
Teaching Humans Subtle Differences with DIFFusion
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Figure 1: DIFFusion Counterfactuals. We illustrate the counterfactual results from our methods
on the Butterfly dataset, the Black Hole dataset, and the Retina dataset. In the Butterfly dataset, the
Viceroy has a cross-sectional line (yellow), a smaller head with less dots (magenta), and more “scaley”
dots (blue), compared to the Monarch. In the Black Hole dataset, SANE has more uniform wisps
(yellow) and less of a prominent photon ring (blue) as compared to MAD, with these distinguishing
features discovered through our method rather than known a priori. In the Retina dataset, normal
retinas lack the horizontal line bumps (yellow) present in retinas with drusen.

Abstract

Scientific expertise often requires recognizing subtle visual differences that re-1

main challenging to articulate even for domain experts. We present a system that2

leverages generative models to automatically discover and visualize minimal dis-3

criminative features between categories while preserving instance identity. Our4

method generates counterfactual visualizations with subtle, targeted transforma-5

tions between classes, performing well even in domains where data is sparse,6

examples are unpaired, and category boundaries resist verbal description. Experi-7

ments across six domains, including black hole simulations, butterfly taxonomy,8

and medical imaging, demonstrate accurate transitions with limited training data,9

highlighting both established discriminative features and novel subtle distinctions10

that measurably improved category differentiation. User studies confirm our gen-11

erated counterfactuals significantly outperform traditional approaches in teaching12

people to correctly differentiate between fine-grained classes, showing the potential13

of generative models to advance human visual learning and scientific research.14

1 Introduction15

Generative models, especially large-scale image diffusion models, have transformed text-to-image16

creation, opening new ways to visualize concepts across various domains. While these models17
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excel in everyday contexts with clear category distinctions, a far more challenging frontier exists18

in scientific fields where visual differences between categories are so subtle that they often remain19

unknown and unidentified even to domain experts.20

In specialized scientific domains, the complete set of visual features distinguishing between categories21

may be partially or entirely undiscovered. For example, astronomers studying black hole simulations22

have no established verbal characteristics to differentiate MAD from SANE models because these23

distinguishing features have not yet been comprehensively identified. Entomologists may differentiate24

Viceroy and Monarch butterflies through the Viceroy’s characteristic cross-sectional black line, yet25

may miss other distinguishing features that could further help the differentiation. This represents26

the fundamental challenge for visual expertise training: how do we teach recognition of patterns we27

ourselves don’t fully understand?28

One of the most effective ways to reveal subtle category differences is to transform an image and29

rapidly flip between the original and its altered version. In scientific domains, using generative models30

for such targeted image editing faces three key challenges: (1) automatically identifying discriminative31

features that may not be known or easily articulated even by experts, (2) limiting changes exclusively32

to these category-defining features, and (3) preserving all other identity characteristics of the instance.33

We develop a system that combines state-of-the-art image editing techniques with visual algebraic34

conditioning guidance to address these challenges in data-scarce scientific domains. Our approach35

automatically identifies discriminative features through visual algebraic operations that extract36

category-specific information without requiring explicit articulation. By integrating inverted noise37

maps (z) to preserve identity features with conditioning vectors (c) that guide category transformations,38

our system achieves effective identity-preserving yet category-changing results, that isolate and39

visualize subtle differences between scientific categories.40

Our approach overcomes limitations in current counterfactual visualization methods, which have41

traditionally been applied in domains where category distinctions are already well-understood and42

easily verbalized. Text-guided editing methods rely on linguistic descriptions, which can be too43

ambiguous to specify desired visual changes. Methods like Concept Sliders’ [14] effectiveness,44

which is guided by the image distributions themselves, depend on paired examples in most cases-a45

constraint limiting their use in teaching scenarios. Visual counterfactual generation methods often46

rely on gradients from a classifier, a limitation when data is scarce. Classifier-free alternatives, like47

TIME [24], struggle with image quality and coherence for subtle differences.48

Through experiments across six domains, we demonstrate our approach’s effectiveness in highlighting49

visual differences between categories. For instance, in black hole simulations, where distinguish-50

ing characteristics between MAD and SANE models remain largely unknown, our counterfactual51

visualizations emphasize distinct visual patterns in the image distribution. The transformations draw52

attention to variations in the uniformity of wisps and prominence of the photon ring, which are53

features that black hole experts themselves had not identified.54

User studies confirm the effectiveness of our approach: participants who trained with our counter-55

factual visualizations demonstrated significantly better category differentiation performance than56

those using traditional approaches with unpaired images. This validates that our method highlights57

meaningful visual patterns that can be used to build expertise, even when those subtle patterns have58

not yet been explicitly identified or understood.59

2 Related Work60

Visual Counterfactual Explanations. A counterfactual image shows how an input would appear if61

altered to switch its class, enhancing interpretability. Counterfactual inference crafts images that not62

only differ in classification but also clarify the visual features defining each distribution. Approaches63

for visual counterfactual explanations (VCEs) make use of generative model edits, with VAEs [41],64

GANs [29], and more recently, diffusion-based methods [22–24, 3, 47, 12]. Most diffusion-based65

approaches adapt classifier guidance [10] to steer the generative process of counterfactuals, requiring66

access to the classifier and test-time optimization to produce counterfactual images. However, generat-67

ing counterfactuals this way can be challenging, as the optimization problem closely resembles that of68

adversarial examples. TIME [24] proposes an alternative approach by using Textual Inversion [13]69

to encode class and dataset contexts into a set of text embeddings, providing a black-box framework70

for counterfactual explanations. While this removes the need for direct classifier access, Textual71
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Inversion is primarily designed for personalization, focusing on regenerating concepts in novel scenes72

rather than preserving image structure-an essential aspect of counterfactual generation.73

Image Editing. Recent advances in text-to-image diffusion models [39, 42, 44, 36, 28] have enabled74

test-time controls for image editing, ranging from semantic modifications to attention-based edits75

and latent space manipulation. Early approaches, such as SDEdit [34], applied noise to an image76

and then denoised it using a new prompt, but this often resulted in significant structural changes.77

Later methods refined direct prompt modifications by incorporating cross-attention manipulations or78

masking to better preserve image structure [17, 38, 4, 50, 9]. Brooks et al. [5] use controlled edits79

from these methods to train a new diffusion model based on instruction-driven prompts. However,80

these approaches are limited to text-driven modifications, which restrict the flexibility of edits beyond81

what can be described with text. Unlike single-image editing methods, Concept Sliders [14] introduce82

a different approach by optimizing a global semantic direction across the diffusion model. While text83

pairs can guide their optimization, they also propose visual sliders based on image pairs. However,84

the visual slider approach struggles with unpaired data.85

Diffusion Models with Image Prompts. Text-to-image diffusion models generate images from86

text prompts, but text often falls short in capturing nuanced concepts. Image prompts offer a richer87

alternative, conveying nuanced details more effectively, as "a picture is worth a thousand words."88

DALL-E 2 [39] pioneered this by conditioning a diffusion decoder on CLIP image embeddings,89

aided by a diffusion prior for text mapping. Later works offer different architectures [40] or adapt90

text-to-image models for image prompts [56, 2, 28, 15].91

Diffusion Inversion. Editing a real image typically requires first obtaining a latent representation92

that can be fed into the model for reconstruction. This latent representation can then be modified,93

either directly or by altering the generative process, to produce the desired edit. Most diffusion-based94

inversion methods rely on the DDIM [48] sampling scheme, which provides a deterministic mapping95

from a noise map to a generated image [35, 52, 38]. However, this approach introduces small errors96

at each diffusion step, which can accumulate into significant deviations, particularly when using97

classifier-free guidance [18]. Instead of predicting an initial noise map that reconstructs the image98

through deterministic sampling, an alternative approach considers DDPM [19] sampling and inverts99

the image into intermediate noise maps [54]. Building on this, Huberman-Spiegelglas et al. [21]100

proposed an inversion technique for the DDPM sampler, along with an edit-friendly noise space101

better suited for editing applications. We use this technique while conditioning on image prompts.102

Machine Teaching. Machine teaching optimizes human learning via computational models. Early103

work framed this as an optimization task, minimizing example sets for efficient teaching [58].104

Generally, the field of machine learning for discovery has machine teaching as a goal [26, 6].105

Recent advances leverage generative models and LLMs for cross-modal discovery, synthesizing106

representations for conceptual learning [7], decoding structures in mathematics, or programs for107

scientific discovery [33, 43]. Parallel efforts amplify subtle signals for perception: language models108

detect fine-grained textual differences [11], while video motion magnification enhances visual cues109

[31, 55, 37]. These methods, though effective for fine-grained discrimination, typically require110

aligned, abundant data and focus on single modalities. Our work extends these efforts, using diffusion111

models to generate visual counterfactuals for nuanced category learning.112

3 Method113

We begin by introducing DIFFusion for counterfactual image generation, as illustrated in Figure 2.114

In Section 3.1, we provide the necessary background on diffusion models. In Section 3.2, we present115

our proposed method, outlining its design and implementation.116

3.1 Diffusion Preliminaries117

Diffusion models generate data by sampling from a distribution through iterative denoising of noisy118

intermediate vectors. A forward process is first applied, where noise is gradually added to a clean119

image x0 over T steps. A noisy sample at timestep t can be expressed as120

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, t = 1, ..., T (1)
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Figure 2: DIFFusion method. Our method consists of four parts. (i) Inverting the real image with
DDPM-EF to obtain noise maps. (ii) Performing conditioning space arithmetic using positive and
negative embeddings obtained from the training set. (iii) Generation via diffusion sampling, starting
from the inverted noise conditioning on the manipulated conditioning vector ĉ. (iv) Optional domain
tuning, in which we fine-tune the diffusion model for domain adaptation.

where ϵ ∼ N (0, I), αt is a predetermined variance schedule, and ᾱt =
∏T

i=1 αi. The model learns121

to reverse the forward noising process, which can be expressed as an update step over xt,122

xt−1 = µθ(xt, c) + σtzt, t = T, ..., 1 (2)

where zt are i.i.d standard normal vectors, σt is a variance schedule, and µθ(xt, c) is typically123

parameterized as:124

µθ(xt, c) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, c)

)
(3)

Here ϵθ(xt, t, c) is the trained noise prediction network, and c is an optional conditioning context,125

such as an image prompt embedding.126

3.2 DIFFusion127

Given an input image x0, our goal is to find a fine-grained, discriminative edit that changes a128

classifier’s prediction. Let Rθ(z, c) be the recursive application of the denoising diffusion model129

from Equation 2. Our approach finds these edits by inverting the image x0, into a sequence of noise130

maps, z, and manipulating the CLIP embeddings of the original image, c = E(x), into a resulting131

conditioning vector ĉ, before sampling the modified image. We generate the modified image x̂0132

through:133

x̂0 = Rθ(z, ĉ) (4)

Since the diffusion model must generate an image consistent with the original noise maps z, and134

has a conditioning vector ĉ that steers from the source towards the target class, the resulting samples135

maintain the identity of the original image, but with subtle modifications such that the class label136

flips.137

Inversion. We are interested in extracting noise vectors z, such that, if used in Equation 2, would138

recover the original image x0. Note that any sequence of T + 1 images x0, ..., xT can be used to139

extract consistent noise maps for reconstruction by isolating zt from Equation 2 as140

zt =
xt−1 − µθ(xt, c)

σt
, t = T, ..., 1 (5)

We follow the choice suggested in [21] and compute the noise maps through the standard forward141

diffusion process Equation 1, but using statistically independently-sampled noise for each timestep.142

This yields noise maps z = {xT , zT , . . . , z1} that are consistent with x0.143
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Figure 3: Qualitative Results. We present our qualitative results, where each row corresponds to
one direction of our binary datasets. The first column contains the inputs, and each subsequent
column contains the results from each baseline, with the last column containing the result from
DIFFusion. In particular, the magnified boxes in the magenta frame show that our method is able
to pick up on small discriminative cues. For example, when converting from MAD to SANE, the
whisps become amplified and more uniform in brightness, and when converting from Monarch to
Viceroy, a cross-sectional line is added on the wing. Note: The value in the top left corner of each
image represents the probability predicted by the oracle classifier, as explained in Section 4.2. Values
below 0.5 are classified as class 0, and above as class 1. Table 1 contains the class names and order.

Conditioning. We generate edits that flip the category through arithmetic operations on c, resulting144

in ĉ. We apply an additive translation to the conditioning vector c = E(x):145

ĉ = c+ ω∆c (6)

where c is the CLIP image embedding of the original image, ∆c is a direction that moves the class146

from the original class to the target class, and ω is a scaler that varies the direction’s strength. We147

calculate this translation through the difference of means for each class:148

∆c = Exp
[E(xp)]− Exn

[E(xn)] (7)

such that xp is an image of class p and xn is an image of class n (e.g, positive and negative classes).149

We normalize all the image embeddings with L2 norm prior to the arithmetic.150

Sampling. We use ĉ as the conditioning vector for DDPM sampling, paired with the inverted noise151

maps, z, to generate the counterfactual image. As suggested in [21], we run the generation process152
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starting from timestep T − Tskip, where Tskip is a parameter controlling the resemblance to the input153

image. Therefore, similar to Equation 2, denoting the denoised edited image at timestep t as x̂t we154

have,155

x̂t−1 = µθ(x̂t, ĉ) + σtzt, t = T − Tskip, ..., 1 (8)
This approach allows us to systematically steer the image generation toward the target class by156

adjusting the manipulation scale ω, while maintaining key structural features of the original image157

through Tskip. Intuitively, a larger Tskip results in fewer denoising steps under the manipulated158

condition ĉ, leading to greater adherence to the input image.159

Domain Tuning We use a pre-trained diffusion model [46] that conditions on CLIP image em-160

beddings. When adapting to a new domain, we fine-tune the model using LoRA [20], training only161

its cross-attention and corresponding projection layers. As discussed in B.2, we find that domain162

tuning is beneficial for the Butterfly [51] and Retina [27] datasets, but has minimal impact on the163

other datasets.164

Implementation Details. For inversion, we adapt the edit-friendly DDPM inversion scheme [21]165

to our diffusion decoder [46]. Specifically, we use CFG [18] in both inversion and generation. We166

first aim to find guidance scale parameters that achieve perfect reconstruction, and then use these167

guidance scales for our method. This process is further discussed in B.3. To generate counterfactuals,168

we manipulate the conditioning space using Equation 6, adjusting the manipulation guidance scale169

per dataset (ω = 1.0 for AFHQ, ω = 2.0 for the rest of the datasets). We then sample for T − Tskip170

steps, where T = 100 and the choice of the Tskip parameter is further discussed in Section 4.2.171

4 Experiments172

4.1 Datasets and Baselines173

Table 1: Datasets and their classification tasks.

Dataset Class 0 / Class 1
AFHQ [8] Dog / Cat
KikiBouba [1] Kiki / Bouba
Retina [27] Drusen / Normal
Black-Holes MAD / SANE
Butterfly [51] Monarch / Viceroy
CelebA-HQ [30] Smile / No-Smile

Datasets. We quantitatively benchmark on174

datasets from diverse domains. We also note175

the corresponding directions under examination176

for each dataset in Table 1. We evaluate on177

AFHQ [8], CelebaHQ [30] and KikiBouba [1]178

as our non-scientific datasets. We also evaluate179

on three scientific datasets. The first is Retina180

[27], a dataset of retina cross-sections, both dis-181

eased and healthy. The second is Black Holes,182

which is a dataset of images taken from fluid183

simulations of accretion flows around a black184

hole [53]. The simulations assume general rel-185

ativistic magnetohydrodynamics (GRMHD) un-186

der one of two regimes: magnetically arrested (MAD) or standard and normal evolution (SANE) [25].187

Finally, we also evaluate on Monarch and Viceroy, a fine-grained species classification task. Monarch188

butterflies evolved to be mimics of Viceroys, and the two species are notoriously difficult to tell apart.189

Baselines. We use TIME [24] as our counterfactual baseline, and replace black-box classifier labels190

with ground truth labels. For editing baselines, we compare against Stable Diffusion [42] with191

EF-DDPM inversion [21] using class-name prompts. To better accommodate visual concepts, we192

implemented another baseline that uses Textual Inversion [13] for each class of images and then193

applies source and target prompts based on the desired edit direction. We term this baseline TI +194

EF-DDPM. Lastly, we use the visual sliders objective of Concept Sliders [14] that provides a visual195

counterpart to text-driven attribute edits. To ensure a robust evaluation, we experimented with varying196

the rank and number of images used for defining the concept direction, selecting the best configuration197

for each dataset. Since the original method assumes paired data, we adapted it for unpaired settings.198

4.2 Editing Results199

We quantitatively evaluate how well our method can make minimal edits to the image to flip the200

classifier’s prediction. For evaluation, we take a balanced sample of 50 images per class from the201

validation set of each dataset, totaling 100 images from each dataset. Since our method can generate202
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Table 2: Performance comparison across datasets. SR = Success Ratio, LPIPS = Perceptual Distance.
In bold are the best results, and in underline are the second-best results.

Science Datasets Regular Datasets

Method Retina Butterfly KikiBouba Black-Holes AFHQ CelebA-HQ

SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓
EF-DDPM 0.39 0.272 0.86 0.328 0.68 0.343 0.73 0.117 1.0 0.187 1.0 0.104
TI+EF-DDPM 0.89 0.330 1.0 0.289 0.97 0.332 0.5 0.045 1.0 0.211 1.0 0.181
TIME 0.50 0.358 0.13 0.320 0.17 0.170 0.52 0.086 0.95 0.217 0.79 0.166
Concept Sliders 0.48 0.248 0.27 0.362 0.13 0.206 0.53 0.155 0.49 0.375 0.21 0.238
DIFFusion 0.98 0.217 1.0 0.218 0.98 0.176 1.0 0.076 1.0 0.245 1.0 0.116

different strengths of edits, to pick the minimal edit, we generate 10 edits with varying strengths using203

the Tskip parameter, as does the TIME baseline [24], testing from highest to lowest Tskip, and select204

the first edit that flips the classifier prediction while maximizing LPIPS similarity to the original image.205

206

Metrics. We evaluate our method using two key metrics. Success Ratio (SR): Also known207

as Flip-Rate, quantifies the ability of a method to flip an oracle classifier’s decision. The oracle208

classifier we use is an ensemble of ResNet-18 [16], MobileNet-V2 [45], and EfficientNet-B0 [49],209

trained on each dataset. LPIPS [57]: Measures the perceptual similarity between the input and210

generated image, by capturing feature-level difference in a learned embedding space.211
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Figure 4: (a) Varying number of images. Average LPIPS vs. number of images used per class.
LPIPS stabilizes around 50 images for most datasets, reflecting improved identity fidelity and subtle
class-distinctive feature shifts with increased embedding samples. (b) Difference Overlay. We
visualize the difference between the input image and the counterfactual from DIFFusion. From
SANE to MAD we notice a highlighting of the photon ring (green). From MAD to SANE we notice
that the ring becomes less pronounced (magenta), and wisps appear (green).

Quantitative Results. As seen in Table 2, our method achieves the highest SR across all datasets212

compared to baseline approaches. In terms of LPIPS, it shows significant improvements over previous213

methods on datasets where language struggles to capture visual details (e.g., Black-Holes, KikiBouba),214

unlike datasets with common objects like AFHQ. It also performs either best or competitively on the215

remaining natural-image datasets. Additionally, while TI + EF-DDPM improves the same text-based216

baseline, it still struggles with images that are hard to describe textually, such as Black-Holes.217

Qualitative Results. In Figure 3, we present class transitions for all baselines and DIFFusion.218

On familiar datasets like CelebA-HQ and AFHQ, our method performs well, similar to baselines.219

However, its strengths stand out in datasets where language may not fully capture visual details. For220

KikiBouba, only our method and TI + EF-DDPM round Kiki’s edges, though the baseline changes221
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the original colors, while ours keeps them intact. In the Butterfly dataset, the baselines miss the222

cross-sectional line, and in the Retina dataset, only our approach removes Drusen while preserving223

image identity. For the Black-Holes dataset, our method flips the classifier’s prediction with notable224

visual differences, as also highlighted in Figure 4b. These results suggest our method handles subtle225

visual nuances particularly well.226

4.3 Teaching Results227

We evaluate our method’s effectiveness in teaching people subtle visual differences between classes.228

User Study Design. We divided participants into three groups of 10 people each. Group 1 studied229

only unpaired images. Group 2 studied videos transitioning from original images to counterfactual230

images generated by the best baseline. Group 3 studied videos transitioning from original images to231

counterfactual images generated by our method. Since Groups 2 and 3 viewed transitions from real232

to edited images, they were also exposed to the unpaired image distribution seen by Group 1. All233

participants studied their respective materials for 3 minutes to learn to distinguish between the two234

classes before taking a test. The test required labeling 50 images, evenly distributed with 25 images235

from each class.236

Table 3: User Study Results - Mean Accuracy (%)

Black Holes Butterfly Avg.
Method Mean±SD Mean±SD Impr.

Unpaired 78.6±13.7 61.6±22.8 —
Baseline 77.2±11.5 62.8±16.8 -0.1%
Ours 90.8±4.8 87.8±10.4 +19.2%

User Study Results. We assess DIFFusion237

for teaching via a user study on the Black Holes238

and Butterfly datasets [51], shown in Table 3 and239

Figure 5. For Black Holes, unpaired material240

gave a 78% average score, but our counterfac-241

tuals boosted this to 90%, with 40% of users242

hitting near-perfect scores (96%+), surpassing243

baselines and counterfactuals. For Butterfly, un-244

paired data led to varied scores, but our coun-245

terfactuals raised 9 out of 10 users above 80%,246

standardizing understanding effectively. P-tests247

confirm significance: Black Holes (p = 0.016248

vs. 0.811 for baseline) and Butterfly (p = 0.004 vs. 0.897 for baseline), both p < 0.05. Our249

counterfactuals consistently outperform alternatives, demonstrating the usefulness of our method for250

teaching humans subtle visual differences.251

Figure 5: User Study Results. We plot the results from user studies across users who studied our
counterfactuals, users who studied the best baseline counterfactuals, and users who studied unpaired
images. For both Butterfly and Black Hole datasets, we observe that the users who studied our
counterfactuals significantly outperformed the other groups. The violin plots illustrate the distribution
of user percentages, where the width of each grey shape represents the density of data points.

4.4 Method Analysis252

Varying Dataset Size. In Figure 4a, we examine the impact of varying the number of images per253

class on the average LPIPS metric across the test sets. We notice that for most datasets, the LPIPS254

stops improving at around 50 images. In Section B.4, we show qualitative results as the number of255

images changes. We notice that as the number of images incorporated into the average embeddings256
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Figure 6: Interpolation. By varying the manipulation scale ω ∈ {−0.5, 0.0, 0.5, 1.0, 1.5}, we can
adjust the manipulation strength, allowing for smooth interpolation between the two classes. Notably,
when ω = 0, we can reconstruct the original image while preserving the classifier’s probabilities.

increases, the fidelity to the original image’s identity improves, while subtly altering the features that257

are distinctive between classes.258

Interpolation. In Figure 6, we present qualitative results demonstrating the effects of varying the259

manipulation scale, w, on an instance of a Normal retina. The manipulation scale, which can take260

positive or negative values, modulates the transformation direction. Positive values of w shift the261

features toward Drusen from the Normal retina, while negative values make the image smoother.262

Figure 7: Dataset Bias. DIFFusion can reveal dataset bias. Squirreltail-to-Canada Wild Rye shifts
emphasize environmental backgrounds over plant traits, reflecting iNaturalist’s contextual bias, while
Dachshund-to-Corgi edits prioritize foreground dog features, highlighting variable bias impact.

4.5 Visualizing Dataset Bias263

Our method edits images using differences between class mean embeddings, making it sensitive to264

dataset bias. If distinguishing features reflect unintended biases rather than targeted traits, edits deviate265

from our intent. This is both a limitation - preventing precise control, and a strength, as it visualizes266

dataset biases, revealing underlying structure. We show how dataset bias is captured by our method267

in Figure 7. In iNaturalist [51], counterfactuals from Squirreltail (dry climates) to Canada Wild268

Rye (humid) shift backgrounds more than plant structure, suggesting environmental bias dominates.269

Conversely, using the Spawrious [32] dataset, Dachshund-to-Corgi counterfactuals prioritize dog270

features (e.g., shape, size) over jungle-to-desert backgrounds. We attribute this to stronger foreground271

differences in dogs and clearer object-background separation, unlike plants blending into settings in272

iNaturalist data. The effect of dataset bias on edits varies with class prominence and context.273

5 Discussion and Limitations274

DIFFusion generates counterfactuals to support visual expertise training across domains with limited275

data. It reveals dataset biases, often shifting unintended features due to embedding reliance, which276

limits precise control. Additionally, the arithmetic is very simple: a difference of averages, highlight-277

ing a trade-off between flexibility and specificity. Future work could explore disentanglement or278

guidance mechanisms to enhance edit precision in specialized applications.279
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NeurIPS Paper Checklist417

The checklist is designed to encourage best practices for responsible machine learning research,418

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove419

the checklist: The papers not including the checklist will be desk rejected. The checklist should420

follow the references and follow the (optional) supplemental material. The checklist does NOT count421

towards the page limit.422

Please read the checklist guidelines carefully for information on how to answer these questions. For423

each question in the checklist:424

• You should answer [Yes] , [No] , or [NA] .425

• [NA] means either that the question is Not Applicable for that particular paper or the426

relevant information is Not Available.427

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).428

The checklist answers are an integral part of your paper submission. They are visible to the429

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it430

(after eventual revisions) with the final version of your paper, and its final version will be published431

with the paper.432

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.433

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a434

proper justification is given (e.g., "error bars are not reported because it would be too computationally435

expensive" or "we were unable to find the license for the dataset we used"). In general, answering436

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we437

acknowledge that the true answer is often more nuanced, so please just use your best judgment and438

write a justification to elaborate. All supporting evidence can appear either in the main paper or the439

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification440

please point to the section(s) where related material for the question can be found.441

IMPORTANT, please:442

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",443

• Keep the checklist subsection headings, questions/answers and guidelines below.444

• Do not modify the questions and only use the provided macros for your answers.445

1. Claims446

Question: Do the main claims made in the abstract and introduction accurately reflect the447

paper’s contributions and scope?448

Answer: [Yes]449

Justification: Please see the abstract and the paper.450

Guidelines:451

• The answer NA means that the abstract and introduction do not include the claims452

made in the paper.453

• The abstract and/or introduction should clearly state the claims made, including the454

contributions made in the paper and important assumptions and limitations. A No or455

NA answer to this question will not be perceived well by the reviewers.456

• The claims made should match theoretical and experimental results, and reflect how457

much the results can be expected to generalize to other settings.458

• It is fine to include aspirational goals as motivation as long as it is clear that these goals459

are not attained by the paper.460

2. Limitations461

Question: Does the paper discuss the limitations of the work performed by the authors?462

Answer: [Yes]463

Justification: Please see the limitations section at the very end.464
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Guidelines:465

• The answer NA means that the paper has no limitation while the answer No means that466

the paper has limitations, but those are not discussed in the paper.467

• The authors are encouraged to create a separate "Limitations" section in their paper.468

• The paper should point out any strong assumptions and how robust the results are to469

violations of these assumptions (e.g., independence assumptions, noiseless settings,470

model well-specification, asymptotic approximations only holding locally). The authors471

should reflect on how these assumptions might be violated in practice and what the472

implications would be.473

• The authors should reflect on the scope of the claims made, e.g., if the approach was474

only tested on a few datasets or with a few runs. In general, empirical results often475

depend on implicit assumptions, which should be articulated.476

• The authors should reflect on the factors that influence the performance of the approach.477

For example, a facial recognition algorithm may perform poorly when image resolution478

is low or images are taken in low lighting. Or a speech-to-text system might not be479

used reliably to provide closed captions for online lectures because it fails to handle480

technical jargon.481

• The authors should discuss the computational efficiency of the proposed algorithms482

and how they scale with dataset size.483

• If applicable, the authors should discuss possible limitations of their approach to484

address problems of privacy and fairness.485

• While the authors might fear that complete honesty about limitations might be used by486

reviewers as grounds for rejection, a worse outcome might be that reviewers discover487

limitations that aren’t acknowledged in the paper. The authors should use their best488

judgment and recognize that individual actions in favor of transparency play an impor-489

tant role in developing norms that preserve the integrity of the community. Reviewers490

will be specifically instructed to not penalize honesty concerning limitations.491

3. Theory assumptions and proofs492

Question: For each theoretical result, does the paper provide the full set of assumptions and493

a complete (and correct) proof?494

Answer: [NA]495

Justification: NA496

Guidelines:497

• The answer NA means that the paper does not include theoretical results.498

• All the theorems, formulas, and proofs in the paper should be numbered and cross-499

referenced.500

• All assumptions should be clearly stated or referenced in the statement of any theorems.501

• The proofs can either appear in the main paper or the supplemental material, but if502

they appear in the supplemental material, the authors are encouraged to provide a short503

proof sketch to provide intuition.504

• Inversely, any informal proof provided in the core of the paper should be complemented505

by formal proofs provided in appendix or supplemental material.506

• Theorems and Lemmas that the proof relies upon should be properly referenced.507

4. Experimental result reproducibility508

Question: Does the paper fully disclose all the information needed to reproduce the main ex-509

perimental results of the paper to the extent that it affects the main claims and/or conclusions510

of the paper (regardless of whether the code and data are provided or not)?511

Answer: [Yes]512

Yes, and implementation details can be found in the supplemental material.513

Guidelines:514

• The answer NA means that the paper does not include experiments.515
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• If the paper includes experiments, a No answer to this question will not be perceived516

well by the reviewers: Making the paper reproducible is important, regardless of517

whether the code and data are provided or not.518

• If the contribution is a dataset and/or model, the authors should describe the steps taken519

to make their results reproducible or verifiable.520

• Depending on the contribution, reproducibility can be accomplished in various ways.521

For example, if the contribution is a novel architecture, describing the architecture fully522

might suffice, or if the contribution is a specific model and empirical evaluation, it may523

be necessary to either make it possible for others to replicate the model with the same524

dataset, or provide access to the model. In general. releasing code and data is often525

one good way to accomplish this, but reproducibility can also be provided via detailed526

instructions for how to replicate the results, access to a hosted model (e.g., in the case527

of a large language model), releasing of a model checkpoint, or other means that are528

appropriate to the research performed.529

• While NeurIPS does not require releasing code, the conference does require all submis-530

sions to provide some reasonable avenue for reproducibility, which may depend on the531

nature of the contribution. For example532

(a) If the contribution is primarily a new algorithm, the paper should make it clear how533

to reproduce that algorithm.534

(b) If the contribution is primarily a new model architecture, the paper should describe535

the architecture clearly and fully.536

(c) If the contribution is a new model (e.g., a large language model), then there should537

either be a way to access this model for reproducing the results or a way to reproduce538

the model (e.g., with an open-source dataset or instructions for how to construct539

the dataset).540

(d) We recognize that reproducibility may be tricky in some cases, in which case541

authors are welcome to describe the particular way they provide for reproducibility.542

In the case of closed-source models, it may be that access to the model is limited in543

some way (e.g., to registered users), but it should be possible for other researchers544

to have some path to reproducing or verifying the results.545

5. Open access to data and code546

Question: Does the paper provide open access to the data and code, with sufficient instruc-547

tions to faithfully reproduce the main experimental results, as described in supplemental548

material?549

Answer: [Yes]550

Justification: We release code, and data is publicly available except for the Black Holes551

dataset.552

Guidelines:553

• The answer NA means that paper does not include experiments requiring code.554

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/555

public/guides/CodeSubmissionPolicy) for more details.556

• While we encourage the release of code and data, we understand that this might not be557

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not558

including code, unless this is central to the contribution (e.g., for a new open-source559

benchmark).560

• The instructions should contain the exact command and environment needed to run to561

reproduce the results. See the NeurIPS code and data submission guidelines (https:562

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.563

• The authors should provide instructions on data access and preparation, including how564

to access the raw data, preprocessed data, intermediate data, and generated data, etc.565

• The authors should provide scripts to reproduce all experimental results for the new566

proposed method and baselines. If only a subset of experiments are reproducible, they567

should state which ones are omitted from the script and why.568

• At submission time, to preserve anonymity, the authors should release anonymized569

versions (if applicable).570
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• Providing as much information as possible in supplemental material (appended to the571

paper) is recommended, but including URLs to data and code is permitted.572

6. Experimental setting/details573

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-574

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the575

results?576

Answer: [Yes]577

Justification: The main paper justifies hyperparams, optimizer, etc, but the data splits can be578

found in the code release.579

Guidelines:580

• The answer NA means that the paper does not include experiments.581

• The experimental setting should be presented in the core of the paper to a level of detail582

that is necessary to appreciate the results and make sense of them.583

• The full details can be provided either with the code, in appendix, or as supplemental584

material.585

7. Experiment statistical significance586

Question: Does the paper report error bars suitably and correctly defined or other appropriate587

information about the statistical significance of the experiments?588

Answer: [NA]589

Justification: We follow common practice.590

Guidelines:591

• The answer NA means that the paper does not include experiments.592

• The authors should answer "Yes" if the results are accompanied by error bars, confi-593

dence intervals, or statistical significance tests, at least for the experiments that support594

the main claims of the paper.595

• The factors of variability that the error bars are capturing should be clearly stated (for596

example, train/test split, initialization, random drawing of some parameter, or overall597

run with given experimental conditions).598

• The method for calculating the error bars should be explained (closed form formula,599

call to a library function, bootstrap, etc.)600

• The assumptions made should be given (e.g., Normally distributed errors).601

• It should be clear whether the error bar is the standard deviation or the standard error602

of the mean.603

• It is OK to report 1-sigma error bars, but one should state it. The authors should604

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis605

of Normality of errors is not verified.606

• For asymmetric distributions, the authors should be careful not to show in tables or607

figures symmetric error bars that would yield results that are out of range (e.g. negative608

error rates).609

• If error bars are reported in tables or plots, The authors should explain in the text how610

they were calculated and reference the corresponding figures or tables in the text.611

8. Experiments compute resources612

Question: For each experiment, does the paper provide sufficient information on the com-613

puter resources (type of compute workers, memory, time of execution) needed to reproduce614

the experiments?615

Answer: [Yes]616

Justification: See supplemental.617

Guidelines:618

• The answer NA means that the paper does not include experiments.619

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,620

or cloud provider, including relevant memory and storage.621
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• The paper should provide the amount of compute required for each of the individual622

experimental runs as well as estimate the total compute.623

• The paper should disclose whether the full research project required more compute624

than the experiments reported in the paper (e.g., preliminary or failed experiments that625

didn’t make it into the paper).626

9. Code of ethics627

Question: Does the research conducted in the paper conform, in every respect, with the628

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?629

Answer: [Yes]630

Justification: .631

Guidelines:632

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.633

• If the authors answer No, they should explain the special circumstances that require a634

deviation from the Code of Ethics.635

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-636

eration due to laws or regulations in their jurisdiction).637

10. Broader impacts638

Question: Does the paper discuss both potential positive societal impacts and negative639

societal impacts of the work performed?640

Answer: [Yes]641

Justification: See supplemental.642

Guidelines:643

• The answer NA means that there is no societal impact of the work performed.644

• If the authors answer NA or No, they should explain why their work has no societal645

impact or why the paper does not address societal impact.646

• Examples of negative societal impacts include potential malicious or unintended uses647

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations648

(e.g., deployment of technologies that could make decisions that unfairly impact specific649

groups), privacy considerations, and security considerations.650

• The conference expects that many papers will be foundational research and not tied651

to particular applications, let alone deployments. However, if there is a direct path to652

any negative applications, the authors should point it out. For example, it is legitimate653

to point out that an improvement in the quality of generative models could be used to654

generate deepfakes for disinformation. On the other hand, it is not needed to point out655

that a generic algorithm for optimizing neural networks could enable people to train656

models that generate Deepfakes faster.657

• The authors should consider possible harms that could arise when the technology is658

being used as intended and functioning correctly, harms that could arise when the659

technology is being used as intended but gives incorrect results, and harms following660

from (intentional or unintentional) misuse of the technology.661

• If there are negative societal impacts, the authors could also discuss possible mitigation662

strategies (e.g., gated release of models, providing defenses in addition to attacks,663

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from664

feedback over time, improving the efficiency and accessibility of ML).665

11. Safeguards666

Question: Does the paper describe safeguards that have been put in place for responsible667

release of data or models that have a high risk for misuse (e.g., pretrained language models,668

image generators, or scraped datasets)?669

Answer: [Yes]670

Justification: See supplemental.671

Guidelines:672

• The answer NA means that the paper poses no such risks.673
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• Released models that have a high risk for misuse or dual-use should be released with674

necessary safeguards to allow for controlled use of the model, for example by requiring675

that users adhere to usage guidelines or restrictions to access the model or implementing676

safety filters.677

• Datasets that have been scraped from the Internet could pose safety risks. The authors678

should describe how they avoided releasing unsafe images.679

• We recognize that providing effective safeguards is challenging, and many papers do680

not require this, but we encourage authors to take this into account and make a best681

faith effort.682

12. Licenses for existing assets683

Question: Are the creators or original owners of assets (e.g., code, data, models), used in684

the paper, properly credited and are the license and terms of use explicitly mentioned and685

properly respected?686

Answer: [Yes]687

Justification: See supplemental.688

Guidelines:689

• The answer NA means that the paper does not use existing assets.690

• The authors should cite the original paper that produced the code package or dataset.691

• The authors should state which version of the asset is used and, if possible, include a692

URL.693

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.694

• For scraped data from a particular source (e.g., website), the copyright and terms of695

service of that source should be provided.696

• If assets are released, the license, copyright information, and terms of use in the697

package should be provided. For popular datasets, paperswithcode.com/datasets698

has curated licenses for some datasets. Their licensing guide can help determine the699

license of a dataset.700

• For existing datasets that are re-packaged, both the original license and the license of701

the derived asset (if it has changed) should be provided.702

• If this information is not available online, the authors are encouraged to reach out to703

the asset’s creators.704

13. New assets705

Question: Are new assets introduced in the paper well documented and is the documentation706

provided alongside the assets?707

Answer: [NA]708

No new assets.709

Guidelines:710

• The answer NA means that the paper does not release new assets.711

• Researchers should communicate the details of the dataset/code/model as part of their712

submissions via structured templates. This includes details about training, license,713

limitations, etc.714

• The paper should discuss whether and how consent was obtained from people whose715

asset is used.716

• At submission time, remember to anonymize your assets (if applicable). You can either717

create an anonymized URL or include an anonymized zip file.718

14. Crowdsourcing and research with human subjects719

Question: For crowdsourcing experiments and research with human subjects, does the paper720

include the full text of instructions given to participants and screenshots, if applicable, as721

well as details about compensation (if any)?722

Answer: [Yes]723

Justification: See supplemental.724

18

paperswithcode.com/datasets


Guidelines:725

• The answer NA means that the paper does not involve crowdsourcing nor research with726

human subjects.727

• Including this information in the supplemental material is fine, but if the main contribu-728

tion of the paper involves human subjects, then as much detail as possible should be729

included in the main paper.730

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,731

or other labor should be paid at least the minimum wage in the country of the data732

collector.733

15. Institutional review board (IRB) approvals or equivalent for research with human734

subjects735

Question: Does the paper describe potential risks incurred by study participants, whether736

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)737

approvals (or an equivalent approval/review based on the requirements of your country or738

institution) were obtained?739

Answer: [Yes]740

Justification: See supplemental.741

Guidelines:742

• The answer NA means that the paper does not involve crowdsourcing nor research with743

human subjects.744

• Depending on the country in which research is conducted, IRB approval (or equivalent)745

may be required for any human subjects research. If you obtained IRB approval, you746

should clearly state this in the paper.747

• We recognize that the procedures for this may vary significantly between institutions748

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the749

guidelines for their institution.750

• For initial submissions, do not include any information that would break anonymity (if751

applicable), such as the institution conducting the review.752

16. Declaration of LLM usage753

Question: Does the paper describe the usage of LLMs if it is an important, original, or754

non-standard component of the core methods in this research? Note that if the LLM is used755

only for writing, editing, or formatting purposes and does not impact the core methodology,756

scientific rigorousness, or originality of the research, declaration is not required.757

Answer: [NA]758

Justification: NA.759

Guidelines:760

• The answer NA means that the core method development in this research does not761

involve LLMs as any important, original, or non-standard components.762

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)763

for what should or should not be described.764
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