contextual Space to enforce 3D multi-view consistency and enhance com-
putational efficiency. To enforce 3D multi-view consistency, we build a 3D contextual space from 3D
features obtained by fusing the backprojected multi-view 2D features instead of operating on each
2D view separately. We then pre-train an autoencoder to get the low-dimensional latent semantic
space for initializing the 3DGS semantic fields, where the encoder of the pre-trained autoencoder is
also used to project semantic features from our CRR into the same dimension as the low-dimensional
latent semantic space to supervise the 3DGS semantic fields. Our model is more efficient since we
have strong initialization for the 3DGS semantic fields, and we perform optimization and rendering
only in the 3D low-dimensional latent space.

We summarize our main contributions as follows: 1) We propose a Confidence-region Guided
Regularization (CRR) to get 2D semantic features with complete and precise boundaries by mutual
guidance from OpenSeg and SAM with strong awareness of multi-view consistency. 2) We design
an autoencoder with one-time pretraining to get the low-dimensional 3D contextual space for ini-
tialization of the 3D neural semantic fields, and enforce multi-view consistency by backprojecting
2D features from CRR into the same dimension as the low-dimensional 3D contextual space for
efficient training. 3) Our econSG show state-of-the-art performance on four benchmark datasets:
Scannet (Dai et al., 2017), LeRF (Kerr et al., 2023), replica (Straub et al., 2019) and 3DOVS (Liu
et al., 2024) compared to the existing methods. Furthermore, we are also the most efficient training
among all the methods.

2 RELATED WORK

2D Open-vocabulary Segmentation. 2D open-vocabulary segmentation has seen considerable
growth due to the availability of vast text-image datasets and computational resources. Advance-
ments in large visual language models (Alayrac et al., 2022; Jia et al., 2021; Radford et al., 2021)
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have significantly enhanced zero-shot 2D scene understanding, even for long-tail objects in images.
To enable zero-shot predictions without prior knowledge of the categories, a common approach is
to use vision-and-language cross-modal encoders, which are trained to map images and text labels
into a unified semantic space. However, these models often produce embeddings at the image level,
which are not suitable for tasks requiring pixel-level information. Recent efforts (Ghiasi et al.,
2022; Kuo et al., 2022; Li et al., 2022; Zhou et al., 2022; Rao et al., 2022) aim to bridge this gap
by correlating dense image features with language model embeddings, enabling users to detect,
classify or segment objects in images with arbitrary text labels. Predominant open-vocabulary seg-
mentation methods (e.g. LSeg (Li et al., 2022)) often rely on distilling knowledge from large-scale
pre-trained models such as image-text contrastive learning models (e.g. CLIP (Radford et al., 2021))
and diffusion models(Rombach et al., 2022). These approaches leverage the rich semantic informa-
tion captured during pre-training to perform segmentation tasks. However, the distillation process
necessitates fine-tuning on specific datasets with a limited vocabulary which undermines the open-
vocabulary capability and results in reduced performance in recognizing rare classes. OpenSeg (Ghi-
asi et al., 2022) utilizes weak supervision through image captions without fine-tuning on a specific
class set, but its vocabulary is limited compared to CLIP due to a smaller training dataset. In contrast,
our method bypasses fine-tuning CLIP and effectively handles open world classes.

3D Open-vocabulary Segmentation. The success of 2D open-vocabulary segmentation has in-
spired many recent works (Peng et al., 2023; Ding et al., 2023; Nguyen et al., 2024; Takmaz et al.,
2023) on 3D open-vocabulary segmentation on 3D point clouds. Many of these existing works
share the same design principle of proposing a framework to align pretained 2D open-vocabulary
segmentation frameworks such as LSeg (Li et al., 2022) to the feature embeddings of the point
cloud. Although these works do not have to worry about 3D consistency, they primarily rely on
point clouds that are relatively more difficult to obtain than multi-view images. To enable multi-
view images as input, there has been a significant increase in NeRF-based (Mildenhall et al., 2021)
3D segmentation. Semantic-NeRF (Zhi et al., 2021) constructs a semantic field which enables the
synthesis of semantic segmentation masks from novel views. However, this method requires a large
number of annotated labels, which is non-trivial and costed. Some methods (Tschernezki et al.,
2022; Fan et al., 2022) utilize the self-supervised feature extractor (e.g. DINO (Caron et al., 2021))
to extract 2D features and distill features into the semantic field. More recently, several NeRF-based
works (Kerr et al., 2023; Liu et al., 2024; Kobayashi et al., 2022) have explored textual descriptions
combined with CLIP models to achieve open-vocabulary 3D semantic understanding. LERF (Kerr
et al., 2023) grounds the language field within NeRF by optimizing multiscale embeddings from
CLIP into 3D scenes. 3DOVS (Liu et al., 2024) distills open-vocabulary multimodal knowledge
from CLIP and object boundary information from DINO into the NeRF. Wang et al. (2024) focuses
on proposing a 3D open-vocabulary segmentation framework that can generalize to unseen scenes.
Despite promising results, NeRF-based approaches are marred by slow training and rending. We
circumvent these issues by using the more efficient 3D Gaussian Splatting.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has recently gained
popularity as a technique for real-time radiance field rendering and 3D scene reconstruction. In-
spired by the success of 3DGS in novel view synthesis, various works (Luiten et al., 2023; Yi et al.,
2023; Ye et al., 2023) have adapted it for various tasks to leverage its efficient rendering process.
For real-time rendering of dynamic scenes, some studies (Luiten et al., 2023; Wu et al., 2023; Yang
et al., 2023a) utilize techniques such as dense scene element tracking (Luiten et al., 2023) and de-
formation field modeling (Yang et al., 2023b). Another line of research (Chen et al., 2023; Tang
et al., 2023; Yi et al., 2023) combines Gaussian Splatting with diffusion-based models for 3D con-
tent creation, yielding high-quality generation results. DreamGaussian (Tang et al., 2023) proposes
an efficient 3D text-to-3D generation method using a generative 3DGS model. However, Gaussian
Splatting methods enabling object-level or semantic understanding of the 3D scene are still under-
explored yet meaningful. Gaussian Grouping (Ye et al., 2023) extends Gaussian Splatting beyond
mere scene appearance and geometry modeling with instance level modeling based on class-agnostic
SAM masks. Feature3DGS (Zhou et al., 2024) learns high-dimensional semantic field in 3D Gaus-
sians based on CLIP semantic features from multiple training views, leading to high computational
cost. LangSplat (Qin et al., 2023) and LEGaussians (Shi et al., 2023) encode multi-view features
from 2D pre-trained VLMs into 3DGS via different feature dimension reduction techniques. How-
ever, the effectivenss of these approaches is hindered by the limitations of rendering efficiency and
3D semantic inconsistency across multiple training views. In contrast, we do not directly apply
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Figure 1: Our econSG framework. 1) Top: Building 3D contextual latent space. We use the image
encode from a VLM and our CRR to get 2D features F̂2D, which are then back-projected and fused
in 3D to get the high dimensional 3D contextual codeM. An autoencoder [g, h] is learned to map
M into the low dimensional spaceMz . 2) Bottom: 3DGS for semantic fields. We optimize for the
3DGS semantic fields f with Lsemantic and Lce supervised by the image F̂2D and text Tz latent
embeddings obtained by the encoder g, respectively.Mz is used to initialize f .

inconsistent and imprecise semantics from 2D VLMs across views to optimize 3DGS. Instead, we
construct a multi-view consistent 3D embedding space for modeling the 3DGS semantic fields.

3 PRELIMINARIES: 3D GAUSSIAN SPLATTING

3DGS (Kerbl et al., 2023) explicitly represents the 3D scene as a set of anisotropic 3D Gaussians,
which share similarity with point clouds. Each Gaussian is characterized by a center point vector
µ ∈ R3 and a covariance matrix Σ ∈ R3×3, which influences a 3D point x in the scene following the
3D Gaussian distribution: G(x) = 1

(2π)
3
2 |Σ|

1
2
e−

1
2 (x−µ)⊤Σ−1(x−µ). To ensure positive semi-definite

Σ and differential optimization, Σ = RSS⊤R⊤ is decomposed into two learnable components: a
scaling matrix S ∈ R3 and a rotation quaternion matrix R ∈ R4. Additionally, each Gaussian is
parameterized by an opacity value o ∈ R and an appearance feature vector defined by n spherical
harmonic (SH) coefficients C = {ci ∈ R3 | i = 1, 2, . . . , d2}, where d2 is the number of coefficients
of SH with degree d. For rendering, 3D Gaussians are projected onto the image plane of the given
view by the α− blending function as follows: c =

∑n
i=1 ciαi

∏i−1
j=1(1− αj). c is the final color in

the rendered image computed by blending n ordered Gaussians that overlap onto the pixel. ci ∈ R3

represent color computed from SH coefficients in the ith Gaussian. αi is obtained by multiplying
the projected 2D covariance matrix Σ′ ∈ R2×2 with the learned opacity. Σ′ = JWΣW⊤J⊤ in the
camera coordinates is computed using view transform matrix W and the Jacobian matrix J of the
affine approximation of the projective transformation.

4 OUR METHOD

Objective. We start with a set of posed views I and a set of text queries T that represent the semantic
classes. Given the posed images I and the text queries T , the goal is to synthesize semantic masks
from novel views rendered by 3DGS parameterized by {x, µ,R, S, c, f}, where f is an additional
optimizable semantic field we add to the 3DGS.

Overview. Fig 1 shows an overview of our econSG which consists of: 1) A pre-training stage
where we first design the Confidence-guided Region Regularization (CRR) that mutually refines
OpenSeg and SAM to get the 2D semantic features. In contrast to (Ye et al., 2023; Liao et al.,
2024; Guo et al., 2024; Liu et al., 2024; Shi et al., 2023), our CRR avoids over-trusting DINO
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or SAM which we empirically show to be imperfect (cf. Fig. 3 Column (b)). We then train an
autoencoder for the low-dimensional 3D contextual space to improve training and query efficiency
of the 3DGS semantic fields in the next stage. Unlike (Qin et al., 2023; Shi et al., 2023) which
compress semantic features in the 2D space before 3D fusion, we enhance 3D consistency by first
fusing the backprojected 2D semantic features to get the 3D contextual space followed by training
an autoencoder to get the low-dimensional 3D contextual space. 2) A training stage where we
intialize the 3DGS semantic fields with the low-dimensional 3D contextual space, and supervise the
training of the rendered low-dimensional 3DGS semantic fields efficiently with the CRR semantic
features mapped into the same dimension by the frozen encoder in the pretrained autoencoder. We
also utilize the frozen encoder and CRR to align class semantics with the 3DGS semantic fields.

4.1 IMAGE AND TEXT EMBEDDINGS

We obtain per-pixel semantic feature F2D from the RGB images I with the image encoder of a 2D
VLM φ2D : I 7→ F2D. Similarly, we use the text encoder of the 2D VLM to get the text feature
φtext : T 7→ T . Several 2D pre-trained models such as OpenSeg (Ghiasi et al., 2022), LSeg (Li
et al., 2022), etc. can be used as φ2D and φtext.

4.2 CONFIDENCE-GUIDED REGION REGULARIZATION (CRR)

As shown in Fig. 3, the semantic feature map from OpenSeg (Column (a)) and the regional mask
proposals from SAM (Column (b)) can be imperfect due to complex background and occlusion, and
thus leading to inconsistent and inaccurate semantics across multiple views. We design our CRR for
mutual refinement of the per-pixel semantic feature from the 2D VLM and regional mask proposals
from SAM as follows:

a: Select pixel embeddings F2D across all views with confidence higher than threshold τ1:
▷ R ← SelectConfident(F2D > τ1);

b: Back-project semantic features of each pixel in R into 3D using depthmaps D from Colmap.
Average-pool back-projectedR to get multi-view consistent semantic features:
▷ F̄3D ← AvgPool(BackProject(R,D));

c: Obtain semantic label for each 3D point according to its similarity with the text embeddings.
On the reprojected points, do majority voting on the semantic labels and average-pooling on
the semantic features to get a set of 2D semantic masks and their corresponding features and
labels:
▷ {P, F̄2D, Ȳ } ← Vote-AvgPool(Project((SemanticLabel(T , F̄3D)));

d: Fit bounding boxes to the re-projectedP , and use as input prompts to SAM to get better regional
mask proposals:
▷ S ← PromptSAM(FitBBox(Project(P)));

e: Retain P with confidence higher than threshold τ2. Assign the semantic label and feature of
the high confidence P to the improved SAM regional mask proposal S with the highest IoU
score:
▷ {S, F̄2D, Ȳ } ← MaxIoUScore(SelectConfident(P > τ2),S);

Note that the semantic featuresF2D, F̄3D and F̄2D share the same dimension since F̄3D is obtained
from average pooling of F2D from multi-view back-projections, and F̄2D is from the average-
pooling of the re-projected F̄3D in each mask P . Steps (a)-(c) enforces multi-view consistency
in the semantic features from OpenSeg. Step (d) uses the multi-view consistent semantic mask to
improve regional mask proposals from SAM. Finally, Step (e) uses the improved regional mask
proposals from SAM to further refine the multi-view consistent semantic mask.

4.3 LOW-DIMENSIONAL 3D CONTEXTUAL SPACE

Multi-view Feature Fusion. For each 3D point obtained from Structure-from-Motion (SfM) using
Colmap for the intialization of 3DGS, we compute per 3D point feature f3Dp = ψ(f̄2Di , . . . , f̄2DNp

)
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from average pooling ψ the multi-view features of the Np visible corresponding pixels. We build an
initial 3D contextual space by consolidating all point features corresponding to the point cloud from
SfM:M = {f3D1 , . . . , f3Dp }.
Autoencoder. A naive direct rendering of the feature fields is very time-consuming due to the high
dimensionality of the semantic features F2D since the latent dimensions in 2D foundation models
tend to be very large. This problem is further aggravated in complex 3D scenes with a lot of dense
points. We thus pretrain an autoencoder to map the high dimensional 3D contextual spaceM into
a low-dimensional latent space space Mz = {z3D1 , . . . , z3Dp } to improve efficiency. Specifically,
the encoder z3Dp = g(f3Dp ) maps feature f3Dp with high dimension to a lower dimension latent
vector z3Dp . The reconstruction is given by ofp = h(g(f3Dp )), where h(·) is the decoder and ofp is
the reconstructed 3D semantic feature. The training objective of the autoencoder on the 3D point
featuresM is as follows:

Lae = Ll2(f
3D
p , ofp) + Lce(ŷ, cos < ofp , T >) + Lce(ŷ, cos < zfp , g(T ) >), (1)

where Ll2 and Lce denote L2 loss and cross entropy loss, respectively. Using cosine similarity,
cos < ofp , T > outputs the semantic label of the reconstructed semantic feature with the text em-
bedding and cos < zfp , g(T ) > outputs the semantic label of the low dimension semantic feature
with the encoded low dimension text embedding. ŷ is the pseudo semantic mask generated from the
2D segmentation model.

4.4 3DGS SEMANTIC FIELDS

After obtaining the pretrained autoencoder [g(·), h(·)], we use the encoder g(·) to map: 1) The
initial 3D contextual features to the low-dimensional 3D contextual space g : M 7→ Mz; 2) Per-
pixel semantic features to per-pixel low-dimensional semantic features g : F̄2D 7→ F̄2D

z ; 3) Text
semantic features to low-dimensional text semantic features g : T 7→ Tz .

We use the low-dimension 3D contextual space Mz to initialize the semantic field f in each 3D
Gaussians, and render the 3DGS semantic fields into each view via alpha-blending:

F =
∑
i∈n

fiαi

i−1∏
j=1

(1− αj). (2)

We supervise the rendered semantic fields F by their semantic logit Sm with the semantic mask
label Ȳ from CRR using a cross-entropy loss: Lce = CE(Sm, Ȳ ), where the semantic logit is
obtained from the cosine similarity between the low-dimensional semantic and text features: Sm =
cos < F , Tz >. Furthermore, we optionally regularize F to improve feature smoothness with the
low-dimensional semantic features F̄2D

z using a L2 semantic loss: Lsemantic = L2(F , F̄2D
z ).

The final supervision loss for optimizing the given scene is formulated as follows:

L = Lcolor + λ2dLce + λsemLsemantic (3)

where Lcolor is the 3D Gaussian image rendering loss, and λ2d and λsem denote hyperparameters
to balance the loss terms. In inference, we use Eq. 2 to render the learned 3DGS semantic fields
from 3D to 2D. We deploy the encoder g(·) from the pre-trained autoencoder to get the text features
Tz of the open-world text queries. By computing the activation scores between the rendered 3DGS
semantic fields F and the text features, we can obtain the open-world segmentation predictions.

5 EXPERIMENTS

We perform a series of experiments to demonstrate the effectiveness of our proposed method across
various 3D scene understanding tasks. We evaluate our method on the 2D semantic segmentation
benchmarks: ScanNet (Dai et al., 2017) and Replica (Straub et al., 2019), and 3D open-vocabulary
segmentation benchmarks: LERF (Kerr et al., 2023) and 3DOVS (Liu et al., 2024) to compare with
previous work, and provide results from ablation studies. We further showcase qualitative results on
the Mip-Nerf360 (Barron et al., 2022) for exciting open-vocabulary applications such as 3D object
localization, 3D object removal, 3D object inpainting, and language-guided editing.
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Table 1: Comparisons of open-vocabulary segmentation on 3DOVS dataset. Best results in bold.
Dataset 3DOVS

Method bed sofa lawn room bench overall
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

2D LSeg 56.0 87.6 04.5 16.5 17.5 77.5 19.2 46.1 06.0 42.7 20.6 54.1

3D

LERF 73.5 86.9 27.0 43.8 73.7 93.5 46.6 79.8 53.2 79.7 54.8 76.7
3DOVS 89.5 96.7 74.0 91.6 88.2 97.3 92.8 98.9 89.3 96.3 86.8 96.2
Feature3DGS 56.6 87.5 06.7 12.4 37.3 82.6 20.5 36.7 06.2 43.0 25.5 52.4
LEGaussians 45.7 - 48.2 - 49.7 - 44.7 - 47.4 - 47.14 -
LangSplat 73.5 89.7 82.3 98.7 89.9 95.6 95.0 99.4 70.6 92.6 82.3 95.2
econSG (Ours) 94.9 97.4 91.6 98.7 96.3 98.5 95.8 99.4 93.0 97.6 94.3 98.3

Table 2: Comparisons of localization accuracy on LERF dataset. Best results in bold.
Dataset LERF
Method ramen figurines teatime waldo kitchen overall

2D LSeg 14.1 08.9 33.9 27.3 21.1

3D

LERF 62.0 75.0 84.8 72.7 73.6
Feature3DGS 15.8 9.7 34.5 38.5 24.6
LangSplat 73.2 80.4 88.1 95.5 84.3
SemanticGaussian 6.8 83.1 89.8 90.9 85.2
LEGaussians 78.6 73.7 85.6 90.1 82.0
econSG (Ours) 83.2 89.3 93.4 96.2 90.5

5.1 DATASETS AND EXPERIMENTAL SETTING

Datasets. To measure segmentation performance in open-world scenes, we evaluate the effec-
tiveness of our approach using two established multi-view indoor scene datasets: Replica (Straub
et al., 2019) and Scannet (Dai et al., 2017), and two 3D open-vocabulary segmentation datasets:
LERF (Kerr et al., 2023) and 3DOVS (Liu et al., 2024). For both ScanNet and Replica, we con-
struct training and test sets by evenly sampling sequences in each scene. Images are rendered at
the resolution of 640 × 480. We adopt 20 different semantic class categories for Scannet by fol-
lowing Openscene (Peng et al., 2023), while Replica is annotated with 51 classes for evaluation
as in (Engelmann et al., 2024). For LERF and 3DOVS, we follow the settings in LangSplat (Qin
et al., 2023) where LERF is extended with ground truth masks annotated for language queries and
3DOVS consists of 20 ∼ 30 images for each scene with the resolution of 4032 × 3024. To as-
sess 3D reconstruction quality, we applied our method to Mip-Nerf360 (Barron et al., 2022) and
LERF-Localization (Kerr et al., 2023) by following Gaussian Grouping (Ye et al., 2023).

Implementation details. For 2D VLMs, we utilize pixel-level encoders, OpenSeg (Ghiasi et al.,
2022) and LSeg(Li et al., 2022) to extract the per-pixel semantic features of each image in indoor
scene datasets, and adopt Openclip (Ilharco et al., 2021) to extract image-level features for language-
guided editing on Mip-Nerf360, LERF and 3DOVS datasets. We then use SAM for mutual refine-
ment with the 2D VLMs in our CRR to get the semantic features where we set τ1 = 0.45, τ2 = 0.6.
We use the Adam optimizer with the learning rate 0.0025 for latent semantic fields. For parameters
to train the image scene, we follow the default setting in the original 3DGS (Kerbl et al., 2023). For
additional parameters introduced to train the semantic scene, we set λsem = 1, λ2d = 1. For all
datasets, we train each scene for 30K iterations on one NVIDIA RTX-4090 GPU.

5.2 MULTIVIEW RECONSTRUCTION AND SEGMENTATION

Open-vocabulary Segmentation Comparison.

Tab. 1 and Tab. 2 show quantitative results of open-vocabulary segmentation on 3DOVS dataset
and localization accuracy on LERF dataset. Tab. 3 shows segmentation comparison across various
scenes on both Scannet and Replica. We compare with 2D-based open-vocabulary segmentation
model LSeg (Li et al., 2022) along with 3D NeRF and 3DGS-based methods. LERF (Kerr et al.,
2023) and 3DOVS (Liu et al., 2024) leverage the multi-scale CLIP features from the image patches
as supervisions for learning NeRF-based semantic field, and thus struggle with both object bound-
ary ambiguities for segmentation and rendering efficiency. Their performance on novel views can be
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Table 3: Comparison with other methods on segmentation of novel views from Scannet and Replica.
Best results highlighted in bold.

Dataset FPS
Replica Scannet

sparse-view multi-view sparse-view multi-view
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

LERF 0.2 4.312 17.080 8.285 22.125 14.059 38.734 15.349 40.294
3DOVS 0.3 4.553 19.356 9.081 23.938 14.227 40.584 17.802 42.532
Feature3DGS 2.5 9.584 38.245 10.634 36.520 17.552 48.686 18.069 54.101
econSG (Ours) 156 25.513 70.716 33.869 78.564 39.018 74.805 48.205 86.178

Gaussian Grouping
 Feature Visualization

Ours
 Masks Prediction

Rendered Image OpenSeg
 Feature Visualization Masks Prediction

SAM
 Masks Prediction
(class agnostic)

 Masks Prediction
(class agnostic)

Figure 2: Qualitative comparison of our econSG with Gaussian Grouping (Ye et al., 2023) on
Replica.

greatly degraded because of they generate inconsistent and imprecise ground truth semantics from
multi-scale features across multiple views. Feature3DGS (Zhou et al., 2024) directly applies incon-
sistent and noisy semantics from training views to optimize high-dimensional semantic field in 3D
Gaussians, resulting in high computation costs and inferior segmentation results. LangSplat (Qin
et al., 2023) and LEGaussians (Shi et al., 2023) compress 2D features across all views to improve
rendering efficiency on semantic fields, but their performance are still hindered by the inherent 3D
semantic noises and inconsistency. SemanticGaussian distills noisy 2D features into an additional
3D model for learning 3D semantics while ignoring semantic consistency from the multi-view 2D
images. Our model consistently shows the best performance since we introduce the 3D contextual
latent space to provide sufficient 3D semantic consistency into the ground truths and design a CRR
step to generate clean and complete semantic masks. These components help ensure optimization
efficiency and robustness even with few input images.

In Tab. 3, we also present the inference speed under the multi-view setting in terms of the frames per
second (FPS) metric. NeRF-based methods are generally constrained on rendering efficiency and
slow. 3DGS-based models are inefficient from high-dimensional language features in 3D Gaussians.
We also perform robustness comparison by evenly sampling sparse training views for optimiza-
tion(30 images per-scene in our experiments). It shows our model consistently outperforms other
methods, proving the proposed components help ensure optimization efficiency and robustness even
with few input images. In Fig. 2, we visualize the learned semantic fields by showing the rendered
latent embeddings in the testing views. We observe that our predictions are of better consistency
across views with more complete and well-defined boundaries semantics masks.

Ablation on CRR. We compare our CRR with OpengSeg and SAM, and conduct ablation studies
on CRR. OpenSeg in Fig. 3(a) shows issues such as ambiguous boundaries and inaccurate dense
predictions. This is due to the use of noisy segmentation maps from pre-trained visual encoders for
supervision. Fig. 3(b) shows that a naive over-trusting of SAM masks to refine boundaries does not
work well in complex scenes. Fig. 3(c) vs. (d) and Fig. 3(e) vs. (f) show the without and with our
CRR on the training and testing sets, respectively. We can see that our CRR effectively produces
semantic fields with clear boundaries.
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 Initial results of training views from vision and language foundation models

 (a) Segmentation maps 
predicted from OpenSeg

 (b) Region proposals 
predicted from SAM

 (c) Training segmentation 
maps refined with CRR

View1 

View2 

Rendered results of training views

 (d) Training view predictions
by semantic field w/o CRR

 (e) Training view predictions
by semantic field with CRR

Rendered results of testing views

 (f) Testing view predictions
by semantic field w/o CRR

 (g) Testing view predictions
by semantic field with CRR

Figure 3: Ablation on confidence-guided region regularization (CRR) with qualitative results of our
econSG on Replica. Panels (a)-(e) are from training views, and panels (f)-(g) are from testing views.
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Figure 4: Qualitative 3D Segmentation Results and Comparison of our method. The second and
fourth rows illustrate the feature visualization in 3D space.

Analysis on 3D Contextual Latent Space. We show qualitative results of 3D segmentation pre-
dictions and contextual feature space in Fig. 4. The 3D segmentations derived from the original
OpenSeg exhibit significant coarseness and errors due to multi-view inconsistency among the pre-
dicted 2D semantic features. Gaussian Grouping shows better object-level boundaries by leveraging
SAM object mask IDs as direct supervision. However, SAM can fail in complex scenes leading to
incorrect masks in some views. Morever, since SAM segmentations are class-agnostic, the learned
3D semantic embeddings from Gaussian Grouping are only instance-level and cannot be queried by
text embeddings. SAMPro3D (Xu et al., 2023) proposes to filter low-quality prompts and consoli-
date prompts inside the object. However, SAMPro3D is not applicable to open-vocabulary 3D scene
understanding tasks without feature embeddings. In contrast, our model significantly improves the
quality of 3D contextual space and segmentation predictions as illustrated in the last column.

Training Efficiency Analysis. In Tab. 4 , we show training and inference time on the “sofa scene”
of 3DOVS dataset at different feature dimensions. Compared with LangSplat, our model achieves a
significant speed increase in inference (LangSplat:401.9s vs. Ours:4.9s). This is because LangSplat
performs evaluation on the original high-dimensional space while our model directly makes predic-
tions in the low-dimensional latent contextual space. Our model can achieve promising efficiency
and accuracy due to the low-dimensional 3D latent contextual space that avoids the need for training
high-dimensional 3DGS semantic fields. The last column of Tab 4 shows that the high-dimensional
features (e.g. 512 for CLIP features) pose huge memory and computation demands especially on
training when the autoencoder is removed.

5.3 APPLICATIONS

3D Scene Editing. Fig. 5 (Right) shows examples of language-guided editing on a object scene from
the Bear data (Ye et al., 2023) and a room scene from Mip-NeRF360 (Barron et al., 2022). We utilize
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Table 4: Training efficiency analysis on the sofa scene of the 3DOVS dataset.
Methods LERF 3DOVS Langsplat Feature3DGS Ours Ours

(remove autoencoder)
Feature dimension 512 512 3 128 6 16 32 512
mIoU (%) 27.0 74.0 82.3 06.7 91.6 91.8 91.8 OOM
Training time (min) 19.4 78 66 87 29 32 43 OOM
Inference (s) 121.4 6.6 401.9 6.0 4.9 5.2 5.3 OOM

Prompt: 
egg

Prompt: 
green apple

Prompt:
stuffed bear

Mask prediction
(Ours)

Gaussian 
Grouping

Feature Visualization
(Ours)

Relevancy Map
(Ours)

Rendered
Images

Rendered View ‘remove the
[object]’

‘inpaint black blurry
regions’

EditingObject localization and segmentation

Figure 5: Qualitative examples of language-guided segmentation and editing. Segmentation results
of the rendering views are compared with Gaussian Grouping on LERF-localization dataset.
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Figure 6: A 3D scene can be queried using text prompt embedding or images to locate matching 3D
points. Colors of image query outlines indicate corresponding matches in the 3D point cloud.

the text encoder to embed the object category names to identify the corresponding 3DGS points and
adjust their attributes such as coordinates and colors. We first detect regions that are invisible in all
views after deletion and then inpaint these specific areas instead of the entire 2D object regions. We
then use the 2D inpainted image in each rendering view to guide the learning of new 3D Gaussians.

Open-Vocabulary 3D Object detection. Fig. 5 (Left) shows examples of object localization and
segmentation with text queries. In Fig. 6, we query a 3D scene database to retrieve examples based
on their similarity to a given input image. We first encode the query text or image using CLIP image
encoder and then threshold the cosine similarities between the CLIP features and the 3DGS semantic
fields to produce a 3D object detection and mask.

6 CONCLUSION

In this paper, we propose econSG for open-vocabulary semantic segmentation of 3D scenes. Specif-
ically, we propose CRR to get 2D semantic features with complete and precise boundaries by mutual
guidance from OpenSeg and SAM with strong awareness of multi-view consistency. We design an
autoencoder with one-time pretraining to get the low-dimensional 3D contextual space for initial-
ization of the 3D neural semantic fields, and enforce multi-view consistency by backprojecting 2D
features from CRR into the same dimension as the low-dimensional 3D contextual space for efficient
training. Our econSG show state-of-the-art performance on four benchmark datasets compared to
the existing methods. Furthermore, we are also the most efficient training among all the methods.
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