
Re-Ranking Step by Step:
Investigating Pre-Filtering for Re-Ranking with Large Language Models

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) have been rev-001
olutionizing a myriad of natural language pro-002
cessing tasks with their diverse zero-shot ca-003
pabilities. Indeed, existing work has shown004
that LLMs can be used to great effect for many005
tasks, such as information retrieval (IR), and006
passage ranking. However, current state-of-the-007
art results heavily lean on the capabilities of the008
LLM being used. Currently, proprietary, and009
very large LLMs such as GPT-4 are the highest010
performing passage re-rankers. Hence, users011
without the resources to leverage top of the line012
LLMs, or ones that are closed source, are at013
a disadvantage. In this paper, we investigate014
the use of a pre-filtering step before passage015
re-ranking in IR. Our experiments show that016
by using a small number of human generated017
relevance scores, coupled with LLM relevance018
scoring, it is effectively possible to filter out019
irrelevant passages before re-ranking. Our ex-020
periments also show that this pre-filtering then021
allows the LLM to perform significantly better022
at the re-ranking task. Indeed, our results show023
that smaller models such as Mixtral can be-024
come competitive with much larger proprietary025
models (e.g., ChatGPT and GPT-4).026

1 Introduction027

Large Language Models (LLMs) such as GPT-4028

(Achiam et al., 2023) and Mixtral (Jiang et al.,029

2024) have been revolutionizing natural language030

processing tasks with their diverse zero-shot capa-031

bilities. Through extensive pretraining on various032

large-scale textual sources—such as web pages, re-033

search articles, books, examples, and code—these034

systems have shown remarkable natural language035

capabilities. As a result, their responses are increas-036

ingly human-like and closely aligned with human037

intentions (Zhu et al., 2023). Recently, as LLMs038

have become more capable, extensive research has039

been conducted on their use and effectiveness in in-040

formation retrieval (IR) systems (Zhu et al., 2023).041

A typical information retrieval system comprises 042

multiple components organized into a processing 043

pipeline. This pipeline features two primary stages: 044

the retriever and the reranker (Lin et al., 2022). 045

While the retriever selects the most relevant pas- 046

sages from a large-scale corpus, the re-ranker fo- 047

cuses on re-ordering (i.e., re-ranking) the candidate 048

passages, using their relevance. Each component 049

can thus be optimized for its given task. 050

The advent of large language models (LLMs) has 051

impacted the information retrieval (IR) pipeline in 052

many ways. While research in this field has mainly 053

focused on the use of LLMs in the first stage of 054

the pipeline (Zhu et al., 2023) (i.e., the retriever), 055

the investigation of LLMs for the re-ranking stage 056

remains a relatively new challenge. Recently, some 057

research has focused on using LLMs for zero- 058

shot re-ranking, leading to significant improve- 059

ments (Sun et al., 2023). 060

Despite recent advances in retrieval methods, 061

some retrieved passages are likely to be unrelated 062

to the query. Generally, all of the retrieved pas- 063

sages from the retriever (typically BM25 (Lin et al., 064

2021)) are passed to the LLM-based re-ranker, to 065

generate the ranked list of passages based on their 066

relevance to the query. Passing irrelevant and dis- 067

tracting passages to the LLM-based re-ranker can 068

mislead it, leading it away from relevant passages 069

and negatively impacting the ranking process (Cu- 070

conasu et al., 2024; Yoran et al., 2023). 071

To investigate the impact of these irrelevant pas- 072

sages and mitigate their effects, we propose a novel 073

LLM-based pre-filtering method that filters out ir- 074

relevant passages before they are given to the re- 075

ranker. We design a prompting strategy for our 076

method which instructs the open-source LLM to 077

generate a relevance score for each passage based 078

on its relevance to the given query in the range of 0 079

to 1. Then, using a sample of generated scores, we 080

establish a specific threshold for passage filtering. 081

Using this threshold we can then pre-filter any new 082

1



passage. Passages that exceed this threshold are083

retained as relevant passages and forwarded to the084

re-ranker, while those falling below the threshold085

are discarded. By implementing this straightfor-086

ward process, only relevant passages are passed to087

the ranker, significantly reducing the overall num-088

ber of passages in the ranker. To investigate the089

usefulness of our proposed approach we focus on090

the following two research questions:091

RQ1: Can existing expert knowledge be used092

to help LLMs filter out irrelevant passages?093

RQ2: Does filtering out irrelevant passages094

before re-ranking improve the results of an095

LLM re-ranker?096

To answer RQ1 we investigate prompting097

Mixtral-8x7B-Instruct (with 4-bit quantization) to098

assign a quantitative value to the relevance of pas-099

sages retrieved by BM25. We then leverage ex-100

isting expert knowledge (i.e., qrels in the TREC101

and BEIR datasets), to determine a relevance value102

below which passages should be deemed irrele-103

vant (i.e., a relevance threshold). We evaluate our104

approach on three datasets (TREC-DL2019, TREC-105

DL2020, and four BEIR tasks) and find that it is106

generally possible to find a threshold value–using107

F1 score–that maximizes the relevance of the re-108

trieved passages. We also find that this threshold109

value appears mostly stable (around 0.3, or its in-110

verse 0.7) across all of the tested datasets.111

To answer RQ2, we investigate the use of a112

pre-filtering step–to filter out irrelevant passages–113

before re-ranking passages with Mixtral-8x7B-114

Instruct (loaded with 4-bit quantization). Again,115

we evaluate our approach on three datasets (TREC-116

DL2019, TREC-DL2020, and four BEIR tasks)117

and find that the use of a pre-filtering step signif-118

icantly improves the resulting re-ranking of pas-119

sages. Indeed, after using our pre-filtering step,120

a limited model such as Mixtral-8x7B-Instruct121

(loaded with 4-bit quantization) can become com-122

petitive with– and in one case surpass–much larger,123

and resource intensive, models such as GPT-4. Our124

paper presents three distinct contributions:125

• We show that it is possible to use expert knowl-126

edge as feedback to LLMs to identify irrele-127

vant passages in IR.128

• We present a novel approach to improve LLM-129

based passage re-ranking.130

• We show that while our approach is model131

agnostic, by using it, resource-constrained 132

LLMs can become competitive with resource- 133

intensive LLMs that do not use our approach. 134

2 Related Work 135

Recently, large language models (LLMs) have sig- 136

nificantly impacted various research fields, includ- 137

ing information retrieval. (Zhu et al., 2023). Sev- 138

eral approaches have been put forward to use LLMs 139

as re-rankers in the information retrieval pipeline. 140

These LLM-based re-rankers can be categorized 141

into supervised and unsupervised methods. 142

Existing supervised re-rankers can be catego- 143

rized as: (1) encoder-only, (2) encoder-decoder, 144

and (3) decoder-only. monoBERT (Nogueira et al., 145

2019) is an encoder-only re-ranker based on the 146

BERT-large model. It leverages BERT’s contextu- 147

alized embeddings to enhance document re-ranking 148

performance and is optimized using cross-entropy 149

loss. monoT5 (Nogueira et al., 2020) is an encoder- 150

decoder-based re-ranking model designed for infor- 151

mation retrieval tasks. It leverages the T5 (Text-To- 152

Text Transfer Transformer) architecture to generate 153

relevance scores for query-document pairs by treat- 154

ing the ranking task as a sequence-to-sequence gen- 155

eration problem. RankT5 (Zhuang et al., 2023a) is 156

another encoder-decoder-based re-ranking model 157

which calculates the relevance score for a query- 158

document pair and optimized the ranking perfor- 159

mance with pairwise or listwise ranking losses. 160

RankLLaMA (Ma et al., 2023a) is a decoder-only 161

re-ranker model that focuses solely on the output 162

generation phase. It uses the last token representa- 163

tion for relevance calculation. Compared to prior 164

work, we use Mixtral, a recent LLM, as a re-ranker 165

coupled with a novel step–pre-filtering irrelevant 166

passages–to improve the re-ranking process. 167

As the size of LLMs scales up, it becomes dif- 168

ficult to fine-tune the re-ranking model. Recent 169

efforts aim to tackle this challenge by prompting 170

LLMs to directly enhance document re-ranking 171

in an unsupervised manner. Generally, there are 172

three main methods for using LLMs in zero-shot 173

re-ranking tasks: Pointwise (Sachan et al., 2022; 174

Liang et al., 2022), Listwise (Sun et al., 2023; Ma 175

et al., 2023b), and Pairwise (Qin et al., 2023). In 176

this paper, we use a listwise approach as it strikes 177

a balance between efficiency and effectiveness. 178

There are two popular methods for prompting 179

LLMs to rank documents in a pointwise manner: 180

relevance generation (Liang et al., 2022) and query 181

2



generation (Sachan et al., 2022). The Unsupervised182

Passage Re-ranker (UPR) (Sachan et al., 2022) is183

a pointwise approach based on query generation.184

In this approach, LLMs are prompted to produce a185

relevant query for each candidate document. The186

documents are then re-ranked based on the like-187

lihood of generating the actual query. Relevance188

Generation (RG) (Liang et al., 2022) is another189

pointwise approach based on relevance generation.190

In this method, LLMs are prompted to generate191

whether the provided candidate document is rel-192

evant to the query, with this process repeated for193

each candidate document. Subsequently, these can-194

didate documents are re-ranked based on the nor-195

malized likelihood of generating a "yes" response.196

In this paper we add a new step (i.e., pre-filtering)197

to the information retrieval pipeline, before the re-198

ranker. We then leverage existing work to re-rank199

our pre-filtered passages.200

The main goal of the listwise approach (Sun201

et al., 2023; Ma et al., 2023b) is to directly rank a202

list of candidate documents for a given query and203

generate a ranked list of document labels based204

on their relevance to the query. In this method,205

the query and a list of documents are directly in-206

serted into a prompt. Due to the prompt length207

constraints of LLMs, this approach employs a slid-208

ing window method, which involves re-ranking209

a window of candidate documents. This process210

starts from the bottom of the original ranking list211

and progresses upwards. It can be repeated mul-212

tiple times to achieve an improved final ranking,213

allowing for early stopping mechanisms to target214

only the top-K rankings, thereby conserving com-215

putational resources.216

In pairwise methods (Qin et al., 2023), LLMs217

are given a prompt consisting of a query and a doc-218

ument pair. They are then instructed to identify219

the document with higher relevance. To rerank220

all candidate documents, aggregation methods like221

AllPairs are used. AllPairs first generates all pos-222

sible document pairs and then aggregates a final223

relevance score for each document. To expedite224

the ranking process, efficient sorting algorithms,225

such as heap sort and bubble sort, are typically em-226

ployed. These algorithms use efficient data struc-227

tures to selectively compare document pairs and228

elevate the most relevant documents to the top of229

the ranking list, which is particularly useful in top-230

k ranking. Although effective, pairwise methods231

suffer from high time complexity. To address this232

efficiency problem, a setwise approach (Zhuang 233

et al., 2023b) has been proposed, which compares 234

a set of documents simultaneously and selects the 235

most relevant one. This approach enables sorting 236

algorithms, such as heap sort, to compare more 237

than two documents at each step, thereby reducing 238

the total number of comparisons and speeding up 239

the sorting process. 240

3 LLM-based Pre-Filtering 241

In this section, we propose a new LLM-based pre- 242

filtering step to score passages based on their rele- 243

vance to the query and filter out irrelevant passages 244

before any re-ranking is conducted. Below, we 245

explain the significance of this step, describe the 246

prompting strategy used for generating relevance 247

scores, outline the process of analyzing the gener- 248

ated scores, and explain how we set the thresholds. 249

Our proposed pre-filtering step is straightfor- 250

ward yet efficient. The main goal of this step is 251

to filter irrelevant passages before passing them to 252

a re-ranker, thus decreasing the total number of 253

passages that require re-ranking. After the initial 254

retrieval stage (e.g., based on BM25 (Lin et al., 255

2021)) retrieves a set of passages for a given query, 256

each passage is evaluated by an LLM-based filter 257

to determine its relevance to the query. This filter, 258

using the language understanding capabilities of 259

LLMs, assigns a relevance score to each passage 260

(e.g., from 0 to 1 where 0 denotes a completely 261

irrelevant passage, and 1 denotes a fully relevant 262

one). Then, a threshold is set based on these scores. 263

Passages with scores at or above the threshold are 264

passed to the re-ranker, while those with scores 265

below the threshold are discarded. Using the pre- 266

filtering step, the number of noisy passages that 267

can misguide the re-ranker decreases, leading to 268

improved performance for the re-ranker. Figure 1 269

illustrates the role of the pre-filtering step in the 270

information retrieval pipeline. 271

3.1 Prompt Design for Score Generation 272

To design our prompt, we use two well-known 273

prompting methods: 274

Chain-of-Thought (CoT) (Wei et al., 2022; 275

Kojima et al., 2022): This method allows 276

LLMs to produce intermediate reasoning steps 277

explicitly before generating the final answer. 278

Plan-and-Solve (PS) (Wang et al., 2023): 279

This method consists of designing a plan to di- 280

vide a task into smaller subtasks and then car- 281

3



Retriever

Top-K
passages

LLM-based
pre-filtering

step

Query

Passages
above the
threshold

Re-ranker

Figure 1: The role of the pre-filtering step in the information retrieval pipeline.

rying out the subtasks according to the plan.282

Our proposed zero-shot prompt is a combination283

of both of these reasoning methods:284

“Grasp and understand both the query and the285

passages before score generation. Then, based286

on your understanding and analysis quantify the287

relevance between the passage and the query. Give288

the rationale before answering.”289

In the first part of the prompt, we devise a plan290

for the LLM to understand both the query and the291

passage, and then, based on its analysis, generate292

a relevance score. In the second part, we include a293

sentence asking the LLM to explain the rationale294

behind the score generation. By designing this295

plan and instructing the LLM to provide a rationale296

before responding, its understanding of the query297

and the passage is incrementally enhanced. Our298

manual analysis of multiple different prompts led299

us to believe that this step-by-step approach results300

in the generation of more accurate relevance scores.301

3.2 Analyzing Relevance Scores302

To give context to the relevancy scores generated303

by LLMs for the passages, they should be com-304

pared with an existing baseline. In our experiments,305

we make use of the relevancy levels in the query306

relevance judgments (qrels) file for each passage.307

These relevancy levels have somewhat similar in-308

terpretations across different datasets; however, de-309

tails can be different. In all cases, higher scores310

indicate greater relevance between the query and311

the passage. However, the interpretation of a level312

[1] score differs: in some datasets, a score of [1]313

is considered relevant; in others, irrelevant; and314

in some others, it is interpreted as partially rele-315

vant. We categorize the datasets based on the the316

interpretation of a level [1] score as follows:317

• Datasets where a relevancy level of [1] is inter-318

preted as either relevant (e.g., Touche (Thakur319

et al., 2021)) or partially relevant (e.g.,320

Covid (Thakur et al., 2021)), a relevancy level 321

of [1] or higher is considered relevant. 322

• Datasets where a relevancy level of [1] is in- 323

terpreted as not relevant (e.g., TREC-DL19, 324

TREC-DL20 (Craswell et al., 2020, 2021)), a 325

relevancy level of [1] or lower is considered 326

irrelevant. In these datasets the nDCG scores 327

use a gain value of 1 for related passages. 328

3.3 Setting a Relevance Threshold 329

Since the scores generated by LLMs are decimal 330

numbers between 0 and 1, we convert these scores 331

to be comparable with the integers that represent 332

relevancy levels. Thus, we set a threshold to replace 333

the decimal scores with the following values: 334

Spre =


1, if the score at the threshold
1, if the score above the threshold
0, if the score below the threshold

(1) 335

Where passages with a relevancy score at or 336

above this threshold are considered relevant and 337

assigned a score of 1, while those below the thresh- 338

old are given a score of 0. Next, the four elements 339

of the confusion matrix—true negatives, true posi- 340

tives, false positives, and false negatives—are cal- 341

culated. This is done by comparing the Spre for 342

each passage with the relevancy levels in the qrels 343

file. Since not all passages in each dataset have 344

relevancy levels assigned, we only use the passages 345

with relevancy levels in the qrels file to compute 346

these four elements. After the threshold value is 347

selected, even passages without relevancy levels 348

can then be considered, as the LLM can still gen- 349

erate scores for them, and their scores can thus be 350

replaced based on the previously defined thresh- 351

old. Based on these values, Precision, Recall, and 352

F1 Score are computed for each threshold and the 353

threshold with the highest F1 Score is selected. In 354

4



the context of IR systems, these elements are de-355

fined as follows:356

True Negative (TN): Both the qrels files and357

the LLM classify the passage as irrelevant.358

True Positive (TP): Both the qrels files and359

the LLM classify the passage as relevant.360

False Positive (FP): The qrels files classify361

the passage as irrelevant, but the LLM classi-362

fies it as relevant.363

False Negative (FN): The qrels files classify364

the passage as relevant, but the LLM classifies365

it as irrelevant.366

While the initial threshold value is randomly se-367

lected within the predefined range of 0 to 1, our368

analysis suggests that this selection should align369

with the interpretation of relevancy levels in the370

qrels files. For datasets where a relevancy level371

of [1] is interpreted as either relevant or partially372

relevant, a smaller threshold value should be cho-373

sen compared to datasets where a relevancy level374

of [1] is interpreted as not relevant. In the first375

case, even passages with a low relevance, repre-376

sented by a relevancy score of [1], are considered377

relevant. In this case, the scores generated by the378

LLMs for those passages are generally lower than379

those for passages with a higher level of relevancy.380

Therefore, the selected threshold should be more381

inclusive. Conversely, for the second case where382

a relevancy level of [1] is interpreted as not rel-383

evant, the threshold should be higher to include384

only the more relevant passages. Additionally, this385

suggests that when testing thresholds other than386

the initial one, comparing it with a slightly higher387

and a slightly lower value and computing the F1388

score for these thresholds is sufficient to identify389

the trend of the other values and select the best one.390

3.4 The Advantages of Pre-Filtering391

As the primary objective of IR systems is to ac-392

curately detect information that fully or partially393

matches the user’s query, identifying relevant and394

irrelevant passages is crucial. Therefore, the main395

goal of our proposed step is to precisely detect both396

relevant and irrelevant passages. By selecting the397

best F1 score we aim to optimize the threshold to398

increase the number of True Positives (TPs) and399

True Negatives (TNs) while decreasing the number400

of False Positives (FPs) and False Negatives (FNs).401

By removing distracting passages, the total number402

of initial passages sent to the final re-ranker, and403

consequently the number of calls to LLM during404

Threshold = 0.3

keepdiscard

P1
Score = 0

P2
Score = 0.1

P3
Score = 0.4

P6
Score = 0.5

P5
Score = 0

P4
Score = 0.2

P7
Score = 0.15

P8
Score = 0.25

P9
Score = 0.6

Figure 2: The effect of the threshold on the number of
passages.

the re-ranking phase, will decrease. This enhance- 405

ment will improve the accuracy of the re-ranking 406

step. Specifically, we have: 407

N ′∑
i=1

pi ≤
N∑
i=1

pi (2) 408

This demonstrates that the number of filtered 409

passages, N’, is either smaller or, at worst, equal to 410

the initial number of retrieved passages N. Figure 411

2 illustrates the effect of the threshold on retaining 412

or discarding passages. 413

We test our proposed approach using an open- 414

source LLM (i.e., Mixtral) which is easily accessi- 415

ble for both academic research and industry appli- 416

cations. Since this is an open-source model, there 417

is no need for commercial LLM APIs, which can 418

be expensive and may not satisfy some data privacy 419

concerns. Furthermore, our experiments show that 420

our approach allows smaller, more limited models, 421

to remain competitive with much more demand- 422

ing models. This can allow resource-constrained 423

situations to still make use of state-of-the-art re- 424

ranking. Our pre-filtering step is designed based on 425

Zero-Shot prompting and thus eliminates the need 426

to retrain or fine-tune the LLM. The complexity 427

of our method is linear, O(n), and by discarding 428

irrelevant passages, it reduces the number of LLM 429

inferences required in the final re-ranking step. As 430

access to the output logits of the model is not fea- 431

sible with many LLMs, particularly closed-source 432

ones, our method leverages the generation capabil- 433

ities of the LLMs. Table 1 presents properties of 434

different re-ranking methods with LLMs. 435

5



Methods #LLMcalls Logits Batching Generate
Pointwise O(N) × ×
Listwise O(K ∗N) ×
Pairwise(all pairs) O(N2) × × ×
Pairwise(heap sort) O(K ∗ log2N) × ×
Pairwise(bubble sort) O(K ∗N) × ×
Setwise(heap sort) O(K ∗ logcN) × ×
Setwise(bubble sort) O (K ∗ (N/(c− 1))) × ×
Pre-Filtering O(N) +O(K ∗N ′) × ×

Table 1: Properties of different re-ranking methods with LLMs. LLM calls: the number of LLM API Calls in the
worst case. Logits: access to the LLM’s logits is required. Batching: batch inference is allowed. Generate: Token
generation is required. N: the number of passages to re-rank. K: the number of top-k relevant passages to find. c:
the number of compared passages at each step. N’: the number of filtered passages, which is often much smaller
than the initial N, and in the worst case, it is equal to N.

4 Passage Re-Ranking with LLMs436

After filtering out irrelevant passages, i.e., pas-437

sages below the threshold, any LLM re-ranking438

method—Listwise, Pairwise, and Setwise—is ap-439

plicable. For our experiments, we use Listwise440

prompting (Sun et al., 2023), which employs an441

instructional permutation generation method com-442

bined with a sliding window strategy to directly443

output a ranked list of candidate passages. In List-444

wise prompting, the LLMs receive a prompt with a445

given query, a list of candidate passages, and an in-446

struction to generate a ranked list of passage labels447

based on their relevance to the query.448

Due to the input length limitations of LLMs, it449

is not possible to include all candidate passages in450

a single prompt. To handle this issue, this approach451

uses a sliding window method which involves rank-452

ing a window of candidate passages, starting from453

the bottom of the original ranking list and moving454

upwards. This process can be repeated multiple455

times to achieve an improved final ranking. We456

select this approach as the final re-ranking step457

for two reasons; (1) this approach strikes a middle458

ground between efficiency and effectiveness, and459

(2) this method enables the use of early stopping460

mechanisms that focus specifically on the top-K461

rankings, enhancing efficiency.462

5 Experimental Results of LLMs463

5.1 Datasets464

Consistent with previous related research (Qin465

et al., 2023; Sun et al., 2023; Zhuang et al.,466

2023b), our experiments are conducted on two467

well-established benchmark datasets in informa-468

tion retrieval research. These benchmark datasets469

include TREC-DL (Craswell et al., 2020, 2021) 470

and BEIR (Thakur et al., 2021). 471

5.1.1 TREC 472

TREC is a widely used benchmark dataset in in- 473

formation retrieval studies. To allow comparison 474

with prior work, we use the test sets of the 2019 475

and 2020 competitions: TREC-DL2019 and TREC- 476

DL2020. Both datasets are human-labeled and con- 477

tain 43 and 54 queries, respectively. Each dataset is 478

derived from the MS MARCO v1 passage corpus, 479

which contains 8.8 million passages, with more 480

comprehensive labeling. Based on the interpreta- 481

tion of the relevancy scores in the qrels files of these 482

datasets, while passages with the relevancy level of 483

[1] are considered irrelevant, they contribute pos- 484

itively to the nDCG score. Therefore, for these 485

datasets, we conduct our experiment in two dif- 486

ferent scenarios with two different thresholds: (i) 487

Considering passages with a relevancy level of [1] 488

as relevant. (ii) Considering passages with a rele- 489

vancy level of [1] as irrelevant. 490

5.1.2 BEIR 491

BEIR consists of diverse retrieval tasks and do- 492

mains. Due to limited resources, we could not run 493

our experiments on all of the BEIR tasks. There- 494

fore, we choose to concentrate on four tasks in 495

BEIR to evaluate the models:(i) Covid retrieves 496

scientific articles addressing queries related to 497

COVID-19. (ii) Touche is a dataset that focuses on 498

argument retrieval for controversial questions. (iii) 499

Signal is a data collection of retrieved tweets for 500

news articles. (iv) News is a dataset that focuses 501

on relevant news articles based on news headlines. 502

In all of these four datasets, passages with the rel- 503

6



Methods Threshold DL19 DL20 Covid Touche Signal News
BM25 NA 50.58 47.96 59.47 44.22 33.05 39.52

Supervised
monoBERT (340M) NA 70.50 67.28 70.01 31.75 31.44 44.62
monoT5 (220M) NA 71.48 66.99 78.34 30.82 31.67 46.83
monoT5 (3B) NA 71.83 68.89 80.71 32.41 32.55 48.49
RankT5 (3B) NA 72.95 69.63 82.00 37.62 31.80 48.15
Cohere Rerank-v2 NA 73.22 67.08 81.81 32.51 29.60 47.59

Unsupervised LLM-based
UPR (FLAN-T5-XXL) NA 62.00 60.34 72.64 21.56 30.81 42.99
RG (FLAN-UL2) NA 64.61 65.39 70.22 24.67 29.68 43.78
RankGPT (gpt-3.5-turbo) NA 65.80 62.91 76.67 36.18 32.12 48.85
RankGPT (gpt-4) NA 75.59 70.56 85.51 38.57 34.40 52.89
PRP-Allpair (FLAN-T5-XL) NA 69.75 68.12 81.86 26.93 32.08 46.52
PRP-Sorting (FLAN-T5-XL) NA 69.28 65.87 80.41 28.23 30.95 42.95
PRP-Allpair (FLAN-T5-XXL) NA 69.87 69.85 79.62 29.81 32.22 47.68
PRP-Sliding-10 (FLAN-T5-XXL) NA 67.00 67.35 74.39 41.60 35.12 47.26
PRP-Allpair (FLAN-UL2) NA 72.42 70.68 82.30 29.71 32.26 48.04
PRP-Sorting (FLAN-UL2) NA 71.88 69.43 82.29 25.80 32.04 45.37
setwise.heapsort (Flan-t5-large) NA 67.0 61.8 76.8 30.3 31.9 43.9
setwise.bubblesort (Flan-t5-large) NA 67.8 62.4 76.1 39.4 35.1 44.7
setwise.heapsort (Flan-t5-xl) NA 69.3 67.8 75.7 28.3 31.4 46.5
setwise.bubblesort (Flan-t5-xl) NA 70.5 67.6 75.6 33.0 36.2 49.7
setwise.heapsort (Flan-t5-xxl) NA 70.6 68.8 75.2 29.7 32.1 47.3
setwise.bubblesort (Flan-t5-xxl) NA 71.1 68.6 76.8 38.8 34.3 47.9

Pre-Filtering Step
PF (Mixtral-8x7B-Instruct) 0.3 69.39 64.42 81.64 43.94 37.09 51.20
PF (Mixtral-8x7B-Instruct) 0.6 71.09 - - - - -
PF (Mixtral-8x7B-Instruct) 0.7 - 67.35 - - - -

Baseline Without Pre-Filtering Step
Mixtral-8x7B-Instruct NA 60.88 55.85 66.48 43.1 35.68 47.16

Table 2: Results (nDCG@10) on TREC and BEIR datasets by re-ranking top 100 documents retrieved by BM25.

evancy level of [1] are interpreted as relevant or504

partially relevant. Thus, we run our experiment505

only in one scenario with one threshold for these506

datasets: Considering passages with a relevancy507

level of [1] as relevant.508

5.2 Implementation and Metrics509

To enable fair and direct comparison with prior510

works, our experiments are conducted using the511

top 100 passages retrieved by BM25, serving as512

the first-stage retriever through Pyserini1 with its513

default settings. We evaluate the effectiveness of514

approaches using the NDCG@10 metric, which515

is the official evaluation metric for the datasets516

used. As one of the main goals of this paper is517

to investigate the effects of open-source LLMs518

1https://github.com/castorini/pyserini

on re-ranking tasks, we employ the open-source 519

language model Mixtral-8x7B-Instruct-v0.1 (Jiang 520

et al., 2024), which has 46.7 billion parameters, for 521

both the LLM-based pre-filtering and re-ranking 522

steps. Due to the input length limitations of LLMs, 523

we divide the initial list of passages into smaller 524

chunks for the pre-filtering step, each containing 525

5 elements, before processing them with the LLM. 526

We use 5 elements as it provides a balance between 527

computational efficiency and effectiveness. For the 528

re-ranking step, we implement the sliding window 529

strategy introduced by Sun et al. (Sun et al., 2023), 530

with a window size of 10 and a step size of 5. 531

We carry out our experiment on a Google Cloud 532

a2-highgpu-1g machine equipped with a single 533

NVIDIA A100 40GB GPU with 40 GB of mem- 534

ory, and 12 vCPUs. Due to resource constraints, 535

7



the LLM is loaded with 4-bit quantization. Using536

these resources, we conducted our experiments sep-537

arately for each group of datasets using the method-538

ology presented in Section 3.539

5.3 Setting the Threshold Values540

As discussed in Section 3.3, our approach depends541

on threshold values. For all four tasks in the BEIR542

benchmark, we set a single threshold by consider-543

ing passages with a relevancy level of [1] as rele-544

vant. Our analysis determines that 0.3 is the opti-545

mal threshold for BEIR, as it yields the highest F1546

score compared to other values.547

For both datasets in the TREC benchmark, we548

set two thresholds: one by considering passages549

with a relevancy level of [1] as relevant, and another550

by considering passages with a relevancy level of551

[1] as irrelevant. Here, we find that thresholds of552

0.6 and 0.7 are respectively optimal, achieving the553

highest F1 scores compared to other values.554

Our evaluation of these threshold values answers555

our first research question (RQ1). We find that556

even a small percentage of qrels (8% of the total557

dataset) is enough to determine a threshold value558

that can effectively help our chosen LLM filter out559

irrelevant passages. This implies that limited effort560

from expert annotators is necessary to allow our561

approach to work (and improve the state of the art).562

Furthermore, we find that the threshold 0.3 (or its563

inverse of 0.7) is stable for our LLM across most564

datasets. This implies that future datasets need not565

necessarily have expert judgement (or qrels) to use566

our approach in a useful fashion. The use of a567

previously determined threshold may be sufficient568

to obtain decent pre-filtering power.569

5.4 Results on Benchmarks570

To situate our results, we compare our approach571

with state-of-the-art supervised and unsupervised572

passage re-ranking techniques. The supervised573

baselines are as follows: monoBERT (Nogueira574

et al., 2019): A BERT-large based cross-encoder575

re-ranker, trained using the MS MARCO dataset.576

monoT5 (Nogueira et al., 2020): A sequence-577

to-sequence re-ranker that uses T5 to calculate578

the relevance scores using pointwise ranking loss.579

RankT5 (Zhuang et al., 2023a): A re-ranker that580

employs T5 and uses listwise ranking loss. Co-581

here Rerank2: A passage reranking API named582

rerank-english-v2.0, developed by Cohere3, which583

2https://txt.cohere.com/rerank/
3https://cohere.com/rerank

does not explain the architecture or training method 584

of the model. The unsupervised LLM-based base- 585

lines include: Unsupervied Passage Re-ranker 586

(UPR) (Sachan et al., 2022): The pointwise ap- 587

proach with instructional query generation. Rel- 588

evance Generation (RG) (Liang et al., 2022): 589

The pointwise approach that generates relevance 590

judgments for a given query and candidate items. 591

RankGPT (Sun et al., 2023): The listwise ap- 592

proach generates a ranked list of passage labels 593

based on their relevance to the query. Pairwise 594

Ranking Prompting (PRP) (Qin et al., 2023): The 595

pairwise approach involves generating the label for 596

the passage that is more relevant to the query. Set- 597

wise Approach (Zhuang et al., 2023b): The set- 598

wise approach, which accelerates the sorting algo- 599

rithms used in the pairwise method. We also com- 600

pare our results to Mixtral-8x7B-Instruct without 601

our pre-filtering step to show the improvement ob- 602

tained through our pre-filtering. 603

Table 2 presents the evaluation results obtained 604

from the TREC and BEIR datasets. Results show 605

that: (i): The pre-filtering method can achieve the 606

best results on the Signal and Touche datasets for 607

NDCG@10, even outperforming commercial solu- 608

tions (e.g., GPT-4). (ii): The pre-filtering method 609

outperforms all other methods, other than BM25, 610

for the Touche dataset.(iii): Pre-filtering achieves 611

an average improvement of 1.64 in nDCG@10 on 612

TREC compared to unsupervised LLM-based meth- 613

ods. (iv): Pre-filtering achieves an average improve- 614

ment of 7.2% in nDCG@10 on all datasets com- 615

pared to our baseline without pre-filtering. These 616

results answer our RQ2, and show that pre-filtering 617

irrelevant passages before re-ranking improves its 618

overall results. 619

6 conclusion 620

In this paper, we conduct a study on the use of a 621

pre-filtering step before passage re-ranking with 622

LLMs. We introduce a novel approach to further 623

exploit the power of LLMs in IR passage rank- 624

ing. Our experiments on three benchmarks (TREC- 625

DL2019, TREC-DL2020, and four BEIR tasks) 626

show that using our approach, smaller LLMs (i.e., 627

Mixtral-8x7B-Instruct with 4-bit quantization), can 628

be made competitive with much larger models. 629

While our approach does require some expert input, 630

we also show that the amount of input needed is 631

small, and furthermore, that the thresholds used 632

appear to be effective across multiple benchmarks. 633

8



Limitations634

The limitations of this work include the threshold-635

setting process, where the initial threshold value636

is selected randomly. Based on this value, the F1637

score is computed to find the optimized thresh-638

old. Although the thresholds introduced in this639

paper are derived from analysis and the results re-640

veal their effectiveness, these thresholds are depen-641

dent on the dataset and might differ for different642

datasets. Additionally, our approach depends heav-643

ily on the qrels files and the interpretation of rel-644

evance levels for the dataset. As the pre-filtering645

step is an intermediate step in the information re-646

trieval pipeline, its effectiveness is closely related647

to other elements in the pipeline, such as the re-648

triever and re-ranker. Due to hardware constraints,649

particularly GPUs, we only ran our experiments650

on four datasets (Covid, News, Signal, Touche) in-651

stead of the eight datasets used in BEIR, which are652

referenced in similar works. We also tested our653

experiments on other open-source models, such654

as Llama-2-13b, but while the approach did pro-655

vide improvements over non-prefiltered results, the656

results were not comparable to the current state-of-657

the-art.658

Ethics Statement659

We acknowledge the importance of the ACM Code660

of Ethics and fully agree with its principles. All our661

results are derived from our own code, which we662

have made publicly accessible. We fully acknowl-663

edge the weaknesses, risks, and potential harms664

associated LLMs, which can lead to various issues665

during their use. Throughout the development of666

this paper, we encountered several challenges with667

LLMs, such as incorrect result generation and oc-668

casional failures to produce answers. Furthermore,669

there are instances where LLMs exhibit bias to-670

wards certain passages, indicating that their use671

in critical tasks can be problematic. Such biases672

and the generation of incorrect information, known673

as hallucinations, underscore the importance of674

caution when employing LLMs. We have cited all675

methods and techniques used from other papers and676

research. In our work with Mixtral and LLaMA2,677

we adhered to Hugging Face’s policies and condi-678

tions for Mixtral and complied with Meta’s licens-679

ing requirements for LLaMA2.680

References 681

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 682
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 683
Diogo Almeida, Janko Altenschmidt, Sam Altman, 684
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 685
arXiv preprint arXiv:2303.08774. 686

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and 687
Daniel Campos. 2021. Overview of the trec 2020 688
deep learning track. 689

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel 690
Campos, and Ellen M Voorhees. 2020. Overview 691
of the trec 2019 deep learning track. arXiv preprint 692
arXiv:2003.07820. 693

Florin Cuconasu, Giovanni Trappolini, Federico Sicil- 694
iano, Simone Filice, Cesare Campagnano, Yoelle 695
Maarek, Nicola Tonellotto, and Fabrizio Silvestri. 696
2024. The power of noise: Redefining retrieval for 697
rag systems. arXiv preprint arXiv:2401.14887. 698

Albert Q Jiang, Alexandre Sablayrolles, Antoine 699
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 700
ford, Devendra Singh Chaplot, Diego de las Casas, 701
Emma Bou Hanna, Florian Bressand, et al. 2024. 702
Mixtral of experts. arXiv preprint arXiv:2401.04088. 703

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 704
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 705
guage models are zero-shot reasoners. Advances in 706
neural information processing systems, 35:22199– 707
22213. 708

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 709
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 710
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku- 711
mar, et al. 2022. Holistic evaluation of language 712
models. arXiv preprint arXiv:2211.09110. 713

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng- 714
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 715
2021. Pyserini: A python toolkit for reproducible 716
information retrieval research with sparse and dense 717
representations. In Proceedings of the 44th Inter- 718
national ACM SIGIR Conference on Research and 719
Development in Information Retrieval, pages 2356– 720
2362. 721

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2022. 722
Pretrained transformers for text ranking: Bert and 723
beyond. Springer Nature. 724

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and 725
Jimmy Lin. 2023a. Fine-tuning llama for multi-stage 726
text retrieval. arXiv preprint arXiv:2310.08319. 727

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and 728
Jimmy Lin. 2023b. Zero-shot listwise document 729
reranking with a large language model. arXiv 730
preprint arXiv:2305.02156. 731

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and 732
Jimmy Lin. 2020. Document ranking with a pre- 733
trained sequence-to-sequence model. In Findings 734

9

http://arxiv.org/abs/2102.07662
http://arxiv.org/abs/2102.07662
http://arxiv.org/abs/2102.07662


of the Association for Computational Linguistics:735
EMNLP 2020.736

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and737
Jimmy Lin. 2019. Multi-stage document ranking738
with bert. arXiv preprint arXiv:1910.14424.739

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,740
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,741
Donald Metzler, Xuanhui Wang, et al. 2023.742
Large language models are effective text rankers743
with pairwise ranking prompting. arXiv preprint744
arXiv:2306.17563.745

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,746
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and747
Luke Zettlemoyer. 2022. Improving passage retrieval748
with zero-shot question generation. arXiv preprint749
arXiv:2204.07496.750

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie751
Ren, Dawei Yin, and Zhaochun Ren. 2023. Is752
chatgpt good at search? investigating large lan-753
guage models as re-ranking agent. arXiv preprint754
arXiv:2304.09542.755

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-756
hishek Srivastava, and Iryna Gurevych. 2021. Beir:757
A heterogenous benchmark for zero-shot evalua-758
tion of information retrieval models. arXiv preprint759
arXiv:2104.08663.760

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi761
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-762
and-solve prompting: Improving zero-shot chain-of-763
thought reasoning by large language models. arXiv764
preprint arXiv:2305.04091.765

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten766
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,767
et al. 2022. Chain-of-thought prompting elicits rea-768
soning in large language models. Advances in neural769
information processing systems, 35:24824–24837.770

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan771
Berant. 2023. Making retrieval-augmented language772
models robust to irrelevant context. arXiv preprint773
arXiv:2310.01558.774

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan775
Liu, Wenhan Liu, Chenlong Deng, Zhicheng Dou,776
and Ji-Rong Wen. 2023. Large language models777
for information retrieval: A survey. arXiv preprint778
arXiv:2308.07107.779

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,780
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and781
Michael Bendersky. 2023a. Rankt5: Fine-tuning t5782
for text ranking with ranking losses. In Proceedings783
of the 46th International ACM SIGIR Conference on784
Research and Development in Information Retrieval,785
pages 2308–2313.786

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,787
and Guido Zuccon. 2023b. A setwise approach788

for effective and highly efficient zero-shot rank- 789
ing with large language models. arXiv preprint 790
arXiv:2310.09497. 791

10


