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ABSTRACT

We propose a novel adversarial training method which leverages both the local
and global information to defend adversarial attacks. Existing adversarial training
methods usually generate adversarial perturbations locally in a supervised manner
and fail to consider the data manifold information in a global way. Consequently,
the resulting adversarial examples may corrupt the underlying data structure and
are typically biased towards the decision boundary. In this work, we exploit both
the local and global information of data manifold to generate adversarial exam-
ples in an unsupervised manner. Specifically, we design our novel framework via
an adversarial game between a discriminator and a classifier: the discriminator is
learned to differentiate the latent distributions of the natural data and the perturbed
counterpart, while the classifier is trained to recognize accurately the perturbed
examples as well as enforcing the invariance between the two latent distributions.
We conduct a series of analysis on the model robustness and also verify the effec-
tiveness of our proposed method empirically. Experimental results show that our
method substantially outperforms the recent state-of-the-art (i.e. Feature Scatter-
ing) in defending adversarial attacks by a large accuracy margin (e.g. 17.0% and
18.1% on SVHN dataset, 9.3% and 17.4% on CIFAR-10 dataset, 6.0% and 16.2%
on CIFAR-100 dataset for defending PGD20 and CW20 attacks respectively).

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved impressive performance on a broad range of datasets,
yet can be easily fooled by adversarial examples or perturbations (LeCun et al., 2015; He et al.,
2016; Gers et al., 1999). Adversarial examples have been shown to be ubiquitous beyond different
tasks such as image classification (Goodfellow et al., 2014), segmentation (Fischer et al., 2017), and
speech recognition (Carlini & Wagner, 2018). Overall, adversarial examples raise great concerns
about the robustness of learning models, and have drawn enormous attention over recent years.

To defend adversarial examples, great efforts have been made to improve the model robustness (Kan-
nan et al., 2018; You et al., 2019; Wang & Zhang, 2019; Zhang & Wang, 2019). Most of them are
based on the adversarial training, i.e. training the model with adversarially-perturbed samples rather
than clean data (Goodfellow et al., 2014; Madry et al., 2017; Lyu et al., 2015). In principle, adver-
sarial training is a min-max game between the adversarial perturbations and classifier. Namely, the
indistinguishable adversarial perturbations are designed to mislead the output of the classifier, while
the classifier is trained to produce the accurate predictions for these perturbed input data. Currently,
the adversarial perturbations are mainly computed by enforcing the output invariance in a supervised
manner (Madry et al., 2017). Despite its effectiveness in some scenarios, it is observed recently that
these approaches may still be limited in defending adversarial examples.

In particular, we argue that these current adversarial training approaches are typically conducted in
a local and supervised way and fail to consider globally the overall data manifold information; such
information however proves crucially important for attaining better generalization. As a result, the
generated adversarial examples may corrupt the underlying data structure and would be typically
biased towards the decision boundary. Therefore, the well-generalizing features inherent to the data
distribution might be lost, which limits the performance of the DNNs to defend adversarial examples
even if adversarial training is applied (Ilyas et al., 2019a; Schmidt et al., 2018). For illustration, we
have shown a toy example in Figure 1. As clearly observed, adversarially-perturbed examples gen-
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(a) Original Data (b) PGD (c) Feature Scattering (d) Ours

Figure 1: Illustrative example of different perturbation schemes. (a) Original data, Perturbed data
using (b) PGD: a supervised adversarial generation method (c) Feature Scattering, and (d) the pro-
posed ATLD method. The overlaid boundary is from the model trained on clean data.

erated by PGD, one of the most successful adversarial training method, corrupt the data manifold,
which would inevitably lead to poor performance if the training is conducted based on these per-
turbed examples. On the other hand, the current state-of-the-art method Feature Scattering (Zhang
& Wang, 2019) can partially alleviate this problem but still leads to corruptions on the data manifold.

To address this limitation, we propose a novel method called Adversarial Training with Latent Dis-
tribution (ATLD) which additionally considers the data distribution globally in an unsupervised
fashion. In this way, the data manifold could be well preserved, which is beneficial to attain better
model generalization. Moreover, since the label information is not required when computing the ad-
versarial perturbations, the resulting adversarial examples would not be biased towards the decision
boundary. This can be clearly observed in Figure 1(d).

Our method can be divided into two steps: first, we train the deep model with the adversarial exam-
ples which maximize the variance between latent distributions of clean data and adversarial coun-
terpart rather than maximizing the loss function. We reformulate it as a minimax game between a
discriminator and a classifier. The adversarial examples are crafted by the discriminator to make
different implicitly the latent distributions of clean and perturbed data, while the classifier is trained
to decrease the discrepancy between these two latent distributions as well as promoting accurate
classification on the adversarial examples as Figure 2 shows. Then, during the inference procedure,
we generate the specific perturbations through the discriminator network to diminish the impact of
the adversarial attack as shown in Figure 6 in Appendix.

On the empirical front, with the toy examples, we show that our proposed method can preserve
more information of the original distribution and learn a better decision boundary than the existing
adversarial training method. We also test our method on three different datasets: CIFAR-10, CIFAR-
100 and SVHN with the famous PGD, CW and FGSM attacks. Our ATLD method outperforms the
state-of-the-art methods by a large margin. e.g. ATLD improves over Feature Scattering (Zhang &
Wang, 2019) by 17.0% and 18.1% on SVHN for PGD20 and CW20 attacks. Our method also shows
a large superiority to the conventional adversarial training method (Madry et al., 2017), boosting the
performance by 32.0% and 30.7% on SVHN for PGD20 and CW20 attacks.

2 RELATED WORK

Adversarial Training. Adversarial training is a family of techniques to improve the model robust-
ness (Madry et al., 2017; Lyu et al., 2015). It trains the DNNs with adversarially-perturbed samples
instead of clean data. Some approaches extend the conventional adversarial training by injecting the
adversarial noise to hidden layers to boost the robustness of latent space (Ilyas et al., 2019b; You
et al., 2019; Santurkar et al., 2019; Liu et al., 2019). All of these approaches generate the adver-
sarial examples by maximizing the loss function with the label information. However, the structure
of the data distribution is destroyed since the perturbed samples could be highly biased towards the
non-optimal decision boundary (Zhang & Wang, 2019). Our proposed method has a similar train-
ing scheme with adversarial training by replacing clean data with the perturbed one. Nevertheless,
our method generates the adversarial perturbations without the label information which weakens the
impact of non-optimal decision boundary and can retain more information of the underlying data
distribution.
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Manifold-based Adversarial Training. Song et al. (2017) propose to generate the adversarial ex-
amples by projecting on a proper manifold. Zhang & Wang (2019) leverage the manifold information
in the forms of inter-sample relationship within the batch to generate adversarial adversarial per-
turbations. Virtual Adversarial Training and Manifold Adversarial Training are proposed improve
model generalization and robustness against adversarial examples by ensuring the local smooth-
ness of the data distribution (Zhang et al., 2018; Miyato et al., 2017). Some methods are designed
to enforce the local smoothness around the natural examples by penalizing the difference between
the outputs of adversarial examples and clean counterparts (Kannan et al., 2018; Chan et al., 2020;
Jakubovitz & Giryes, 2018). All of these methods just leverage the local information of the distri-
bution or manifold. Differently, our method generates the perturbations additionally considering the
structure of distribution globally.

Unsupervised Domain Adversarial Training. Domain Adversarial Training shares a training
scheme similar to our method where the classifier and discriminator compete with each other (Odena
et al., 2017; Long et al., 2018; Ganin et al., 2016). However, its objective is to reduce the gap be-
tween the source and target distributions in the latent space. The discriminator is used to measure the
divergence between these two distributions in the latent space. The training scheme of our method
is also based on competition between the classifier and discriminator. Different from the previous
framework, the discriminator of our method is used to capture the information of distributions of
adversarial examples and clean counterparts in the latent space which helps generate the adversarial
perturbations.

GAN-based Adversarial Training Methods. Several GAN-based methods leverage GANs to learn
the clean data distribution and purify the adversarial examples by projecting them on clean data
manifold before classification (Meng & Chen, 2017; Metzen et al., 2017). The framework of GAN
can also be used to generate the adversarial examples (Baluja & Fischer, 2018). The generator
produces the adversarial examples to deceive both the discriminator and classifier; the discriminator
and classifier attempt to differentiate the adversaries from clean data and produce the correct labels
respectively. Some adversary detector networks are proposed to detect the adversarial examples
which can be well aligned with our method (Gong et al., 2017; Grosse et al., 2017). In these works,
a pretrained network is augmented with a binary detector network. The training of the pretrained
network and detector involves generating adversarial examples to maximize their losses. Differently,
our method generates the adversarial examples just to minimize the loss of the discriminator and
feed them as the training set to the classifier. Such adversarial examples are deemed to induce most
different latent representations from the clean counterpart.

3 BACKGROUND

3.1 ADVERSARIAL TRAINING

Let us first introduce the widely-adopted adversarial training method for defending against adver-
sarial attacks. Specifically, it solves the following minimax optimization problem through training.

min
θ
{E(x,y)∼D[ max

x′∈Sx
L(x′, y; θ)]}, (1)

where x ∈ Rn and y ∈ R are respectively the clean data samples and the corresponding labels
drawn from the dataset D, and L(·) is the loss function of the DNN with the model parameter
θ ∈ Rm. Furthermore, we denote the clean data distribution as Q0, i.e. x ∼ Q0. , and denote
x′ ∈ Rn as perturbed samples in a feasible region Sx , {z : z ∈ B(x, ε) ∩ [−1.0, 1.0]n} with
B(z, ε) , {z : ‖x− z‖∞ ≤ ε} being the `∞-ball at center x with radius ε. By defining fθ(·) as the
mapping function from the input layer to the last latent layer, we can also rewrite the loss function
of the DNN as l(fθ(x), y) where l(·) denotes the loss function calculated from the last hidden layer
of the DNN, e.g. the cross entropy loss as typically used in DNN.

Whilst the outer minimization can be conducted by training to find the optimal model parameters θ,
the inner maximization essentially generates the strongest adversarial attacks on a given set of model
parameters θ. In general, the solution to the minimax problem can be found by training a network
minimizing the loss for worst-case adversarial examples, so as to attain adversarial robustness. Given
a set of model parameters θ, the commonly adopted solution to the inner maximization problem can
lead to either one-step (e.g., FGSM) or multi-step (e.g., PGD) approach (Madry et al., 2017). In
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particular, for a given single point x, the strongest adversarial example x′ at the t-th iteration can be
iteratively obtained by the following updating rule:

xt+1 = ΠSx(xt + α · sgn(∇xL(xt, y; θ))), (2)

where ΠSx(·) is a projection operator to project the inputs onto the region Sx, sgn(·) is the sign
function, and α is the updating step size. For the initialization, x0 can be generated by randomly
sampling in B(x, ε).

It appears in (1) that each perturbed sample x′ is obtained individually by leveraging its loss function
L(x′, y; θ) with its label y. However, without considering the inter-relationship between samples,
we may lose the global knowledge of the data manifold structure which proves highly useful for
attaining better generalization. This issue has been studied in a recent work (Zhang & Wang, 2019)
where a new method named feature scattering made a first step to consider the inter-sample rela-
tionship within the batch; unfortunately this approach did not take the full advantages of the global
knowledge of the entire data distribution. In addition, relying on the maximization of the loss func-
tion, the adversarially-perturbed data samples may be highly biased towards the decision boundary,
which potentially corrupts the structure of the original data distribution, especially when the decision
boundary is non-optimal (see Figure 1 again for the illustration).

3.2 DIVERGENCE ESTIMATION

To measure the discrepancy of two distributions, statistical divergence measures (e.g., Kullback-
Leibler and Jensen-Shannon divergence) have been proposed. In general, given two distributions
P and Q with a continuous density function p(x) and q(x) respectively, f -divergence is defined
as Df (P||Q) ,

∫
X q(x)f

(
p(x)
q(x)

)
dx. The exact computation of f -divergence is challenging, and

the estimation from samples has attracted much interest. For instance, leveraging the variational
methods, Nguyen et al. (2010) propose a method for estimating f -divergence from only samples;
Nowozin et al. (2016) extend this method by estimating the divergence with learning the parameters
of discriminator. Specifically, the f -divergence between two distributions P and Q can be lower-
bounded using Fenchel conjugate and Jensen’s inequality (Nowozin et al., 2016).

Df (P||Q) =

∫
X
q(x) sup

t∈domf∗
{tp(x)

q(x)
− f∗(t)}dx

≥ sup
T∈τ

(

∫
X
p(x)T (x)dx−

∫
X
q(x)f∗(T (x))dx)

= sup
W

(Ex∼P[gf (VW (x))] + Ex∼Q[−f∗(gf (VW (x)))]),

(3)

where VW : X → R is a discriminator network with parameter W and gf : R → domf∗ is an
output activation function which is determined by the type of discriminator. τ is an arbitrary class of
functions T : X → R. f is a convex lower-semicontinous function and f∗ is its conjugate defined
by f∗(t) = supu∈domf [ut− f(u)]. The objective of discriminator for GANs is a special case of (3)
with the activation function gf (t) = − log(1+e−t) and f∗(g) = − log(2−eg). It approximates the
Jense-Shannon divergence between real and fake distributions. Arjovsky et al. (2017) also develop a
method to estimate the Wasserstein-distance by neural network. In this paper, these methods will be
used to estimate the Jensen-Shannon divergence between latent distributions induced by adversarial
and clean examples.

4 ADVERSARIAL TRAINING WITH LATENT DISTRIBUTION

As discussed in Section 3.1, the conventional adversarial training methods rely on the knowledge of
data labels. As a result, the local information to generate adversarial examples may be biased toward
the decision boundary; such individual adversarial example generation does not capture the global
knowledge of the data manifold.

To alleviate these limitations, we propose a novel method to compute the perturbed samples by
leveraging the global knowledge of the whole data distribution and then disentangling them from
the data labels and the loss function. Generally speaking, the perturbations are generated to enlarge
the variance between latent distributions induced by clean and adversarial data.
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Formally, we try to identify the set of adversarial examples Xadv that yield in the latent space a
distribution P ∗θ through fθ(·) that is the most different from the latent distribution Qθ induced by
the clean samples Xorg = {x : x ∼ Q0}, without resorting to the corresponding labels Y . In
other words, the resulting adversarial examples can be deemed as manifold adversarial examples,
which ‘deceive’ the manifold rather than fool the classifier as defined in the traditional adversarial
examples. It is noted that the latent space to be perturbed could be any hidden layer though it
is defined in the last hidden layer before the softmax of a DNN in this paper. The optimization
problem of the proposed adversarial training can then be reformulated as follows:

min
θ

{Efθ(xadv)∼P∗θ [l(fθ(x
adv), y)] +Df (P ∗θ ||Qθ)} (4)

s.t. P ∗θ = arg max
Pθ∈P

[Df (Pθ||Qθ)] (5)

where l(·) and y are similarly defined as before, and Df (·) is the f -divergence measure of two
distributions. P = {P : fθ(x

′) ∼ P subject to ∀x ∼ Q0, x
′ ∈ B(x, ε)} is the feasible region for

the latent distribution Pθ which is induced by the set of perturbed examplesXp through fθ(·). fθ(x′)
and fθ(xadv) represents the latent features of the perturbed example x′ and adversarial example
xadv respectively. Intuitively, we try to obtain the worst latent distribution P ∗θ which is induced by
Xadv through fθ(·) within the region P , while the model parameter θ is learned to minimize the
classification loss on the latent feature fθ(xadv) ∼ P ∗θ (or equivalently adversarial example xadv ∈
Xadv) and the f -divergence between the latent distributions P ∗θ and Qθ induced by adversarial
examples Xadv and clean data Xorg.

It is still challenging to solve the above optimization problem, since both the objective function and
the constraint are entangled with the adversarial examples Xadv and the model parameters θ. To
make the problem more tractable, we propose a novel Adversarial Training with Latent Distribution
(ATLD) method. In the next subsection, by taking into account the entire data distribution globally,
we first focus on the constraint and identify the adversarial samples Xadv through the maximization
problem. We then solve the minimization of the objective function with the adversarial training
procedure. To further enhance the performance, we add specific perturbations named Inference
with Manifold Transformation (IMT) in Section 4.2 to input samples for enforcing them towards
the more separable natural data manifold. Finally, we classify the transformed data points with the
adversarially-trained model.

4.1 GENERATING ADVERSARIAL EXAMPLES FOR TRAINING

First, we optimize the constraint (5) to generate the adversarial examples or its induced distribution
P ∗θ for training. Intuitively, the adversarial examples Xadv are crafted to maximize the divergence
between the latent distributions induced by natural examplesXorg and adversarial counterpartXadv

in an unsupervised fashion since no knowledge of labels Y is required. Together with the objective
function in (4), our proposed adversarial training method is to minimize such divergence as well as
the classification error for adversarial examples Xadv .

However, it is a challenging task to evaluate the divergence between two latent distributions. To
make it more tractable, we leverage a discriminator network for estimating the Jensen-Shannon
divergence between two distributions P ∗θ /Pθ and Qθ according to Section 3.2. It is noted again that
the class label information is not used for generating adversarial examples. Hence the adversarial
examples are still generated in an unsupervised way. Then, by using (3), the optimization problem
in (4) and (5) can be approximated as follows in a tractable way.

min
θ

{ N∑
i=1

L(xadvi , yi; θ)︸ ︷︷ ︸
Lf

+ sup
W

N∑
i=1

[logDW (fθ(x
adv
i )) + (1− logDW (fθ(xi)))︸ ︷︷ ︸

Ld

]
}

s.t. xadvi = arg max
x′i∈B(xi,ε)

[logDW (fθ(x
′
i)) + (1− logDW (fθ(xi)))︸ ︷︷ ︸

Ld

]

(6)

where N denotes the number of training samples and DW denotes the discriminator network with
the sigmoid activation function and parameter W . fθ(xi) is the latent feature of the clean sample
xi. DW is used to determine whether the latent feature is from adversary manifold (output the
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manifold label of the latent feature). For ease of description, we represent the components in Eq. (6)
as two parts: Lf and Ld. Ld is the manifold loss and Lf represents the loss function of the classifier
network.

We now interpret the above optimization problem. By comparing Eq. (6) and Eq. (4), it is observed
that the Jensen-Shannon divergence between P ∗θ andQθ is approximated by supW

∑N
i=1 Ld, and the

minimization of the classification loss on adversarial examples is given by minθ
∑N
i=1 Lf . The prob-

lem (6) is optimized by updating parameters θ and W and crafting adversarial examples {xadvi }Ni=0
iteratively. The whole training procedure can be viewed as the game among three players: the clas-
sifier, discriminator, and adversarial examples. The discriminator DW is learned to differentiate the
latent distributions of the perturbed examples and clean data via maximizing the loss Ld while the
classifier fθ is trained to (1) enforce the invariance between these two distributions to confuse the
discriminatorDW by minimizing the loss Ld, and (2) classify the adversarial examples as accurately
as possible by minimizing Lf . For each training iteration, the adversarial examples are crafted to
make different the adversarial latent distribution and natural one by maximizing Ld. Although DW

cannot measure the divergence between the two latent distributions exactly at the first several train-
ing steps, it can help evaluate the divergence between distributions induced by perturbed examples
and clean ones when the parameters W converges.

However, when the latent distributions are multi-modal, which is a real scenario due to the nature of
multi-class classification, it is challenging for the discriminator to measure the divergence between
such distributions. Several work reveals that there is a high risk of failure in using the discriminator
networks to measure only a fraction of components underlying different distributions (Arjovsky
& Bottou, 2017; Che et al., 2016). Ma (2018) also shows that two different distributions are not
guaranteed to be identical even if the discriminator is fully confused. To alleviate such the problem,
we additionally train the discriminator DW to predict the class labels for latent features as (Odena
et al., 2017; Long et al., 2018). As a result, the problem (6) can then be reformulated as:

min
θ

{ N∑
i=1

L(xadvi , yi; θ)︸ ︷︷ ︸
Lf

+ sup
W

N∑
i=1

[logD0
W (fθ(x

adv
i )) + (1− logD0

W (fθ(xi)))︸ ︷︷ ︸
L0
d

]

+ min
W

[l(D1:C
W (fθ(xi)), yi) + l(D1:C

W (fθ(x
adv
i )), yi)]︸ ︷︷ ︸

L1:C
d

}
s.t. xadvi = arg max

x′i∈B(xi,ε)
[logD0

W (fθ(x
′
i)) + (1− logD0

W (fθ(xi))︸ ︷︷ ︸
L0
d

]

(7)

HereD0
W is the first dimension of the output of the discriminator, which indicates the manifold label

of the latent features; D1:C
W are the remaining C dimensions of the output of DW , used to output the

class label of the latent feature; C denotes the number of classes, and L0
d and L1:C

d are the manifold
loss and the classification loss for the discriminator network respectively. (The detailed derivation
for Eq. (6) and Eq. (7) can be seen in Appendix.) The detailed training procedure of our framework
is depicted in Figure 2.

Remarks. It is worth noting that the labeled information is not required for generating adversarial
examples. Therefore, our method prevents the perturbed examples from highly biasing towards the
decision boundary and more information of the original distribution structure is preserved. In addi-
tion, since the discriminator is trained with the whole dataset (both clean and adversarial examples),
it captures the global information of data manifold. Consequently, by training with adversarial ex-
amples generated according to the manifold loss of the discriminator, our method can improve the
model robustness against adversarial examples with the global structure of data distribution.

4.2 INFERENCE WITH MANIFOLD TRANSFORMATION

To enhance the generalization of ATLD, we further develop a new inference method with manifold
transformation. Although adversarially-trained models can well recognize adversarial examples,
there are still potential examples which are easily misclassified especially for unseen data. In other
words, the generalization to adversarial examples is hard to achieve due to the more complex distri-
bution of adversarial examples (Schmidt et al., 2018; Zhai et al., 2019). To alleviate this problem,
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Figure 2: Overall architecture of ATLD and its training procedure. 1) The natural example is fed
into the network, and the discriminator outputs its prediction. The manifold loss L0

d is computed
with the prediction and true label and generates the adversarial example xadv (blue arrow). 2) Both
the clean and adversarial sample are fed into the network to train the classifier (green arrow) and the
discriminator (yellow arrow) iteratively.

our proposed inference method first pushes adversarial examples towards the manifold of natural
examples which is simpler and further away from the decision boundary than the adversarial distri-
bution. Then the more separable adjusted examples are classified by the adversarially-trained model.
Specifically, the input sample is fed into our adversarially-trained model and the discriminator out-
puts the probability of such a sample lying on the adversarial manifold. If this probability is higher
than a certain threshold, we compute the transformed example xt by adding the specific perturbation
r∗ to the input sample x to reduce such a probability. This perturbation can be computed as:

r∗ = arg min
‖r‖∞≤ε

logD0
W (fθ(x+ r)). (8)

Intuitively, the reduction of probability of this data point lying on adversarial manifold indicates that
this point moves towards the benign example manifold after adding perturbation r∗. In other words,
it becomes more separable since the benign example manifold is further away from the decision
boundary. When the probability of the image lying on adversary manifold is lower than threshold,
we still add such a perturbation to input image to make it more separable but with smaller magnitude.
In the experiment part, we show this perturbation can move the adversarial examples away from the
decision boundary. The whole inference procedure can be seen in Figure 5 in Appendix.

5 EXPERIMENTS

We conduct experiments on the widely-used datasets, e.g., CIFAR-10, SVHN, and CIFAR-100.
Following the Feature Scattering method (Zhang & Wang, 2019), we leverage the wideres-
net (Zagoruyko & Komodakis, 2016) as our basic classifier and discriminator model structure. Dur-
ing the training phase, the initial learning rate is empirically set to 0.1 for all three datasets. We train
our model 400 epochs with the transition epoch 60, 90 and the decay rate 0.1. The input perturbation
budget is set to ε = 8 with the label smoothing rate as 0.5. We use L∞ perturbation in this paper
including all the training and evaluation.

We evaluate the various models on white-box attacks and black-box attacks. Under the white-box
attacks, we compare the accuracy of the proposed method with several competitive methods, includ-
ing: (1) the original wideresnet (Standard) trained with natural examples; (2) Traditional Adversar-
ial Training with PGD (AT) (Madry et al., 2017); (3) Triplet Loss Adversarial training (TLA) (Mao
et al., 2019); (4) Layer-wise Adversarial Training (LAT): injecting adversarial perturbation into the
latent space (Sinha et al., 2019); (5) Bilateral: adversarial perturb on examples and labels both (Wang
& Zhang, 2019); (6) Feature-scattering: generating adversarial examples with considering inter-
relationship of samples (Zhang & Wang, 2019). These comparison algorithms present the most
competitive performance on defending adversarial attack. Under the black-box attacks, we com-
pare four different algorithms used to generate the test time attacks: Vanilla training with natural
examples, adversarial training with PGD, Feature Scattering, and our proposed model.
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5.1 DEFENDING WHITE-BOX ATTACKS

We show the classification accuracy under several white-box attacks on CIFAR-10, CIFAR-100,
SVHN in this section. We first report the accuracy on CIFAR-10 in Table 1 with the attack itera-
tions T = 20, 40, 100 for PGD (Madry et al., 2017) and CW (Carlini & Wagner, 2017). We also
conduct more experiments to further evaluate the robustness of our proposed method against more
recent attacks, e.g. AutoAttack (Croce & Hein, 2020) and RayS (Chen & Gu, 2020)) as shown
in Appendix B.2. As observed, overall, our proposed method achieves a clear superiority over all
the defence approaches on both the clean data and adversarial examples (except that it is slightly
inferior to Feature Scattering in FGSM). We also observe one exception that the standard model per-
forms the best on clean data. Our approach performs much better than the other baseline models on
PGD and CW attack. Particularly, we improve the performance of the recent state-of-the-art method
Feature Scattering almost 3.1% and 5.2% under PGD20 and CW20 attack respectively. With the
implementation of Inference with Manifold Transformation (IMT), our approach (ATLD-IMT) is
8.9% and 17.4% higher than the Feature Scattering under PGD20 and CW20 attack respectively.
However, the performance on clean data is declined from 93.3% to 86.4% since IMT appears to
have a negative effect for classifying clean data. In order to reduce the impact of IMT on the natural
data, a threshold is used to limit the perturbation of IMT based on the output of discriminator. The
perturbation is halved if the output of discriminator is within the range of [0.3, 0.7] (ATLD-IMT+).
Under such setting, our approach could achieve high performance on adversarial attacks without
sacrificing its accuracy on clean data.

Similarly, the accuracy on CIFAR-100 and SVHN are shown in Table 2 with the attack iterations
T = 20, 100 for both PGD and CW for conciseness. Although our method is slightly weaker than
Feature Scattering under FGSM attack on CIFAR-100, overall, our proposed method ATLD achieves
state-of-the-art performance over all the other approaches under various adversarial attacks. Further-
more, our ATLD-IMT version exceeds Feature Scattering by almost 19.2% and 23.8% against the
attack of CW100 on CIFAR-100 and SVHN respectively. More details about the defense of white-
box attacks under different attack budgets can be seen in Appendix.

Table 1: Accuracy under different White-box Attack attack on CIFAR-10

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD40 PGD100 CW20 CW40 CW100

STANDARD 95.60 36.90 0.00 0.00 0.00 0.00 0.00 0.00
AT 85.70 54.90 44.90 44.80 44.80 45.70 45.60 45.40
TLA 86.21 58.88 51.59 - - - - -
LAT 87.80 - 53.84 - 53.04 - - -
BILATERAL 91.20 70.70 57.50 – 55.20 56.20 – 53.80
FS 90.00 78.40 70.50 70.30 68.60 62.40 62.10 60.60
ATLD 93.34 87.91 73.58 72.95 72.82 67.63 66.26 65.40
ATLD-IMT 86.42 84.62 79.48 77.06 74.20 79.81 77.14 75.20
ATLD-IMT+ 90.78 84.37 79.82 76.71 74.53 79.31 77.17 74.46

Table 2: Accuracy under different White-box Attack attack on CIFAR-100 and SVHN

MODELS
CIFAR-100(ε = 8) SVHN(ε = 8)

CLEAN FGSM PGD20 PGD100 CW20 CW100 CLEAN FGSM PGD20 PGD100 CW20 CW100

STANDARD 79.00 10.00 0.00 0.00 0.00 0.00 97.20 53.00 0.30 0.10 0.30 0.10
AT 59.90 28.50 22.60 22.30 23.20 23.00 93.90 68.40 47.90 46.00 48.70 47.30
LAT 60.94 - 27.03 26.41 - - 60.94 - 27.03 26.41 - -
BILATERAL 68.20 60.80 26.70 25.30 - 22.10 94.10 69.80 53.90 50.30 - 48.90
FS 73.90 61.00 47.20 46.20 34.60 30.60 96.20 83.50 62.90 52.00 61.30 50.80
ATLD 74.90 57.88 48.43 48.29 40.52 40.36 96.90 93.30 68.42 55.46 66.32 52.62
ATLD-IMT 63.17 56.64 53.26 53.35 50.80 49.77 85.85 89.07 79.93 74.70 79.44 74.59
ATLD-IMT+ 68.17 56.61 50.67 50.43 46.92 46.15 92.43 90.34 78.33 70.96 77.52 71.04

5.2 DEFENDING BLACK-BOX ATTACKS

To further verify the robustness of ATLD, we conduct transfer-based black-box attack experiments
on CIFAR-10. More black-box attack results on CIFAR-100 and SVHN are listed in Appendix.
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Four different models are used for generating test time attacks including the Vanilla Training model,
the Adversarial Training with PGD model, the Feature Scattering Training model and our model. As
demonstrated by the results in Table 3, our proposed approach can achieve competitive performance
almost in all the cases. Specifically, ATLD outperforms Feature Scattering significantly in 8 cases
while it demonstrates comparable or slightly worse accuracy in the other 3 cases.

It deserves our attention that ATLD-IMT appears to have a negative impact on the black-box attacks
though it stills performs much better than PGD. This may be explained in several aspects. On one
hand, the distributions of adversarial examples produced by different models may differ significantly
in the latent space; on the other hand, our discriminator lacks the ability to deal with the unseen
distributions since the discriminator only distinguishes one type of adversarial examples from the
natural data during training. We will leave the investigation of this topic as future work.

Table 3: Accuracy under black-box attack on CIFAR-10

DEFENSE
MODELS

ATTACKED MODELS

VANILLA TRAINING ADVERSARIAL TRAINING FEATURE SCATTERING OURS

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 84.62 84.89 84.83 72.20 63.77 63.27 82.26 80.56 79.31 82.56 81.34 79.97
FS 88.64 89.25 89.31 77.18 66.59 66.40 82.80 81.01 78.34 82.99 81.56 79.92
ATLD 88.11 91.36 91.52 80.13 65.91 65.76 85.97 84.43 82.15 84.47 82.24 80.34
ATLD-IMT 83.40 86.17 86.41 73.66 61.59 61.62 84.37 81.18 78.18 83.68 81.05 77.95
ATLD-IMT+ 86.53 89.93 89.91 79.16 65.61 65.07 85.76 83.75 81.40 83.90 81.98 79.77

6 CONCLUSION

We have developed a novel adversarial training method which leverages both the local and global
information to defend adversarial attacks in this paper. In contrast, existing adversarial training
methods mainly generate adversarial perturbations in a local and supervised fashion, which could
however limit the model’s generalization. We have established our novel framework via an adver-
sarial game between a discriminator and a classifier: the discriminator is learned to differentiate
globally the latent distributions of the natural data and the perturbed counterpart, while the classifier
is trained to recognize accurately the perturbed examples as well as enforcing the invariance be-
tween the two latent distributions. Extensive empirical evaluations have shown the effectiveness of
our proposed model when compared with the recent state-of-the-art in defending adversarial attacks
in both the white-box and black-box settings.
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APPENDIX

A LIST OF MAJOR NOTATION

For clarity, we list the major notations that are used in our model.

• Xorg = {x : x ∼ Q0}: the set of clean data samples, where Q0 is its underlying distribu-
tion;

• Xp = {x′ : x′ ∈ B(x, ε), ∀x ∼ Q0}: the set of perturbed samples, the element x′ ∈ Xp

is in the ε-neighborhood of the clean example x ∼ Q0;

• fθ: the mapping function from input to the latent features of the last hidden layer (i.e., the
layer before the softmax layer);

• Qθ: the underlying distribution of the latent feature fθ(x) for all x ∈ Xorg;

• Pθ: the underlying distribution of the latent feature fθ(x′) for all x′ ∈ Xp;

• P: the feasible region of the latent distribution Pθ, which is defined as P , {P : fθ(x
′) ∼

P subject to ∀x ∼ Q0, x
′ ∈ B(x, ε)}.

• Xadv: the set of the worst perturbed samples or manifold adversarial examples, the element
xadv ∈ Xadv are in the ε-neighborhood of clean example x ∼ Q0;

• P ∗θ : the worst latent distribution within the feasible region P which leads to the largest
divergence or the underlying distribution of the latent feature fθ(xadv) for all xadv ∈ Xadv;

B ADDITIONAL EXPERIMENT DETAILS

B.1 MODEL ROBUSTNESS AGAINST PGD AND CW ATTACKER UNDER DIFFERENT ATTACK
BUDGETS

We further evaluate the model robustness against PGD and CW attacks under different attack budgets
with a fixed attack step of 20. These results are shown in Figure 3. It is observed that the performance
of Adversarial Training with the PGD method (AT) drops quickly as the attack budget increases.
The Feature Scattering method (FS) can improve the model robustness across a wide range of attack
budgets. The proposed approach ADLT-IMT further boosts the performance over Feature Scattering
by a large margin under different attack budgets especially under CW attack, except that our ADLT-
IMT is slightly inferior to Feature Scattering under PGD attack with budget ε = 20 on CIFAR-10.
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Figure 3: Model performance under PGD and CW attacks with different attack budgets.

B.2 MODEL ROBUSTNESS AGAINST AUTOATTACK AND RAYS

As shown in (Croce & Hein, 2020; Chen & Gu, 2020), several models (such as Feature Scattering)
could achieve high enough robustness against PGD and CW attack, but they may fail to defend more
stronger attacks. To further evaluate the model robustness against stronger attacks, we evaluate the
robustness of our proposed method IMT+ against AutoAttack (Croce & Hein, 2020) and RayS (Chen
& Gu, 2020) attacks with L∞ budget ε = 8 on CIFAR-10 and CIFAR-100.

We first compare the accuracy of the proposed ATLD-IMT+ with several competitive methods on
CIFAR-10 in Table 4 to defend the AutoAttack (AA) and Rays attacks, including: (1) Traditional
Adversarial Training with PGD (AT) (Madry et al., 2017); (2) TRADES: trading adversarial ro-
bustness off against accuracy (Zhang et al., 2019); (3) Feature Scattering: generating adversar-
ial examples with considering inter-relationship of samples (Zhang & Wang, 2019); (4) Robust-
overfitting: improving models adversarial robustness by simply using early stop (Rice et al., 2020);
(5) Pretraining: improving models adversarial robustness with pre-training (Hendrycks et al., 2019);
(6)WAR: mitigating the perturbation stability deterioration on wider models (Wu et al., 2020); (7)
RTS: achieving high robust accuracy with semisupervised learning procedure (self-training) (Car-
mon et al., 2019); (8) Gowal et al. (2020): achieving state-of-the-art results by combining larger
models, Swish/SiLU activations and model weight averaging.

These comparison algorithms attain the most competitive performance on defending AA attack. As
observed, overall, our proposed method achieves a clear superiority over all the defence approaches
on both the clean data and adversarial examples (except on clean data, ours is slightly inferior to
Gowal et al. (2020) which is however trained with additional data). Note that Pretraining, WAR
and Gowal et al. (2020) with footnote require additional data for training (e.g. unlabeled data, pre-
training).

We also report the accuracy of ATLD-IMT+ with the state-of-the-arts methods on CIFAR-100 in
Table 5 against the AutoAttack (AA). Our proposed method again achieves on both the clean data
and AA attacked examples significant better performance than all the other defense approaches
(without data augmentation). Furthermore, it is noted that, while our ATLD-IMT+ method is just
slightly inferior to Gowal et al. (2020) (which is trained with additional data), it is substantially
ahead of the normal version of Gowal et al. (2020).
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Table 4: Accuracy under AutoAttack (AA) and RayS on CIFAR-10

MODELS
CIFAR-10(ε = 8)

CLEAN CW100 AA RAYS

AT 87.14 50.60 44.04 50.70
TRADES 84.92 56.43 53.08 57.30
FS 89.98 60.6 36.64 44.50
ROBUST-OVERFITTING 85.34 58.00 53.42 58.60
PRETRAINING* 87.11 57.40 54.92 60.10
WAR* 85.60 59.78 59.78 63.2
RTS* 89.69 62.50 59.53 64.6
GOWAL ET AL. (2020) 85.29 57.14 57.20 -
GOWAL ET AL. (2020)* 91.10 65.87 65.88 -
ATLD-IMT 86.42 75.20 70.49 70.60
ATLD-IMT+ 90.78 74.46 70.60 81.68
* INDICATES MODELS WHICH REQUIRES ADDITIONAL DATA FOR TRAIN-

ING.

Table 5: Accuracy under AutoAttack (AA) on CIFAR-100

MODELS
CIFAR-100(ε = 8)

CLEAN CW100 AA RAYS

ROBUST-OVERFITTING 53.83 28.10 18.95 -
PRETRAINING* 59.23 33.50 28.42 -
GOWAL ET AL. (2020) 60.86 30.67 30.03 -
GOWAL ET AL. (2020)* 69.15 37.70 36.88 -
ATLD-IMT 63.17 49.77 31.09 41.98
ATLD-IMT+ 68.17 46.15 32.36 43.91
* INDICATES MODELS WHICH REQUIRES ADDITIONAL DATA FOR TRAIN-

ING.

B.3 BLACK-BOX RESULTS ON SVHN AND CIFAR-100

We conduct more evaluations on the transfer-based black-box attacks on SVHN and CIFAR-100.
We report the results in Table 6. It can be observed that our proposed method overall outperforms
Feature Scattering in most of the cases on SVHN. Surprisingly, the Adversarial Training method, i.e.
the PGD, performs better than our method and Feature Scattering method in three cases. This also
partially reveals the more challenging nature of defending black-box attacks than white-box attacks.

On CIFAR-100, it can be observed that our method and Feature Scattering are comparable. The
performance of these two methods differs little though our method outperforms Feature Scatter-
ing significantly under PGD20 and CW20 against adversarial attacks generated from the Feature
Scattering model.

Overall, though the proposed ATLD method may not lead to remarkably higher performance than
the current state-of-the-art algorithms in defending black-box attacks (as we observed in the case of
white-box attacks), it still generates overall better or comparable performance. We will again leave
the further exploration of defending black-box attacks as our future work.

B.4 ILLUSTRATION OF THE OVERLAID BOUNDARY CHANGE OF DIFFERENT METHODS

We conduct a toy example in Figure 4 to illustrate the effect on how the various methods would
affect the decision boundary after the adversarial training is applied. In Figure 4, (a) shows the
decision boundary trained with clean data; (b) shows the decision boundary adversarially trained
with the perturbed samples by PGD; (c) presents the decision boundary given by the adversarial
training of Feature Scattering; and (d) illustrates the decision boundary trained from our proposed
ATLD. Clearly, both the PGD (Figure 4(b)) and the FS (Figure 4(c)) vary the original decision
boundary significantly. Moreover, it can be observed that the adversarial training with PGD corrupts
the data manifold completely. On the other hand, FS appears able to retain partially the data man-
ifold information since it considers the inter-sample relationship locally. Nonetheless, its decision
boundary appears non-smooth, which may hence degrade the performance. In contrast, as shown in
Figure 4(d), our proposed method considers to retain the data manifold globally, which varies the
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Table 6: Accuracy under black-box attack on SVHN and CIFAR-100

DEFENSE
MODELS

ATTACKED MODELS (SVHN)

VANILLA TRAINING ADVERSARIAL TRAINING FEATURE SCATTERING OURS

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 88.86 89.17 89.11 75.56 62.54 62.74 90.76 88.62 88.76 90.98 90.10 90.31
FS 80.89 86.65 87.10 82.27 65.59 65.18 96.59 81.91 82.52 93.11 81.65 82.46
ATLD 82.61 89.39 89.49 83.57 66.00 65.28 96.42 91.88 92.36 91.75 86.46 87.37
ATLD-IMT 76.71 75.27 75.51 76.20 61.57 62.91 86.10 81.67 81.60 87.85 83.60 83.59
ATLD-IMT+ 80.27 82.18 82.53 79.61 64.63 64.84 90.33 86.84 82.06 87.97 83.27 83.71

DEFENSE
MODELS

ATTACKED MODELS (CIFAR-100)

VANILLA TRAINING ADVERSARIAL TRAINING FEATURE SCATTERING OURS

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 60.46 60.88 60.92 47.16 40.37 39.53 61.61 61.20 60.78 60.71 60.99 60.96
FS 66.51 71.47 71.88 56.96 44.91 46.37 74.00 62.07 62.07 69.35 63.36 63.50
ATLD 67.30 71.42 71.56 56.01 44.92 45.84 71.52 67.72 68.32 67.20 63.02 63.69
ATLD-IMT 54.05 57.01 58.30 45.51 37.21 39.61 60.29 59.72 57.93 59.06 59.50 59.02
ATLD-IMT+ 57.77 61.40 60.66 48.15 39.07 41.30 63.09 61.48 60.78 61.32 60.95 59.93

decision boundary slightly. This may explain why our proposed ATLD method could outperform
the other approaches.

(a) Original (b) Adversarial Training

(c) Feature Scattering (d) Ours

Figure 4: The overlaid decision boundary after the various adversarial training is applied

B.5 FURTHER DETAILS OF ATLD-IMT

We elaborate the training procedure of our IMT in this section. The overall architecture of ATLD-
IMT is plotted in Figure 5. A test sample x is fed into the classifier, and the discriminator outputs
the prediction. A special perturbation in IMT is then computed from the loss DW and added back
to x; in this way, the sample would be pushed towards the manifold of natural samples, which is
supposed to be further away from the decision boundary. The prediction of the transformed xt by
the adversarially-trained classifier will then be output as the label of x.

To illustrate clearly the effect of our ATLD-IMT, we conduct additional toy experiments as shown in
Figure 6 where we respectively plot the clean or natural data, perturbed data attacked by PGD, and
adjusted data by ATLD-IMT in (a), (b), and (c). Moreover, the decision boundary is given by ATLD
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in all the three sub-figures. In (a), it deserves our attention that the boundary learned by ATLD
could classify natural data well compared to the PGD and Feature Scattering as shown in Section
A.3. As observed in (b), the perturbations generated by PGD will push the natural samples toward
or even cross the decision boundary. Our proposed IMT can push the samples towards the manifold
of natural examples as observed in (c). Since the manifold of natural examples would be more
separable, this may further increase the classification performance as observed in the experiments.

Figure 5: Detailed Procedure of IMT. 1) The natural example or adversarial example x is fed into
the network, and the discriminator outputs its prediction. The loss logDW is computed and the
transformed example xt (red arrow) is then generated. 2) The transformed sample is fed into the
network and classified by the adversarially-trained network.

(a) Clean data (b) Perturbed data by PGD (c) Adjusted data by ATLD-IMT

Figure 6: Illustration of ATLD-IMT. The decision boundary is given by ATLD in all the three sub-
figures, while (a) shows clean data, (b) draws perturbed data attacked by PGD, and (c) plots adjusted
data by ATLD-IMT. Our proposed IMT can push the samples towards the manifold of natural exam-
ples as observed in (c). Since the manifold of natural examples would be more separable, this may
further increase the classification performance.
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B.6 ILLUSTRATION OF VECTOR FIELD OF DIFFERENT PERTURBATION SCHEMES
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(a) Adversarial Training by PGD
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(b) Feature Scattering
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Figure 7: Vector field illustration of different perturbation schemes. (a) PGD, (b) Feature Scattering,
(c) the proposed ATLD method. The overlaid boundary is from the model trained on clean data. The
figure plots the direction of adversarial perturbations at different points. It is worth noting that most
directions of the adversarial perturbations for the conventional adversarial training methods point to
the decision boundary. It indicates that the resulting adversarial examples are easily biased towards
the decision boundary which potentially corrupts the structure of the underlying distribution. The
perturbation directions for Feature Scattering and our method are influenced by decision boundary
less.

C DETAILED DERIVATION

In this section, we provide the details about the derivation for the main objective function (6) and
elaborate how to compute the adversarial examples and the transformed examples.

C.1 DERIVATION FOR MAIN OBJECTIVE FUNCTION (6)

We start with minimizing the largest f -divergence between latent distributions Pθ and Qθ induced
by perturbed example x′ and natural example x. And we denote their corresponding probability
density functions as p(z) and q(z). According to Eq. (3), we have

min
θ

max
Qθ

Df (Pθ||Qθ) = min
θ

max
q(z)

∫
Z
q(z) sup

t∈domf∗
{tp(z)
q(z)

− f∗(t)}dx

≥ min
θ

max
q(z)

sup
T∈τ

(

∫
Z
p(z)T (z)dz −

∫
Z
q(z)f∗(T (z))dz)

= min
θ

max
Qθ

sup
W

{
Ez∼Pθ [gf (VW (z))] + Ez∼Qθ [−f∗(gf (VW (z)))]

}
= min

θ
sup
W

{
Ex∼D

{
max

x′∈B(x,ε)
[gf (VW (fθ(x

′)))] + [−f∗(gf (VW (fθ(x))))]
}}

(9)

To compute the Jensen-Shannon divergence between Pθ andQθ, we set gf (t) = − log(1+e−t) and
f∗(g) = − log(2− eg). Then, we have

min
θ

max
Qθ

DJS(Pθ||Qθ) ≥ min
θ

sup
W

{
Ex∼D

{
max

x′∈B(x,ε)
[logDW (fθ(x

′)))] + [1− logDW (fθ(x))))]
}}

(10)

where DW (x) = 1/(1 + e−VW (x)). (10) is equivalent to optimize the lower bound of Jensen-
Shannon divergence between Pθ and Qθ. With disentangling the computation of adversarial ex-
amples from Eq. (10) and further considering the classification loss for the classifier Lf and the
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discriminator L1:C
d , we can obtain the final objective:

min
θ

{
sup
W

N∑
i=1

[logD0
W (fθ(x

adv
i )) + (1− logD0

W (fθ(xi))︸ ︷︷ ︸
L0
d

]

+L(xadvi , yi; θ)︸ ︷︷ ︸
Lf

+ min
W

[l(D1:C
W (fθ(xi)), yi) + l(D1:C

W (fθ(x
adv
i )), yi)]︸ ︷︷ ︸

L1:C
d

}
,

s.t. xadvi = arg max
x′i∈B(xi,ε)

[logD0
W (fθ(x

′
i)) + (1− logD0

W (fθ(xi))︸ ︷︷ ︸
L0
d

]

(11)

C.2 COMPUTATION FOR ADVERSARIAL EXAMPLE AND TRANSFORMED EXAMPLE

To compute the adversarial example, we need to solve the following problem:

xadvi = arg max
x′i∈B(xi,ε)

[logD0
W (fθ(x

′
i)) + (1− logD0

W (fθ(xi))︸ ︷︷ ︸
L0
d

]
(12)

It can be reformulated as computing the adversarial perturbation as follows:

radvi = arg max
‖r‖∞≤ε

[L0
d(xi + ri, θ)] (13)

We first consider the more general case ‖r‖p ≤ ε and expand (13) with the first order Taylor expan-
sion as follows:

radvi = arg max
‖r‖p≤ε

[L0
d(xi, θ)] +∇xFT ri (14)

where F = L(xi, θ). The problem (14) can be reduced to:

max
‖ri‖p=ε

∇xFT ri (15)

We solve it with the Lagrangian multiplier method and we have

∇xFri = λ(‖ri‖p − ε) (16)

Then we make the first derivative with respect to ri:

∇xF = λ
rp−1i

p(
∑
j(r

j
i )
p)1−

1
p

(17)

∇xF =
λ

p
(
ri
ε

)p−1

(∇xF)
p
p−1 = (

λ

p
)

p
p−1 (

ri
ε

)p (18)

If we sum over two sides, we have∑
(∇xF)

p
p−1 =

∑
(
λ

p
)

p
p−1 (

ri
ε

)p (19)

‖∇xF‖p
∗

p∗ = (
λ

p
)p
∗
∗ 1 (20)

where p∗ is the dual of p, i.e. 1
p + 1

p∗ = 1. We have

(
λ

p
) = ‖∇xF‖p∗ (21)
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By combining (18) and (21), we have

r∗i =εsgn(∇xF)(
|∇xF|
‖∇xF‖p∗

)
1
p−1

=εsgn(∇xL0
d)(

|∇xL0
d|

‖∇xL0
d‖p∗

)
1
p−1

(22)

In this paper, we set p to∞. Then we have

r∗i = ε lim
p→∞

sgn(∇xL0
d)(

|∇xL0
d|

‖∇xL0
d‖p∗

)
1
p−1

= εsgn(∇xL0
d)(
|∇xL0

d|
‖∇xL0

d‖1
)0

= εsgn(∇xL0
d)

(23)

Then we can obtain the adversarial example:

x∗i = xi + εsgn(∇xL0
d) (24)

To compute the transformed example, we need to solve the following problem:

r∗ = arg min
‖r‖∞≤ε

logD0
W (fθ(x+ r)). (25)

With the similar method, we can easily get the transformed example xt

xt = x− εsgn(∇x logD0
W ). (26)

19


	Introduction
	Related Work
	Background
	Adversarial Training
	Divergence Estimation

	Adversarial Training with Latent Distribution
	Generating Adversarial Examples for Training
	Inference with Manifold Transformation

	Experiments
	Defending White-box Attacks
	Defending Black-box Attacks

	Conclusion
	List of Major Notation
	Additional EXPERIMENT DETAILS
	Model robustness against PGD and CW attacker under different attack budgets
	Model robustness against AutoAttack and RayS
	Black-box results on SVHN and CIFAR-100
	Illustration of the overlaid boundary change of different methods
	Further details of ATLD-IMT
	Illustration of Vector Field of Different Perturbation Schemes

	Detailed Derivation
	Derivation for Main Objective Function (6)
	Computation for Adversarial Example and Transformed Example


