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ABSTRACT

Time series representations learned from high-dimensional data are generally
expected to be more robust and better at generalizing to new and potentially out-
of-distribution (OOD) scenarios. Yet, this is not always the case, as variations in
unseen data or prior assumptions may insufficiently constrain the posterior probabil-
ity distribution, leading to an unstable model and non-disentangled representations,
which in turn less generalization and prediction accuracy. While identifiability
and disentangled representations for time series are often said to be beneficial
for generalizing downstream tasks, the current empirical and theoretical under-
standing remains limited. In this work, we provide results on identifiability that
guarantee complete disentangled representations via Contrastive Sparsity-inducing
Learning, which improves generalization and interpretability. Motivated by this
result, we propose the TimeCSL framework to learn a disentangled representa-
tion that generalizes and maintains compositionality. We conduct a large-scale
study on time series source separation, investigating whether sufficiently disen-
tangled representations enhance the ability to generalize to ODD downstream
tasks. Our results show that sufficient identifiability in time series representations
leads to improved performance under shifted distributions. Our code available at
https://anonymous.4open.science/r/TimeCSL-4320.

1 INTRODUCTION

Time series representation learning has been proposed as
a solution to the lack of robustness, transferability, system-
atic generalization, and interpretability of current down-
stream task methods. However, the problem of learning
meaningful representation for time series, is still open.
This problem is strongly related to learning disentangled
representations pointed by Bengio et al. (2013). Infor-
mally, a representation is considered disentangled when
its components are in one-to-one correspondence with nat-
ural and interpretable factors of variations. However, a
large body of work have investigated theoretically under
which conditions disentanglement is possible through the
lens of identifiability originated in works on non-linear Figure 1: Recovered 5 slots latents for 4
independent analysis (ICA) (Comon, 1994; Hyvarinen & runs of TimeCSL on UKDALE dataset.
Morioka, 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020b), which aims to recover independent
latent factors from mixed observations. It has been found in (Locatello et al., 2019; Van der Maaten
& Hinton, 2008; Dittadi et al., 2021; Montero et al., 2021; Lachapelle et al., 2022) that without
exploiting an appropriate class of assumptions in estimation, the latent variables are not identifiable
in the most general case. Existing methods like Generalized Contrastive Learning (GCL) via an
auxiliary variable (Hyvarinen et al., 2019), HM-NLICA (Hilvd & Hyvirinen, 2020), PCL (Hyvirinen
& Morioka, 2017), and SlowVAE (Klindt et al., 2021) rely on the assumption of mutually independent
sources in the data generation process. However, this assumption breaks down for time-lagged or
dependent latent variables, distorting identifiability. SlowVAE assumes linear relationships, while
TDRL optimizes mutual information between input and latent factors, penalizing static-dynamic
interactions, and assumes only time-lagged influences. This requires matching the temporal resolution
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Figure 2: Multi-view motivating setting for the energy time series representation. Left: We
consider {1, 2, 3,4} sources and {5} representing measurement noise or other irrelevant sources.
The mixed observation at different time are: x includes {1,2,4,5}, and x’ includes {2, 3,4,5}.
Center: Training distribution combinations. Right: compositional consistency for ODD based
recombining latent slots (z,z’") allows for generalization, thus improving downstream tasks.

of observations and latent variables (Yao et al., 2022). A more flexible framework is needed to deal
with real-world time series (e.g., energy separation), where sources are often dependent, may be
correlated in a general nonstationary environments with time-varying relations. Prior work on sparsity
through convex optimization with sparsity-inducing norms (Bach et al., 2012) and recent findings
in disentanglement using sparse task predictors (Lachapelle et al., 2023a; 2022) show impressive
results empirically. A key question is whether these sparsity can guarantee identifiability, and re-
sulting in disentangled representations that capture meaningful features and remain stable under
distribution shifts? Indeed, without identifiability, the representation of a model can be unstable and
not consistent, in the sense that retraining the same model under small perturbations of the data or
hyperparameters may result in wildly different representations. More formally, identifiability means
that the parametrization of the model is injective (Roeder et al., 2021; Khemakhem et al., 2020b).

In this work, we establish that achieving Identifiability for time series representation up to affine trans-
formations—essentially, disentanglement—is possible for time series through Contrastive Sparsity-
inducing Learning (TimeCSL) (see Fig. 1, across 4 runs, the latents are recovered, providing evidence
of the latent space recovery up to the affine transformations). Importantly, this can be achieved with
commonly adopted weaker assumptions. Specifically, we allow for statistically dependent latent
factors, with empirical evidence indicating that relaxing independence improves ODD generaliza-
tion (Roth et al., 2023; Oublal et al., 2024). Moreover, it doesn’t require complete information
on auxiliary variables. Two key strengths stand out: first, it accommodates nonlinear task-specific
predictors and unknown latent relationships, expanding its applicability to time series. Second,
TimeCSL reduces reliance on fully labeled data via contrastive learning, offering greater flexibility
across time series datasets. Our contributions include:

[1] We rely on the sparsity assumption of time series representation, and provide theoretical in-
sight and empirical arguments on how, and under which condition, identifiability up to affine
transformation is preserved. We show that TimeCSL outperform an affine transformation
e.g., permutation and element-wise transformation.

[2] Unlike many existing identifiability results, we allow for arbitrary dependencies without paramet-
ric assumptions, achieving slot latent disentanglement through Partial Selective Pairing. This
approach is particularly suitable for time series, where obtaining fully labeled data is challenging.

[3] Building on this result, we propose generalization consistency for uncommon OOD correlations.
We validate it by showing that TimeCSL effectively disentangles latent slots in real-world source
separation tasks (e.g., energy disaggregation). Notably, existing architectures (e.g., D3VAE,
RNN-VAE) improve by +11% RMSE in downstream tasks with disentangled representations. We
also release over 221 trained models as baselines for future research’.

Notation Vectors and vector-valued functions are denoted by bold letters. Vectors with factorized
dimensionality, such as the latent variable z & Rz where the latent space Z has dimension

"Pretrained models and usage guidelines: https://anonymous.4open.science/r/
TimeCSL-4320
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dz = d x n, or functions with factorized outputs, like the encoder fy: X — R24z  where fo(x) =
(e (%), 00 (X)}T, are used in this context. We refer to (f4, go) as the ground truth encoder-decoder,

and (f4, o) as the learned encoder-decoder, and z := {21,...,2,} is the learned representation
of z := {z1,...,2z,}. When indexing with k, we refer to the k-th contiguous sub-vector, such
as the learned slot latent 25, := fis (X) + G4 (x) © €, where € ~ N(0,1I), and both fis (x),
641 (x) € RZ. Additionally, for a positive integer n, we denote the set {1,...,n} as [n].

2 BACKGROUND AND PRELIMINARIES

We formalize our setting for time series representation learning, in which we have a set of high-
dimensional time series observations x as C'-variate time series observed at times ¢t = 1,...,7T. We
denote by x € R resulting matrix with rows denoted by x1, . .., x¢. Each row can be seen as
a univariate time series in R”. Without loss of generality, we consider the case where C' = 1. In
the source separation problem, the observed signal x € X is assumed to be a mixture of n sources,
denoted as y := {y1,...,yn} € YV, where each y;, € RT, with additive independent noise £ € R”:
x = > o_,yr + & The space Y representing the individual source signals, satisfies Y C X 7.
Given a data set of N samples, denoted as{x;, y;}¥,, the goal is to recover y from x. Although the
observed signal is a sum of sources, the mixing process is inherently non-linear due to interactions
from multi-state appliances, power distortions, and continuously fluctuating power in NILM (Yue
et al., 2020), similar to harmonic distortions and reverberations in audio (Lu et al., 2021).

To formalize this idea, we consider a Euclidean observation space X', and denote by ML (X) the set
of probability measures on X'. The standard framework for learning representations typically relies on
VAEs (Kingma & Welling, 2014), which consist of two main components: i) the encoder network with
parameters ¢, and ii) the decoder network with parameters . The encoder parameterized a distribution
¢4(z|x) over the latent space Z = R? with dz = d x n representing the dimensionality, serves as a
variational approximation of the Bayesian posterior py(z|x). The likelihood pg(x|z) is parameterized
by the decoder network. In standard setup, we assume a standard Gaussian prior p(z) = AN(0,I)
on Z and Gaussian distributions g, (z|x). More precisely, for any x € X', the distribution ¢, (z|x)
is a Gaussian distribution with a diagonal covariance matrix A (pg (x) , diag(a] (x))), where g :
X — Zand oy : X — Z>¢. In order to simplify some of the expressions below, it may be useful to

express the encoder network as a function fj, : X — R?42 where f; (x) = [po (X), 04 (x)]T
and the decoder is a compositional function gy : R?2 — RT*", defined as gg(z) = >, _, gor(2),

where each gy, : Riz — RTxL mainly, yx = go«(z). The encoder and decoder networks are
jointly trained on data set of N samples by minimizing the following objective:

N
Coel0n0) = 30| B logmbxla)] - SKLaax) [pa)|. @

z~q4(2]xi)

where the first part of Eq. (2.1) is the reconstruction loss and the second part is the KL-divergence
between the latent distributions (associated to the training samples) and the prior over the latent space,
weighted by a hyper-parameter 5 > 0 (Higgins et al., 2016). The reconstruction loss measures the
similarity between the true source measurements y = {y, ..., Y, } and its reconstruction given by
a multi-output decoder gy (z) =: {go1(2), - ..,gon(z)}, and can be defined in many ways. With a

Gaussian likelihood, the reconstruction loss is the squared Lo norm: ||Y"7_, (yx — go k(z))||2, or
in an unsupervised fashion, when the label source y, i.e., when the label source y is absent, the
reconstruction loss becomes ||x — gg(z)||°. After training, the VAE defines a generative model using
the prior p(z) and the decoder gg. The VAE’s generated distribution denote by gofip(z) € M (X)
allows one to generate new samples by first sampling a latent vector from the prior, then passing it
through the decoder. We further assume the following:

Assumption 2.1. The decoder gy is a piecewise affine function, such as a multilayer perceptron with
ReLU (or leaky ReLU) activations.

A special case of this model is well-studied in theory and applications and in deep generative models
literature (Burgess & Kim, 2018; Ahuja et al., 2022). We consider the following generative process:

>When x is sparse, it may equal a single source 1,50 Y C X.
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Data-generating process. We assume Asm 2.1, and we consider the following generative model
for observations x:

n J
x:dek(z)+§, z=(21,...,2,) € R™" vec(z) NijN(vec(uj),Ej), (2.2)
k=1 j=1

where ¢ € R, denote independent random noise. Our results include the noiseless case £ = 0
as a special case (i.e., when all sources are well-known). The notation vec(z) € R%™ denotes the
vectorization ° of z that follows a a multivariate Gaussian Mixture Model (GMM), and wj are the
mixture weights (with Z;-]=1 wj = 1), with mean vec(p;) € R¥™ and ; = ¥, ® ¥,, with
being the d x d covariance and ¥,, the n X n covariance between sub-components i.e., z;. Here,
® denotes the Kronecker product. The GMM prior assumption can be generalized to exponential
family mixtures (Kivva et al., 2022), provided the prior is analytic and affine-closed. Additionally,
GMMs can approximate complex distributions (Nguyen & McLachlan, 2019). This maintains the
flexibility and generalization of Eq. (2.2), and we impose no constraints on: 1) ReLU architectures,
2) independence of z, or 3) the complexity of the mixture model or neural network.

Objective. Our goal is to identify the latent variables z from a set of observations x that lead to
better reconstruction of true sources yr = gg(2), thus y, which meaning recovering x up to an
additive error £. In representation learning, we usually cannot recover the exact value of the latent
variables, but we can only identify them up to some transformation. Similar notions of identifiability
were used in previous works; In classical Linear ICA (Comon, 1994), the observed x = Az, assumes
independent components in z and a linear mixing matrix A. Compared to Eq. (2.2), this simplifies to
a linear gy with € = 0, similar to classical nonlinear ICA (Hyvirinen & Pajunen, 1999). Unlike these,
our setting via Eq. (2.2) does not require zj, to be independent, recognizing the interdependencies
in real-world data, and instead imposes structure on the nonlinear mixing Asm 2.1. Identifiability
here ensures a linear mapping between ground truth and learned variables but does not guarantee
disentanglement. Following (Lachapelle et al., 2022; Locatello et al., 2020), we extend this to define
slot identifiability up to element-wise linear transformations bellow:

Definition 2.2 (Slot Identifiability and Disentangled Representation). An autoencoder gy, f¢

slot-identifies z on Z w.r.t. the true decoder gy if z = f¢ (go(z)) minimizes the reconstruction
loss in Eq. (2.1) (first term), and there exists an invertible transformations h := {hy,hs ..., h,},
with hy, € R?, such that 2, = hy(2)Vk € [n], ensuring a one-to-one mapping. The learned
representation z identified up to permutation, scaling, and element wise linear transformation z,
if there exist a permutation matrix IT of [n], an invertible diagonal matrix A constructed from the
scaling factors of h, and an offset b, such that z = AIlz + b.

3 RELATED WORK

On the Nonlinear ICA for Time Series Representation Learning. Recent advances in nonlinear
ICA has increasingly focused on utilizing temporal structures and nonstationarities for identifiabil-
ity. (Hyvérinen & Morioka, 2016) introduced Time-Contrastive Learning (TCL), which assumes
independent sources and leverages variance differences across data segments. Similarly, Permutation-
based Contrastive Learning (PCL) identifies independent sources under the assumption of uniform
dependency. i-VAE (Khemakhem et al., 2020a) extended this by using VAEs to approximate joint
distributions in nonstationary regimes, relaxing the independence assumption with promising results.
Further, (Roth et al., 2023) and (Oublal et al., 2024) explored using contrastive learning for latent
space recovery without assuming source independence. LEAPS (Yao et al., 2021) proposed a non-
parametric approach for causal discovery in motion, but is limited by assumptions of no instantaneous
causal influence and causal constancy. Work by (Lachapelle et al., 2022), and (Klindt et al., 2021)
also requires source independence or some intervention (Ahuja et al., 2023) for identifiability. In
contrast, our work extends identifiability theory by relaxing the independence assumption. We impose
no constraints on p(z) beyond its definition in Eq. (2.2), offering a more flexible framework. Recent
studies have explored structural assumptions like orthogonality (Gresele et al., 2021; Zheng et al.,

3The vectorization of z (i.e., stacks the columns of z in a single column vector), following a multivariate
Gaussian mixture model, is equivalent to z following a Matrix Gaussian mixture, as shown in App. A.3.2.
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2022) or fixed sparsity (Moran et al., 2022), but our approach generalizes these further. Our intuitive
arguments for the reason of that sparsity and contrastive learning may be complementary to each
other, and combining them could potentially gain better disentanglement.

Time Series Representation with Out-Of-Distribution. Recent studies in time series representation
learning include methods like RNNVAE (Chung et al., 2015), SlowVAE (Klindt et al., 2021), and
D3VAE (Li et al., 2023). Other approaches, such as CoTS (Woo et al., 2022), and CDSVAE (Bai
et al.) focus on sequential data with contrasive disentnaglement. Transformer-based models, such as
Transformer (Zerveas et al., 2021), TimesNet (Wu et al., 2022), Autoformer (Wu et al., 2021), and
Informer (Zhou et al., 2021), are designed to capture long-term dependencies but do not focus on
identifiability or disentanglement. Understanding whether they preserve disentanglement presentation
across runs is crucial for robust representation learning. Inspired by OOD generalization frameworks
in object-centric models (Zhao et al., 2022; Netanyahu et al., 2023), this ideas can be extend to
time series. OOD generalization has been demonstrated in additive models (Dong & Ma, 2022) and
slot-wise functions with nonlinearity (Wiedemer et al., 2023b), assuming identifiability for images.
Work by (Lachapelle et al., 2023b) and (Wiedemer et al., 2023a) shows that additivity of the decoder
(see § 2) ensures identifiability and decoder generalization under certain assumptions, which we
apply to time series for enhanced generalization. Finding generalization with less data has been a
major focus, with SSL methods moving beyond negative pairs in CL to alignment with regularization
to avoid collapsed representations. Methods like BYOL(Grill et al., 2020) and SimSiam(Chen & He,
2021) achieve this via moving-average updates or stop-gradients, while BarlowTwins (Zbontar et al.,
2021) aligns cross-correlation with the identity matrix to reduce redundancy. Extending these to time
series, we demonstrate promising generalization by employing a decoder satisfying Asm 2.1.

4 IDENTIFIABILITY GUARANTEES VIA CONTRASTIVE SPARSITY-INDUCING

In this section, we begin with the intuition behind the proposed approach, which leverages sparsity
in the mixing process to achieve identifiability. We propose an approach leveraging sparsity in
the mixing process to achieve identifiability. Previous methods relying on independence or non-
Gaussian priors for identifiability often fail in nonlinear cases, as marginal transformations can
preserve independence without revealing true structure (Hyvérinen & Pajunen, 1999; Hyvérinen
et al., 2019). We builds on the insight that any alternative solution introducing indeterminacy, beyond
permutations or component-wise transformations, would result in a denser structure. Rather than
constraining functional forms (Taleb & Jutten, 1999; Ahuja et al., 2023) or relying on auxiliary
variables (Khemakhem et al., 2020a), we assume Partial Contrastive Sparsity for time series. This
enables learning identifiable and disentangled representations without requiring independence or
parametric assumptions on p(z).

(® Partial Contrastive Pairing for Time Series For instance, in multiview object-centric set-
tings (Bengio et al., 2020) or time series (see Fig. 2), a view x and its augmentation x’ typi-
cally share limited information rather than complete overlap. To address this, we propose a more
general case, Partial Selective Pairing, which allows pairs to share only a subset of relevant
factors, serving as a relaxation of Selective Pairing in SSL. Assuming the data process generat-
ing Eq. (2.2), we define the shared support indices S of all sources that actively contribute to x as
Sx):={k|yr #0, k=1,2,...,n}. The Partial Selective Pairing between observations x and
x' is based on shared support I(x,x") := S(x) N S(x’).

Assumption 4.1 (Sufficient Partial Selective Pairing). For each factor k& € [n], there exist observa-
tions (x,x’) € X such that the union of the shared support indices i = I(x,x’) that do not include %
must cover all other factors. Formally:

U i=m\{k} . Z:={iCq|pG) >0} @1

i€T|k¢i

where 7 is the set of shared support indices and p(i) := ##X - #{S(x) =1, x € X'} gives the
probability that the factors indexed by i are active, with k ¢ i inactive.

In nonlinear ICA, sufficient variability assumes the auxiliary variable diversely affects source dis-
tributions (Hyvirinen & Morioka, 2016; Hyvarinen et al., 2019), while (Lachapelle et al., 2023a)

adapted this concept for task supports. Similarly, Structural Variability (Ng et al., 2023) ensures each
pair of sources influences distinct observed variables. However, overlapping influences often occur in
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real-world time series, posing practical challenges. Instead, our Partial Selective Pairing assumption
Eq. (4.1) permits some overlap, provided the union of shared support indices (excluding the specific
source) spans all sources, enabling flexible modeling of source dependencies.

@ Identifiability via Contrastive Sparsity-inducing. According to Asm 4.1, the sparsity-inducing
nature arises from the existence of a source k ¢ i. However, this source is still well-defined within
the support indicating that existing source k remains inactive in either x or x’. The use of a sparsity
constraint or regularization is inspired by prior work (Ahuja et al., 2023; Lachapelle et al., 2023a) in
the context of sparse multitask learning. The loss of zero reconstruction ensures that the encoding
fs(x) retains all information, implying that (2, Z’) achieves sparsity comparable to the ground truth
(z,7'). This sparsity in a latent representation Z, means only a subset of latent variables are active
for a given input x. If %

contributing, thus making it inactive y; = 0. However,

is small (e.g., close to zero), it suggests the k-th latent variable is not
[k, 0 (%)
Gk, (%)

source k contribute to x. Bounding this ratio ensures that only the most relevant latent variables
remain active, indirectly enforcing sparsity by limiting the number of significant variables. This
raises the question of whether minimizing the [y-norm of the learned latents, with sufficient partial
pairing, can identify z through g, ! (x) up to permutation and element-wise linear transformations.
While gy is non-linear, sparsity alone only valid for the linear case (Lachapelle et al., 2022) which is a
strong assumption and may not be sufficient to resolve the ambiguities introduced by the non-linearity
in many real-world cases. Our results shows that, sparsity without additional constraints, does not
guarantee identifiability in practice, as for h = g, ~ o gg can depends on multiple components of
z. Building on this insight, we extend the concept of sparsity to contrastive sparsity by assuming
Asm 2.1, without requiring bijectivity, and provide conditions under which z can be identified up to
permutation and element-wise transformations.

is large (e.g., > 1), it implies the

Theorem 4.2 (Element-wise Identifiability given index support i for Piecewise Linear gy). Let
Fo : R — RTX" pe q continuous invertible piecewise linear function and gp : R¥" — RT*n
be a continuous invertible piecewise linear function onto its image. Assume that Asm 4.1, Asm 2.1

holds, and the mixed observations (x,x") e x , follows the data-generating process Eq. (2.2). The
learnable latent Z (resp. 2') of z (resp. Z'). If all following conditions hold:

E|zllo < E|zllo0 and E||2'|o < E||Z||o, and, 4.2)
272
Ratig(#,2,i) =S |- 2L 1| =, 4.3)
o ; [EAPIEAIP

then z is identified by h := g;l(x), ie., ge‘l o gg is a permutation composed with element-wise
invertible linear transformations (Def. 2.2).

Proof Sketch. The complet proof are given in App. A.2. Intuitively, based result (Kivva et al.,
2022) combined with contrastivity between tow latent based on their shared support indices i. This
means that for the data that satisfy Asm 4.1, gg(z) and gy(Z) are equally distributed, then there
exists an invertible affine transformation such that h(z) = z’. Second, we use the strategy of linear
identifiability (Lachapelle & Lacoste-Julien, 2022) to obtain element wise identifiaiabiltiy.

This approach is similar to SparseVAE (Moran et al., 2022), which enforces constraints using Spike-
and-Slab Lasso. However, our method ensures slot identifiability through Partial Selective Pairing,
without requiring strong assumptions or extra constraints on Z. In contrast, SparseVAE uses separate
decoders for each feature. Another line of work can dive to constrains the generator gy via its
Jacobian Jgy(z), known as compositionality and irreducibility (Von Kiigelgen et al., 2021; Brady
et al., 2023). Definitions are provided in App. A.1. Within our framework, compositionality means
that each high-dimensional source is controlled by only one latent slot zj, enforcing local sparsity.
However, minimizing compositionality in gy on Z is computationally infeasible *.

® Invariance for Compositional Generalization Representation From Thm. 4.2, it follows
that gy faithfully maps each inferred slot hy (2, (1)) to its corresponding source in x for all possible
values of z (1), ensuring identifiability (ID). We extend this to ensuring OOD scenarios by simply
composing the latents from the training set and applying a stop gradient to prevent the gradients from

*For a CNN with 1 million parameters and a batch size of 32, at least 250GB of GPU memory is required.
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Figure 3: Overview of TimeCSL framework with ResTimeCSL Architecture. After linearly
projecting the time series patches into high dimensional embeddings the ResTimeCSL is affine.

flowing back into the recomposed latent during training (see Fig. 2). During training, simultaneously,
we perform ID and OOD, ensuring that the combined latent remains consistent i.e., compositional
with the original latent, allowing the model to generalize OOD samples while retaining the ID.
Assuming the conditions stated in Thm. 4.2 are satisfied, this implies the existence of transformations
h, along with a permutation 7, that enable the slot-identification z for any composition of slots,
whether ID or OOD, over Z, as given by

¢ = Fs(R1(zr(1), s Bn(Za(n))), and Ze = fy(h1(Zr)) X -+ X hy(Zr(n))- 4.4)

The compositional generalization consistency on Z’, holds, i.e., g, '(go(z)) = 2. and gy(2z.) =

go(z), if and only if z. minimizes the invariance such that,

~—

T 2
Rinv (Zc) = Z (W> , for some Yinv > 0, Vianinv (Zc) =0. 4.5)
ik ”zCi”?”ch”Q

The condition in Eq. (4.5) ensure that f¢ inverts gy on ID and ODD by re-encoding the latent from
inferred ones (see Fig. 3). Implementation details and sampling process of z. for this regularization
is dlscussed in § 4.1. To validate Eq. (4.5), we have just to verify the compositional consistency error
i.e., g, " (Go(2z.) = z. over Vz. € Z,. Formally:

Leons 1= EZCN%(ZC)[Hf(z,(gg(zc) — z.||] = 0, where, supp(qs(z.)) = Z'Eq. (4.4). (4.6)

4.1 PUTTING IT ALL TOGETHER IN PRACTICE

On the Possibility of Sufficient Partial Pairing In Thm. 4.2, we demonstrated how slot identifiability
can be achieved on Z and ODD Z, under the compositionality condition in Eq. (4.6). A key insight
is the sufficient partial pairing for contrastive learning (Asm 4.1). This assumption can be relaxed to
factor groups when the dataset is complex enough to discern varying features (e.g., in weather time
series). For such cases, grouping factors avoids assumption violations. We validated our results on
synthetic time series data (assumptions fully satisfied) and energy separation tasks, where used to
relax assumptions via grouping factors. Data was prepared in pairs (x, x’), with additional samples
generated as needed to cover all factors.

Conditions on the Network. We proposed ResTimeCSL (see Fig. 3), an efficient architecture
for time series modeling that doesn’t violate Asm 2.1. It projects time series patches into high-
dimensional embeddings and processes them sequentially using a cross-patch linear sublayer and a
cross-channel two-layer MLP, similar to the Transformer’s FCN sublayer. Each sublayer includes
residual connections, two affine element-wise transformations, and uses ReLU or LeakyReLU
activations. For training, we leverage a VAE model with a mixture of Gaussians (Jiang et al., 2016)
for a fixed latent dimension by n and d, optimizing the objective Lyag. We sample i.i.d. pairs
(x,x') € X. Using a learnable encoder f,, x (resp. x') is encoded into [y 1, (), &4 (x)]T (resp.
[feor (X)), 64k (x')]T) with reparameterization noise terms (Kingma & Welling, 2022). The inferred
latents are (Z,Z’). A learnable decoder gy maps Z (resp. ') to single-source outputs g = Gox(Z)
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Figure 4: Identifiability Validation. MCC for factors {FR, LT, HTH} on synthetic data; Left: Weak
McCC for TimeCSL, SparseVAE, and TDRL. Right: Baseline comparisons over training steps.

(resp. §j, = Gox(Z')) for k = 1,--- ,n. Summing over these outputs reconstructs the mixed
signals X (resp. X). In practice, the sparsity of the ground truth variables z is unknown, so we
instead set a hyperparameters 7 for the sparsity constraint, furthermore for more stability, instead of

E||z||, < n we consider ||V||s norm = i Zf;l Z?;Tl |vi;|. The TimeCSL objective serves then as
a regularization term for the loss £, that denote the sum Lyag computed for both x and x’. Thus,

the final objective can be expressed as follows:

ACTimeCSL((ZZ 9; B) = £)\k/AE(¢7 0; B) + EB [’YtzligRalig (Zu Z/, 1)] + EB [’Vianinv (Zm 1)] (47)
+ Egl| max(0, [|2]|s — n) + max(0, [|2"]|s — n),

where B is a batch of data. The alignment term R ;4 penalizes deviations from cosine similarity
between corresponding latents, scaled by 7,;;4. The invariance term Ry, scaled by 7;y,, reduce
invariance of the composing z. from Z, Z’. In our experiments, we use n = 0.01 or 0.001.

5 EXPERIMENTS

5.1 VALIDATION OF THE THEORY

Datasets and Evaluation Setup. We conducted experiments for time series representation with sep-
aration task on three public Real Datasets: UK-DALE (Kelly & Knottenbelt, 2015), REDD (Kolter
& Johnson, 2011), and REFIT (Murray et al., 2017) providing power measurements from multiple
homes. The 70% of the data is used for training (including 10% of data augmentation), while
the remaining 40% of real data is evenly divided between validation and testing. Inputs are zero-
mean normalized, we consider T = 256, C' = 1 and number factors/sources n = 5: Fridge (FR),
Dishwasher (DW), Washing Machine (WM), Heater (HTR), and Lighting (LT). The mixed obser-
vation may include unlabeled noise factors. Synthetic Dataset: we generate a nonlinear mixing
observations with n = 3, from ground truth available signals of {FR, LT, HTH }from UK-DALE,
REDD, and REFIT with adding some Gaussian noise. To generate ODD scenarios Tab. 2 i.e., strong
correlation between factors, we adopt the methodology outlined in (Trduble et al., 2021) where
p(y1,y2) < exp (—||ly1 — ayz||?/20?), we modifying the parameter o to adjust the correlation.

Metrics. To assess slot identifiability, we follow (Locatello et al., 2020) by fitting nonlinear
regressors to predict each ground-truth slot zx, from inferred slots Z;, evaluating the fit with the R?
score. Slot assignments are optimized via the Hungarian algorithm (Kuhn, 1955), and we report
the average R? over matched slots. Additionally, we use the Mean Correlation Coefficient (MCC)
metric (Khemakhem et al., 2020a), reporting both strong MCC (before affine alignment) and weak
MCC (after alignment). All MCCs are computed out-of-sample: the affine map I' is fitted on one
half of the data and evaluated on the other. RMIG (Robust Mutual Information GAP) (Do & Tran,
2020), and DCT (Disentanglement, Completeness and Informativeness) (Eastwood & Williams, 2018)
adapted for time series are used to evaluate the disentanglement of factors i.e., sources. We provide
in-depth details of metrics and their implementation in App. B.4.

Contrastive Partial Selective Pairing Pipeline. Four augmentations were sequentially applied to
all contrastive methods’ pipeline branches. The parameters from the random search are: 1) Crop and
delay: applied with a 0.5 probability and a minimum size of 50% of the initial sequence. 2) Cutout
or Masking: time cutout of 5 steps with a 0.8 probability. 3) Channel Masks powers: each time
series is randomly masked out with a 0.4 probability. 4) Gaussian noise: random Gaussian noise is
added to window input x with a standard deviation form 0.1 to 0.3. Further details in ??.
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Figure 5: Experimental validation. Left: As predicted by Eq. (4.2), inducing sparsity in models
that minimize Rq1;4 and Ry, results in representations that are slot-identifiable both in ID and OOD,
provided the reconstruction loss L. (as in Eq. (2.1)) is also minimized (see heat-map). A similar
trend is observed for the Lk . Right: Compositional error Eq. (4.6) decreases throughout training,
indicating that the decoder is implicitly optimized to be compositional, then validating Eq. (4.5).
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Table 1: Average performance, considering factors {FR, DW, WM, HTH, LT }with 5 seed on real
datasets REFIT and REDD. Metrics reported are: DCI, RMIG and RMSE. Lower values are better for

all metrics. ({ lower is better, 1 higher is worse Top-1, Top-2 ).

Sc.  Methods | o= o=03 o=08
Metrics = | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM - - 5644258 - - 7024145 - - 70924+ 1.15
O $28 - - 543£3.02 - - 69.5+3.56 - - 69.95+3.26
& O Autoformer - 49.7+0.81 - - 5054215 - 5295+1.63
= O Informer - - 5034241 - - 5354198 - - 5895+ 1.89
& TimesNet - - 4924 +2.87 - - 51104264 - - 5491 +231
CoST 68.4+241 094+003 47.7+£135| 737+£241 098+£027 532+1.02 | 71.95+1.63 1.00+0.02 5845+ 0.82
SlowVAE 780+ 1.09 0.94+0.13 4324223 | 81.0+ 182 094+0.13 4924 1.13 | 7974 +£0.84 1.07+0.11 54.65+ 143
SlowVAE+HDF 79.8+£0.10 0.64+005 572+215| 81.1+034 071+0.14 5934 1.82 | 80.37+£0.05 072+0.03 61.64 £ 1.52
® TDRL 6485+ 148 042+£0.12 2856+2.15 | 76.23+£1.32 048+0.02 2633+197 | 7713+ 1.00 058 +0.24 31,99 + 1.64
O D3VAE 63.124£2.84 040 +0.14 4228 +2.13 | 63.66 +1.31  0.51 £0.38  46.11 £1.58 | 66.73 £1.88  0.67 £0.08  50.10 £0.74
O C-DSVAE 72424310 091 +0.15 4864232 | 7312+ 143 095+041 529+ 171 | 7629 £2.04 1.08+£0.09 57.45+ 081
C-DSVAE + HDF 67.80 £291 0.85+£0.14 4545+2.18 | 68.76 £1.34 0.90+0.39 49.69+1.60 | 71.50 £ 1.92 1.01 £0.08 53.85+0.76
® SparseVAE 6151+ 131 039+0.13 21.01+1.89 6729+ 1.17 043+0.62 22714 1.73 | 68.19 +0.88 0.51 +£0.21 2891 + 1.89
® TimeCSL 59.71 £1.27 0.36+0.11 18.44+1.84 6522+1.13 0.41+0.23 19.11+1.69 | 66.01 +0.86 0.48 +0.08 22.21+ 1.41
Avg. | 6974195 0.80+£0.10 473+£1.92| 734£122 090+0.17 52254147 | 7498 +£1.38 1.00+£008 549+ 1.25 |
O BertNILM - 61.42 +3.47 - - 67.61£195 - 69.06+ 143
O 828 - - 59.08+4.15 - - 68.60 4391 - - 70.68 4325
2 O Autoformer - - 49.87 £0.92 - - 51534148 - - 51884134
2 O Informer - 54.61 + 1.41 - - 58.13£0.67 - 6245£1.76
& TimesNet - - 51374241 - - 55354223 - - 58474221
CoST 62.60£220 0.86+003 4353+ 123 | 67.51 £2.11 0.89+025 48.714+0.94 | 6598+ 1.50 0.9240.02 53324075
SlowVAE 71.14£096 0.86+0.12 39.46+2.05 | 7434 £ 1.60 0.86+0.12 45024 1.04 | 73.19+£0.77 098 £0.10 49.94 £ 1.31
Slow VAE+HDF 73124009 0.59+0.05 5234+ 197 | 7440+ 031 0.65+0.13 5448 4+ 1.67 | 73.75+0.05 0.66 +0.03 56.28 + 1.40
® TDRL 5939+ 131 0.38+0.11 2612+ 197 | 69.82+ 1.19 044 +0.02 24.10+ 1.78 | 70.82 +£0.91 0.53 +£0.22 29.27 + 1.51
O D3VAE 59.39 £2.56  0.74 £0.13  39.56 £1.92 | 59.65 +£1.17 0.78 £0.34  43.13 £1.42 | 62.62£1.69 0.89 £0.07 47.07 +£0.66
) C-DSVAE 66.44£2.84 0.83+0.14 4451 +2.13 | 67.06 + 1.31 0.87+0.38 4848 4+ 1.58 | 70.24 + 1.88  0.99 +0.08 52.74 +0.74
C-DSVAE + HDF 6220+£2.67 0.78+£0.13 41.65+2.01 | 63.23+ 124 0.83+036 45714148 | 6573+ 1.77 093 +0.07 49.54 +0.70
® SparseVAE 5639+ 121 036+0.12 1921+ 1.74 61.60 £ 1.07 0.45+0.57 20.81 4+ 1.60 | 62.65+0.81 047 £0.19 2642+ 1.74
® TimeCSL 5474+1.17 033+£0.10 1693+170 60.10£1.04 038021 17.50 +1.56 | 60.31 +0.79 0.44 +0.07 20.39 + 1.30
Avg. | 6925+ 1.87 0.67+£0.09 474+£183 | 742+£136 0.73+0.10 53.164 155 | 75.55+£1.23 0.80+£0.08 5631+ 1.48 |

Baselines & Implementations. Nonlinear ICA methods are used;3-VAE, iVAE and TCL which lever-
age nonstationarity establish identifiability but assumes independent factors, and SlowVAE/SlowVAE
which exploit temporal constraints but assume independent sources. We provide also variant /3-
TC/Factor/-VAE such as D3VAE and CDSVAE implemented for time series sequence modeling. We
compare TimeCSL with downstream task models in energy disaggregation, BertNILM (Yue et al.,
2020) and S2S (Chen et al., 2018a) as a baseline, for those models, we keep the same configuration as
the original implementation. We run experiments with 5 seeds, reporting average results and standard
deviations, using 8 NVIDIA A100 GPUs. Hyperparameters and training details are in App. B.

Results. Fig. 4 shows that standard nonlinear ICA models like 5-VAE/C-DSVAE, and SlowVAE
struggle with identifiability, while SparseVAE and iVAE perform comparatively better on synthetic
data. TimeCSL with strong sparsity (7 = 0.01) achieves the best identifiability. Fig. 5 provides
convincing probes of the compositional generalization consistency condition Eq. (4.5), where mini-
mizing Raiig and R4y, both with and without sparsity, aligns with the predictions of Thm. 4.2. Slot
identifiability improves as reconstruction error decreases, with similar trends observed for L. Ad-
ditionally, Fig. 5 (Left) illustrates a reduction in compositional error as R ;;,,, is minimized, confirming
the compositional nature of the decoder as predicted by Eq. (4.5). Empirically, Tab. 7 summarizes the
performance of different models as data complexity increases, controlled by correlation levels. The
findings show that TimeCSL surpasses Sparse VAE, demonstrating better disentanglement and recon-
struction. However, at higher correlation levels, models without tailored designs for identifiability
and disentanglement face challenges, underscoring potential limitations in real-world applications.
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Figure 6: Relative RMSE (%) improvement over baseline BertNILM Yue et al., 2020 for six devices,
with the amount of labelled training data as a variable parameter.

5.2 ABLATION STUDIES AND DISCUSSION

. 2
When and how performing disentanglement? Table 2: Average l", RMIG and v caker/strong
In Tab. 2, we use as TimeCSL regularizer and MCC scores on UK-DALE datas:et with factqrs {FR’
we train models only on (REFIT+REDD) and DW, WM, HTH, LT}. (J lower is better, T higher is
tested on possible ODD dataset i.e., UKDALE, better Top-1, Top-2)." indicates implemented.

and we explore its application with alternative =~ Meted Adbation I BMIG, wohWeel il
structures tailored for time series with anal- 5 wwvaE wweing LealyReLU 0065 0660 0340 0.080
ysis impact of nonlieanrtité of the dedcoder ocbswe " RS 01 0is oes oo
(Asm 2.1 nothold, parulaly hose residual -y 8 4
in Difussion based VAE model (D3VAE). W cposc | |~ s om o o o
see that the model it generalize after incorpo- g hvAETmeCsL ifwion Sotmax - 0285 0682 073 0.19%
rating TimeCSL with another method slightly ¢ ™ e
enhances results, as the alternative regularizes ¢ %% ., R o2 om0 e oo
assumes independent factorization, potentially =~ g fmecst/sefatenion - Sofwar 0208 0267 L e

compromising the relaxing effect. Secondly,

TimeCSL shows improved performance as sparsity increases, with R positively correlating with per-
formance. RMIG further indicates that integrating attention with TimeCSL yields well-disentangled
representations. The attention mechanism notably enhances overall model performance, including
identifiability metrics, suggesting potential for guaranteeing identifiable disentangled representations.

Is that sparsity enough for Robustness, is donwstream task ? We provide evidence that
TimeCSL exhibits robustness across different correlation scenarios as illustrated in Fig. 6. In
addition, we conduct experiments using different sate of the art architecture for time series repre-
sentation. The results presented in highlight that TimeCSL with sparsity 7 = 0.1 consistently than
TimeCSL with lower sparsity 7 = 0.01 outperforms the competing baseline across all three settings,
reaffirming its effectiveness and versatility in diverse scenarios where data exibit a strong correlation.
Due to limited space, additional results are available in App. B.8.

6 CONCLUSION

In this work, we delved into the effectiveness of contrastive sparsity-inducing techniques in attaining
both identifiability and generalization. We showcased that disentangled representations, comple-
mented by sparse-inducing methods through contrastive learning, improve generalization, particularly
when the downstream task can be tackled using only a portion of the underlying factors of variation.
Looking ahead, future investigations could explore leveraging such meaningful representations for
downstream tasks, as evidenced by our primary experiments demonstrating performance enhancement.
Furthermore, we posit that such representations could prove efficient in scenarios characterized by
limited labeled data for time series representation. We have demonstrated generalization through com-
positional representations. We built on the literature in generative models and non-linear ICA (Kivva
et al., 2022; Hyvarinen et al., 2019; Lachapelle et al., 2022) and made two key assumptions : i) the
satisfy partial sufficiency to induce sparsity through contrastive learning, and ii) gy it is injective
when mixing latents. We suggest that future work should explore relaxing these assumptions.

Limitations & Future Work We recognize that our assumptions regarding time series representation
and source separation have potential for extension. The Sufficient Partial Pairing assumption (Asm 4.1)
requires sufficient data, and as discussed, it can be relaxed to group factors as well. Our piecewise
injectivity assumption (Asm 2.1), although potentially violated in practice, can be revised to take
account of structures such as attention mechanisms or instance normalisation.

10
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Supplementary Material:

To ensure a comprehensive understanding of our paper and to support reproducibility and reliability,
we present additional results and provide complete proofs for the theorems articulated in the main
paper. This supplementary material is meticulously organized as follows:
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Figure 7: Recovered latent spaces for 4 runs of TimeCSL on REDD dataset #1 with 5 latents
(n=5,d = 16).

A DEFINITIONS, PROPOSITIONS, AND PROOFS ANALYSIS

In this section, we detail the contributions of the paper, including all the details. Although there is no
change in their contents, the formulation of some definitions and theorems are slightly altered here to
be more precise and cover edge cases omitted in the main text. Hence, the numbering of the restated
elements is reminiscent of that used in the main text.

A.1 GENERALIZATION, COMPOSITIONALITY AND IRREDUCIBILITY ASSUMPTIONS

Compositional contrast In recent work on compositionality (Assouel et al., 2022; Zhao et al.,
2022; Kurth-Nelson et al., 2022) and its importance in learning models that can generalize well
to novel situations, the concept of compositional contrast has emerged as a powerful tool for
evaluating how well a model separates information into independent, non-interacting components.
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Table 3: Related work in nonlinear ICA for time series. A blue check denotes that a method has an
attribute, whereas a red cross denotes the opposite. T indicates an approach we implemented.

Approach Temporal Data Dependent Factors Nonparametric Expression Stationary Process

TCL (Hyvarinen & Morioka, 2016) v X X X
PCL (Hyvarinen & Morioka, 2017) v X v v
GCL (Hyvarinen et al., 2019) v X v X
iVAE (Khemakhem et al., 2020b) X X X X
GIN (Sorrenson et al., 2020) X X X X
HM-NLICA (Hilvd & Hyviirinen, 2020) v X v X
SlowVAE (Klindt et al., 2021) v X X v
(Yao et al., 2021) LEAP (Theorem 1) v v v X
(Yao et al., 2021) LEAP (Theorem 2) v v X v
TimeCSL (our)’ TimeCSL (Theorem 1) v v v v+ X

This concept is particularly relevant in the context of time series analysis or image generation,
where the model’s ability to decompose an input into distinct parts, or slots,” can significantly
impact the quality of predictions and interpretability. Compositionality ensures that each slot, or
latent variable, corresponds to a specific factor or component of the data. In highly compositional
models, these components do not interact with each other—each one affects a distinct aspect of the
output. In contrast, non-compositional models tend to mix these components, making it harder to
disentangle the factors and interpret the model’s output. Evaluating how well a model adheres to
compositionality principles can be challenging, as it requires quantifying how independent the slots
are in their contribution to the final output. To address this, Brady et al. (2023) introduced the notion
of compositional contrast, which measures the extent to which the model’s latent variables (slots)
interact when producing the final output. This measure is particularly useful in determining whether
a decoder is truly compositional—that is, whether each slot contributes independently of the others,
or if there are unwanted interactions between them. Before we introduce the formal definition of
compositional contrast, it is important to understand the underlying principle. The intuition behind
the compositional contrast is that if a model is fully compositional, each slot should affect only a
specific subset of the output (e.g., one region of an image or one time series variable) and have
no influence on other components. Conversely, if the model is not compositional, changes in one
slot will influence multiple components of the output simultaneously, indicating that the slots are
not independent. The compositional contrast function captures this idea by calculating how much
the gradients of each slot (with respect to the model’s output) overlap. If the gradients of different
slots with respect to the same output component are non-zero, this suggests interaction between the
slots, indicating a lack of compositionality. The function sums these interactions across all slots
and output components, providing a single value that quantifies the degree of interaction. A lower
compositional contrast value suggests higher compositionality, while a higher value indicates more
interaction between slots. Formally, the compositional contrast is defined as follows:

Definition A.1 (Compositional Contrast). Let gg : Z — A& be differentiable. The compositional
contrast of gy at z is

(A1)

ag@n 89077,
o] [

This contrast function was proven to be zero if and only if gy is compositional according to Eq. (4.5).
The function can be understood as computing each pairwise product of the (L2) norms for each
pixel’s gradients with respect to any two distinct slots k£ # j and taking the sum. This quantity
is non-negative and will only be zero if each pixel is affected by at most one slot, ensuring that
gy satisfies Eq. (4.5). We can use this function to measure the compositional of a decoder in our
experiments (see § 4), where it serves as a key indicator of how effectively the model decomposes its
inputs into independent components. More empirical and theoretical details on the function can be
found in Brady et al. (2023).

A.2 ELEMENT-WISE IDENTIFIABILITY GIVEN INDEX SUPPORT I FOR PIECEWISE LINEAR

In this section, we present the proof of Thm. 4.2. To establish a solid foundation for the argument,
we first restate Asm 4.1, which plays a pivotal role in the proof.

Assumption 4.1 (Sufficient Partial Selective Pairing). For each factor k € [n], there exist observa-
tions (x,x’) € X such that the union of the shared support indices i = I(x,x’) that do not include k
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must cover all other factors. Formally:

U i=@m\{x} . Z:={ichlpG) >0} @.1)
ieT|kgi
where Z is the set of shared support indices and p(i) := #LX - #{S(x) =1, x € X} gives the
probability that the factors indexed by i are active, with k ¢ i inactive.

Additionally, we introduce some notation. For i € Z, we assume that the probability measure P,

admits a density with respect to the Lebesgue measure on RIil. We let = denote equality in the
distribution.

Theorem 4.2 (Element-wise Identifiability given index support i for Piecewise Linear gg). Let
Fs : R — RTX" pe g continuous invertible piecewise linear function and gp : R¥>" — RT*n
be a continuous invertible piecewise linear function onto its image. Assume that Asm 4.1, Asm 2.1

holds, and the mixed observations (x,x") e x , follows the data-generating process Eq. (2.2). The
learnable latent Z (resp. Z') of z (resp. z'). If all following conditions hold:

Elzllo < Elzllo and E|Z'|lo < E[2'|o, and, 4.2)
Ratig(2,2,1) ==Y Z 2 0 (4.3)
lig\2,2',1) := o e =Y .
o perll B EA PYEA P

then z is identified by h := g, 1(x), ie, g, Yo gg is a permutation composed with element-wise
invertible linear transformations (Def. 2.2).

Proof. The proving strategy has three steps: Intuitively, based result (Kivva et al., 2022) combined
with contrastivity beteween tow latent based their shared support indices i. This means that for the
data that satisfy Asm 4.1, gy (z) and §p(Z) are equally distributed, then there exists an invertible affine
transformation such that h(z) = z’. Second, we use the strategy of linear identifiability (Lachapelle
& Lacoste-Julien, 2022) to obtain element wise identifiaiabiltiy:

Step 1) Contrastive Sparsity and Linear Identifiability given pairsi We begin by recalling the
result from Kivva et al. (2022) on the existing of an invertible function affine transformation hy, we
adapt this for the case where if the reconstruction objective is minizzed and alignment. The theorem
on identifiability of MVNs states:

Theorem A.2. Let go,g, : R REXT be piecewise affine functions satisfying 2.1. Let
J J’
zZ ~ l; wiN (pi, ;) and z' ~ 321 wiN (uf;, 2%) be a pair of GMMs (in reduced form). Suppose

that go(z) and g, (z') are equally distributed. Then there exists an invertible affine transformation
h : R¥*™ — RIX™ sych that h(z) = 2/, i.e., J = J' and for some permutation 7 we have w; = w;(k)
and hgN (i, i) = N (17 ), 2 )

(i
We recall that the transformation and the number of components can be unknown and arbitrary, and
that no assumption of separation or independence is necessary for the distribution.

By Theorem C.2 (Kivva et al., 2022), since contrastive learning involves the minimisation of a
contrastive loss which ensures that similar data points (positive pairs) are moved closer together and
dissimilar data points (negative pairs) are moved further apart. Let the inferred latent representation
(z,2') be handled by the exact same function fj, and we consider the zero reconstruction under
Raiing = 0 for all slot indices in i. Alongside this, contrastive loss minimization induces the
distributions of gy (z) and gy (z’) to become indistinguishable on i € i to be well-aligned, apart from
for k ¢ i, but as we consider the ?? on the sufficient partial pairing that will cover this factor k in
another pairing sample of the pair (x,x’). Thus, according to Theorem C.2 (Kivva et al., 2022), there
must exist an invertible affine transformation h such that h(z) = z’z). It is more likely to observe
that :

J J
> wrgotN (pk, ox) Ngeﬁf¢(zwk/\/(uk70k)>- (A.2)

j=1 =1
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In other words, minimizing to hold (i) and zeros error construction, implies a mixture model whose
components are piecewise affine transformations identifiable.

Step 2) Sparsity Pattern of an Invertible Matrix with an element-wise linear transformation
Since x = gy(z), we can rewrite perfect reconstruction as:

Ellgo(z) — §o(£s(g0(2)))[5 =10 (10)

This means gg and gy o fy o go are equal P,-almost everywhere. Both of these functions are
continuous, gg by Asm 2.1, and gg o f4 o go because Gg is continuous, and gy, f are linear. Since
they are continuous and equal P,-almost everywhere Z, this means that they must be equal over the
support of Z, i.e.,

90(z) =Ggoo fpog0(z), VzeZ. (11)

This can be easily shown by contradiction considering any slot latent z’ € Z on which gy and
§o © fs 0 go are different, i.e., Go o fy 0 Go(2') # go(2'). This would imply that (gg — go © fo © go),
which is also a continuous function, is non-zero at z’ and in its neighborhood, which contradict the
assumption that go and gy o fj o ge are the same P,-almost everywhere. We can now apply the
inverse of gy on both sides to obtain

G, ' 090(z) = fy090(z) =h(z), VzeZ. (12)

Since both gg and f are invertible linear functions, given the fisrt part of the proof (Step 1-App. A.2)
h is also an invertible linear function. We now show that h is a permutation composed with an
element-wise linear transformation. To do this, we leverage the sparsity constraint:

El|zllo < El/zllo (A.3)

E| fs(ge(2))llo < Elzllo (A4)
Ellh(z)lo < E|z|o (A.5)
(A.6)

Since hy, is invertible linear transformation, we have that hy(z) = wy, - z and its determinant is
non-zero, i.e.,

det(h) := > sign(m) [ [ by # 0, (A
k=1

TEP

where P denotes the set of all n-permutations. This expression implies that at least one term in the

sum is non-zero, meaning there exists a permutation 7 € P such that for every k € [n], aihfk) #0

Following the steps outlined in Theorem B.4 by (Lachapelle et al., 2022), and under the assumption
of Asm 4.1, we extend the disentanglement analysis to our setting. This leads to the conclusion that
h can be expressed as a permutation composed with an element-wise invertible linear transformation,
based on the shared support indices i of the latent slot within the subspace Z;. Specifically, there
exists a permutation 7 on [n] such that, for each latent slot k, the corresponding permutation is given
by 7 (k). Since 7 is a finite set, which allows us to order its elements as {ii, ..., iz }. Therefore,

we can express Z as the union Z = Ugl Z()  While we have already shown that h is affine on
each Z;, we now demonstrate that h is linear on Z, i.e., h(z) is a linear function on the entire set
Z = ;7 Zi- This completes the proof. O

A.3 THE GENERATIVE PROCESS AND THE ELBO FOR MULTIVARIATES MIXTURE GAUSSIAN

We in this subsection how TimeCSL is trained based an a VAE process does similar to (Kivva et al.,
2022; Jang et al., 2017), whcih more kind of unsupervised generative approach for clustering that
performance well, we herein first describe the generative process of TimeCSL. Specifically, suppose
there are n slots latents each has a dimension d, an observed sample x ~ X is generated by the
following process:
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Algorithm 1 Generative Process

1: Input: Prior probabilities w, neural network parameters 6
2: forj=1,2,...,Ndo

3:  Sample slot k ~ Cat(w)

4:  Sample latent vector z() ~ N (), ¢)21)

5. Compute [pg (x)) ;log oy (x(j))2] = go(z9))

6:  Sample observation x; ~ N (g (x9)) , 09 (x(j))2 I) or Ber(pg (x19)))
7: end for 4

8: return {x(), z() E}N

Lemma A.3. Given two multivariate Gaussian distributions q(z) = N (z; ft,5%1) and p(z) =
N (z; p, o21), we have:

J ~2

1 loix: 0 — q1.)2
/q(z) log p(z) dz = Z ~3 log (271'0?) - T"jz - % (A8)
j=1 J J

where p;, 0;, fi; and 6 simply denote the 5™ element of p, o, i and &, respectively, and J = d x n
is the dimensionality of z.

Proof.
[ ata)toxta) da - / Nz 1, 5°T) log N (2 s, o°T) dz

J
(2 — 145)° (2 — 15)?
————2" ) log eXp )| dz
/H 27TU 20]2 H 20]2

J
1 P — fi;)? 1 2
= / exp( (2 AQJ) ) log exp(f( J ';L]) )| dz;
j=1 2762 2 2ro 20;
J
1 )2 . 2 o 2
:Z/ exp( (2 A/;J) )|: log(ZWUJ)} dz; / exp(—( J A/;‘J) )(Zj ng)
=1 2162 26 262 263 203
J
1 0-)2 _ 0 2 — 00 —
= prostened) - [ A enp(- Rl B m R 2 2 B Z ) £ s = )
i=1 27T5’2 2Uj 2(Tj
&2 1 — zi — i 2 1 2 2 . 2
:b——‘;/ exp( (]2A27) )(472A27) dzj—/ eXp(—(J A/;]) )(N7 57) dz;
o5 V2 o o V62 2 20'j
~9 2 .2 2
1 L\ %5 (i — 15)
p_ % BN g T
0]2 V2T exp( 2 ) 2 i 2012-
&2 1 T z2 (fu; — 1)
b L = (g iy TR
7 [ et aen- - P
6‘2 1 $2 o] 1 x2 €T (" 4)2
—p_ 0 Zj ,4’ ,/ I A R AN R Bl
o? L/zw( )=~ | g el 207
J ~92 9
1 2 9 (/’(‘] _MJ)
=1 j j

where b denotes 24‘7‘]:1 10g(27m ) for simplicity.

20



Under review as a conference paper at ICLR 2025

A.3.1 VARIATIONAL LOWER BOUND FOR TIMECSL

A TimeCSL instance is tuned to maximize the likelihood of the given data points. Given the
generative process in Section A.3, by using Jensen’s inequality, the log-likelihood of TimeCSL can

be written as:
log p(x log/Zp X, %, ¢)d

p(x,2,¢)

> Ey(g.epollog
q(z,c| )[ q(Z,c|X)

] = £ELBO(X) (A9)

where Lg; go is the evidence lower bound (ELBO), ¢(z, ¢|x) is the variational posterior to approximate
the true posterior p(z, ¢|x). In TimeCSL, we assume ¢(z, ¢|x) to be a mean-field distribution and
can be factorized as:

q(z, c|x) = q(z]x)q(k|x). (A.10)

Then, according to Equation A.10, the Lg go(x) in Equation A.9 can be rewritten as:

q(2, c|x)

Letgo(X) = Egzex) {log

= Eyazelx) [log p(x,2z,¢c) —log q(z, c|x)]
= Ey(z,0x) [log p(x|2) + log p(z|c) (A.11)
+logp(k) — log q(z[x) — log g(k[x)]
In TimeCSL, similar to VAE, we use a neural network g to model ¢(z|x):
[;log 6% = fs(x;9) (A.12)
q(z]x) = N(z;@,6%1) (A.13)
where ¢ is the parameter of network g.

By substituting the terms in Equation A.11 and using the SGVB estimator and the reparameterization
trick, the Lgrpo(X) can be rewritten as: °

Lerso(x ZZCE logp,(l>| + (1 —z)fo(l = g)‘i)
K J A2 ~ 2
1 2 i, (Al — pely)
! Gogotl, + T1i 4 Bl bl
"3 2w losetly + o T
J
Wk 1
+Z’y;clog7 52 1+ logé?|;) (A.14)

where N is the number of Monte Carlo samples in the SGVB estimator, D is the dimensionality of x

and ug;), x; is the i element of x, .J is the dimensionality of g, 0',%, [ and 62, and *| ;j denotes the
th element of *, n is the number of slots, wy, is the prior probability of slot k, and ;. denotes ¢(k|x)

for simplicity.

In Equation A.14, we compute ,ug) as

ph = f4(21;0), (A.15)

where z() is the I"™ sample from ¢(z|x) by Equation A.13 to produce the Monte Carlo samples.
According to the reparameterization trick, z() is obtained by

20 =p+60ed, (A.16)

SThis is the case when the observation x is binary. For the real-valued situation, the ELBO can be obtained
in a similar way.
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where €!) ~ N(0,1), o is element-wise multiplication, and fi, & are derived by Equation A.12.

We now describe how to formulate . 2 ¢(k|x) in Equation A.14 to maximize the ELBO. Specifically,
LeLpo(x) can be rewritten as:

Leso(X) = Eq(z,c/x) {log (( C|X))}

— x)q(z|x) |lo p(x|z)p(z) o p(klz) Z
= [ etk ) roe PEELE) 10y 2O 4

- / a(z]x) log L& (' |)p§ pzp(z) / 4(zlx) D1 (g (K|)|p(kl2)) da (A7)

Once the training is done by maximizing the ELBO w.r.t the parameters of {7, ux, 01,0, ¢}, k €
{1,---, K}, alatent representation z can be extracted for each observed sample x by Equation A.12
and Equation A.13.

A.3.2 THE EQUIVALENCE BETWEEN MATRIX NORMAL AND MULTIVARIATE NORMAL
DISTRIBUTIONS

In our formulation, we use a vectorization of the matrix z € R4*"_ which follows a multivariate
Gaussian model. We now show that this can also be interpreted as a Matrix Normal distribution.
The equivalence between the Matrix Normal and the Multivariate Normal density functions can be
established using properties of the trace and the Kronecker product.

Proof. Let z be modeled as a mixture of J Matrix Normal distributions. Each component of this
mixture is characterized by a mean matrix p; € R?" and a covariance matrix £; = ¥, ® £, €
R*d @ R"*" where 3,, and X,, are the row and column covariance matrices, respectively. The
probability density function of z is thus given by

J
z) = Z%‘N(Z | 1y X5),
j=1

where w; are the mixing weights such that w; > 0 and Z}]:l wj = 1.

The Matrix Normal distribution is defined as

N(z | p;,2;5) = o Ty T

1 1 _ 1

where z is a d X n matrix, and the covariance matrix X; is the Kronecker product 3J,, ® X,,, with ¥,
and X, being the covariance matrices of the rows and columns of z, respectively.

To connect the Matrix Mixture Normal distribution with the Mixture of Multivariate Normal distribu-
tions, we vectorize the matrix z. The vectorization of a matrix z € R?*™ is given by

T .
vec(z) = [z11 221 0 Za1 212 Zdn) c RIX(dn)

where z; denotes the i-th column of z, and the resulting vector vec(z) is a d - n-dimensional vector.

Now, substituting the vectorized form of z into the Matrix Normal distribution, we have

1 1
N (vec(z) | vec(p;), X)) = ———————exp <—ZT§J-1Z>, (A.18)
(vec(@) [ vee(p), ) = gz o0 (- 527%;

where zZ = vec(z) — vec(p ;). Next, observe that the mixture model for z in the original form becomes
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J
falz) =Y wiN(vec(z) | vee(py), = ® £), (A.19)
j=1

which is a mixture of multivariate normal distributions in the vectorized space R% ™. This shows that
the Matrix Mixture Normal distribution is equivalent to a Mixture of Multivariate Normal distributions
upon vectorization. To complete the proof, we use the determinant property of the Kronecker product:

12, @2, = 2,24 (A.20)

Thus, the determinant of the covariance matrix ¥, ® 3, can be written as the product of the
determinants of 3, and 3J,,, raised to the appropriate powers. This confirms that the matrix mixture
normal distribution is indeed equivalent to the mixture of multivariate normal distributions. O

A.4 ASSUMPTION STRUCTURAL VARIABILITY AND PARTIAL

Assumption-1 (Ng et al., 2023) stipulates that for any pair of sources k and ¢, the supports of the
corresponding columns in the mixing matrix A (denoted a; and a,) must differ in at least two
observed variables, i.e.,

|supp(ay) U supp(ag)| — [supp(ax) N supp(ar)| > 1.

Example.1 (Assumption-1 fails) This ensures distinct influences across observed variables. If the
supports are nearly identical, Assumption-1 fails. For example, consider the mixing matrix A:

x (t) 1 05 0 027 [yt
X (t) 03 1 04 0| fga(t)]
x3(t)| — [0 02 1 05| |ys(t)
x4(t) 01 0 06 1] |yalt)

with supports supp(a;) = {1,2,4}, supp(az) = {1,2,3}, supp(az) = {2,3,4}, and supp(as) =
{1, 3, 4}. For y; and ys,, the difference in support is 2 (validating Assumption-1), as is the case for
ys3 and y4. However, the significant overlap in the observed variables they influence (y; and y» both
affect x1(t), x2(t), and y3 and y, affect x3(t),x4(¢)) limits the ability to uniquely identify each
source, pointing to a practical challenge in real-world data.
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B EXPERIMENTS AND IMPLEMENTATION SETTINGS

B.1 IMPLEMENTATION SOURCE. (TIMECSL-LIB)

We have implemented the ResTimeCSL architecture from scratch, and our code is available
at https://anonymous.4open.science/r/TimeCSL-4320. Some components of our
code are inspired by the following works:

* The GMM-based VAE sampling is inspired by VaDE (Jiang et al.,, 2016), and
we adapted the implementation from https://github.com/mperezcarrasco/
Pytorch-VabDE.

* For the Diffusion model D3VAE (Li et al., 2023), we utilized the authors’ implemen-
tation from https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/research/D3VAE.

* Regarding the methods listed in Tab. 3, the TCL model was adapted from https:
//github.com/hmorioka/TCL/tree/master/tcl, while the other models are
derived from https://github.com/rpatrik96/nl-causal.

e For iVAE (Khemakhem et al., 2020b), we used the implementation available at https:
//github.com/MatthewWilletts/algostability.

Our experiments were conducted with 5 different random seeds, and we report the average results
along with standard deviations. The experiments were run using 8 NVIDIA A100 GPUs.

B.2 DATASETS.

In this section, we provide details about the datasets used for our experiments. We consider both
real-world and synthetic datasets, each with specific characteristics relevant to the study. The table
below summarizes the key properties of these datasets, including the number of samples, input
dimensions, the number of sources/factors, and the names of the factors. The real-world datasets
include REDD, REFIT, and UKDALE, which are commonly used in energy consumption modeling.
Additionally, we employ synthetic datasets (Synthetic-1, Synthetic-2, and Synthetic-3) to simulate
various scenarios with varying factors and input sizes. These datasets allow for comprehensive testing
of our proposed method across different contexts.

Table 4: Synthetic Dataset and Real world datasets

Dataset # Samples Input Dim  # Sources/Factors Factors name
REDD 5400 256 3 {FR, DW, WM, HTH, LT}
REFIT 1299 256 5 {FR, DW, WM, HTH, LT}
UKDALE 1300 256 ) {FR, DW, WM, HTH, LT}
Synthetic-1 12000 24 3 {FR, LT, HTH}
Synthetic-2 11000 96 ) {FR, LT, HTH}
Synthetic-3 11000 64 3 {FR, LT, HTH}

B.3 CONTRASTIVE PARTIAL SELECTIVE PAIRING - DATA AUGMENTATIONS

Four augmentations were sequentially applied to all contrastive methods’ pipeline branches. The
parameters from the random search are: 1) Crop and delay: applied with a 0.5 probability and a
minimum size of 50% of the initial sequence. 2) Cutout or Masking: time cutout of 5 steps with
a 0.8 probability. 3) Channel Masks powers: each time series is randomly masked out with a 0.4
probability. 4) Gaussian noise: random Gaussian noise is added to window input x with a standard
deviation form 0.1 to 0.3. Further details in ??. Also in our experiments, we utilize a composition of
three data augmentations, applied in the following order - scaling, shifting, and jittering, activating
with a probability of 0.3 to 0.5.
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Scaling The time-series is scaled by a single random scalar value, obtained by sampling € ~
N(0,0.5), and each time step is X'y = €xy.

Shifting The time-series is shifted by a single random scalar value, obtained by sampling ¢ ~
N(0,0.5) and each time step is X'y = z; + €.

Jittering 1.1.D. Gaussian noise is added to each time step, from a distribution ¢, ~ N(0, 0.5),
where each time step is now x'; = z; + €.

B.4 IMPLEMENTATION OF METRICS AND STUDY CASE

Previous work has relied on the Mean Correlation Coefficient (MCC) as a metric to quantify identi-
fiability. For consistency with previous work, we report this metric, but also propose a new metric
to quantify identifiability up to an affine transformation. There are two challenges in designing
such a metric: Firstly, for two Gaussian mixtures, standard distance metrices such as TV-distance or
KL-divergence do not have a closed form. Secondly, we need to find an affine map A that best aligns
a pair of Gaussian mixtures. Therefore, developing a metric to quantify identifiability up to an affine
transformation has natural challenges. We propose d .t . 1.2, defined below, as an additional metric in
this setting.

B.4.1 ALIGNMENT PRIOR TO MEASURING WEAK MCC

We seek an affine map I" to align two GMMs using two methods. One approach, used in previous
works on MCC, is Canonical Correlation Analysis (CCA). Alternatively, we explore a different
method. For two GMMs, we iterate over all permutations of the components, and for each permutation,
we compute the optimal map I' that aligns the components. While ideally I" would align both the
means and the covariance matrices, solving this as an optimization problem is challenging. Thus, we
focus on aligning the means of the first GMM to those of the second GMM. The map I is found by
solving the least-squares problem:

: () (4)))2
E -Tr B.1
min : 1% pa | (B.1)

This can be efficiently solved using Singular Value Decomposition (SVD). Empirically, aligning the
means provides good results.

B.4.2 MEASURING IDENTIFIABILITY STRONG-MCC AND WEAK-MCC

The other metric we consider is the Mean Correlation Coefficient (MCC) metric which had been used
in prior works (Khemakhem et al., 2020a). There are two versions of MCC that have been used:

1. The weak MCC is defined to be the MCC after alignment via the affine map I" transformation
see App. B.4.1.

2. The strong MCC is defined to be the MCC before alignment.

Furthermore, in this work, we consider two different metrics. For a pair of distributions p1, p2, we
define d o 1.2 loss as

. ||p1 *P2||
daff,LQ(p17p2) = min ALZ(Fﬁpl’p2)7 where  Ar,(p1,p2) = ﬁ (B.2)
AR™SR™, llp1]| / 2l /
affine L ? L

In our experiments, we report both the strong MCC and weak MCC. Moreover, all reported MCC s are
out-of-sample, i.e. the optimal affine map I" is computed over half the dataset and then reused for the
other half of the dataset.

B.4.3 MEASURING DISENTANGLEMENT OF THE LEARNED REPRESENTATION

In implementing the disentanglement metrics, we adhere to the methodology outlined in (Locatello
et al., 2019), expanding it to accommodate time series data. For the computation of DCI metrics, we
employ a gradient boosted tree from the scikit-learn package.
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B-VAE, Metric Disentanglement is then measured as the accuracy of a linear classifier that predicts
the index of the fixed factor based on the coordinate-wise sum of absolute differences between the rep-
resentation vectors in the two mini-batches. (Higgins et al., 2016) suggest fixing a random attributes
of variation in the underlying generative model and sampling two mini-batches of observations x.
We sample two batches of 256 points with a random factor fixed to a randomly sampled value across
the two batches, and the others varying randomly. We compute the mean representations for these
points and take the absolute difference between pairs from the two batches. We then average these 64
values to form the features of a training (or testing) point.

Factor VAE Metric (Kim & Mnih, 2019) (Kim & Mnih, 2019) address several issues with this
metric by using a majority vote classifier that predicts the index of the fixed ground-truth attribute
based on the index of the representation vector with the least variance. First, we estimate the variance
of each latent dimension by embedding 10k random samples from the data set, excluding collapsed
dimensions with variance smaller than .05. Second, we generate the votes for the majority vote
classifier by sampling a batch of 64 points, all with a factor fixed to the same random value. Third,
we compute the variance of each dimension of their latent representation and divide it by the variance
of that dimension computed on the data without interventions. The training point for the majority
vote classifier consists of the index of the dimension with the smallest normalized variance. We train
on 10k points and evaluate on 5k points.

Mutual Information Gap Metric (Chen et al., 2018b) 5-VAE metric and the FactorVAE metric
are neither general nor unbiased as they depend on some hyperparameters (Chen et al., 2018b).
They compute the mutual information between each ground-truth factor and each dimension in
the computed representation r(x). For each ground-truth factor zj, they then consider the two
dimensions in 7(x) that have the highest and second highest mutual information with zj,. The Mutual
Information Gap (MIG) is then defined as the average, normalized difference between the highest
and second highest mutual information of each factor with the dimensions of the representation. The
original metric was proposed evaluating the sampled representation. Instead, we consider the mean
representation, in order to be consistent with the other metrics. We estimate the mutual information
by binning each dimension of the representations. Then, the score is computed as follows:

1 K

MIG = —
Kk‘:

I (vjk, 2r) — max I(vj, zx)]

Where zj, is a factor of variation, v; is a dimension of the latent representation.

MIG [8] computes the MI between each code and factor I(vi , zj). Then the code dimension with
maximum MI is identified I(vi, z) for each factor. Next, the second highest MI, I(vi, zo), is subtracted
from this maximal value. This difference constitutes the gap. The gap is then normalized by the
entropy of the factor: MIG = I(vi, z) I(vi, zo) H(vi) (3) The MIG score of all factors are averaged to
report one score. Robust MIG (RMIG) was proposed in [9]. It is identical to MIG in essence, but
proposes a more robust formulation when MI is computed from the input space, which does not apply
in our context. For the remainder of the paper we will refer to both MIG and RMIG as MIG-RMIG
because our results apply to both in the same way.

Disentanglement, Completeness and Informativeness (DCI) In (Carbonneau et al., 2022), a
framework is proposed to evaluate disentangled representations using metrics for modularity, compact-
ness, and explicitness, referred to as disentanglement, completeness, and informativeness. Regressors
predict factors from codes, with modularity and compactness estimated by importance weights R;;.
These weights are computed using a lasso regressor or random forests. The compactness for factor v;

is defined as: 4

R
Ci:1+zpij10gdpij7 Pij = =g

j=1 Zk:l Rig
Compactness for the entire representation is the average over all factors. The modularity for code
dimension z; is:

M R

Dj =1+ pijlogapijy Dij = =5
i=1 > k=1 B
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The modularity score is the weighted average over all code dimensions, with weights p; reflecting
their importance in predicting factors. Explicitness is defined by the MSE of the regressor, normalized
between 0 and 1:

Explicitness = 1 — 6 - MSE, MSE = E[(x —y)?] = ~.

Time Disentanglement Score TDS Time series data often exhibit variations that may not always
align with conventional metrics, especially when considering the presence or absence of underlying
attributes. To address this challenge, (Oublal et al., 2024) introduce the Time Disentanglement
Score (TDS), a metric designed to assess the disentanglement of attributes in time series data. The
foundation of TDS lies in an Information Gain perspective, which measures the reduction in entropy
when an attribute is present compared to when it’s absent.

l[2m — nkH2
TDS = dzm ZZ Varlz , (B.3)

n#m k

In the context of TDS, we augment factor m in a time series window x with a specific objective:
to maintain stable entropy when the factor is present and reduce entropy when it’s absent. This
augmentation aims to capture the essence of attribute-related information within the data.

B.5 PIPELINE CORRELATED SAMPLES.

Robustness of the model to correlations between data is assessed by examining different pairs. We
focus mainly on linear correlations between two different devices and on the case where one device
correlates with two others. To do this, we parameterize the correlations by sampling a dataset from
the common distribution. We build on the correlation time series framework by introducing a pairwise
correlation between the attributes y,,, and y,, as follows: p(ym,, yn) X exp (*| |Ym — aynl|?/ 202),
where « is a scaling factor. A high value of ¢ indicates a lower correlation between the normalised
attributes y,,, and y,, (No.Corr, 0 = 00). We also extend this framework to cover correlations between
several attributes in the time window 7'. Therefore, we consider correlation pair scenarios such as :
No correlation; Pair:1 washer-dryer; Pair:2 dryer-oven and, finally, a Random pair: approach with
randomly selected appliances.

* No Corr.: No Correlation during training. (default evaluation setting)
* Pair: 1 washer-dryer.

* Pair: 2 dryer-oven.

* Pair: 3 lighting and television.

* Pair: 4 microwave and oven.

* Pair: 5 washer-dishwasher.

¢ Random Pairs,

B.6 IMPACT OF GELU vs RELU/LEAKYRELU ON DECODER BEHAVIOR

In this study, we evaluate the impact of different activation functions on the decoder’s behavior to
satifies Asm 2.1. Specifically, we compare the use of ReLU (a piecewise affine activation) and GELU
(a smooth, nonlinear activation) within an MLP decoder. The results suggest that the choice of
activation function has a significant impact on the latent representation produced by the model.

ReLU Activation: The decoder becomes piecewise affine, meaning that it can be broken down into
affine transformations over different regions of the input space. This causes the decoder to create
latent representations that reflect distinct linear transformations in various regions of the input. As a
result, the learned latent space is structured around these distinct affine regions, potentially making
the model more sensitive to certain regions of the data space and leading to more discrete or sharply
defined latent representations.
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Table 5: Average performance, considering factors {FR. DW, WM, HTH, LT }with 5 seed on real
datasets REFIT and REDD. Metrics reported are: DCI, RMIG and RMSE. Lower values are better for
all metrics. ({ lower is better, 1 higher is worse Top-1, Top-2 ).

Sc.  Methods | o =00 o=03 o=038
Metrics = | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM - - 36.86+ 1.68 - - 45.84 £ 1.00 - - 4629+0.76
O 828 - - 3546+2.04 - - 45364247 - - 4576 +2.26
= O Autoformer - - 3245+0.56 - - 33.02+149 - - 3468+ 1.13
E O Informer - - 3292+ 1.67 - - 3503+ 1.71 - - 3847+ 154
4 TimesNet - - 3212+ 1.99 - - 33384183 - - 3584+ 1.61
CoST 4468 £1.57 0.61 £0.02 31.14+0093 | 48.01 = 1.57 0.64+£0.09 34.81+0.71 | 4698 £1.13 0.65+0.01 38.14 +0.57
SlowVAE 5096 £0.71 0.61 £0.09 2826+ 1.54 | 53.04 +1.26 0.61 £0.09 32.15+0.78 | 52.14 £0.58 0.70 +0.08 35.74 +1.03
SlowVAE+HDF 52.17+0.07 042+0.02 3735+1.49 | 53.00+0.12 0.46+0.05 38.86+1.26 | 5253 +£0.03 047 +0.01 4022+ 1.06
® TDRL 4234+1.02 028+0.04 18.64+1.41 |49.75+0.87 031+0.01 17.18+1.36 | 5043 +£0.69 0.38+0.08 2091+ 1.07
D3VAE 4130 £1.97 026 £0.05 27.64 £1.40 | 41.55+0.91 0.33£0.26  30.11 £1.10 | 4347 £1.31 0.44 £0.03  32.77 £0.51
C-DSVAE 4735+2.14 059+0.05 31.78+1.61 | 4779+ 099 0.62+0.26 3455+ 1.18 | 50.02+1.42 0.71+£0.03 37.57+0.53
C-DSVAE + HDF 4431 +£193 0.56+0.05 29.68+1.51 | 45.01 £0.92 0.59 £0.25 3242+ 1.04 | 46.68 £1.33 0.66+0.03 35.12 + 0.50
® SparseVAE 40.15+0.86 0.25+0.09 13.72+1.30 | 43.98+0.81 028 +0.21 14.81 £1.20 | 4453 +£0.58 0.31+0.07 18.89 + 1.30
® TimeCSL 39.02 £ 0.87 0.23+0.07 12.03+1.26 | 4251 £0.74 027 £0.15 12.72£1.16 | 4291 £0.59 0.31+0.05 14.76 + 0.92
Avg. \ 4562 +£1.27 0524+0.07 31.02+1.26 \ 48.02+0.85 0.58+0.12 34.08+ 1.04 \ 4892 £ 1.18 0.64 +0.06 35.67 +0.91 \
O BertNILM - - 40.06 £2.41 - - 44.14£1.22 - - 45.04 £0.99
O S28 - - 3848 +287 - - 4507 +2.71 - - 46224226
=) O Autoformer - - 3356 +0.79 - - 34134207 - - 3751+ 181
5 O Informer - - 36.02+2.37 - - 37.61 £1.98 - - 38.81+236
& TimesNet - - 36.69 +2.08 - - 39.08 +£2.71 - - 42554235
CoST 5087+ 1.13 0.58+0.06 2893+ 1.81 | 53.10+1.23 0.61+0.14 30.72+1.31 | 5263+ 1.19 0.67+0.14 33.15+1.12
SlowVAE 48.11+£1.06 045+0.05 31.73+£2.19 | 50.15+1.35 047 +£0.06 34.12+1.57 | 50.97 £0.78 0.554+0.02 3527 + 1.06
SlowVAE + HDF 51.09 +£1.64 0.34+0.04 3285+240 | 51.97+1.07 039+0.05 3572+2.17 | 51.85+1.58 043 +0.06 37.38+2.51
® TDRL 4512+2.15 039+0.05 22.87+1.36 | 50.61 £1.53 044 +0.03 2398+ 141 | 51.18+£0.90 0.49+0.08 27.13+2.30
D3VAE 4377 £131 036+0.06 2843 +£1.61 | 46.17£0.86 0.39+0.04 30.14+£1.35 | 48.02+1.23 044+0.06 32.46=+1.10
C-DSVAE 49.68 £2.12 0.55+0.07 31.03+2.15 | 4992+ 1.05 0.58+0.08 33.60+1.77 | 51.51 £1.76 0.61 £0.03 3538 +1.42
C-DSVAE + HDF 4738+ 1.19 0.53+0.05 30.76+2.13 | 4885+ 1.62 0.56 +£0.03 32.89+2.04 | 4998 £1.34 0.60+0.05 3425+ 122
® SparseVAE 46.56 £2.49 044 +0.08 19.88+2.06 | 5049 +1.07 047 +£0.06 21424253 | 5083 +1.73 0.53+0.05 23.59+2.17
® TimeCSL 4345+ 112 033+0.02 16.32+2.16 | 47.33 +1.29 0.35+0.04 17.22 +2.01 | 48.09 +0.81 0.39 +0.06 18.95 + 2.08
Avg. \ 47.02+ 156 0.45+0.06 28.04+ 1.84 \ 5043 +£1.19 048 +0.09 3032+ 1.56 \ 50.95+1.26 0.54 +0.07 32.83 4+ 1.57 \

LeakyReLU Activation: In contrast, the GELU activation is smooth and nonlinear across the
entire input space. This means that the decoder no longer operates piecewise affine, and the latent
space learned by the model is more continuous and smooth. Since GELU smoothly transforms the
input, it enables the decoder to create more nuanced, continuous latent representations. The absence
of piecewise linear behavior allows for better modeling of complex, smooth relationships in the data,
which may improve generalization to unseen data or tasks that require such smooth transformations.

B.7 VALIDATION OF RESULTS ON SYNTHETIC DATA GENERATION

We first construct two trend patterns. The first trend patterns follows a nonlinear, saturating pattern,
Y = m + ¢ for 1 = 0.2, 31 = 60, ¢, ~ N(0,0.3). The second pattern is a mixture of
ARMA process, ARMA (2,2) + ARMA(3,3) + ARMA(4, 4), where the AR and MA parameters
are as follows, ({.9, -.1}, {.2, -.5}), ({.1, .2, .3}, {.1, .65, -45}), ({3, .5, -.5, -3}, {.1, .1, -.2,
-3}). Next, we construct three seasonal patterns, consisting of sine waves with the following
period, phase, and amplitudes, {20, 0, 3}, {50, .2, 3}, {100, .5, 3}. The final time series are
constructed as follows, generate a trend pattern fy(t) and seasonal pattern s(t), the final time series
isy(t) = fs(t) + s(t),t = 0,...,999. We do this for all pairs of trend and seasonal patterns,
constructing a total of 6 time series.

B.8 THAT SPARSITY ENOUGH FOR ROBUSTNESS, IS DONWSTREAM TASK ?
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Table 6: Performance of different methods on synthetic datasets for various test cases. Metrics
reported are DCI, RMIG and RMSE. Lower values are better for all metrics. Bold indicates the best
performance, while second and first indicate the second and first best performance respectively.

Sc.  Methods | o =00 =03 o=08
Metrics = | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | |
BertNILM - - 5281 +2541 - - 75.78 £7.76 - - 66.50 + 6.69
S28 - - 4799 +2445 - - 63.64 £20.56 - - 6793 +£1557
& Autoformer - - 61.52 + 7.66 - - 522341125 - - 48454931
E Informer - - 48.59 +10.89 - - 5929+ 11.36 - - 63.45+10.52
&  FEDformer - - 4829 +10.88 - - 587441123 - - 64.55 +£9.92
TimesNet - - 63.57 £10.61 - - 67.02 +£9.10 - - 69.93 +9.89
C-DSVAE 7283 £ 11.71 1.08 +£0.45 40.50 £+ 6.45 7176 £9.74  1.08 +0.44 51.67£7.88 | 72.64 £10.89 123 £0.51 55.26 +7.80
SlowVAE 82.31 £ 11.96 1.08 +£0.47 4346 £7.93 | 81.65+£10.75 1.08 +0.46 54.81 £5.93 84.09 +6.93 1.27 £ 0.49 53.65 +7.48
CoST 79.86 £ 10.86 1.16 023  50.14 £ 6.77 | 79.16 £ 1049 1.15£022 5591 +£572 | 80.16 £9.68 125+020 58.76 £5.51
SlowVAE+HDF 88.69+ 1.11 1.11 £0.24 65.87 £ 8.13 85.99 4+ 1.34  0.97 £0.21 69.94 +7.29 89.47+£0.58 1.14+0.24 72.21 +£7.47
C-DSVAE + HDF 76.94 £ 6.38 0.89 +0.37 33.61 +5.80 75.66 £ 6.53 0.84 +0.33 37.92 +5.88 7445 £578 0.89+040 4258 +6.49
SparseVAE 7135 +£848 0.67 +£0.25 26.46 + 5.68 72.67 £8.54 0.68 +0.27 31.07 +£5.34 7398 £823 0.74+0.29 32.56 +£5.16
TimeCSL 7544 +£693 0.59+0.17 25.53 + 6.69 7450 £ 6.29 0.61 +0.19 29.23 + 6.57 76.66 +£5.70 0.74 +0.16 33.76 £ 6.73
BertNILM - - 60.83 + 5.80 - - 72.63 +2.25 - - 71.02 £ 2.55
S28 - - 53.73 +£5.84 - - 65.57 £5.35 - - 69.21 + 4.06
& Autoformer - - 54.60 + 1.70 - - 50.48 +2.82 - - 50.39 +2.26
E Informer - - 4592 +3.03 - - 53.77 £2.86 - - 61.08 +2.51
&  FEDformer - - 45.55 £3.00 - - 53.62 +£2.93 - - 60.26 +£2.51
TimesNet - - 54.68 + 3.68 - - 55.28 +3.02 - - 59.24 £3.41
C-DSVAE 74.83£572 1.12+£023  47.04£3.14 | 73424£240 1.10£021 53.02+£349 | 7529+334 121£0.14 5481 £3.46
SlowVAE 80.924+2.73 1.10+0.20 4458 +3.11 79.95 +£2.64 1.09+0.18 51.92 +2.58 81454+ 1.57 121+0.14 50.69 +2.99
CoST 71.18 £3.83 1.04+0.06 47.10 + 1.66 71.01 £3.86 1.05+0.05 53.58 +1.39 70.56 £3.50 1.14 +0.04 5529 £1.22
SlowVAE+HDF 81.13+0.17 0.85+0.08 60.50 + 3.01 80.21 £0.19 0.79 £ 0.07 62.72 +£2.77 81.68 £0.10 0.89 +£0.05 64.03 +£2.99
C-DSVAE + HDF 7477 £1.56  0.78 &+ 0.05 35.62 +2.52 7439 £1.51 0.75 +0.05 38.40 + 1.83 74.88 £0.98 0.79 +0.07 39.95 + 1.62
SparseVAE 69.84 £4.10 0.62 +0.06 27.28 +2.59 69.95 +4.15 0.60 + 0.05 29.61 + 1.67 7252 +£3.77 0.65+0.07 30.35 + 1.45
TimeCSL 7172 £323 0.46+0.04 25.02 +£2.77 7121 £2.58 0.51 +£0.03 2591 +2.62 72.68 £2.33 0.61 +£0.02 28.82 +£2.83

Table 7: Average performance, considering factors
datasets REFIT and REDD. Metrics reported are DCI, RMIG and RMSE. Lower values are better for
all metrics. (] lower is better, T higher is worse Top-1, Top-2 ).

{FR, DW, WM, HTH, LT }with 5 seed on real

Sc.  Methods o =00 o=03 o=08
Metrics = | DCI | RMIG | RMSE | | DCI| RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM - - 56.4 +£2.58 - - 70.2 £ 145 - - 7092+ 1.15
O 828 - - 543 £3.12 - - 69.5 £3.56 - - 69.95+3.26
= Autoformer - - 49.7 £ 0.81 - - 50.5+£2.15 - - 52954+ 1.63
E Informer - - 503+241 - - 535+1.98 - - 5895+ 1.89
& O FEDformer - - 503+212 - - 5254245 - - 59.01 +£1.76
TimesNet - - 49244287 - - 51.10+2.64 - - 54914231
O C-DSVAE 72.42 £3.10 0.96 £ .15 48.6 £2.32 73.12 £ 143 095 £ .15 529 £231 | 7429 £2.04 1.08 £.09 5299 +£1091
SlowVAE 78.0 = 1.09 0.94 £ .13 4324223 78.0 £ 1.09 0.94 £ .13 492+ 1.13 | 79.74 £ 0.84 1.07+ .11 49.65+1.43
CoST 68.4 +2.41 097+.03 47.7+135 68.4 + 241 097+.03 532+1.02 | 69.95+ 1.63 1.00 +£.02 5345+ 0.82
SlowVAE+HDF 79.8 £.10 0.64+.05 572+2.15 79.8 +.10 0.64+.05 613+182| 80.37+.05 0.72+.03 61.64 +£1.52
C-DSVAE + HDF 73.1£1.01 0.69 + .02 344 +1.89 73.1£1.01 0.69 £+ .02 38.1+£1.34 | 7425 £0.59 0.73£.05 3848+ 1.04
® SparseVAE 67.2 +£2.01 0.52 + .02 243 +£1.81 67.2 £2.01 0.52 £ .02 274+£1.13 | 71.79 £ 1.27 0.58 £.04 27.77 £0.83
® TimeCSL 63.5 +1.35 038+.02 19.6 +1.95 69.3+1.2 044+.02 203+1.79 | 70.12 + 0.91 0.51+.01 23.63 +1.49
O BertNILM - - 61.42+347 - - 67.61 £1.95 - - 69.06 +1.43
O 828 - - 59.08 +£4.15 - - 68.60+3.91 - - 70.68 +3.25
a2 O Autoformer - - 49.87+£0.92 - - 51.53+148 - - 51.88+1.34
a Informer - - 54234178 - - 5770+ 1.78 - - 6251 +1.55
& O FEDformer - - 5284+ 1.69 - - 5583 +1.82 - - 61.92+1.57
TimesNet - - 51.37+241 - - 55354223 - - 5847+221
O C-DSVAE 7297 £3.44 1.04 £0.16 47.17+2.11 73.60 + 1.82 0.98 £0.14 52.16 £ 1.89 | 73.96 £+ 2.46 111 £0.12 5373+ 1.79
SlowVAE 7741 £ 1.67 094 +0.15 46.61 £191 77.80 £ 1.63 0.95+0.14 4982+ 1.71 | 79.47 £1.26 1.04 £0.13 50.88 &+ 1.58
CoST 70.75 £ 2.01 096+0.09 4892+1.62 | 7087+2.04 096+0.09 5273+134|71.93+1.84 098+0.09 5446+ 1.19
SlowVAE+HDF 79.97+£0.14  0.724+0.05 56.96+2.34 | 79.77+0.14  0.72+0.05 59.75+2.21 | 80.22+0.07 0.75+0.03 60.77 +2.22
C-DSVAE + HDF 73.85+085 0.69+0.05 3419+147 | 7371+085 0.69+0.05 37.53+1.21 | 7434+0.56 0.71 £0.04 39.35+ 1.06
TDRL 70.86 £0.816 0.57 £0.041 3280 £ 1.41 | 70.75 £0.816 0.57+0.041 36.04 £1.16 | 71.94 £0.54 0.58 +0.033 37.83 £ 1.02
® SparseVAE 70.13 £ 1.44 0.61 £0.04 2546 £1.10 70.13 £ 1.44 0.61 =0.04 2899 £1.22 | 71.44 £1.30 0.63 £0.05 29.47 £1.10
® TimeCSL 66.14 £1.66 0.40+0.04 19.81 +1.29 | 69.00 £ 1.41 044+0.04 2046+145 | 7041 +1.22 048+0.03 2208+ 1.36
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