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Teaching Humans Subtle Differences with DIF Fusion
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Figure 1: DIF Fusion Counterfactuals. We illustrate the counterfactual results from our methods
on the Butterfly dataset, the Black Hole dataset, and the Retina dataset. In the Butterfly dataset, the
Viceroy has a cross-sectional line ( ), a smaller head with less dots (magenta), and more “scaley”
dots (blue), compared to the Monarch. In the Black Hole dataset, SANE has more uniform wisps
( ) and less of a prominent photon ring (blue) as compared to MAD, with these distinguishing
features discovered through our method rather than known a priori. In the Retina dataset, normal
retinas lack the horizontal line bumps ( ) present in retinas with drusen.

Abstract

Scientific expertise often requires recognizing subtle visual differences that re-
main challenging to articulate even for domain experts. We present a system that
leverages generative models to automatically discover and visualize minimal dis-
criminative features between categories while preserving instance identity. Our
method generates counterfactual visualizations with subtle, targeted transforma-
tions between classes, performing well even in domains where data is sparse,
examples are unpaired, and category boundaries resist verbal description. Experi-
ments across six domains, including black hole simulations, butterfly taxonomy,
and medical imaging, demonstrate accurate transitions with limited training data,
highlighting both established discriminative features and novel subtle distinctions
that measurably improved category differentiation. User studies confirm our gen-
erated counterfactuals significantly outperform traditional approaches in teaching
people to correctly differentiate between fine-grained classes, showing the potential
of generative models to advance human visual learning and scientific research.

1 Introduction

Generative models, especially large-scale image diffusion models, have transformed text-to-image
creation, opening new ways to visualize concepts across various domains. While these models
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excel in everyday contexts with clear category distinctions, a far more challenging frontier exists
in scientific fields where visual differences between categories are so subtle that they often remain
unknown and unidentified even to domain experts.

In specialized scientific domains, the complete set of visual features distinguishing between categories
may be partially or entirely undiscovered. For example, astronomers studying black hole simulations
have no established verbal characteristics to differentiate MAD from SANE models because these
distinguishing features have not yet been comprehensively identified. Entomologists may differentiate
Viceroy and Monarch butterflies through the Viceroy’s characteristic cross-sectional black line, yet
may miss other distinguishing features that could further help the differentiation. This represents
the fundamental challenge for visual expertise training: how do we teach recognition of patterns we
ourselves don’t fully understand?

One of the most effective ways to reveal subtle category differences is to transform an image and
rapidly flip between the original and its altered version. In scientific domains, using generative models
for such targeted image editing faces three key challenges: (1) automatically identifying discriminative
features that may not be known or easily articulated even by experts, (2) limiting changes exclusively
to these category-defining features, and (3) preserving all other identity characteristics of the instance.
We develop a system that combines state-of-the-art image editing techniques with visual algebraic
conditioning guidance to address these challenges in data-scarce scientific domains. Our approach
automatically identifies discriminative features through visual algebraic operations that extract
category-specific information without requiring explicit articulation. By integrating inverted noise
maps (z) to preserve identity features with conditioning vectors (c) that guide category transformations,
our system achieves effective identity-preserving yet category-changing results, that isolate and
visualize subtle differences between scientific categories.

Our approach overcomes limitations in current counterfactual visualization methods, which have
traditionally been applied in domains where category distinctions are already well-understood and
easily verbalized. Text-guided editing methods rely on linguistic descriptions, which can be too
ambiguous to specify desired visual changes. Methods like Concept Sliders’ [14] effectiveness,
which is guided by the image distributions themselves, depend on paired examples in most cases-a
constraint limiting their use in teaching scenarios. Visual counterfactual generation methods often
rely on gradients from a classifier, a limitation when data is scarce. Classifier-free alternatives, like
TIME [24], struggle with image quality and coherence for subtle differences.

Through experiments across six domains, we demonstrate our approach’s effectiveness in highlighting
visual differences between categories. For instance, in black hole simulations, where distinguish-
ing characteristics between MAD and SANE models remain largely unknown, our counterfactual
visualizations emphasize distinct visual patterns in the image distribution. The transformations draw
attention to variations in the uniformity of wisps and prominence of the photon ring, which are
features that black hole experts themselves had not identified.

User studies confirm the effectiveness of our approach: participants who trained with our counter-
factual visualizations demonstrated significantly better category differentiation performance than
those using traditional approaches with unpaired images. This validates that our method highlights
meaningful visual patterns that can be used to build expertise, even when those subtle patterns have
not yet been explicitly identified or understood.

2 Related Work

Visual Counterfactual Explanations. A counterfactual image shows how an input would appear if
altered to switch its class, enhancing interpretability. Counterfactual inference crafts images that not
only differ in classification but also clarify the visual features defining each distribution. Approaches
for visual counterfactual explanations (VCEs) make use of generative model edits, with VAEs [41],
GANs [29], and more recently, diffusion-based methods [22-24, 3, 47, 12]. Most diffusion-based
approaches adapt classifier guidance [10] to steer the generative process of counterfactuals, requiring
access to the classifier and test-time optimization to produce counterfactual images. However, generat-
ing counterfactuals this way can be challenging, as the optimization problem closely resembles that of
adversarial examples. TIME [24] proposes an alternative approach by using Textual Inversion [13]
to encode class and dataset contexts into a set of text embeddings, providing a black-box framework
for counterfactual explanations. While this removes the need for direct classifier access, Textual
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Inversion is primarily designed for personalization, focusing on regenerating concepts in novel scenes
rather than preserving image structure-an essential aspect of counterfactual generation.

Image Editing. Recent advances in text-to-image diffusion models [39, 42, 44, 36, 28] have enabled
test-time controls for image editing, ranging from semantic modifications to attention-based edits
and latent space manipulation. Early approaches, such as SDEdit [34], applied noise to an image
and then denoised it using a new prompt, but this often resulted in significant structural changes.
Later methods refined direct prompt modifications by incorporating cross-attention manipulations or
masking to better preserve image structure [17, 38, 4, 50, 9]. Brooks et al. [5] use controlled edits
from these methods to train a new diffusion model based on instruction-driven prompts. However,
these approaches are limited to text-driven modifications, which restrict the flexibility of edits beyond
what can be described with text. Unlike single-image editing methods, Concept Sliders [14] introduce
a different approach by optimizing a global semantic direction across the diffusion model. While text
pairs can guide their optimization, they also propose visual sliders based on image pairs. However,
the visual slider approach struggles with unpaired data.

Diffusion Models with Image Prompts. Text-to-image diffusion models generate images from
text prompts, but text often falls short in capturing nuanced concepts. Image prompts offer a richer
alternative, conveying nuanced details more effectively, as "a picture is worth a thousand words."
DALL-E 2 [39] pioneered this by conditioning a diffusion decoder on CLIP image embeddings,
aided by a diffusion prior for text mapping. Later works offer different architectures [40] or adapt
text-to-image models for image prompts [56, 2, 28, 15].

Diffusion Inversion. Editing a real image typically requires first obtaining a latent representation
that can be fed into the model for reconstruction. This latent representation can then be modified,
either directly or by altering the generative process, to produce the desired edit. Most diffusion-based
inversion methods rely on the DDIM [48] sampling scheme, which provides a deterministic mapping
from a noise map to a generated image [35, 52, 38]. However, this approach introduces small errors
at each diffusion step, which can accumulate into significant deviations, particularly when using
classifier-free guidance [18]. Instead of predicting an initial noise map that reconstructs the image
through deterministic sampling, an alternative approach considers DDPM [19] sampling and inverts
the image into intermediate noise maps [54]. Building on this, Huberman-Spiegelglas et al. [21]
proposed an inversion technique for the DDPM sampler, along with an edit-friendly noise space
better suited for editing applications. We use this technique while conditioning on image prompts.

Machine Teaching. Machine teaching optimizes human learning via computational models. Early
work framed this as an optimization task, minimizing example sets for efficient teaching [58].
Generally, the field of machine learning for discovery has machine teaching as a goal [26, 6].
Recent advances leverage generative models and LLMs for cross-modal discovery, synthesizing
representations for conceptual learning [7], decoding structures in mathematics, or programs for
scientific discovery [33, 43]. Parallel efforts amplify subtle signals for perception: language models
detect fine-grained textual differences [11], while video motion magnification enhances visual cues
[31, 55, 37]. These methods, though effective for fine-grained discrimination, typically require
aligned, abundant data and focus on single modalities. Our work extends these efforts, using diffusion
models to generate visual counterfactuals for nuanced category learning.

3 Method

We begin by introducing DIFFusion for counterfactual image generation, as illustrated in Figure 2.
In Section 3.1, we provide the necessary background on diffusion models. In Section 3.2, we present
our proposed method, outlining its design and implementation.

3.1 Diffusion Preliminaries

Diffusion models generate data by sampling from a distribution through iterative denoising of noisy
intermediate vectors. A forward process is first applied, where noise is gradually added to a clean
image o over 1 steps. A noisy sample at timestep ¢ can be expressed as

T = vVagro +V1—age, t=1,..,T (D
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Figure 2: DIF Fusion method. Our method consists of four parts. (i) Inverting the real image with
DDPM-EF to obtain noise maps. (ii) Performing conditioning space arithmetic using positive and
negative embeddings obtained from the training set. (iii) Generation via diffusion sampling, starting
from the inverted noise conditioning on the manipulated conditioning vector ¢. (iv) Optional domain
tuning, in which we fine-tune the diffusion model for domain adaptation.

Diffusion Model _—

. . . _ T
where € ~ N (0,1), o is a predetermined variance schedule, and &; = [[;_; ;. The model learns
to reverse the forward noising process, which can be expressed as an update step over x;,

w1 = pg(rs,0) + oz, t=T,..,1 )

where z; are i.i.d standard normal vectors, o, is a variance schedule, and pg(x¢, ¢) is typically
parameterized as:

1 1-— Ot
po(ze,¢) = —— (xt - _Ea(zt,t,C)) 3
Vo 11—

Here €y (x4, t, ) is the trained noise prediction network, and ¢ is an optional conditioning context,

such as an image prompt embedding.

3.2 DIFFusion

Given an input image xg, our goal is to find a fine-grained, discriminative edit that changes a
classifier’s prediction. Let Ry(z, ¢) be the recursive application of the denoising diffusion model
from Equation 2. Our approach finds these edits by inverting the image z(, into a sequence of noise
maps, z, and manipulating the CLIP embeddings of the original image, ¢ = F(z), into a resulting
conditioning vector ¢, before sampling the modified image. We generate the modified image
through:

&g =Re(z,¢) “

Since the diffusion model must generate an image consistent with the original noise maps z, and
has a conditioning vector ¢ that steers from the source towards the target class, the resulting samples
maintain the identity of the original image, but with subtle modifications such that the class label
flips.

Inversion. We are interested in extracting noise vectors z, such that, if used in Equation 2, would
recover the original image zy. Note that any sequence of 7" + 1 images x, ..., 7 can be used to
extract consistent noise maps for reconstruction by isolating z; from Equation 2 as

Zt:w’ t="T,..,1 5)
Ot
We follow the choice suggested in [21] and compute the noise maps through the standard forward
diffusion process Equation 1, but using statistically independently-sampled noise for each timestep.
This yields noise maps z = {x, 21, . .., z1 } that are consistent with z.
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Figure 3: Qualitative Results. We present our qualitative results, where each row corresponds to
one direction of our binary datasets. The first column contains the inputs, and each subsequent
column contains the results from each baseline, with the last column containing the result from
DIFFusion. In particular, the magnified boxes in the magenta frame show that our method is able
to pick up on small discriminative cues. For example, when converting from MAD to SANE, the
whisps become amplified and more uniform in brightness, and when converting from Monarch to
Viceroy, a cross-sectional line is added on the wing. Note: The value in the top left corner of each
image represents the probability predicted by the oracle classifier, as explained in Section 4.2. Values
below 0.5 are classified as class 0, and above as class 1. Table 1 contains the class names and order.

Conditioning. We generate edits that flip the category through arithmetic operations on ¢, resulting
in ¢. We apply an additive translation to the conditioning vector ¢ = E'(x):

¢=c+wlAc 6)
where c is the CLIP image embedding of the original image, Ac is a direction that moves the class

from the original class to the target class, and w is a scaler that varies the direction’s strength. We
calculate this translation through the difference of means for each class:

Ac=Eq, [E(zp)] - Eq,, [E(2)] @

such that x,, is an image of class p and x,, is an image of class 7 (e.g, positive and negative classes).
We normalize all the image embeddings with L2 norm prior to the arithmetic.

Sampling. We use ¢ as the conditioning vector for DDPM sampling, paired with the inverted noise
maps, z, to generate the counterfactual image. As suggested in [21], we run the generation process
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starting from timestep T' — T, where Ty, 1 a parameter controlling the resemblance to the input
image. Therefore, similar to Equation 2, denoting the denoised edited image at timestep ¢ as Z; we
have,

Bio1 = po(#0,0) + oz, t=T = Tapips s 1 ®)
This approach allows us to systematically steer the image generation toward the target class by
adjusting the manipulation scale w, while maintaining key structural features of the original image
through Ty, Intuitively, a larger Ty, results in fewer denoising steps under the manipulated
condition ¢, leading to greater adherence to the input image.

Domain Tuning We use a pre-trained diffusion model [46] that conditions on CLIP image em-
beddings. When adapting to a new domain, we fine-tune the model using LoRA [20], training only
its cross-attention and corresponding projection layers. As discussed in B.2, we find that domain
tuning is beneficial for the Butterfly [51] and Retina [27] datasets, but has minimal impact on the
other datasets.

Implementation Details. For inversion, we adapt the edit-friendly DDPM inversion scheme [21]
to our diffusion decoder [46]. Specifically, we use CFG [18] in both inversion and generation. We
first aim to find guidance scale parameters that achieve perfect reconstruction, and then use these
guidance scales for our method. This process is further discussed in B.3. To generate counterfactuals,
we manipulate the conditioning space using Equation 6, adjusting the manipulation guidance scale
per dataset (w = 1.0 for AFHQ, w = 2.0 for the rest of the datasets). We then sample for T' — Ty,
steps, where T = 100 and the choice of the Ty, parameter is further discussed in Section 4.2.

4 Experiments

4.1 Datasets and Baselines

Datasets. We quantitatively benchmark on
datasets from .dlver.se dpmalns. We 315_0 note  Table 1: Datasets and their classification tasks.
the corresponding directions under examination
for each dataset in Table 1. We evaluate on

AFHQ [8], CelebaHQ [30] and KikiBouba [1] Dataset Class 0/ Class 1
as our non-scientific datasets. We also evaluate AFHQ [8] Dog / Cat

on three scientific datasets. The first is Retina KikiBouba [1] Kiki / Bouba

[27], a dataset of retina cross-sections, both dis- Retina [27] Drusen / Normal
eased and healthy. The second is Black Holes, Black-Holes MAD / SANE
which is a dataset of images taken from fluid Butterfly [51] Monarch / Viceroy
simulations of accretion flows around a black CelebA-HQ [30] Smile / No-Smile

hole [53]. The simulations assume general rel-
ativistic magnetohydrodynamics (GRMHD) un-
der one of two regimes: magnetically arrested (MAD) or standard and normal evolution (SANE) [25].
Finally, we also evaluate on Monarch and Viceroy, a fine-grained species classification task. Monarch
butterflies evolved to be mimics of Viceroys, and the two species are notoriously difficult to tell apart.

Baselines. We use TIME [24] as our counterfactual baseline, and replace black-box classifier labels
with ground truth labels. For editing baselines, we compare against Stable Diffusion [42] with
EF-DDPM inversion [21] using class-name prompts. To better accommodate visual concepts, we
implemented another baseline that uses Textual Inversion [13] for each class of images and then
applies source and target prompts based on the desired edit direction. We term this baseline TI +
EF-DDPM. Lastly, we use the visual sliders objective of Concept Sliders [14] that provides a visual
counterpart to text-driven attribute edits. To ensure a robust evaluation, we experimented with varying
the rank and number of images used for defining the concept direction, selecting the best configuration
for each dataset. Since the original method assumes paired data, we adapted it for unpaired settings.

4.2 Editing Results

We quantitatively evaluate how well our method can make minimal edits to the image to flip the
classifier’s prediction. For evaluation, we take a balanced sample of 50 images per class from the
validation set of each dataset, totaling 100 images from each dataset. Since our method can generate
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Table 2: Performance comparison across datasets. SR = Success Ratio, LPIPS = Perceptual Distance.
In bold are the best results, and in underline are the second-best results.

| Science Datasets | Regular Datasets
Method \ Retina Butterfly KikiBouba  Black-Holes \ AFHQ CelebA-HQ

|SRT LPIPS| SRT LPIPS| SRt LPIPS| SRT LPIPS||SRf LPIPS| SRT LPIPS|
EF-DDPM 0.39 0.272 0.86 0.328 0.68 0.343 0.73 0.117 | 1.0 0.187 1.0 0.104
TI+EF-DDPM |0.89 0.330 1.0 0.289 097 0.332 05 0.045 | 1.0 0211 1.0 0.181
TIME 0.50 0358 0.13 0320 0.17 0170 0.52 0.086 [0.95 0.217 0.79 0.166

Concept Sliders |0.48 0.248 0.27 0362 0.13 0.206 0.53 0.155 {049 0375 021 0.238
DIFFusion 098 0.217 1.0 0.218 098 0.176 1.0 0.076 | 1.0 0245 1.0 0.116

different strengths of edits, to pick the minimal edit, we generate 10 edits with varying strengths using
the Ty, parameter, as does the TIME baseline [24], testing from highest to lowest T, and select
the first edit that flips the classifier prediction while maximizing LPIPS similarity to the original image.

Metrics. We evaluate our method using two key metrics. Success Ratio (SR): Also known
as Flip-Rate, quantifies the ability of a method to flip an oracle classifier’s decision. The oracle
classifier we use is an ensemble of ResNet-18 [16], MobileNet-V2 [45], and EfficientNet-BO [49],
trained on each dataset. LPIPS [57]: Measures the perceptual similarity between the input and
generated image, by capturing feature-level difference in a learned embedding space.

= added = removed

Average LPIPS on Test Set vs. # of Images in Train Set Original Difference DIFFusion

—&— Butterfly
0.7 ~M- Kerman: y
—h— MAD/SANE
—4— AFHQ
CelebAHQ
06 Kiki-Bouba

SANE
avin

Avg. LPIPS on Test Set

# Images per Class in Train Set

(a) (b)

Figure 4: (a) Varying number of images. Average LPIPS vs. number of images used per class.
LPIPS stabilizes around 50 images for most datasets, reflecting improved identity fidelity and subtle
class-distinctive feature shifts with increased embedding samples. (b) Difference Overlay. We
visualize the difference between the input image and the counterfactual from DIFFusion. From
SANE to MAD we notice a highlighting of the photon ring ( ). From MAD to SANE we notice
that the ring becomes less pronounced (magenta), and wisps appear ( ).

Quantitative Results. As seen in Table 2, our method achieves the highest SR across all datasets
compared to baseline approaches. In terms of LPIPS, it shows significant improvements over previous
methods on datasets where language struggles to capture visual details (e.g., Black-Holes, KikiBouba),
unlike datasets with common objects like AFHQ. It also performs either best or competitively on the
remaining natural-image datasets. Additionally, while TI + EF-DDPM improves the same text-based
baseline, it still struggles with images that are hard to describe textually, such as Black-Holes.

Qualitative Results. In Figure 3, we present class transitions for all baselines and DIFFusion.
On familiar datasets like CelebA-HQ and AFHQ, our method performs well, similar to baselines.
However, its strengths stand out in datasets where language may not fully capture visual details. For
KikiBouba, only our method and TI + EF-DDPM round Kiki’s edges, though the baseline changes
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the original colors, while ours keeps them intact. In the Butterfly dataset, the baselines miss the
cross-sectional line, and in the Retina dataset, only our approach removes Drusen while preserving
image identity. For the Black-Holes dataset, our method flips the classifier’s prediction with notable
visual differences, as also highlighted in Figure 4b. These results suggest our method handles subtle
visual nuances particularly well.

4.3 Teaching Results

We evaluate our method’s effectiveness in teaching people subtle visual differences between classes.

User Study Design. We divided participants into three groups of 10 people each. Group 1 studied
only unpaired images. Group 2 studied videos transitioning from original images to counterfactual
images generated by the best baseline. Group 3 studied videos transitioning from original images to
counterfactual images generated by our method. Since Groups 2 and 3 viewed transitions from real
to edited images, they were also exposed to the unpaired image distribution seen by Group 1. All
participants studied their respective materials for 3 minutes to learn to distinguish between the two
classes before taking a test. The test required labeling 50 images, evenly distributed with 25 images
from each class.

User Study Results. We assess DIFFusion

for teaching via a user study on the Black Holes  Typle 3: User Study Results - Mean Accuracy (%)
and Butterfly datasets [51], shown in Table 3 and
Figure 5. For Black Holes, unpaired material Black Holes Butterfly — Aveg.
gave a 78% average score, but our counterfac- Method Mean+SD Mean+SD Impr.
tuals boosted this to 90%, with 40% of users -

hitting near-perfect scores (96%-+), surpassing Unpaired 78.6£13.7 61.6£22.8  —
baselines and counterfactuals. For Butterfly, un- Baseline 77.2+#11.5 62.8+16.8 -0.1%
paired data led to varied scores, but our coun- Ours 90.8+4.8 87.8+10.4 +19.2%
terfactuals raised 9 out of 10 users above 80%,
standardizing understanding effectively. P-tests
confirm significance: Black Holes (p = 0.016
vs. 0.811 for baseline) and Butterfly (p = 0.004 vs. 0.897 for baseline), both p < 0.05. Our
counterfactuals consistently outperform alternatives, demonstrating the usefulness of our method for
teaching humans subtle visual differences.

Butterfly User Study Black Hole User Study
10 p =0.004 k =0.897 10 p=0.016 p=0.811
. <¢? o
S
0.8 8 0.8 e .?
L]

Accuracy
o
(o]
Accuracy
o
(o))

I
~

02 v

DIFFusion Best Baseline Unpaired DIFFusion Best Baseline Unpaired

Figure 5: User Study Results. We plot the results from user studies across users who studied our
counterfactuals, users who studied the best baseline counterfactuals, and users who studied unpaired
images. For both Butterfly and Black Hole datasets, we observe that the users who studied our
counterfactuals significantly outperformed the other groups. The violin plots illustrate the distribution
of user percentages, where the width of each grey shape represents the density of data points.

4.4 Method Analysis

Varying Dataset Size. In Figure 4a, we examine the impact of varying the number of images per
class on the average LPIPS metric across the test sets. We notice that for most datasets, the LPIPS
stops improving at around 50 images. In Section B.4, we show qualitative results as the number of
images changes. We notice that as the number of images incorporated into the average embeddings
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Figure 6: Interpolation. By varying the manipulation scale w € {—0.5,0.0,0.5,1.0, 1.5}, we can
adjust the manipulation strength, allowing for smooth interpolation between the two classes. Notably,
when w = 0, we can reconstruct the original image while preserving the classifier’s probabilities.

increases, the fidelity to the original image’s identity improves, while subtly altering the features that
are distinctive between classes.

Interpolation. In Figure 6, we present qualitative results demonstrating the effects of varying the
manipulation scale, w, on an instance of a Normal retina. The manipulation scale, which can take
positive or negative values, modulates the transformation direction. Positive values of w shift the
features toward Drusen from the Normal retina, while negative values make the image smoother.

Dachsund Squirreltail Canada Wild Rye

e

Edited to Dachsund Edited to Canada Wild Rye Edited to Squirreltail

e

Edited to Corgi

Figure 7: Dataset Bias. DIFFusion can reveal dataset bias. Squirreltail-to-Canada Wild Rye shifts
emphasize environmental backgrounds over plant traits, reflecting iNaturalist’s contextual bias, while
Dachshund-to-Corgi edits prioritize foreground dog features, highlighting variable bias impact.

4.5 Visualizing Dataset Bias

Our method edits images using differences between class mean embeddings, making it sensitive to
dataset bias. If distinguishing features reflect unintended biases rather than targeted traits, edits deviate
from our intent. This is both a limitation - preventing precise control, and a strength, as it visualizes
dataset biases, revealing underlying structure. We show how dataset bias is captured by our method
in Figure 7. In iNaturalist [51], counterfactuals from Squirreltail (dry climates) to Canada Wild
Rye (humid) shift backgrounds more than plant structure, suggesting environmental bias dominates.
Conversely, using the Spawrious [32] dataset, Dachshund-to-Corgi counterfactuals prioritize dog
features (e.g., shape, size) over jungle-to-desert backgrounds. We attribute this to stronger foreground
differences in dogs and clearer object-background separation, unlike plants blending into settings in
iNaturalist data. The effect of dataset bias on edits varies with class prominence and context.

5 Discussion and Limitations

DIFFusion generates counterfactuals to support visual expertise training across domains with limited
data. It reveals dataset biases, often shifting unintended features due to embedding reliance, which
limits precise control. Additionally, the arithmetic is very simple: a difference of averages, highlight-
ing a trade-off between flexibility and specificity. Future work could explore disentanglement or
guidance mechanisms to enhance edit precision in specialized applications.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please see the abstract and the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please see the limitations section at the very end.
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465 Guidelines:

466 * The answer NA means that the paper has no limitation while the answer No means that
467 the paper has limitations, but those are not discussed in the paper.

468 * The authors are encouraged to create a separate "Limitations" section in their paper.
469 * The paper should point out any strong assumptions and how robust the results are to
470 violations of these assumptions (e.g., independence assumptions, noiseless settings,
471 model well-specification, asymptotic approximations only holding locally). The authors
472 should reflect on how these assumptions might be violated in practice and what the
473 implications would be.

474 * The authors should reflect on the scope of the claims made, e.g., if the approach was
475 only tested on a few datasets or with a few runs. In general, empirical results often
476 depend on implicit assumptions, which should be articulated.

477 * The authors should reflect on the factors that influence the performance of the approach.
478 For example, a facial recognition algorithm may perform poorly when image resolution
479 is low or images are taken in low lighting. Or a speech-to-text system might not be
480 used reliably to provide closed captions for online lectures because it fails to handle
481 technical jargon.

482 * The authors should discuss the computational efficiency of the proposed algorithms
483 and how they scale with dataset size.

484  If applicable, the authors should discuss possible limitations of their approach to
485 address problems of privacy and fairness.

486 * While the authors might fear that complete honesty about limitations might be used by
487 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
488 limitations that aren’t acknowledged in the paper. The authors should use their best
489 judgment and recognize that individual actions in favor of transparency play an impor-
490 tant role in developing norms that preserve the integrity of the community. Reviewers
491 will be specifically instructed to not penalize honesty concerning limitations.

492 3. Theory assumptions and proofs

493 Question: For each theoretical result, does the paper provide the full set of assumptions and
494 a complete (and correct) proof?

495 Answer: [NA]

496 Justification: NA

497 Guidelines:

498 » The answer NA means that the paper does not include theoretical results.

499 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
500 referenced.

501 * All assumptions should be clearly stated or referenced in the statement of any theorems.
502 * The proofs can either appear in the main paper or the supplemental material, but if
503 they appear in the supplemental material, the authors are encouraged to provide a short
504 proof sketch to provide intuition.

505 * Inversely, any informal proof provided in the core of the paper should be complemented
506 by formal proofs provided in appendix or supplemental material.

507 * Theorems and Lemmas that the proof relies upon should be properly referenced.

508 4. Experimental result reproducibility

509 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
510 perimental results of the paper to the extent that it affects the main claims and/or conclusions
511 of the paper (regardless of whether the code and data are provided or not)?

512 Answer: [Yes]

513 Yes, and implementation details can be found in the supplemental material.

514 Guidelines:

515 » The answer NA means that the paper does not include experiments.

14



516
517
518
519
520
521
522

524
525
526
527
528
529
530
531
532

533
534
535
536
537
538
539
540
541
542
543
544
545

546

547
548
549

550

551
552

553

554
555
556
557
558
559
560
561
562
563
564
565
566

568

569
570

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release code, and data is publicly available except for the Black Holes
dataset.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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571 * Providing as much information as possible in supplemental material (appended to the

572 paper) is recommended, but including URLSs to data and code is permitted.

573 6. Experimental setting/details

574 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
575 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
576 results?

577 Answer: [Yes]

578 Justification: The main paper justifies hyperparams, optimizer, etc, but the data splits can be
579 found in the code release.

580 Guidelines:

581 » The answer NA means that the paper does not include experiments.

582 * The experimental setting should be presented in the core of the paper to a level of detail
583 that is necessary to appreciate the results and make sense of them.

584 * The full details can be provided either with the code, in appendix, or as supplemental
585 material.

586 7. Experiment statistical significance

587 Question: Does the paper report error bars suitably and correctly defined or other appropriate
588 information about the statistical significance of the experiments?

589 Answer: [NA]

590 Justification: We follow common practice.

591 Guidelines:

592 » The answer NA means that the paper does not include experiments.

593 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
594 dence intervals, or statistical significance tests, at least for the experiments that support
595 the main claims of the paper.

596 * The factors of variability that the error bars are capturing should be clearly stated (for
597 example, train/test split, initialization, random drawing of some parameter, or overall
598 run with given experimental conditions).

599 * The method for calculating the error bars should be explained (closed form formula,
600 call to a library function, bootstrap, etc.)

601 * The assumptions made should be given (e.g., Normally distributed errors).

602 ¢ It should be clear whether the error bar is the standard deviation or the standard error
603 of the mean.

604 e It is OK to report 1-sigma error bars, but one should state it. The authors should
605 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
606 of Normality of errors is not verified.

607 » For asymmetric distributions, the authors should be careful not to show in tables or
608 figures symmetric error bars that would yield results that are out of range (e.g. negative
609 error rates).

610 * If error bars are reported in tables or plots, The authors should explain in the text how
611 they were calculated and reference the corresponding figures or tables in the text.

612 8. Experiments compute resources

613 Question: For each experiment, does the paper provide sufficient information on the com-
614 puter resources (type of compute workers, memory, time of execution) needed to reproduce
615 the experiments?

616 Answer: [Yes]

617 Justification: See supplemental.

618 Guidelines:

619 * The answer NA means that the paper does not include experiments.

620 * The paper should indicate the type of compute workers CPU or GPU, internal cluster,
621 or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: .
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See supplemental.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: See supplemental.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See supplemental.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
No new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See supplemental.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: See supplemental.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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