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Abstract

Large Language Models (LLMs) have been rev-
olutionizing a myriad of natural language pro-
cessing tasks with their diverse zero-shot ca-
pabilities. Indeed, existing work has shown
that LLMs can be used to great effect for many
tasks, such as information retrieval (IR), and
passage ranking. However, current state-of-the-
art results heavily lean on the capabilities of the
LLM being used. Currently, proprietary, and
very large LLMs such as GPT-4 are the highest
performing passage re-rankers. Hence, users
without the resources to leverage top of the line
LLMs, or ones that are closed source, are at
a disadvantage. In this paper, we investigate
the use of a pre-filtering step before passage
re-ranking in IR. Our experiments show that
by using a small number of human generated
relevance scores, coupled with LLM relevance
scoring, it is effectively possible to filter out
irrelevant passages before re-ranking. Our ex-
periments also show that this pre-filtering then
allows the LLM to perform significantly better
at the re-ranking task. Indeed, our results show
that smaller models such as Mixtral can be-
come competitive with much larger proprietary
models (e.g., ChatGPT and GPT-4).

1 Introduction

Large Language Models (LLMs) such as GPT-4
(Achiam et al., 2023) and Mixtral (Jiang et al.,
2024) have been revolutionizing natural language
processing tasks with their diverse zero-shot capa-
bilities. Through extensive pretraining on various
large-scale textual sources—such as web pages, re-
search articles, books, examples, and code—these
systems have shown remarkable natural language
capabilities. As a result, their responses are increas-
ingly human-like and closely aligned with human
intentions (Zhu et al., 2023). Recently, as LLMs
have become more capable, extensive research has
been conducted on their use and effectiveness in in-
formation retrieval (IR) systems (Zhu et al., 2023).

A typical information retrieval system comprises
multiple components organized into a processing
pipeline. This pipeline features two primary stages:
the retriever and the reranker (Lin et al., 2022).
While the retriever selects the most relevant pas-
sages from a large-scale corpus, the re-ranker fo-
cuses on re-ordering (i.e., re-ranking) the candidate
passages, using their relevance. Each component
can thus be optimized for its given task.

The advent of large language models (LLMs) has
impacted the information retrieval (IR) pipeline in
many ways. While research in this field has mainly
focused on the use of LLMs in the first stage of
the pipeline (Zhu et al., 2023) (i.e., the retriever),
the investigation of LLLMs for the re-ranking stage
remains a relatively new challenge. Recently, some
research has focused on using LLMs for zero-
shot re-ranking, leading to significant improve-
ments (Sun et al., 2023).

Despite recent advances in retrieval methods,
some retrieved passages are likely to be unrelated
to the query. Generally, all of the retrieved pas-
sages from the retriever (typically BM25 (Lin et al.,
2021)) are passed to the LLM-based re-ranker, to
generate the ranked list of passages based on their
relevance to the query. Passing irrelevant and dis-
tracting passages to the LLM-based re-ranker can
mislead it, leading it away from relevant passages
and negatively impacting the ranking process (Cu-
conasu et al., 2024; Yoran et al., 2023).

To investigate the impact of these irrelevant pas-
sages and mitigate their effects, we propose a novel
LLM-based pre-filtering method that filters out ir-
relevant passages before they are given to the re-
ranker. We design a prompting strategy for our
method which instructs the open-source LLM to
generate a relevance score for each passage based
on its relevance to the given query in the range of 0
to 1. Then, using a sample of generated scores, we
establish a specific threshold for passage filtering.
Using this threshold we can then pre-filter any new



passage. Passages that exceed this threshold are
retained as relevant passages and forwarded to the
re-ranker, while those falling below the threshold
are discarded. By implementing this straightfor-
ward process, only relevant passages are passed to
the ranker, significantly reducing the overall num-
ber of passages in the ranker. To investigate the
usefulness of our proposed approach we focus on
the following two research questions:

RQ1: Can existing expert knowledge be used
to help LLMs filter out irrelevant passages?
RQ2: Does filtering out irrelevant passages
before re-ranking improve the results of an
LLM re-ranker?

To answer RQ1 we investigate prompting
Mixtral-8x7B-Instruct (with 4-bit quantization) to
assign a quantitative value to the relevance of pas-
sages retrieved by BM25. We then leverage ex-
isting expert knowledge (i.e., qrels in the TREC
and BEIR datasets), to determine a relevance value
below which passages should be deemed irrele-
vant (i.e., a relevance threshold). We evaluate our
approach on three datasets (TREC-DL2019, TREC-
DL2020, and four BEIR tasks) and find that it is
generally possible to find a threshold value—using
F1 score—that maximizes the relevance of the re-
trieved passages. We also find that this threshold
value appears mostly stable (around 0.3, or its in-
verse 0.7) across all of the tested datasets.

To answer RQ2, we investigate the use of a
pre-filtering step—to filter out irrelevant passages—
before re-ranking passages with Mixtral-8x7B-
Instruct (loaded with 4-bit quantization). Again,
we evaluate our approach on three datasets (TREC-
DL2019, TREC-DL2020, and four BEIR tasks)
and find that the use of a pre-filtering step signif-
icantly improves the resulting re-ranking of pas-
sages. Indeed, after using our pre-filtering step,
a limited model such as Mixtral-8x7B-Instruct
(loaded with 4-bit quantization) can become com-
petitive with— and in one case surpass—much larger,
and resource intensive, models such as GPT-4. Our
paper presents three distinct contributions:

* We show that it is possible to use expert knowl-
edge as feedback to LLMs to identify irrele-
vant passages in IR.

* We present a novel approach to improve LLM-
based passage re-ranking.

* We show that while our approach is model

agnostic, by using it, resource-constrained
LLMs can become competitive with resource-
intensive LLMs that do not use our approach.

2 Related Work

Recently, large language models (LLMs) have sig-
nificantly impacted various research fields, includ-
ing information retrieval. (Zhu et al., 2023). Sev-
eral approaches have been put forward to use LLMs
as re-rankers in the information retrieval pipeline.
These LLM-based re-rankers can be categorized
into supervised and unsupervised methods.

Existing supervised re-rankers can be catego-
rized as: (1) encoder-only, (2) encoder-decoder,
and (3) decoder-only. monoBERT (Nogueira et al.,
2019) is an encoder-only re-ranker based on the
BERT-large model. It leverages BERT’s contextu-
alized embeddings to enhance document re-ranking
performance and is optimized using cross-entropy
loss. monoT5 (Nogueira et al., 2020) is an encoder-
decoder-based re-ranking model designed for infor-
mation retrieval tasks. It leverages the TS5 (Text-To-
Text Transfer Transformer) architecture to generate
relevance scores for query-document pairs by treat-
ing the ranking task as a sequence-to-sequence gen-
eration problem. RankT5 (Zhuang et al., 2023a) is
another encoder-decoder-based re-ranking model
which calculates the relevance score for a query-
document pair and optimized the ranking perfor-
mance with pairwise or listwise ranking losses.
RankLLLaMA (Ma et al., 2023a) is a decoder-only
re-ranker model that focuses solely on the output
generation phase. It uses the last token representa-
tion for relevance calculation. Compared to prior
work, we use Mixtral, a recent LLM, as a re-ranker
coupled with a novel step—pre-filtering irrelevant
passages—to improve the re-ranking process.

As the size of LLMs scales up, it becomes dif-
ficult to fine-tune the re-ranking model. Recent
efforts aim to tackle this challenge by prompting
LLMs to directly enhance document re-ranking
in an unsupervised manner. Generally, there are
three main methods for using LLMs in zero-shot
re-ranking tasks: Pointwise (Sachan et al., 2022;
Liang et al., 2022), Listwise (Sun et al., 2023; Ma
et al., 2023b), and Pairwise (Qin et al., 2023). In
this paper, we use a listwise approach as it strikes
a balance between efficiency and effectiveness.

There are two popular methods for prompting
LLMs to rank documents in a pointwise manner:
relevance generation (Liang et al., 2022) and query



generation (Sachan et al., 2022). The Unsupervised
Passage Re-ranker (UPR) (Sachan et al., 2022) is
a pointwise approach based on query generation.
In this approach, LLMs are prompted to produce a
relevant query for each candidate document. The
documents are then re-ranked based on the like-
lihood of generating the actual query. Relevance
Generation (RG) (Liang et al., 2022) is another
pointwise approach based on relevance generation.
In this method, LLMs are prompted to generate
whether the provided candidate document is rel-
evant to the query, with this process repeated for
each candidate document. Subsequently, these can-
didate documents are re-ranked based on the nor-
malized likelihood of generating a "yes" response.
In this paper we add a new step (i.e., pre-filtering)
to the information retrieval pipeline, before the re-
ranker. We then leverage existing work to re-rank
our pre-filtered passages.

The main goal of the listwise approach (Sun
et al., 2023; Ma et al., 2023b) is to directly rank a
list of candidate documents for a given query and
generate a ranked list of document labels based
on their relevance to the query. In this method,
the query and a list of documents are directly in-
serted into a prompt. Due to the prompt length
constraints of LLMs, this approach employs a slid-
ing window method, which involves re-ranking
a window of candidate documents. This process
starts from the bottom of the original ranking list
and progresses upwards. It can be repeated mul-
tiple times to achieve an improved final ranking,
allowing for early stopping mechanisms to target
only the top-K rankings, thereby conserving com-
putational resources.

In pairwise methods (Qin et al., 2023), LLMs
are given a prompt consisting of a query and a doc-
ument pair. They are then instructed to identify
the document with higher relevance. To rerank
all candidate documents, aggregation methods like
AllPairs are used. AllPairs first generates all pos-
sible document pairs and then aggregates a final
relevance score for each document. To expedite
the ranking process, efficient sorting algorithms,
such as heap sort and bubble sort, are typically em-
ployed. These algorithms use efficient data struc-
tures to selectively compare document pairs and
elevate the most relevant documents to the top of
the ranking list, which is particularly useful in top-
k ranking. Although effective, pairwise methods
suffer from high time complexity. To address this

efficiency problem, a setwise approach (Zhuang
et al., 2023b) has been proposed, which compares
a set of documents simultaneously and selects the
most relevant one. This approach enables sorting
algorithms, such as heap sort, to compare more
than two documents at each step, thereby reducing
the total number of comparisons and speeding up
the sorting process.

3 LLM-based Pre-Filtering

In this section, we propose a new LLM-based pre-
filtering step to score passages based on their rele-
vance to the query and filter out irrelevant passages
before any re-ranking is conducted. Below, we
explain the significance of this step, describe the
prompting strategy used for generating relevance
scores, outline the process of analyzing the gener-
ated scores, and explain how we set the thresholds.

Our proposed pre-filtering step is straightfor-
ward yet efficient. The main goal of this step is
to filter irrelevant passages before passing them to
a re-ranker, thus decreasing the total number of
passages that require re-ranking. After the initial
retrieval stage (e.g., based on BM25 (Lin et al.,
2021)) retrieves a set of passages for a given query,
each passage is evaluated by an LLM-based filter
to determine its relevance to the query. This filter,
using the language understanding capabilities of
LLMs, assigns a relevance score to each passage
(e.g., from O to 1 where O denotes a completely
irrelevant passage, and 1 denotes a fully relevant
one). Then, a threshold is set based on these scores.
Passages with scores at or above the threshold are
passed to the re-ranker, while those with scores
below the threshold are discarded. Using the pre-
filtering step, the number of noisy passages that
can misguide the re-ranker decreases, leading to
improved performance for the re-ranker. Figure 1
illustrates the role of the pre-filtering step in the
information retrieval pipeline.

3.1 Prompt Design for Score Generation

To design our prompt, we use two well-known
prompting methods:

Chain-of-Thought (CoT) (Wei et al., 2022;
Kojima et al., 2022): This method allows
LLMs to produce intermediate reasoning steps
explicitly before generating the final answer.

Plan-and-Solve (PS) (Wang et al., 2023):
This method consists of designing a plan to di-
vide a task into smaller subtasks and then car-
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Figure 1: The role of the pre-filtering step in the information retrieval pipeline.

rying out the subtasks according to the plan.

Our proposed zero-shot prompt is a combination
of both of these reasoning methods:

“Grasp and understand both the query and the
passages before score generation. Then, based
on your understanding and analysis quantify the
relevance between the passage and the query. Give
the rationale before answering.”

In the first part of the prompt, we devise a plan
for the LLM to understand both the query and the
passage, and then, based on its analysis, generate
a relevance score. In the second part, we include a
sentence asking the LLM to explain the rationale
behind the score generation. By designing this
plan and instructing the LLM to provide a rationale
before responding, its understanding of the query
and the passage is incrementally enhanced. Our
manual analysis of multiple different prompts led
us to believe that this step-by-step approach results
in the generation of more accurate relevance scores.

3.2 Analyzing Relevance Scores

To give context to the relevancy scores generated
by LLMs for the passages, they should be com-
pared with an existing baseline. In our experiments,
we make use of the relevancy levels in the query
relevance judgments (qrels) file for each passage.
These relevancy levels have somewhat similar in-
terpretations across different datasets; however, de-
tails can be different. In all cases, higher scores
indicate greater relevance between the query and
the passage. However, the interpretation of a level
[1] score differs: in some datasets, a score of [1]
is considered relevant; in others, irrelevant; and
in some others, it is interpreted as partially rele-
vant. We categorize the datasets based on the the
interpretation of a level [1] score as follows:

* Datasets where a relevancy level of [1] is inter-
preted as either relevant (e.g., Touche (Thakur
et al.,, 2021)) or partially relevant (e.g.,

Covid (Thakur et al., 2021)), a relevancy level
of [1] or higher is considered relevant.

» Datasets where a relevancy level of [1] is in-
terpreted as not relevant (e.g., TREC-DL19,
TREC-DL20 (Craswell et al., 2020, 2021)), a
relevancy level of [1] or lower is considered
irrelevant. In these datasets the nDCG scores
use a gain value of 1 for related passages.

3.3 Setting a Relevance Threshold

Since the scores generated by LLMs are decimal
numbers between 0 and 1, we convert these scores
to be comparable with the integers that represent
relevancy levels. Thus, we set a threshold to replace
the decimal scores with the following values:

1, if the score at the threshold
Spre = § 1, if the score above the threshold

0, if the score below the threshold

ey

Where passages with a relevancy score at or
above this threshold are considered relevant and
assigned a score of 1, while those below the thresh-
old are given a score of 0. Next, the four elements
of the confusion matrix—true negatives, true posi-
tives, false positives, and false negatives—are cal-
culated. This is done by comparing the Sp. for
each passage with the relevancy levels in the grels
file. Since not all passages in each dataset have
relevancy levels assigned, we only use the passages
with relevancy levels in the grels file to compute
these four elements. After the threshold value is
selected, even passages without relevancy levels
can then be considered, as the LLM can still gen-
erate scores for them, and their scores can thus be
replaced based on the previously defined thresh-
old. Based on these values, Precision, Recall, and
F1 Score are computed for each threshold and the
threshold with the highest F1 Score is selected. In



the context of IR systems, these elements are de-
fined as follows:

True Negative (TN): Both the grels files and
the LLM classify the passage as irrelevant.
True Positive (TP): Both the grels files and
the LLM classify the passage as relevant.
False Positive (FP): The qgrels files classify
the passage as irrelevant, but the LLM classi-
fies it as relevant.

False Negative (FN): The grels files classify
the passage as relevant, but the LLM classifies
it as irrelevant.

While the initial threshold value is randomly se-
lected within the predefined range of O to 1, our
analysis suggests that this selection should align
with the interpretation of relevancy levels in the
grels files. For datasets where a relevancy level
of [1] is interpreted as either relevant or partially
relevant, a smaller threshold value should be cho-
sen compared to datasets where a relevancy level
of [1] is interpreted as not relevant. In the first
case, even passages with a low relevance, repre-
sented by a relevancy score of [1], are considered
relevant. In this case, the scores generated by the
LLMs for those passages are generally lower than
those for passages with a higher level of relevancy.
Therefore, the selected threshold should be more
inclusive. Conversely, for the second case where
a relevancy level of [1] is interpreted as not rel-
evant, the threshold should be higher to include
only the more relevant passages. Additionally, this
suggests that when testing thresholds other than
the initial one, comparing it with a slightly higher
and a slightly lower value and computing the F1
score for these thresholds is sufficient to identify
the trend of the other values and select the best one.

3.4 The Advantages of Pre-Filtering

As the primary objective of IR systems is to ac-
curately detect information that fully or partially
matches the user’s query, identifying relevant and
irrelevant passages is crucial. Therefore, the main
goal of our proposed step is to precisely detect both
relevant and irrelevant passages. By selecting the
best F1 score we aim to optimize the threshold to
increase the number of True Positives (TPs) and
True Negatives (TNs) while decreasing the number
of False Positives (FPs) and False Negatives (FNs).
By removing distracting passages, the total number
of initial passages sent to the final re-ranker, and
consequently the number of calls to LLM during
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Figure 2: The effect of the threshold on the number of
passages.

the re-ranking phase, will decrease. This enhance-
ment will improve the accuracy of the re-ranking
step. Specifically, we have:

N’ N
S pi <> pi )
i=1 i=1

This demonstrates that the number of filtered
passages, N, is either smaller or, at worst, equal to
the initial number of retrieved passages N. Figure
2 illustrates the effect of the threshold on retaining
or discarding passages.

We test our proposed approach using an open-
source LLM (i.e., Mixtral) which is easily accessi-
ble for both academic research and industry appli-
cations. Since this is an open-source model, there
is no need for commercial LLM APIs, which can
be expensive and may not satisfy some data privacy
concerns. Furthermore, our experiments show that
our approach allows smaller, more limited models,
to remain competitive with much more demand-
ing models. This can allow resource-constrained
situations to still make use of state-of-the-art re-
ranking. Our pre-filtering step is designed based on
Zero-Shot prompting and thus eliminates the need
to retrain or fine-tune the LLM. The complexity
of our method is linear, O(n), and by discarding
irrelevant passages, it reduces the number of LLM
inferences required in the final re-ranking step. As
access to the output logits of the model is not fea-
sible with many LLMs, particularly closed-source
ones, our method leverages the generation capabil-
ities of the LLMs. Table 1 presents properties of
different re-ranking methods with LLMs.



Methods #L.LMcalls Logits Batching  Generate
Pointwise O(N) X X

Listwise O(K * N) x
Pairwise(all pairs) O(N?) x X X
Pairwise(heap sort) O(K *logaN) X X
Pairwise(bubble sort) O(K * N) X X
Setwise(heap sort) O(K *log.N) X X
Setwise(bubble sort) O (K * (N/(c—1))) x X
Pre-Filtering O(N)+ O(K * N") X X

Table 1: Properties of different re-ranking methods with LLMs. LLM calls: the number of LLM API Calls in the
worst case. Logits: access to the LLM’s logits is required. Batching: batch inference is allowed. Generate: Token
generation is required. N: the number of passages to re-rank. K: the number of top-k relevant passages to find. c:
the number of compared passages at each step. N’: the number of filtered passages, which is often much smaller

than the initial N, and in the worst case, it is equal to N.

4 Passage Re-Ranking with LLMs

After filtering out irrelevant passages, i.e., pas-
sages below the threshold, any LLM re-ranking
method—Listwise, Pairwise, and Setwise—is ap-
plicable. For our experiments, we use Listwise
prompting (Sun et al., 2023), which employs an
instructional permutation generation method com-
bined with a sliding window strategy to directly
output a ranked list of candidate passages. In List-
wise prompting, the LLMs receive a prompt with a
given query, a list of candidate passages, and an in-
struction to generate a ranked list of passage labels
based on their relevance to the query.

Due to the input length limitations of LLMs, it
is not possible to include all candidate passages in
a single prompt. To handle this issue, this approach
uses a sliding window method which involves rank-
ing a window of candidate passages, starting from
the bottom of the original ranking list and moving
upwards. This process can be repeated multiple
times to achieve an improved final ranking. We
select this approach as the final re-ranking step
for two reasons; (1) this approach strikes a middle
ground between efficiency and effectiveness, and
(2) this method enables the use of early stopping
mechanisms that focus specifically on the top-K
rankings, enhancing efficiency.

5 Experimental Results of LLMs
5.1 Datasets

Consistent with previous related research (Qin
et al.,, 2023; Sun et al., 2023; Zhuang et al.,,
2023b), our experiments are conducted on two
well-established benchmark datasets in informa-
tion retrieval research. These benchmark datasets

include TREC-DL (Craswell et al., 2020, 2021)
and BEIR (Thakur et al., 2021).

5.1.1 TREC

TREC is a widely used benchmark dataset in in-
formation retrieval studies. To allow comparison
with prior work, we use the test sets of the 2019
and 2020 competitions: TREC-DL2019 and TREC-
DL2020. Both datasets are human-labeled and con-
tain 43 and 54 queries, respectively. Each dataset is
derived from the MS MARCO v1 passage corpus,
which contains 8.8 million passages, with more
comprehensive labeling. Based on the interpreta-
tion of the relevancy scores in the qrels files of these
datasets, while passages with the relevancy level of
[1] are considered irrelevant, they contribute pos-
itively to the nDCG score. Therefore, for these
datasets, we conduct our experiment in two dif-
ferent scenarios with two different thresholds: (i)
Considering passages with a relevancy level of [1]
as relevant. (ii) Considering passages with a rele-
vancy level of [1] as irrelevant.

5.1.2 BEIR

BEIR consists of diverse retrieval tasks and do-
mains. Due to limited resources, we could not run
our experiments on all of the BEIR tasks. There-
fore, we choose to concentrate on four tasks in
BEIR to evaluate the models:(i) Covid retrieves
scientific articles addressing queries related to
COVID-19. (ii) Touche is a dataset that focuses on
argument retrieval for controversial questions. (iii)
Signal is a data collection of retrieved tweets for
news articles. (iv) News is a dataset that focuses
on relevant news articles based on news headlines.
In all of these four datasets, passages with the rel-



Methods Threshold DL19 DL20 Covid Touche Signal News
BM25 NA 50.58 47.96 5947 4422  33.05 39.52
Supervised
monoBERT (340M) NA 70.50 67.28 70.01  31.75 31.44 44.62
monoT5 (220M) NA 7148 6699 7834  30.82 31.67 46.83
monoT5 (3B) NA 71.83 68.89 80.71 3241 32.55 48.49
RankT5 (3B) NA 7295 69.63 82.00 37.62 31.80 48.15
Cohere Rerank-v2 NA 7322 67.08 81.81 32.51 29.60 47.59
Unsupervised LLM-based
UPR (FLAN-T5-XXL) NA 62.00 6034 72.64 21.56 30.81 42.99
RG (FLAN-UL2) NA 64.61 6539 70.22 2467 29.68 43.78
RankGPT (gpt-3.5-turbo) NA 65.80 6291 76.67 36.18 32.12 48.85
RankGPT (gpt-4) NA 75.59 70.56 85.51 3857 3440 52.89
PRP-Allpair (FLAN-T5-XL) NA 69.75 68.12 81.86 26.93 32.08 46.52
PRP-Sorting (FLAN-T5-XL) NA 69.28 65.87 80.41  28.23 3095 42.95
PRP-Allpair (FLAN-T5-XXL) NA 69.87 69.85 79.62 29.81 3222 47.68
PRP-Sliding-10 (FLAN-T5-XXL) NA 67.00 6735 7439 41.60 35.12 47.26
PRP-Allpair (FLAN-UL2) NA 7242 70.68 8230 29.71 3226 48.04
PRP-Sorting (FLAN-UL2) NA 71.88 69.43 8229 2580  32.04 4537
setwise.heapsort (Flan-t5-large) NA 67.0 61.8 76.8 30.3 31.9 43.9
setwise.bubblesort (Flan-t5-large) NA 67.8 62.4 76.1 394 35.1 44.7
setwise.heapsort (Flan-t5-x1) NA 69.3 67.8 75.7 28.3 314 46.5
setwise.bubblesort (Flan-t5-x1) NA 70.5 67.6 75.6 33.0 36.2 49.7
setwise.heapsort (Flan-t5-xx1) NA 70.6 68.8 75.2 29.7 32.1 473
setwise.bubblesort (Flan-t5-xx1) NA 71.1 68.6 76.8 38.8 34.3 479
Pre-Filtering Step
PF (Mixtral-8x7B-Instruct) 0.3 69.39 6442 81.64 4394 37.09 51.20

PF (Mixtral-8x7B-Instruct) 0.6 71.09 - - - - -

PF (Mixtral-8x7B-Instruct) 0.7 - 67.35 - - - -
Baseline Without Pre-Filtering Step

Mixtral-8x7B-Instruct NA 60.88 55.85 66.48 43.1 35.68 47.16

Table 2: Results (nDCG@10) on TREC and BEIR datasets by re-ranking top 100 documents retrieved by BM25.

evancy level of [1] are interpreted as relevant or
partially relevant. Thus, we run our experiment
only in one scenario with one threshold for these
datasets: Considering passages with a relevancy
level of [1] as relevant.

5.2 Implementation and Metrics

To enable fair and direct comparison with prior
works, our experiments are conducted using the
top 100 passages retrieved by BM25, serving as
the first-stage retriever through Pyserini! with its
default settings. We evaluate the effectiveness of
approaches using the NDCG@ 10 metric, which
is the official evaluation metric for the datasets
used. As one of the main goals of this paper is
to investigate the effects of open-source LLMs

"https://github.com/castorini/pyserini

on re-ranking tasks, we employ the open-source
language model Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), which has 46.7 billion parameters, for
both the LLM-based pre-filtering and re-ranking
steps. Due to the input length limitations of LLM:s,
we divide the initial list of passages into smaller
chunks for the pre-filtering step, each containing
5 elements, before processing them with the LLM.
We use 5 elements as it provides a balance between
computational efficiency and effectiveness. For the
re-ranking step, we implement the sliding window
strategy introduced by Sun et al. (Sun et al., 2023),
with a window size of 10 and a step size of 5.

We carry out our experiment on a Google Cloud
a2-highgpu-1g machine equipped with a single
NVIDIA A100 40GB GPU with 40 GB of mem-
ory, and 12 vCPUs. Due to resource constraints,



the LLM is loaded with 4-bit quantization. Using
these resources, we conducted our experiments sep-
arately for each group of datasets using the method-
ology presented in Section 3.

5.3 Setting the Threshold Values

As discussed in Section 3.3, our approach depends
on threshold values. For all four tasks in the BEIR
benchmark, we set a single threshold by consider-
ing passages with a relevancy level of [1] as rele-
vant. Our analysis determines that 0.3 is the opti-
mal threshold for BEIR, as it yields the highest F1
score compared to other values.

For both datasets in the TREC benchmark, we
set two thresholds: one by considering passages
with a relevancy level of [1] as relevant, and another
by considering passages with a relevancy level of
[1] as irrelevant. Here, we find that thresholds of
0.6 and 0.7 are respectively optimal, achieving the
highest F1 scores compared to other values.

Our evaluation of these threshold values answers
our first research question (RQ1). We find that
even a small percentage of qrels (8% of the total
dataset) is enough to determine a threshold value
that can effectively help our chosen LLM filter out
irrelevant passages. This implies that limited effort
from expert annotators is necessary to allow our
approach to work (and improve the state of the art).
Furthermore, we find that the threshold 0.3 (or its
inverse of 0.7) is stable for our LLM across most
datasets. This implies that future datasets need not
necessarily have expert judgement (or grels) to use
our approach in a useful fashion. The use of a
previously determined threshold may be sufficient
to obtain decent pre-filtering power.

5.4 Results on Benchmarks

To situate our results, we compare our approach
with state-of-the-art supervised and unsupervised
passage re-ranking techniques. The supervised
baselines are as follows: monoBERT (Nogueira
et al., 2019): A BERT-large based cross-encoder
re-ranker, trained using the MS MARCO dataset.
monoTS (Nogueira et al., 2020): A sequence-
to-sequence re-ranker that uses TS5 to calculate
the relevance scores using pointwise ranking loss.
RankTS$5 (Zhuang et al., 2023a): A re-ranker that
employs T5 and uses listwise ranking loss. Co-
here Rerank?: A passage reranking API named
rerank-english-v2.0, developed by Cohere?, which

Zhttps://txt.cohere.com/rerank/
3https://cohere.com/rerank

does not explain the architecture or training method
of the model. The unsupervised LLM-based base-
lines include: Unsupervied Passage Re-ranker
(UPR) (Sachan et al., 2022): The pointwise ap-
proach with instructional query generation. Rel-
evance Generation (RG) (Liang et al., 2022):
The pointwise approach that generates relevance
judgments for a given query and candidate items.
RankGPT (Sun et al., 2023): The listwise ap-
proach generates a ranked list of passage labels
based on their relevance to the query. Pairwise
Ranking Prompting (PRP) (Qin et al., 2023): The
pairwise approach involves generating the label for
the passage that is more relevant to the query. Set-
wise Approach (Zhuang et al., 2023b): The set-
wise approach, which accelerates the sorting algo-
rithms used in the pairwise method. We also com-
pare our results to Mixtral-8x7B-Instruct without
our pre-filtering step to show the improvement ob-
tained through our pre-filtering.

Table 2 presents the evaluation results obtained
from the TREC and BEIR datasets. Results show
that: (i): The pre-filtering method can achieve the
best results on the Signal and Touche datasets for
NDCG @10, even outperforming commercial solu-
tions (e.g., GPT-4). (ii): The pre-filtering method
outperforms all other methods, other than BM25,
for the Touche dataset.(iii): Pre-filtering achieves
an average improvement of 1.64 in nDCG@10 on
TREC compared to unsupervised LLM-based meth-
ods. (iv): Pre-filtering achieves an average improve-
ment of 7.2% in nDCG@10 on all datasets com-
pared to our baseline without pre-filtering. These
results answer our RQ2, and show that pre-filtering
irrelevant passages before re-ranking improves its
overall results.

6 conclusion

In this paper, we conduct a study on the use of a
pre-filtering step before passage re-ranking with
LLMs. We introduce a novel approach to further
exploit the power of LLMs in IR passage rank-
ing. Our experiments on three benchmarks (TREC-
DL2019, TREC-DL2020, and four BEIR tasks)
show that using our approach, smaller LLMs (i.e.,
Mixtral-8x7B-Instruct with 4-bit quantization), can
be made competitive with much larger models.
While our approach does require some expert input,
we also show that the amount of input needed is
small, and furthermore, that the thresholds used
appear to be effective across multiple benchmarks.



Limitations

The limitations of this work include the threshold-
setting process, where the initial threshold value
is selected randomly. Based on this value, the F1
score is computed to find the optimized thresh-
old. Although the thresholds introduced in this
paper are derived from analysis and the results re-
veal their effectiveness, these thresholds are depen-
dent on the dataset and might differ for different
datasets. Additionally, our approach depends heav-
ily on the grels files and the interpretation of rel-
evance levels for the dataset. As the pre-filtering
step is an intermediate step in the information re-
trieval pipeline, its effectiveness is closely related
to other elements in the pipeline, such as the re-
triever and re-ranker. Due to hardware constraints,
particularly GPUs, we only ran our experiments
on four datasets (Covid, News, Signal, Touche) in-
stead of the eight datasets used in BEIR, which are
referenced in similar works. We also tested our
experiments on other open-source models, such
as Llama-2-13b, but while the approach did pro-
vide improvements over non-prefiltered results, the
results were not comparable to the current state-of-
the-art.

Ethics Statement

We acknowledge the importance of the ACM Code
of Ethics and fully agree with its principles. All our
results are derived from our own code, which we
have made publicly accessible. We fully acknowl-
edge the weaknesses, risks, and potential harms
associated LLMs, which can lead to various issues
during their use. Throughout the development of
this paper, we encountered several challenges with
LLMs, such as incorrect result generation and oc-
casional failures to produce answers. Furthermore,
there are instances where LLMs exhibit bias to-
wards certain passages, indicating that their use
in critical tasks can be problematic. Such biases
and the generation of incorrect information, known
as hallucinations, underscore the importance of
caution when employing LLMs. We have cited all
methods and techniques used from other papers and
research. In our work with Mixtral and LLaMA?2,
we adhered to Hugging Face’s policies and condi-
tions for Mixtral and complied with Meta’s licens-
ing requirements for LLaMA?2.
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