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Abstract

We introduce a new approach for computing optimal equilibria and mechanisms
via learning in games. It applies to extensive-form settings with any number of
players, including mechanism design, information design, and solution concepts
such as correlated, communication, and certification equilibria. We observe that
optimal equilibria are minimax equilibrium strategies of a player in an extensive-
form zero-sum game. This reformulation allows us to apply techniques for learn-
ing in zero-sum games, yielding the first learning dynamics that converge to opti-
mal equilibria, not only in empirical averages, but also in iterates. We demonstrate
the practical scalability and flexibility of our approach by attaining state-of-the-art
performance in benchmark tabular games, and by computing an optimal mecha-
nism for a sequential auction design problem using deep reinforcement learning.

1 Introduction

What does it mean to solve a game? This is one of the central questions addressed in game
theory, leading to a variety of different solution concepts. Perhaps first and foremost, there are
various notions of equilibrium, strategically stable points from which no rational individual would
be inclined to deviate. But is it enough to compute, or indeed learn, just any one equilibrium
of a game? In two-player zero-sum games, one can make a convincing argument that a single
equilibrium in fact constitutes a complete solution to the game, based on the celebrated minimax
theorem of von Neumann [97]. Indeed, approaches based on computing minimax equilibria in
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two-player zero-sum games have enjoyed a remarkable success in solving major AI challenges,
exemplified by the recent development of superhuman poker AI agents [10, 11].

However, in general-sum games it becomes harder to argue that any equilibrium constitutes a com-
plete solution. Indeed, one equilibrium can offer vastly different payoffs to the players than another.
Further, if a player acts according to one equilibrium and another player according to a different
one, the result may not be an equilibrium at all, resulting in a true equilibrium selection problem. In
this paper, therefore, we focus on computing an optimal equilibrium, that is, one that maximizes a
given linear objective within the space of equilibria. There are various advantages to this approach.
First, in many contexts, we would simply prefer to have an equilibrium that maximizes, say, the
sum of the players’ utilities—and by computing such an equilibrium we also automatically avoid
Pareto-dominated equilibria. Second, it can mitigate the equilibrium selection problem: if there is
a convention that we always pursue an equilibrium that maximizes social welfare, this reduces the
risk that players end up playing according to different equilibria. Third, if one has little control over
how the game will be played but cares about its outcomes, one may like to understand the space of
all equilibria. In general, a complete picture of this space can be elusive, in part because a game can
have exponentially many equilibria; but computing extreme equilibria in many directions—say, one
that maximizes Player 1’s utility—can provide meaningful information about the space of equilibria.

That being said, many techniques that have been successful at computing a single equilibrium do
not lend themselves well to computing optimal equilibria. Most notably, while no-regret learning
dynamics are known to converge to different notions of correlated equilibria [49, 38, 39, 47], little is
known about the properties of the equilibrium reached. In this paper, therefore, we introduce a new
paradigm of learning in games for computing optimal equilibria. It applies to extensive-form settings
with any number of players, including information design, and solution concepts such as correlated,
communication, and certification equilibria. Further, our framework is general enough to also
capture optimal mechanism design and optimal incentive design problems in sequential settings.

Summary of Our Results A key insight that underpins our results is that computing optimal
equilibria in multi-player extensive-form games can be cast via a Lagrangian relaxation as a
two-player zero-sum extensive-form game. This unlocks a rich technology, both theoretical and
experimental, developed for computing minimax equilibria for the more challenging—and much
less understood—problem of computing optimal equilibria. In particular, building on the framework
of Zhang and Sandholm [100], our reduction lends itself to mechanism design and information
design, as well as an entire hierarchy of equilibrium concepts, including normal-form coarse
correlated equilibria (NFCCE) [79], extensive-form coarse correlated equilibria (EFCCE) [31],
extensive-form correlated equilibria (EFCE) [98], communication equilibria (COMM) [36], and
certification equilibria (CERT) [37]. In fact, for communication and certification equilibria, our
framework leads to the first learning-based algorithms for computing them, addressing a question
left open by Zhang and Sandholm [100] (cf. [40], discussed in Appendix B).

We thus focus on computing an optimal equilibrium by employing regret minimization techniques
in order to solve the induced bilinear saddle-point problem. Such considerations are motivated in
part by the remarkable success of no-regret algorithms for computing minimax equilibria in large
two-player zero-sum games (e.g., see [10, 11]), which we endeavor to transfer to the problem of
computing optimal equilibria in multi-player games.

In this context, we show that employing standard regret minimizers, such as online mirror de-
scent [91] or counterfactual regret minimization [106], leads to a rate of convergence of T−1/4 to
optimal equilibria by appropriately tuning the magnitude of the Lagrange multipliers (Corollary 3.3).
We also leverage the technique of optimism, pioneered by Chiang et al. [18], Rakhlin and Sridha-
ran [87] and Syrgkanis et al. [94], to obtain an accelerated T−1/2 rate of convergence (Corollary 3.4).
These are the first learning dynamics that (provably) converge to optimal equilibria. Our bilinear for-
mulation also allows us to obtain last-iterate convergence to optimal equilibria via optimistic gradi-
ent descent/ascent (Theorem 3.5), instead of the time-average guarantees traditionally derived within
the no-regret framework. As such, we bypass known barriers in the traditional learning paradigm
by incorporating an additional player, a mediator, into the learning process. Furthermore, we also
study an alternative Lagrangian relaxation which, unlike our earlier approach, consists of solving
a sequence of zero-sum games (cf. [30]). While the latter approach is less natural, we find that it
is preferable when used in conjunction with deep RL solvers since it obviates the need for solving
games with large reward ranges—a byproduct of employing the natural Lagrangian relaxation.
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Experimental results We demonstrate the practical scalability of our approach for computing
optimal equilibria and mechanisms. First, we obtain state-of-the-art performance in a suite of 23
different benchmark game instances for seven different equilibrium concepts. Our algorithm sig-
nificantly outperforms existing LP-based methods, typically by more than one order of magnitude.
We also use our algorithm to derive an optimal mechanism for a sequential auction design problem,
and we demonstrate that our approach is naturally amenable to modern deep RL techniques.

1.1 Related work

In this subsection, we highlight prior research that closely relates to our work. Additional related
work is included in Appendix B.

A key reference point is the recent paper of Zhang and Sandholm [100], which presented a unifying
framework that enables the computation via linear programming of various mediator-based equilib-
rium concepts in extensive-form games, including NFCCE, EFCCE, EFCE, COMM, and CERT.2
Perhaps surprisingly, Zhang et al. [101] demonstrated that computing optimal communication
and certification equilibria is possible in time polynomial in the description of the game, estab-
lishing a stark dichotomy between the other equilibrium concepts—namely, NFCCE, EFCE, and
EFCCE—for which the corresponding problem is NP-hard [98]. In particular, for the latter notions
intractability turns out to be driven by the imperfect recall of the mediator [101]. Although imperfect
recall induces a computationally hard problem in general from the side of the mediator [19, 59],
positive parameterized results have been documented recently in the literature [103].

Our work significantly departs from the framework of Zhang and Sandholm [100] in that we follow
a learning-based approach, which has proven to be a particularly favorable avenue in practice; e.g.,
we refer to [26, 16, 78, 77, 104] for such approaches in the context of computing EFCE. Further,
beyond the tabular setting, learning-based frameworks are amenable to modern deep reinforcement
learning methods (see [70, 71, 62, 69, 51, 76, 57, 13, 52, 73, 72, 86, 105, 42], and references therein).
Most of those techniques have been developed to solve two-player zero-sum games, which provides
another crucial motivation for our main reduction. We demonstrate this experimentally in large
games in Section 4. For multi-player games, Marris et al. [70] developed a scalable algorithm based
on policy space response oracles (PSRO) [62] (a deep-reinforcement-learning-based double-oracle
technique) that converges to NFC(C)E, but it does not find an optimal equilibrium.

Our research also relates to computational approaches to static auction and mechanism design
through deep learning [27, 86]. In particular, similarly to the present paper, Dütting et al. [27] study
a Lagrangian relaxation of mechanism design problems. Our approach is significantly more general
in that we cover both static and sequential auctions, as well as general extensive-form games. Fur-
ther, as a follow-up, Rahme et al. [86] frame the Lagrangian relaxation as a two-player game, which,
however, is not zero-sum, thereby not enabling leveraging the tools known for solving zero-sum
games. Finally, in a companion paper [102], we show how the framework developed in this work
can be used to steer no-regret learners to optimal equilibria via nonnegative vanishing payments.

2 Preliminaries

We adopt the general framework of mediator-augmented games of Zhang and Sandholm [100] to
define our class of instances. At a high level, a mediator-augmented game explicitly incorporates
an additional player, the mediator, who can exchange messages with the players and issue action
recommendations; different assumptions on the power of the mediator and the players’ strategy sets
induce different equilibrium concepts, as we clarify for completeness in Appendix A.

Definition 2.1. A mediator-augmented, extensive-form game Γ has the following components:

1. a set of players, identified with the set of integers JnK := {1, . . . , n}. We will use −i, for
i ∈ JnK, to denote all players except i;

2. a directed tree H of histories or nodes, whose root is denoted ∅. The edges of H are labeled
with actions. The set of actions legal at h is denoted Ah. Leaf nodes of H are called terminal,
and the set of such leaves is denoted by Z;

2Notably missing from this list is the normal-form correlated equilibrium (NFCE), the complexity status of
which (in extensive-form games) is a long-standing open problem.
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3. a partition H \Z = HC ⊔H0 ⊔H1 ⊔ · · · ⊔Hn, where Hi is the set of nodes at which i takes an
action, and C and 0 denote chance and the mediator, respectively;

4. for each agent3 i ∈ JnK ∪ {0}, a partition Ii of i’s decision nodes Hi into information sets.
Every node in a given information set I must have the same set of legal actions, denoted by AI ;

5. for each agent i, a utility function ui : Z → R; and
6. for each chance node h ∈ HC, a fixed probability distribution c(· |h) over Ah.

To further clarify this definition, in Appendix A we provide two concrete illustrative examples: a
single-item auction and a welfare-optimal correlated equilibrium in normal-form games.

At a node h ∈ H , the sequence σi(h) of an agent i is the set of all information sets encountered
by agent i, and the actions played at such information sets, along the ∅ → h path, excluding at h
itself. An agent has perfect recall if σi(h) = σi(h

′) for all h, h′ in the same infoset. We will use
Σi := {σi(z) : z ∈ Z} to denote the set of all sequences of player i that correspond to terminal
nodes. We will assume that all players have perfect recall, though the mediator may not.4

A pure strategy of agent i is a choice of one action in AI for each information set I ∈ Ii. The
sequence form of a pure strategy is the vector xi ∈ {0, 1}Σi given by xi[σ] = 1 if and only if
i plays every action on the path from the root to sequence σ ∈ Σi. We will use the shorthand
xi[z] = xi[σi(z)]. A mixed strategy is a distribution over pure strategies, and the sequence form of
a mixed strategy is the corresponding convex combination xi ∈ [0, 1]Σi . We will use Xi to denote
the polytope of sequence-form mixed strategies of player i, and use Ξ to denote the polytope of
sequence-form mixed strategies of the mediator.

For a fixed µ ∈ Ξ, we will say that (µ,x) is an equilibrium of Γ if, for each player i, xi is a best
response to (µ,x−i), that is, maxx′

i∈Xi
ui(µ,x

′
i,x−i) ≤ ui(µ,xi,x−i). We do not require that

the mediator’s strategy µ is a best response. As such, the mediator has the power to commit to its
strategy. The goal in this paper will generally be to reach an optimal (Stackelberg) equilibrium, that
is, an equilibrium (µ,x) maximizing the mediator utility u0(µ,x). We will use u∗

0 to denote the
value for the mediator in an optimal equilibrium.

Revelation principle The revelation principle allows us, without loss of generality, to restrict our
attention to equilibria where each player is playing some fixed pure strategy di ∈ Xi.

Definition 2.2. The game Γ satisfies the revelation principle if there exists a direct pure strategy
profile d = (d1, . . . ,dn) for the players such that, for all strategy profiles (µ,x) for all players
including the mediator, there exists a mediator strategy µ′ ∈ Ξ and functions fi : Xi → Xi for each
player i such that:

1. fi(di) = xi, and

2. uj(µ
′,x′

i,d−i) = uj(µ, fi(x
′
i),x−i) for all x′

i ∈ Xi, and agents j ∈ JnK ∪ {0}.

The function fi in the definition of the revelation principle can be seen as a simulator for Player i:
it tells Player i that playing x′

i if other players play (µ,d−i) would be equivalent, in terms of all
the payoffs to all agents (including the mediator), to playing f(x′

i) if other agents play (µ,x−i). It
follows immediately from the definition that if (µ,x) is an ε-equilibrium, then so is (µ′,d)—that
is, every equilibrium is payoff-equivalent to a direct equilibrium.

The revelation principle applies and covers many cases of interest in economics and game theory.
For example, in (single-stage or dynamic) mechanism design, the direct strategy di of each player
is to report all information truthfully, and the revelation principle guarantees that for all non-truthful
mechanisms (µ,x) there exists a truthful mechanism (µ′,d) with the same utilities for all players.5
For correlated equilibrium, the direct strategy di consists of obeying all (potentially randomized)
recommendations that the mediator gives, and the revelation principle states that we can, without
loss of generality, consider only correlated equilibria where the signals given to the players are what
actions they should play. In both these cases (and indeed in general for the notions we consider in this

3We will use agent to mean either a player or the mediator.
4Following the framework of Zhang and Sandholm [100], allowing the mediator to have imperfect recall

will allow us to automatically capture optimal correlation.
5In a mechanism design context, a strategy for the mediator µ induces a mechanism; here we slightly abuse

terminology by referring to (µ,d) also as a mechanism.
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paper), it is therefore trivial to specify the direct strategies d without any computational overhead.
Indeed, we will assume throughout the paper that the direct strategies d are given. Further examples
and discussion of this definition can be found in Appendix A.

Although the revelation principle is a very useful characterization of optimal equilibria, as long as
we are given d, all of the results in this paper actually apply regardless of whether the revelation
principle is satisfied: when it fails, our algorithms will simply yield an optimal direct equilibrium
which may not be an optimal equilibrium. Under the revelation principle, the problem of computing
an optimal equilibrium can be expressed as follows:

max
µ∈Ξ

u0(µ,d) s.t. max
xi∈Xi

ui(µ,xi,d−i) ≤ ui(µ,d) ∀i ∈ JnK.

The objective u0(µ,d) can be expressed as a linear expression c⊤µ, and ui(µ,xi,d−i)− ui(µ,d)
can be expressed as a bilinear expression µ⊤Aixi. Thus, the above program can be rewritten as

max
µ∈Ξ

c⊤µ s.t. max
xi∈Xi

µ⊤Aixi ≤ 0 ∀i ∈ JnK. (G)

Zhang and Sandholm [100] now proceed by taking the dual linear program of the inner maximiza-
tion, which suffices to show that (G) can be solved using linear programming.6

Finally, although our main focus in this paper is on games with discrete action sets, it is worth
pointing out that some of our results readily apply to continuous games as well using, for example,
the discretization approach of Kroer and Sandholm [60].

3 Lagrangian relaxations and a reduction to a zero-sum game

Our approach in this paper relies on Lagrangian relaxations of the linear program (G). In particular,
in this section we introduce two different Lagrangian relaxations. The first one (Section 3.1) reduces
computing an optimal equilibrium to solving a single zero-sum game. We find that this approach
performs exceptionally well in benchmark extensive-form games in the tabular regime, but it may
struggle when used in conjunction with deep RL solvers since it increases significantly the range of
the rewards. This shortcoming is addressed by our second method, introduced in Section 3.2, which
instead solves a sequence of suitable zero-sum games.

3.1 “Direct” Lagrangian

Directly taking a Lagrangian relaxation of the LP (G) gives the following saddle-point problem:

max
µ∈Ξ

min
λ∈R≥0,

xi∈Xi:i∈JnK

c⊤µ− λ

n∑
i=1

µ⊤Aixi. (L1)

We first point out that the above saddle-point optimization problem admits a solution (µ∗,x∗, λ∗):
Proposition 3.1. The problem (L1) admits a finite saddle-point solution (µ∗,x∗, λ∗). Moreover, for
all fixed λ > λ∗, the problems (L1) and (G) have the same value and same set of optimal solutions.

The proof is in Appendix C. We will call the smallest possible λ∗ the critical Lagrange multiplier.
Proposition 3.2. For any fixed value λ, the saddle-point problem (L1) can be expressed as a zero-
sum extensive-form game.

Proof. Consider the zero-sum extensive-form game Γ̂ between two players, the mediator and the
deviator, with the following structure:

1. Nature picks, with uniform probability, whether or not there is a deviator. If nature picks
that there should be a deviator, then nature samples, also uniformly, a deviator i ∈ JnK.
Nature’s actions are revealed to the deviator, but kept private from the mediator.

6Computing optimal equilibria can be phrased as a linear program, and so in principle Adler’s reduction
could also lead to an equivalent zero-sum game [2]. However, that reduction does not yield an extensive-form
zero-sum game, which is crucial for our purposes; see Section 3.
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2. The game Γ is played. All players, except i if nature picked a deviator, are constrained to
according to di. The deviator plays on behalf of Player i.

3. Upon reaching terminal node z, there are two cases. If nature picked a deviator i, the utility
is −2λn · ui(z). If nature did not pick a deviator, the utility is 2u0(z) + 2λ

∑n
i=1 ui(z).

The mediator’s expected utility in this game is

u0(µ,d)− λ

n∑
i=1

[ui(µ,xi,d−i)− ui(µ,d)].

This characterization enables us to exploit technology used for extensive-form zero-sum game solv-
ing to compute optimal equilibria for an entire hierarchy of equilibrium concepts (Appendix A).

We will next focus on the computational aspects of solving the induced saddle-point problem (L1)
using regret minimization techniques. All of the omitted proofs are deferred to Appendices D and E.

The first challenge that arises in the solution of (L1) is that the domain of the minimizing player is
unbounded—the Lagrange multiplier is allowed to take any nonnegative value. Nevertheless, we
show in Theorem D.1 that it suffices to set the Lagrange multiplier to a fixed value (that may depend
on the time horizon); appropriately setting that value will allow us to trade off between the equilib-
rium gap and the optimality gap. We combine this theorem with standard regret minimizers (such
as variants of CFR employed in Section 4.1) to guarantee fast convergence to optimal equilibria.
Corollary 3.3. There exist regret minimization algorithms such that when employed in the saddle-
point problem (L1), the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of
optimal equilibria at a rate of T−1/4. Moreover, the per-iteration complexity is polynomial for com-
munication and certification equilibria (under the nested range condition [100]), while for NFCCE,
EFCCE and EFCE, implementing each iteration admits a fixed-parameter tractable algorithm.

Furthermore, we leverage the technique of optimism, pioneered by Chiang et al. [18], Rakhlin and
Sridharan [87], Syrgkanis et al. [94], to obtain a faster rate of convergence.
Corollary 3.4 (Improved rates via optimism). There exist regret minimization algorithms that guar-
antee that the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of optimal
equilibria at a rate of T−1/2. The per-iteration complexity is analogous to Corollary 3.3.

While this rate is slower than the (near) T−1 rates known for converging to some of those equilib-
ria [24, 34, 85, 3], Corollaries 3.3 and 3.4 additionally guarantee convergence to optimal equilibria;
improving the T−1/2 rate of Corollary 3.4 is an interesting direction for future research.

Last-iterate convergence The convergence results we have stated thus far apply for the average
strategy of the mediator—a typical feature of traditional guarantees in the no-regret framework.
Nevertheless, an important advantage of our mediator-augmented formulation is that we can also
guarantee last-iterate convergence to optimal equilibria in general games. Indeed, this follows
readily from our reduction to two-player zero-sum games, leading to the following guarantee.
Theorem 3.5 (Last-iterate convergence to optimal equilibria in general games). There exist algo-
rithms that guarantee that the last strategy of the mediator µ(T ) converges to the set of optimal
equilibria at a rate of T−1/4. The per-iteration complexity is analogous to Corollaries 3.3 and 3.4.

As such, our mediator-augmented paradigm bypasses known hardness results in the traditional learn-
ing paradigm (Proposition D.2) since iterate convergence is no longer tied to Nash equilibria.

3.2 Thresholding and binary search

A significant weakness of the above Lagrangian is that the multiplier λ∗ can be large. This means
that, in practice, the zero-sum game that needs to be solved to compute an optimal equilibrium
could have a large reward range. While this is not a problem for most tabular methods that can
achieve high precision, more scalable methods based on reinforcement learning tend to be unable to
solve games to the required precision. In this section, we will introduce another Lagrangian-based
method for solving the program (G) that will not require solving games with large reward ranges.
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Specifically, let τ ∈ R be a fixed threshold value, and consider the bilinear saddle-point problem

max
µ∈Ξ

min
λ∈∆n+1,

xi∈Xi:i∈JnK

λ0(c
⊤µ− τ)−

n∑
i=1

λiµ
⊤Aixi, (L2)

where ∆k := {λ ∈ Rk
≥0 : 1⊤λ = 1} is the probability simplex on k items. This Lagrangian was

also stated—but not analyzed—by Farina et al. [30], in the special case of correlated equilibrium
concepts (NFCCE, EFCCE, EFCE). Compared to that paper, ours contains a more complete analysis,
and is general to more notions of equilibrium.

Like (L1), this Lagrangian is also a zero-sum game, but unlike (L1), the reward range in this La-
grangian is bounded by an absolute constant:

Proposition 3.6. Let Γ be a (mediator-augmented) game in which the reward for all agents is
bounded in [0, 1]. For any fixed τ ∈ [0, 1], the saddle-point problem (L2) can be expressed as a
zero-sum extensive-form game whose reward is bounded in [−2, 2].

Proof. Consider the zero-sum extensive-form game Γ̂ between two players, the mediator and the
deviator, with the following structure:

1. The deviator picks an index i ∈ JnK ∪ {0}.
2. If i ̸= 0, nature picks whether Player i can deviate, uniformly at random.
3. The game Γ is played. All players, except i if i ̸= 0 and nature selected that i can deviate,

are constrained to play according to di. The deviator plays on behalf of Player i.
4. Upon reaching terminal node z, there are three cases. If nature picked i = 0, the utility is

u0(z)− τ . Otherwise, if nature picked that Player i ̸= 0 can deviate, the utility is−2ui(z).
Finally, if nature picked that Player i ̸= 0 cannot deviate, the utility is 2ui(z).

The mediator’s expected utility in this game is exactly

λ0u0(µ,d)−
n∑

i=1

λi[ui(µ,xi,d−i)− ui(µ,d)]

where λ ∈ ∆n+1 is the deviator’s mixed strategy in the first step.

The above observations suggest a binary-search-like algorithm for computing optimal equilibria;
the pseudocode is given as Algorithm 1. The algorithm solves O(log(1/ε)) zero-sum games, each
to precision ε. Let v∗ be the optimal value of (G). If τ ≤ v∗, the value of (L2) is 0, and we will
therefore never branch low, in turn implying that u ≥ v∗ and ℓ ≥ v∗−ε. As a result, we have proven:

Theorem 3.7. Algorithm 1 returns an ε-approximate equilibrium µ whose value to the mediator
is at least v∗ − 2ε. If the underlying game solver used to solve (L2) runs in time f(Γ, ε), then
Algorithm 1 runs in time O(f(Γ, ε) log(1/ε)).

ALGORITHM 1: Pseudocode for binary search-based algorithm
1 input: game Γ with mediator reward range [0, 1], target precision ε > 0
2 ℓ← 0, u← 1
3 while u− ℓ > ε do
4 τ ← (ℓ+ u)/2
5 run an algorithm to solve game (L2) until either
6 (1) it finds a µ achieving value ≥ −ε in (L2), or
7 (2) it proves that the value of (L2) is < 0
8 if case (1) happened then ℓ← τ
9 else u← τ

10 return the last µ found

The differences between the two Lagrangian formulations can be summarized as follows:
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1. Using (L1) requires only a single game solve, whereas using (L2) requires O(log(1/ε))
game solves.

2. Using (L2) requires only an O(ε)-approximate game solver to guarantee value v∗ − ε,
whereas using (L1) would require an O(ε/λ∗)-approximate game solver to guarantee the
same, even assuming that the critical Lagrange multiplier λ∗ in (L1) is known.

Which is preferred will therefore depend on the application. In practice, if the games are too large to
be solved using tabular methods, one can use approximate game solvers based on deep reinforcement
learning. In this setting, since reinforcement learning tends to be unable to achieve the high precision
required to use (L1), using (L2) should generally be preferred. In Section 4, we back up these claims
with concrete experiments.

4 Experimental evaluation

In this section, we demonstrate the practical scalability and flexibility of our approach, both for
computing optimal equilibria in extensive-form games, and for designing optimal mechanisms in
large-scale sequential auction design problems.

4.1 Optimal equilibria in extensive-form games

We first extensively evaluate the empirical performance of our two-player zero-sum reduction (Sec-
tion 3.1) for computing seven equilibrium solution concepts across 23 game instances; the results
using the method of Section 3.2 are slightly inferior, and are included in Appendix H. The game
instances we use are described in detail in Appendix F, and belong to following eight different
classes of established parametric benchmark games, each identified with an alphabetical mnemonic:
B – Battleship [30], D – Liar’s dice [68], GL – Goofspiel [88], K – Kuhn poker [61], L – Leduc
poker [93], RS – ridesharing game [101], S – Sheriff [30], TP – double dummy bridge game [101].

For each of the 23 games, we compare the runtime required by the linear programming method of
Zhang and Sandholm [100] (‘LP’) and the runtime required by our learning dynamics in Section 3.1
(‘Ours’) for computing ε-optimal equilibrium points.

Table 1 shows experimental results for the case in which the threshold ε is set to be 1% of the
payoff range of the game, and the objective function is set to be the maximum social welfare (sum
of player utilities) for general-sum games, and the utility of Player 1 in zero-sum games. Each row
corresponds to a game, whose identifier begins with the alphabetical mnemonic of the game class,
and whose size in terms of number of nodes in the game trees is reported in the second column.
The remaining columns compare, for each solution concept, the runtimes necessary to approximate
the optimum equilibrium point according to that solution concept. Due to space constraints, only
five out of the seven solution concepts (namely, NFCCE, EFCCE, EFCE, COMM, and CERT) are
shown; data for the two remaining concepts (NFCCERT and CCERT) is given in Appendix G.

We remark that in Table 1, the column ‘Ours’ reports the minimum across the runtime across the
different hyperparameters tried for the learning dynamics. Furthermore, for each run of the algo-
rithms, the timeout was set at one hour. More details about the experimental setup are available in
Appendix G, together with finer breakdowns of the runtimes.

We observe that our learning-based approach is faster—often by more than an order of magnitude—
and more scalable than the linear program. Our additional experiments with different objective
functions and values of ε, available in Appendix G, confirm the finding. This shows the promise
of our computational approach, and reinforces the conclusion that learning dynamics are by far the
most scalable technique available today to compute equilibrium points in large games.

4.2 Exact sequential auction design

Next, we use our approach to derive the optimal mechanism for a sequential auction design
problem. In particular, we consider a two-round auction with two bidders, each starting with a
budget of 1. The valuation for each item for each bidder is sampled uniformly at random from the
set {0, 1/4, 1/2, 3/4, 1}. We consider a mediator-augmented game in which the principal chooses an
outcome (allocation and payment for each player) given their reports (bids). We use CFR+ [95] as
learning algorithm and a fixed Lagrange multiplier λ := 25 to compute the optimal communication
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Table 1: Experimental comparison between our learning-based approach (‘Ours’, Section 3.1) and
the linear-programming-based method (‘LP’) of Zhang and Sandholm [100]. Within each pair of
cells corresponding to ‘LP’ vs ‘Ours,’ the faster algorithm is shaded blue while the hue of the slower
algorithm depends on how much slower it is. If both algorithms timed out, they are both shaded gray.

Game # Nodes NFCCE EFCCE EFCE COMM CERT
LP Ours LP Ours LP Ours LP Ours LP Ours

B2222 1573 0.00s 0.00s 0.00s 0.01s 0.00s 0.02s 2.00s 1.49s 0.00s 0.02s
B2322 23 839 0.00s 0.01s 3.00s 0.69s 9.00s 1.60s timeout 4m 41s 2.00s 1.24s
B2323 254 239 6.00s 0.33s 1m 21s 14.23s 3m 40s 44.87s timeout timeout 37.00s 40.45s
B2324 1 420 639 38.00s 2.73s timeout 3m 1s timeout 10m 48s timeout timeout timeout 6m 14s

D32 1017 0.00s 0.01s 0.00s 0.02s 12.00s 0.40s 0.00s 0.06s 0.00s 0.01s
D33 27 622 2m 17s 12.93s timeout 1m 46s timeout timeout timeout 4m 37s 4.00s 3.14s

GL3 7735 0.00s 0.01s 1.00s 0.02s 0.00s 0.01s timeout 7.72s 0.00s 0.02s

K35 1501 49.00s 0.76s 46.00s 0.67s 57.00s 0.55s 1.00s 0.03s 0.00s 0.01s

L3132 8917 26.00s 0.59s 8m 43s 5.13s 8m 18s 6.10s 8.00s 3.46s 1.00s 0.10s
L3133 12 688 38.00s 0.94s 20m 26s 8.88s 21m 25s 6.84s 12.00s 3.40s 1.00s 0.22s
L3151 19 981 timeout 15.12s timeout timeout timeout timeout timeout 16.73s 2.00s 0.21s
L3223 15 659 4.00s 0.44s 1m 10s 2.94s 2m 2s 5.52s 19.00s 18.19s 1.00s 0.61s
L3523 1 299 005 timeout 1m 7s timeout timeout timeout timeout timeout timeout timeout 2m 58s

S2122 705 0.00s 0.00s 0.00s 0.01s 0.00s 0.02s 2.00s 0.35s 0.00s 0.02s
S2123 4269 0.00s 0.01s 1.00s 0.06s 1.00s 0.15s 1m 33s 59.63s 1.00s 0.15s
S2133 9648 1.00s 0.02s 3.00s 0.11s 3.00s 0.49s timeout 12m 11s 2.00s 0.92s
S2254 712 552 1m 58s 7.43s timeout 22.01s timeout 3m 34s timeout timeout timeout 2m 42s
S2264 1 303 177 3m 43s 11.74s timeout 39.23s timeout timeout timeout timeout timeout timeout

TP3 910 737 1m 38s 7.44s timeout 13.76s timeout 13.46s timeout timeout timeout 26.70s

RS212 598 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 2.00s 0.01s 0.00s 0.00s
RS222 734 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 3.00s 0.01s 0.00s 0.00s
RS213 6274 timeout 14.68s timeout 15.54s timeout 23.37s 6m 25s 8.74s 0.00s 0.02s
RS223 6238 timeout timeout timeout timeout timeout timeout 8m 54s 4.00s 1.00s 0.01s

equilibrium that corresponds to the optimal mechanism. We terminated the learning procedure after
10000 iterations, at a duality gap for (L1) of approximately 4.2× 10−4. Figure 1 (left) summarizes
our results. On the y-axis we show how exploitable (that is, how incentive-incompatible) each of
the considered mechanisms are, confirming that for this type of sequential settings, second-price
auctions (SP) with or without reserve price, as well as the first-price auction (FP), are typically
incentive-incompatible. On the x-axis, we report the hypothetical revenue that the mechanism would
extract assuming truthful bidding. Our mechanism is provably incentive-compatible and extracts a
larger revenue than all considered second-price mechanisms. It also would extract less revenue than
the hypothetical first-price auction if the bidders behaved truthfully (of course, real bidders would
not behave honestly in the first-price auction but rather would shade their bids downward, so the
shown revenue benchmark in Figure 1 is actually not achievable). Intriguingly, we observed that 8%
of the time the mechanism gives an item away for free. Despite appearing irrational, this behavior
can incentivize bidders to use their budget earlier in order to encourage competitive bidding, and
has been independently discovered in manual mechanism design recently [25, 75].

4.3 Scalable sequential auction design via deep reinforcement learning

We also combine our framework with deep-learning-based algorithms for scalable equilibrium com-
putation in two-player zero-sum games to compute optimal mechanisms in two sequential auction
settings. To compute an optimal mechanism using our framework, we use the PSRO algorithm [63],
a deep reinforcement learning method based on the double oracle algorithm that has empirically
scaled to large games such as Starcraft [96] and Stratego [72], as the game solver in Algorithm 1.7
To train the best responses, we use proximal policy optimization (PPO) [90].

7We also tested PSRO on the Lagrangian (L1), but this proved to be incompatible with deep learning due to
the large reward range induced by the multiplier λ.
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Figure 1: Exploitability is measured by summing the best response for both bidders to the
mechanism. Zero exploitability corresponds to incentive compatibility. In a sequential auction
with budgets, our method is able to achieve higher revenue than second-price auctions and better
incentive compatibility than a first-price auction.

First, to verify that the deep learning method is effective, we replicate the results of the tabular
experiments in Section 4.2. We find that PSRO achieves the same best response values and optimal
equilibrium value computed by the tabular experiment, up to a small error. These results give us
confidence that our method is correct.

Second, to demonstrate scalability, we run our deep learning-based algorithm on a larger auc-
tion environment that would be too big to solve with tabular methods. In this environment,
there are four rounds, and in each round the valuation of each player is sampled uniformly from
{0, 0.1, 0.2, 0.3, 0.4, 0.5}. The starting budget of each player is, again, 1. We find that, like the
smaller setting, the optimal revenue of the mediator is ≈ 1.1 (right-side of Figure 1). This revenue
exceeds the revenue of every second-price auction (none of which have revenue greater than 1).8

5 Conclusions

We proposed a new paradigm of learning in games. It applies to mechanism design, information
design, and solution concepts in multi-player extensive-form games such as correlated, communi-
cation, and certification equilibria. Leveraging a Lagrangian relaxation, our paradigm reduces the
problem of computing optimal equilibria to determining minimax equilibria in zero-sum extensive-
form games. We also demonstrated the scalability of our approach for computing optimal equilibria
by attaining state-of-the-art performance in benchmark tabular games, and by solving a sequential
auction design problem using deep reinforcement learning.

8We are inherently limited in this setting by the inexactness of best responses based on deep reinforcement
learning; as such, it is possible that these values are not exact. However, because of the success of above tabular
experiment replications, we believe that our results should be reasonably accurate.

10



Acknowledgements

We are grateful to the anonymous NeurIPS reviewers for many helpful comments that helped im-
prove the presentation of this paper. Tuomas Sandholm’s work is supported by the Vannevar Bush
Faculty Fellowship ONR N00014-23-1-2876, National Science Foundation grants RI-2312342 and
RI-1901403, ARO award W911NF2210266, and NIH award A240108S001. McAleer is funded by
NSF grant #2127309 to the Computing Research Association for the CIFellows 2021 Project. The
work of Prof. Gatti’s research group is funded by the FAIR (Future Artificial Intelligence Research)
project, funded by the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, In-
vestment 1.3, Line on Artificial Intelligence). Conitzer thanks the Cooperative AI Foundation and
Polaris Ventures (formerly the Center for Emerging Risk Research) for funding the Foundations of
Cooperative AI Lab (FOCAL). Andy Haupt was supported by Effective Giving. We thank Dylan
Hadfield-Menell for helpful conversations.

References
[1] Kenshi Abe, Mitsuki Sakamoto, and Atsushi Iwasaki. Mutation-driven follow the regular-

ized leader for last-iterate convergence in zero-sum games. In Conference on Uncertainty in
Artificial Intelligence (UAI), volume 180, pages 1–10. PMLR, 2022.

[2] Ilan Adler. The equivalence of linear programs and zero-sum games. Int. J. Game Theory, 42
(1):165–177, 2013.

[3] Ioannis Anagnostides, Constantinos Daskalakis, Gabriele Farina, Maxwell Fishelson, Noah
Golowich, and Tuomas Sandholm. Near-optimal no-regret learning for correlated equilibria
in multi-player general-sum games. In Symposium on Theory of Computing (STOC), pages
736–749. ACM, 2021.

[4] Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-
iterate convergence beyond zero-sum games. In International Conference on Machine Learn-
ing (ICML), volume 162 of Proceedings of Machine Learning Research, pages 536–581.
PMLR, 2022.

[5] Robert Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathe-
matical Economics, 1:67–96, 1974.
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Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

[97] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–
320, 1928.

[98] Bernhard von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Defini-
tion and computational complexity. Mathematics of Operations Research, 33(4):1002–1022,
2008.

[99] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate con-
vergence in constrained saddle-point optimization. In 9th International Conference on Learn-
ing Representations, ICLR 2021. OpenReview.net, 2021.

16



[100] Brian Hu Zhang and Tuomas Sandholm. Polynomial-time optimal equilibria with a me-
diator in extensive-form games. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

[101] Brian Hu Zhang, Gabriele Farina, Andrea Celli, and Tuomas Sandholm. Optimal correlated
equilibria in general-sum extensive-form games: Fixed-parameter algorithms, hardness, and
two-sided column-generation. In ACM Conference on Economics and Computation (EC),
pages 1119–1120. ACM, 2022.

[102] Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Mar-
cus McAleer, Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and
Tuomas Sandholm. Steering no-regret learners to optimal equilibria. CoRR, abs/2306.05221,
2023.

[103] Brian Hu Zhang, Gabriele Farina, and Tuomas Sandholm. Team belief DAG: generalizing
the sequence form to team games for fast computation of correlated team max-min equilibria
via regret minimization. In International Conference on Machine Learning (ICML), volume
202 of Proceedings of Machine Learning Research, pages 40996–41018. PMLR, 2023.

[104] Hugh Zhang. A simple adaptive procedure converging to forgiving correlated equilibria.
CoRR, abs/2207.06548, 2022.

[105] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher. The
ai economist: Taxation policy design via two-level deep multiagent reinforcement learning.
Science Advances, 8(18):eabk2607, 2022.

[106] Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret min-
imization in games with incomplete information. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2007.

17



A Illustrative examples of mediator-augmented games

In this section, we further clarify the framework of mediator-augmented games we operate in through
a couple of examples. We begin by noting that the family of solution concepts for extensive-form
games captured by this framework includes, but is not limited to, the following:

• normal-form coarse correlated equilibrium* [5, 79],
• extensive-form coarse correlated equilibrium* [31],
• extensive-form correlated equilibrium* [98],
• certification (under the nested range condition [46, 37]) [37, 100],
• communication equilibrium [81, 36],
• mechanism design for sequential settings, and
• information design/Bayesian persuasion for sequential settings [58].

We refer the interested reader to Zhang and Sandholm [100, Appendix G] for additional interesting
concepts not mentioned above.
Example A.1 (Single-item auction). Consider the single-good monopolist problem studied by My-
erson [80]. Each player i ∈ JnK has a valuation vi ∈ Vi. Agent valuations may be correlated,
and distributed according to F ∈ ∆(V ), where V := V1 × V2 × · · · × Vn. The mechanism se-
lects a (potentially random) payment p and a winner i∗ ∈ JnK. The agents’ utilities are quasilinear:
ui(i

∗, p; vi) = vi − p if i∗ = i and 0 otherwise. The seller wishes to maximize expected payment
from the agents. This has the following timeline.

1. The mechanism commits to a (potentially randomized) mapping ϕ : v = (v1, . . . , vn) 7→
(i∗, p).

2. Nature samples valuations v = (v1, . . . , vn) ∼ F .

3. Each player i ∈ JnK privately observes her valuation vi, and then decides what valuation v′i
to report to the mediator.

4. The winner and payment are selected according to ϕ(v′).

5. Player i∗ gets utility vi∗ − p, while all other players get 0. The mediator obtains utility
u0 = p.

In this extensive-form game, the primitives from our paper are:

• a (pure) mediator strategy µ ∈ Ξ is a mapping from valuation reports v′ = (v′1, . . . , v
′
n)

to outcomes (i∗, p)—that is, mediator strategies are mechanisms, and mixed strategies are
randomized mechanisms;

• a (pure) player strategy xi ∈ Xi for each player i ∈ JnK is a mapping from Vi to Vi

indicating what valuation Player i reports as a function of its valuation vi ∈ Vi;

• the direct (in mechanism design language, truthful) strategy di for each player i is the
identity map from Vi to Vi. (Hence, in particular, di ∈ Xi is a strategy of Player i, so it
makes sense, for example, to call (µ,d) = (µ,d1, . . . ,dn) a strategy profile.)

In particular, if profile (µ,d1, . . . ,dn) is such that each player i is playing a best response, then µ
is a truthful mechanism.

The conversion in Proposition 3.2 creates a zero-sum extensive-form game Γ̂, whose equilibria for
the mediator (for sufficiently large λ) are precisely the revenue-maximizing mechanisms. Γ̂ has the
following timeline:

*For notions of correlated equilibrium in extensive-form games, the mediator must have imperfect recall,
and therefore the representation of the mediator’s decision space Ξ may not be polynomial. This is unavoidable,
since the problem of computing an optimal equilibrium under these notions is NP-hard in general [98]. In this
paper, we will largely ignore these concerns and assume that the representation of the mixed strategy set Ξ is
part of the input.
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1. Nature picks, with equal probability, whether there is a deviator. If nature picks that there
is a deviator, nature also selects which player i ∈ JnK is represented by the deviator.

2. Nature samples valuations v = (v1, . . . , vn) ∼ F .

3. If nature selected that there is a deviator, the deviator observes i and its valuation vi ∈ Vi,
and selects a deviation v′i ∈ Vi.

4. The mediator observes (v′i,v−i) (i.e., all other players are assumed to have reported hon-
estly) and selects a winner i∗ and payment p, as before.

5. There are now two cases. If nature selected at the root that there was to be a deviator, the
utility for the mediator is −2λnui(i

∗, p; vi). If nature selected at the root that there was to
be no deviator, the utility for the mediator is 2p+2λ

∑n
i=1 ui(i

∗, p; vi) = 2p+2λ(vi∗−p).

As our second example, we show how the problem of computing a social-welfare-maximizing cor-
related equilbrium (CE) in a normal-form game can be captured using mediator-augmented games.
Example A.2 (Social welfare-optimal correlated equilibria in normal-form games). Let Ai be the
action set for each player i ∈ JnK in the game, and let utility functions ui : A → R, where A :=
A1×A2×· · ·×An. The social welfare is the function u0 : A→ R given by u0(a) :=

∑n
i=1 ui(a).

In the traditional formulation, a CE is a correlated distribution µ over A. The elements (a1, . . . , an)
sampled from µ can be thought of as profiles of action recommendations for the players such that
no player has any incentive to not follow the recommendation (obedience). This has the following
well-known timeline.

1. At the beginning of the game, the mediator player chooses a profile of recommendations
a = (a1, . . . , an) ∈ A.

2. Each player observes its recommendation ai and chooses an action a′i.

3. Each player gets utility ui(a
′), and the mediator gets utility u0(a

′) =
∑n

i=1 ui(a
′).

In this game:

• mixed strategies µ for the mediator are distributions over A, that is, they are correlated
profiles;

• a (pure) strategy for player i ∈ JnK is a mapping from Ai to Ai, encoding the action player
i ∈ JnK will take upon receiving each recommendation;

• the direct strategy di is again the identity map (i.e., each player selects as action what the
mediator recommended to him/her).

In particular, if profile (µ,d1, . . . ,dn) is such that each player i is playing a best response, then µ
is a CE.

Proposition 3.2 yields the following zero-sum game whose mediator equilibrium strategies (for suf-
ficiently large λ) are precisely the welfare-optimal equilibria:

1. Nature picks, with equal probability, whether there is a deviator. If nature picks that there
is a deviator, nature also selects which player i ∈ JnK is represented by the deviator.

2. The mediator picks a pure strategy profile a = (a1, . . . , an) ∈ A.

3. If there is a deviator, the deviator observes i ∈ JnK and the recommendation ai and picks
an action a′i.

4. There are now two cases. If nature selected at the root that there was to be a deviator, the
utility for the mediator is −2λnui(a

′
i,a−i). If nature selected at the root that there was to

be no deviator, the utility for the mediator is 2u0(a) + 2λ
∑n

i=1 ui(a) = 2(1 + λ)u0(a).
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B Further related work

In this section, we provide additional related work omitted from the main body.

We first elaborate further on prior work regarding the complexity of computing equilibria in games.
Much attention has been focused on the complexity of computing just any one Nash equilibrium.
This has been motivated in part by the idea that if even this is hard to compute, then this casts doubt
on the concept of Nash equilibrium as a whole [23]; but the interest also stemmed from the fact that
the complexity of the problem was open for a long time [82], and ended up being complete for an
exotic complexity class [23, 17], whereas computing a Nash equilibrium that reaches a certain ob-
jective value is “simply” NP-complete [41, 21]. None of this, however, justifies settling for just any
one equilibrium in practice. Moreover, for correlated equilibria and related concepts, the complexity
considerations are different. While one (extensive-form) correlated equilibrium can be computed in
polynomial time even for multi-player succinct games [83, 56, 54] (under the polynomial expecta-
tion property), computing one that maximizes some objective function is typically NP-hard [83, 98].
To make matters worse, even finding one that is strictly better—in terms of social welfare—than the
worst one is also computationally intractable [9]. Of course, our results do not contradict those lower
bounds. For example, in multi-player normal-form games the strategy space of the mediator has an
exponential description, thereby rendering all our algorithms exponential in the number of players.
We stress again that while there exist algorithms that avoid this exponential dependence, they are
not guaranteed to compute an optimal equilibrium, which is the main focus of this paper.

Moreover, in our formulation the mediator has the power to commit to a strategy. As such, our results
also relate to the literature on learning and computing Stackelberg equilibria [8, 35, 66, 84, 20], as
well as the work of Camara et al. [15] which casts mechanism design as a repeated interaction
between a principal and an agent. Stackelberg equilibria in extensive-form games are, however,
hard to find in general [65]. Our Stackelberg game has a much nicer form than general Stackelberg
games—in particular, we know in advance what the equilibrium strategies will be for the followers
(namely, the direct strategies, ). This observation is what allows the reduction to zero-sum games,
sidestepping the need to use Stackleberg-specific technology or solvers and resulting in efficient
algorithms.

In an independent and concurrent work, Fujii [40] provided independent learning dynamics converg-
ing to the set of communication equilibria in Bayesian games, but unlike our algorithm there are no
guarantees for finding an optimal one. Also in independent and concurrent work, Ivanov et al. [55]
develop similar Lagrangian-based dynamics for the equilibrium notion that, in the language of this
paper and Zhang and Sandholm [100], is coarse full-certification equilibrium. Differing from ours,
their paper does not present any theoretical guarantees (instead focusing on practical results).

C Proof of Proposition 3.1

In this section, we provide the proof of Proposition 3.1, the statement of which is recalled below.

Proposition 3.1. The problem (L1) admits a finite saddle-point solution (µ∗,x∗, λ∗). Moreover, for
all fixed λ > λ∗, the problems (L1) and (G) have the same value and same set of optimal solutions.

Proof. Let v be the optimal value of (G). The Lagrangian of (G) is

max
µ∈Ξ

min
λi∈R≥0,

xi∈Xi:i∈JnK

c⊤µ−
n∑

i=1

λiµ
⊤Aixi.

Now, making the change of variables x̄i := λixi, the above problem is equivalent to

max
µ∈Ξ

min
x̄i∈X̄i:i∈JnK

c⊤µ−
n∑

i=1

µ⊤Aix̄i. (1)

where X̄i is the conic hull of Xi: X̄i := {λixi : xi ∈ Xi}. Note that, when Xi is a polytope of the
form Xi := {Fixi = fi,xi ≥ 0}, its conic hull can be expressed as X̄i = {Fixi = λifi,xi ≥
0, λi ≥ 0}. Thus, (1) is a bilinear saddle-point problem, where Ξ is compact and convex and X̄i is
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convex. Thus, Sion’s minimax theorem [92] applies, and we have that the value of (1) is equal to the
value of the problem

min
x̄i∈X̄i:i∈JnK

max
µ∈Ξ

c⊤µ−
n∑

i=1

µ⊤Aix̄i. (2)

Since this is a linear program9 with a finite value, its optimum value must be achieved by some
x̄ := (x̄1, . . . , x̄n) := (λ1x1, . . . , λnxn). Let λ∗ := maxi λi. Using the fact that µ⊤Aidi = 0 for
all µ, the profile

x̄′ := (λ∗x′
1, . . . , λ

∗x′
n) where x′

i = di +
λi

λ∗ (xi − di)

is also an optimal solution in (2). Therefore, for any λ ≥ λ∗, x′ := (x′
1, . . . ,x

′
n) is an optimal

solution for the minimizer in (L1) that achieves the value of (G), so (G) and (L1) have the same
value.

Now take λ > λ∗, and suppose for contradiction that (L1) admits some optimal µ ∈ Ξ that is not
optimal in (G). Then, either c⊤µ < v, or µ violates some constraint maxxi

µ⊤Aixi ≤ 0. The
first case is impossible because then setting xi = di for all i yields value less than v in (L1). In the
second case, since we know that (L1) and (G) have the same value when λ = λ∗, we have

c⊤µ− λmax
x∈X

n∑
i=1

µ⊤Aixi < c⊤µ− λ∗ max
x∈X

n∑
i=1

µ⊤Aixi ≤ v.

D Fast computation of optimal equilibria via regret minimization

In this section, we focus on the computational aspects of solving the induced saddle-point prob-
lem (L1) using regret minimization techniques. In particular, this section serves to elaborate on our
results presented earlier in Section 3.1. All of the omitted proofs are deferred to Appendix E for the
sake of exposition.

As we explained in Section 3.1, the first challenge that arises in the solution of (L1) is that the
domain of Player min is unbounded—the Lagrange multiplier is allowed to take any nonnegative
value. Nevertheless, we show in the theorem below that it suffices to set the Lagrange multiplier to a
fixed value (that may depend on the time horizon); we reiterate that appropriately setting that value
will allow us to trade off between the equilibrium gap and the optimality gap. Before we proceed,
we remark that the problem of Player min in (L1) can be decomposed into the subproblems faced by
each player separately, so that the regret of Player min can be cast as the sum of the players’ regrets
(see Corollary E.2); this justifies the notation

∑n
i=1 Reg

T
Xi

used for the regret of Player min below.

Theorem D.1. Suppose that Player max in the saddle-point problem (L1) incurs regret RegTΞ and
Player min incurs regret

∑n
i=1 Reg

T
Xi

after T ∈ N repetitions, for a fixed λ = λ(T ) > 0. Then, the
average mediator strategy Ξ ∋ µ̄ := 1

T

∑T
t=1 µ

(t) satisfies the following:

1. For any strategy µ∗ ∈ Ξ such that maxi∈JnK maxx∗
i ∈Xi

(µ∗)⊤Aix
∗
i ≤ 0,

c⊤µ̄ ≥ c⊤µ∗ − 1

T

(
RegTΞ +

n∑
i=1

RegTXi

)
;

2. The equilibrium gap of µ̄ decays with a rate of λ−1:

max
i∈JnK

max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ≤

maxµ,µ′∈Ξ c⊤(µ− µ′)

λ
+

1

λT

(
RegTΞ +

n∑
i=1

RegTXi

)
.

As a result, if we can simultaneously guarantee that λ(T )→ +∞ and 1
T

(
RegTΞ +

∑n
i=1 Reg

T
Xi

)
→

0, as T → +∞, Theorem D.1 shows that both the optimality gap (Item 1) and the equilibrium gap

9This holds by taking a dual of the inner minimization.
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(Item 2) converge to 0. We show that this is indeed possible in the sequel (Corollaries 3.3 and 3.4),
obtaining favorable rates of convergence as well.

It is important to stress that while there exists a bounded critical Lagrange multiplier for our problem
(Proposition 3.1), thereby obviating the need for truncating its value, such a bound is not necessarily
polynomial. For example, halving the players’ utilities while maintaining the utility of the mediator
would require doubling the magnitude of the critical Lagrange multiplier.

Next, we combine Theorem D.1 with suitable regret minimization algorithms in order to guarantee
fast convergence to optimal equilibria. Let us first focus on the side of Player min in (L1),
which, as pointed out earlier, can be decomposed into subproblems corresponding to each player
separately (Corollary E.2). Minimizing regret over the sequence-form polytope can be performed
efficiently with a variety of techniques, which can be classified into two basic approaches. The
first one is based on the standard online mirror descent algorithm (see, e.g., [91]), endowed with
appropriate distance generating functions (DGFs) [32]. The alternative approach is based on regret
decomposition, in the style of CFR [106, 29]. In particular, given that the players’ observed utilities
have range O(λ), the regret of each player under suitable learning algorithms will grow as O(λ

√
T )

(see Proposition E.1). Furthermore, efficiently minimizing regret from the side of the mediator
depends on the equilibrium concept at hand. For NFCCE, EFCCE and EFCE, the imperfect recall
of the mediator [101] induces a computationally hard problem [19], which nevertheless admits
fixed-parameter tractable algorithms [103] (Proposition E.3). In contrast, for communication and
certification equilibria the perfect recall of the mediator enables efficient computation for any
extensive-form game. As a result, selecting a bound of λ := T 1/4 on the Lagrange multiplier, so as
to optimally trade off Items 1 and 2 of Theorem D.1, leads to the following conclusion.

Corollary 3.3. There exist regret minimization algorithms such that when employed in the saddle-
point problem (L1), the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of
optimal equilibria at a rate of T−1/4. Moreover, the per-iteration complexity is polynomial for com-
munication and certification equilibria (under the nested range condition [100]), while for NFCCE,
EFCCE and EFCE, implementing each iteration admits a fixed-parameter tractable algorithm.

Furthermore, we leverage the technique of optimism, pioneered by Chiang et al. [18], Rakhlin and
Sridharan [87], Syrgkanis et al. [94] in the context of learning in games, in order to obtain faster
rates. In particular, using optimistic mirror descent we can guarantee that the sum of the agents’
regrets in the saddle-point problem (L1) will now grow as O(λ) (Proposition E.4), instead of the
previous bound O(λ

√
T ) obtained using vanilla mirror descent. Thus, letting λ = T 1/2 leads to the

following improved rate of convergence.

Corollary 3.4 (Improved rates via optimism). There exist regret minimization algorithms that guar-
antee that the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of optimal
equilibria at a rate of T−1/2. The per-iteration complexity is analogous to Corollary 3.3.

We reiterate that while this rate is slower than the (near) T−1 rates known for converging to some of
those equilibria [24, 34, 85, 3], Corollaries 3.3 and 3.4 additionally guarantee convergence to optimal
equilibria; improving the T−1/2 rate of Corollary 3.4 is an interesting direction for the future.

Last-iterate convergence The results we have stated thus far apply for the average strategy of the
mediator—a typical feature of traditional guarantees in the no-regret framework. In contrast, there
is a recent line of work that endeavors to recover last-iterate guarantees as well [22, 45, 1, 14, 6,
99, 64, 43, 67, 44]. Yet, despite many efforts, the known last-iterate guarantees of no-regret learning
algorithms apply only for restricted classes of games, such as two-player zero-sum games. There is
an inherent reason for the limited scope of those results: last-iterate convergence is inherently tied to
Nash equilibria, which in turn are hard to compute in general games [23, 17]—let alone computing
an optimal one [41, 21]. Indeed, any given joint strategy profile of the players induces a product
distribution, so iterate convergence requires—essentially by definition—at the very least computing
an approximate Nash equilibrium.

Proposition D.2 (Informal). Any independent learning dynamics (without a mediator) require su-
perpolynomial time to guarantee ε-last-iterate convergence, for a sufficiently small ε = O(m−c),
even for two-player m-action normal-form games, unless PPAD ⊆ P.
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There are also unconditional exponential communication-complexity lower bounds for uncoupled
methods [7, 53, 89, 48], as well as other pertinent impossibility results [50, 74] that document the
inherent persistence of limit cycles in general-sum games. In contrast, an important advantage of
our mediator-augmented formulation is that we can guarantee last-iterate convergence to optimal
equilibria in general games. Indeed, this follows readily from our reduction to two-player zero-sum
games, for which the known bound of O(λ/

√
T ) for the iterate gap of (online) optimistic gradient

descent can be employed (see Appendix E).
Theorem 3.5 (Last-iterate convergence to optimal equilibria in general games). There exist algo-
rithms that guarantee that the last strategy of the mediator µ(T ) converges to the set of optimal
equilibria at a rate of T−1/4. The per-iteration complexity is analogous to Corollaries 3.3 and 3.4.

As such, our mediator-augmented learning paradigm bypasses the hardness of Proposition D.2 since
last-iterate convergence is no longer tied to convergence to Nash equilibria.

E Omitted proofs from Section D

In this section, we provide the omitted proofs from Appendix D, which concerns the solution of
the saddle-point problem described in (L1) using regret minization. Appendix E.1 then presents
a slightly different approach for solving (L1) using regret minimization over conic hulls, which is
used in our experiments.

We begin with the proof of Theorem D.1, the statement of which is recalled below. In the following
proof, we will denote by L : Ξ × X ∋ (µ, (xi)

n
i=1) 7→ c⊤µ − λ

∑n
i=1 µ

⊤Aixi the induced
Lagrangian, for a fixed λ > 0.

Theorem D.1. Suppose that Player max in the saddle-point problem (L1) incurs regret RegTΞ and
Player min incurs regret

∑n
i=1 Reg

T
Xi

after T ∈ N repetitions, for a fixed λ = λ(T ) > 0. Then, the
average mediator strategy Ξ ∋ µ̄ := 1

T

∑T
t=1 µ

(t) satisfies the following:

1. For any strategy µ∗ ∈ Ξ such that maxi∈JnK maxx∗
i ∈Xi

(µ∗)⊤Aix
∗
i ≤ 0,

c⊤µ̄ ≥ c⊤µ∗ − 1

T

(
RegTΞ +

n∑
i=1

RegTXi

)
;

2. The equilibrium gap of µ̄ decays with a rate of λ−1:

max
i∈JnK

max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ≤

maxµ,µ′∈Ξ c⊤(µ− µ′)

λ
+

1

λT

(
RegTΞ +

n∑
i=1

RegTXi

)
.

Proof. Let µ̄ ∈ Ξ be the average strategy of the mediator and x̄i ∈ Xi be the average strategy of
each player i ∈ JnK over the T iterations. We first argue about the approximate optimality of µ̄. In
particular, we have that

c⊤µ̄ ≥ max
µ∈Ξ

{
c⊤µ− λ

n∑
i=1

µ⊤Aix̄i

}
− 1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
(3)

≥ c⊤µ∗ − λ

n∑
i=1

(µ∗)⊤Aix̄i −
1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
(4)

≥ c⊤µ∗ − λ

n∑
i=1

max
x∗

i ∈Xi

(µ∗)⊤Aix
∗
i −

1

T

(
n∑

i=1

RegTXi
+RegTΞ

)

≥ c⊤µ∗ − 1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
, (5)

where (3) follows from the fact that

max
µ∗∈Ξ

L(µ∗, (x̄i)
n
i=1)− min

(x∗
i )

n
i=1∈X

L(µ̄, (x∗
i )

n
i=1) ≤

1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
, (6)
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in turn implying (3) since
∑n

i=1 maxx∗
i ∈Xi µ̄

⊤Aix
∗
i ≥

∑n
i=1 µ̄

⊤Aidi = 0; (4) uses the notation
µ∗ to represent any equilibrium strategy optimizing the objective c⊤µ; and (5) follows from the
fact that, by assumption, µ∗ satisfies the equilibrium constraint: maxx∗

i ∈Xi
(µ∗)⊤Aix

∗
i ≤ 0 for any

player i ∈ JnK, as well as the nonnegativity of the Lagrange multiplier. This establishes Item 1 of
the statement.

Next, we analyze the equilibrium gap of µ̄. Consider any mediator strategy µ ∈ Ξ such that
µ⊤Aixi ≤ 0 for any xi ∈ Xi and player i ∈ JnK. By (6),

c⊤µ− λ

n∑
i=1

µ⊤Aix̄i − c⊤µ̄+ λ

n∑
i=1

max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ≤

1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
. (7)

But, by the equilibrium constraint for µ, it follows that µ⊤Aixi ≤ 0 for any xi ∈ Xi and player
i ∈ JnK, in turn implying that

∑n
i=1 µ

⊤Aixi ≤ 0. So, combining with (7),

λ

n∑
i=1

max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ≤ c⊤µ̄− c⊤µ+

1

T

(
n∑

i=1

RegTXi
+RegTΞ

)
. (8)

Finally, given that maxx∗
i′∈Xi′ µ̄

⊤Ai′x
∗
i′ ≥ µ̄⊤Ai′di′ = 0 for any player i′, it follows that

n∑
i=1

max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ≥ max

i∈JnK
max
x∗

i ∈Xi

µ̄⊤Aix
∗
i ,

and (8) implies Item 2 of the statement.

Bounding the regret of the players To instantiate Theorem D.1 for our problem, we first bound
the regret of Player min in (L1) in terms of the magnitude of the Lagrange multiplier. As we ex-
plained in Appendix D, the regret minimization problem faced by Player min can be decomposed
into subproblems over the sequence-form polytope, one for each player. To keep the exposition self-
contained, let us first recall the standard regret guarantee of CFR under the sequence-form polytope.

Proposition E.1 ([106]). Let RegTXi
be the regret cumulated by CFR [106] over the sequence-form

polytope Xi. Then, for any T ∈ N,

RegTXi
≤ CDi|Σi|

√
T ,

where Di > 0 is the range of utilities observed by player i ∈ JnK and C > 0 is an absolute constant.

An analogous regret guarantee holds for online mirror descent [91]. As a result, given that the range
of observed utilities for each player is O(λ), for a fixed Lagrange multiplier λ, we arrive at the
following result.
Corollary E.2. If all players employ CFR, the regret of Player min in (L1) can be bounded as

RegTX =

n∑
i=1

RegTXi
= O(λ

√
T ).

Here, we used the simple fact that regret over a Cartesian product can be expressed as the sum of
the regrets over each individual set [29].

Bounding the regret of the mediator We next turn our attention to the regret minimization prob-
lem faced by the mediator. The complexity of this problem depends on the underlying notion of
equilibrium at hand. In particular, for the correlated equilibrium concepts studied in this paper—
namely, NFCCE, EFCCE and EFCE, we employ the framework of DAG-form sequential decision
problem (DFSDP) [103]. In particular, DFSDP is a sequential decision process over a DAG. We will
denote by E the set of edges of the DAG, and by S the set of its nodes; we refer to Zhang et al. [103]
for the precise definitions. A crucial structural observation is that a DFSDP can be derived from
the probability simplex after repeated Cartesian products and scaled-extensions operations; suitable
DGFs arising from such operations have been documented [32]. As such, we can use the following
guarantee shown by Zhang et al. [103].
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Proposition E.3 ([103]). Let RegTΞ be the regret cumulated by the regret minimization algorithm
RΞ used by the mediator (Player max in (L1)) up to time T ∈ N. Then, if RΞ is instantiated
using CFR, or suitable variants thereof, RegTΞ = O(|S|

√
TD), where D is the range of the utilities

observed by the mediator. Further, the iteration complexity is O(|E|).

As a result, combining Theorem D.1 with Proposition E.3 and Corollary E.2, and setting the La-
grange multiplier λ := T 1/4, we establish the statement of Corollary 3.3.

Faster rates through optimism Next, to obtain Corollary 3.4, let us parameterize the regret of
optimistic gradient descent in terms of the maximum utility, which can be directly extracted from
the work of Rakhlin and Sridharan [87].
Proposition E.4. If both agents in the saddle-point problem (L1) employ optimistic gradient descent
with a sufficiently small learning rate η > 0, then the sum of their regrets is bounded by O(λ), for
any fixed λ > 0.

Proof Sketch. By the RVU bound [94, 87], the sum of the agents’ regrets can be bounded as
(diam2

Ξ +diam2
X)/η, for a sufficiently small η = O(1/λ), where diamΞ and diamX denote the

ℓ2-diameter of Ξ and X , respectively. Thus, taking η = Θ(1/λ) to be sufficiently small implies the
statement.

As a result, taking λ := T 1/2 and applying Theorem D.1 leads to the bound claimed in Corollary 3.4.

Last-iterate convergence Finally, let us explain how known guarantees can be applied to establish
Theorem 3.5. By applying [4], it follows that for a sufficiently small learning rate η = O(1/λ)

there is an iterate of optimistic gradient descent with O
(

1
η
√
T

)
duality gap. Thus, setting η =

Θ(1/λ) to be sufficiently small we get that the duality gap is bounded by O
(

λ√
T

)
. As a result,

for λ := T 1/4 Theorem D.1 implies a rate of T−1/4, as claimed in Theorem 3.5. We remark that
while the guarantee of Theorem D.1 has been expressed in terms of the sum of the agents’ regrets,
the conclusion readily applies for any pair of strategies (µ̄, x̄) ∈ Ξ × X by replacing the term
RegTΞ +

∑n
i=1 RegXi

with the duality gap of (µ̄, x̄) with respect to (L1) (for the fixed value of λ).

We further note that once the desirable duality gap O
(

1
η
√
T

)
has been reached, one can fix the

players’ strategies to obtain a last-iterate guarantee as well.

E.1 An alternative approach

In this subsection, we highlight an alternative approach for solving the saddle-point (L1) using regret
minimization. In particular, we first observe that it can expressed as the saddle-point problem

max
µ∈Ξ

min
x̄i∈X̄i:i∈JnK

c⊤µ−
n∑

i=1

µ⊤Aix̄i, (9)

where X̄i := {λixi : λi ∈ [0,K],xi ∈ Xi} is the conic hull of Xi truncated to a sufficiently large
parameter K > 0. Analogously to our approach in Appendix D, suitably tuning the value of K will
allow us trade off between the optimality gap and the equilibrium gap. In this context, we point out
below that how to construct a regret minimizer over a conic hull.

Regret minimization over conic hulls Suppose that RXi
is a regret minimizer over Xi and R+

is a regret minimizer over the interval [0,K]. Based on those two regret minimizers, Algorithm 2
shows how to construct a regret minimizer over the conic hull X̄i. More precisely, Algorithm 2 fol-
lows the convention that a generic regret minizerR interacts with its environment via the following
two subroutines:

• R.NEXTSTRATEGY: R returns the next strategy based on its internal state; and

• R.OBSERVEUTILITY(u(t)): R receives as input from the environment a (compatible) util-
ity vector u(t) at time t ∈ N.
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ALGORITHM 2: Regret minimization over a conic hull
1 function NEXTSTRATEGY()
2 λi ← R+.NEXTSTRATEGY()
3 xi ← RXi

.NEXTSTRATEGY()
4 return x̄i := λixi

5 function OBSERVEUTILITY(ui)
6 RXi

.OBSERVEUTILITY(ui)
7 R+.OBSERVEUTILITY(u⊤

i xi)

The formal statement regarding the cumulated regret of Algorithm 2 below is cast in the framework
of regret circuits [29].

Proposition E.5 (Regret circuit for the conic hull). Suppose that RegTXi
and RegT+ is the cumulative

regret incurred by RXi and R+, respectively, up to a time horizon T ∈ N. Then, the regret RegTX̄i

ofRX̄i
constructed based on Algorithm 2 can be bounded as

RegTX̄i
≤ Kmax{0,RegTXi

}+RegT+ .

Proof. By construction, we have that RegTX̄i
is equal to

max
x̄∗

i ∈X̄i

{
T∑

t=1

⟨x̄∗
i − x̄

(t)
i ,u(t)⟩

}
= max

λ∗
i x

∗
i ∈X̄i

{
T∑

t=1

⟨λ∗
ix

∗
i − λ

(t)
i x

(t)
i ,u

(t)
i ⟩

}

= max
λ∗
i x

∗
i ∈X̄i

{
λ∗
i

T∑
t=1

⟨x∗
i − x

(t)
i ,u

(t)
i ⟩+ (λ∗

i − λ
(t)
i )(u

(t)
i )⊤x

(t)
i

}
≤ Kmax{0,RegTXi

}+RegT+,

where the last derivation uses that λ∗
i ∈ [0,K].

As a result, by suitable instantiating RXi
and R+ (e.g., using Proposition E.1), the regret circuit of

Proposition E.5 enables us to construct a regret minimizer over X̄i with regret bounded as O(K
√
T ).

In turn, this directly leads to a regret minimizer for Player min in (9) with regret bounded by
O(K

√
T ). We further remark that Theorem D.1 can be readily cast in terms of the saddle-point

problem (9) as well, parameterized now by K instead of λ. As a result, convergence bounds such as
Corollary 3.3 also apply to regret minimizers constructed via conic hulls.

F Description of game instances

In this section, we provide a detailed description of the game instances used in our experiments in
Section 4.1.

F.1 Liar’s dice (D), Goofspiel (GL), Kuhn poker (K), and Leduc poker (L)

Liar’s dice At the start of the game, each of the three players rolls a fair k-sided die privately.
Then, the players take turns making claims about the outcome of their roll. The first player starts by
stating any number from 1 to k and the minimum number of dice they believe are showing that value
among all players. On their turn, each player has the option to make a higher claim or challenge
the previous claim by calling the previous player a “liar.” A claim is higher if the number rolled
is higher or the number of dice showing that number is higher. If a player challenges the previous
claim and the claim is found to be false, the challenger is rewarded +1 and the last bidder receives a
penalty of -1. If the claim is true, the last bidder is rewarded +1, and the challenger receives -1. All
other players receive 0 reward. We consider two instances of the game, one with k = 2 (D32) and
one with k = 3 (D33).
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Goofspiel This is a variant of Goofspiel with limited information. In this variation, in each turn
the players do not reveal the cards that they have played. Instead, players show their cards to a
neutral umpire, who then decides the winner of the round by determining which card is the highest.
In the event of a tie, the umpire directs the players to divide the prize equally among the tied players,
similar to the Goofspiel game. The instance GL3 which we employ has 3 players, 3 ranks, and
imperfect information.

Kuhn poker Three-player Kuhn Poker, an extension of the original two-player version proposed
by Kuhn [61], is played with three players and r cards. Each player begins by paying one chip to the
pot and receiving a single private card. The first player can check or bet (i.e., putting an additional
chip in the pot). Then, the second player can check or bet after a first player’s check, or fold/call the
first player’s bet. The third player can either check or bet if no previous bet was made, otherwise
they must fold or call. At the showdown, the player with the highest card who has not folded wins
all the chips in the pot. We use the instance K35 which has rank r = 5.

Leduc poker In our instances of the three-player Leduc poker the deck consists of s suits with r
cards each. Our instances are parametric in the maximum number of bets b, which in limit hold’em
is not necessarely tied to the number of players. The maximum number of raise per betting round
can be either 1, 2 or 3. At the beginning of the game, players each contribute one chip to the pot.
The game proceeds with two rounds of betting. In the first round, each player is dealt a private card,
and in the second round, a shared board card is revealed. The minimum raise is set at 2 chips in
the first round and 4 chips in the second round. We denote by L3brs an instance with three players
with b bets per round, r ranks, and s suits. We employ the following five instances: L3132, L3133,
L3151, L3223, L3523.

F.2 Battleship game (B) and Sheriff game (S)

Battleship The game is a general-sum version of the classic game Battleship, where two players
take turns placing ships of varying sizes and values on two separate grids of size h×w, and then take
turns firing at their opponent. Ships which have been hit at all their tiles are considered destroyed.
The game ends when one player loses all their ships, or after each player has fired r shots. Each
player’s payoff is determined by the sum of the value of the opponent’s destroyed ships minus γ ≥ 1
times the number of their own lost ships. We denote by Bphwr an instance with p players on a grid
of size h × w, one unit-size ship for each player, and r rounds. We consider the following four
instances: B2222, B2322, B2323, B2324.

Sheriff This game is a simplified version of the Sheriff of Nottingham board game, which models
the interaction between a Smuggler—who is trying to smuggle illegal items in their cargo—and
the Sheriff —who’s goal is stopping the Smuggler. First, the Smuggler has to decide the number
n ∈ {0, . . . , N} of illegal items to load on the cargo. Then, the Sheriff decides whether to inspect
the cargo. If they choose to inspect, and find illegal goods, the Smuggler has to pay p · n to the
Sheriff. Otherwise, the Sheriff has to compensate the Smuggler with a reward of s. If the Sheriff
decides not to inspect the cargo, the Sheriff’s utility is 0, and the Smuggler’s utility is v ·n. After the
Smuggler has loaded the cargo, and before the Sheriff decides whether to inspect, the Smuggler can
try to bribe the Sheriff to avoid the inspection. In particular, they engage in r rounds of bargaining
and, for each round i, the Smuggler proposes a bribe bi ∈ {0, . . . , B}, and the Sheriff accepts or
declines it. Only the proposal and response from the final round r are executed. If the Sheriff accepts
a bribe br then they get br, while the Smuggler’s utility is vn− br. Further details on the game can
be found in Farina et al. [30]. An instance SpNBr has p players, N illegal items, a maximum bribe
of B, and r rounds of bargaining. The other parameters are v = 5, p = 1, s = 1 and they are fixed
across all instances. We employ the following five instances: S2122, S2123, S2133, S2254, S2264.

F.3 The double-dummy bridge endgame (TP)

The double-dummy bridge endgame is a benchmark introduced by Zhang et al. [101] which simu-
lates a bridge endgame scenario. The game uses a fixed deck of playing cards that includes three
ranks (2, 3, 4) of each of four suits (spades, hearts, diamonds, clubs). Spades are designated as
the trump suit. There are four players involved: two defenders sitting across from each other, the
dummy, and the declarer. The dummy’s actions will be controlled by the declarer, so there are only
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three players actively participating. However, for clarity, we will refer to all four players throughout
this section.

The entire deck of cards is randomly dealt to the four players. We study the version of the game that
has perfect information, meaning that all players’ cards are revealed to everyone, creating a game in
which all information is public (i.e., a double-dummy game). The game is played in rounds called
tricks. The player to the left of the declarer starts the first trick by playing a card. The suit of this
card is known as the lead suit. Going in clockwise order, the other three players play a card from
their hand. Players must play a card of the lead suit if they have one, otherwise, they can play any
card. If a spade is played, the player with the highest spade wins the trick. Otherwise, the highest
card of the lead suit wins the trick. The winner of each trick then leads the next one. At the end
of the game, each player earns as many points as the number of tricks they won. In this adversarial
team game, the two defenders are teammates and play against the declarer, who controls the dummy.

The specific instance that we use (i.e., TP3) has 3 ranks and perfect information. The dummy’s hand
is fixed as 2♠ 2♥ 3♥.

F.4 Ridesharing game (RS)

This benchmark was first introduced by Zhang et al. [101], and it models the interaction between
two drivers competing to serve requests on a road network. The network is defined as an undirected
graph GU = (V U, EU), where each vertex v ∈ V U corresponds to a ride request to be served. Each
request has a reward in R≥0, and each edge in the network has some cost. The first driver who
arrives on node v ∈ V U serves the corresponding ride, and receives the corresponding reward. Once
a node has been served, it stays clean until the end of the game. The game terminates when all nodes
have been cleared, or when a timeout is met (i.e., there’s a fixed time horizon T ). If the two drivers
arrive simultaneously on the same vertex they both get reward 0. The final utility of each driver is
computed as the sum of the rewards obtained from the beginning until the end of the game. The
initial position of the two drivers is randomly selected at the beginning of the game. Finally, the two
drivers can observe each other’s position only when they are simultaneously on the same node, or
they are in adjacent nodes.

Ridesharing games are particularly well-suited to study the computation of optimal equilibria be-
cause they are not triangle-free [28].

Setup We denote by RS p i T a ridesharing instance with p drivers, network configuration i, and
horizon T . Parameter i ∈ {1, 2} specifies the graph configuration. We consider the two network
configurations of Zhang et al. [101], their structure is reported in Figure 2. All edges are given
unitary cost. We consider a total of four instances: RS212, RS222, RS213, RS223.
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Figure 2: Left: configuration 1 (used for RS212, RS213). Right: configuration 2 (used for RS222,
RS223). In both cases the position of the two drivers is randomly chosen at the beginning of the
game, edge costs are unitary, and the reward for each node is indicated between curly brackets.

28



G Additional experimental results

G.1 Investigation of lower equilibrium approximation

In Table 2 we show results, using the same format as Table 1 shown in the body, for the case in
which the approximation ε is set to be 0.1% of the payoff range of the game, as opposed to the 1%
threshold of the body.

Table 2: Comparison between the linear-programming-based algorithm (‘LP’) of Zhang and Sand-
holm [100] and our learning-based approach (‘Ours’), for the problem of computing an approximate
optimal equilibrium within tolerance ε set to 0.1% of the payoff range of the game.

Game # Nodes NFCCE EFCCE EFCE COMM CERT
LP Ours LP Ours LP Ours LP Ours LP Ours

B2222 1573 0.00s 0.00s 0.00s 0.02s 0.00s 0.03s 3.00s 1m 5s 0.00s 0.04s
B2322 23 839 1.00s 0.02s 3.00s 1.42s 9.00s 4.11s timeout 17m 30s 2.00s 2.82s
B2323 254 239 6.00s 0.66s 1m 29s 30.04s 3m 40s 1m 28s timeout timeout 39.00s 1m 24s
B2324 1 420 639 41.00s 5.25s timeout 5m 49s timeout timeout timeout timeout timeout timeout

D32 1017 0.00s 0.03s 0.00s 0.04s 14.00s 0.92s 1.00s 0.26s 0.00s 0.03s
D33 27 622 3m 22s 44.41s timeout 10m 27s timeout timeout timeout 16m 38s 6.00s 6.87s

GL3 7735 0.00s 0.06s 1.00s 0.07s 0.00s 0.06s timeout 36.83s 0.00s 0.11s

K35 1501 55.00s 2.46s 53.00s 3.05s 1m 5s 2.99s 1.00s 0.09s 0.00s 0.02s

L3132 8917 28.00s 2.13s 11m 26s 22.14s 9m 41s 26.68s 13.00s 15.41s 1.00s 0.62s
L3133 12 688 45.00s 2.83s timeout 35.86s 26m 52s 22.31s 17.00s 15.27s 1.00s 1.25s
L3151 19 981 timeout 54.66s timeout timeout timeout timeout timeout 1m 15s 2.00s 0.91s
L3223 15 659 5.00s 1.73s 1m 21s 8.58s 2m 38s 20.44s 26.00s 1m 43s 1.00s 2.00s
L3523 1 299 005 timeout 4m 4s timeout timeout timeout timeout timeout timeout timeout timeout

S2122 705 0.00s 0.00s 0.00s 0.02s 0.00s 0.07s 3.00s 6.14s 0.00s 0.03s
S2123 4269 0.00s 0.02s 1.00s 0.14s 1.00s 0.37s 1m 51s 10m 8s 1.00s 0.41s
S2133 9648 1.00s 0.05s 3.00s 0.17s 4.00s 0.95s timeout timeout 3.00s 1.99s
S2254 712 552 2m 0s 32.14s timeout 42.65s timeout 9m 2s timeout timeout timeout 6m 50s
S2264 1 303 177 3m 48s 57.76s timeout 1m 16s timeout timeout timeout timeout timeout timeout

TP3 910 737 1m 43s 14.28s timeout 20.81s timeout 26.28s timeout timeout timeout 52.76s

RS212 598 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 2.00s 0.02s 0.00s 0.00s
RS222 734 0.00s 0.01s 0.00s 0.01s 0.00s 0.02s 3.00s 0.03s 0.00s 0.00s
RS213 6274 timeout 43.46s timeout 45.00s timeout 2m 28s 7m 30s 27.19s 0.00s 0.03s
RS223 6238 timeout timeout timeout timeout timeout timeout 9m 16s 15.68s 1.00s 0.05s

We observe that none of the results change qualitatively when this increased precision is considered.

G.2 Game values and size of Mediator’s strategy space

Tables 3 and 4 reports optimal equilibrium values for all games and all equilibrium concepts for
which the LP algorithm was able to compute an exact value (We restrict to the cases solvable by LP
because the Lagrangian relaxations only compute an ε-equilibrium, but the mediator objective in an
ε-equilibrium could be arbitrarily far away from the mediator objective in an exact equilibrium). We
hope that these will be good references for future researchers interested in this topic. Table 5 reports
the size of the strategy space of the mediator player in the two-player zero-sum game that captures
the computation of optimal equilibria, in terms of the number of decision points and edges. For
correlated notions, this number may be exponential in the original game size; for communication
and certification notions, it will always be polynomial.
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Table 3: Optimal equilibrium value for correlated equilibrium concepts. ‘Pl. 1’ is the utility for
Player 1 in the Player 1-optimal equilibrium. ‘Pl. 2’ and ‘Pl. 3’ are similar. In two-player games,
‘SW’ is the welfare of the welfare-maximizing equilibrium. (these three values, of course, may
come from three different equilibria.) The three-player games are zero-sum, so optimizing welfare
makes no sense (the welfare is always zero).

NFCCE EFCCE EFCE
Game Pl. 1 Pl. 2 SW Pl. 1 Pl. 2 SW Pl. 1 Pl. 2 SW
B2222 0.281 0.094 0.000 −0.027 −0.338 −0.525 −0.031 −0.338 −0.525
B2322 0.181 0.097 0.000 −0.043 −0.123 −0.317 −0.045 −0.123 −0.317
B2323 0.250 0.125 0.000 0.000 −0.125 −0.375 −0.001 −0.125 −0.375
B2324 0.306 0.139 0.000 — — — — — —

S2122 11.636 5.999 13.636 7.652 5.043 9.565 7.262 3.841 9.078
S2123 11.636 5.999 13.636 8.000 5.191 10.000 8.000 4.611 10.000
S2133 15.182 6.992 18.182 12.000 6.557 15.000 12.000 6.407 15.000
S2254 23.571 12.830 28.571 — — — — — —
S2264 27.333 13.840 33.333 — — — — — —

U212 3.123 3.123 6.010 3.071 3.071 6.010 3.071 3.071 6.010
U213 — — — — — — — — —
U222 3.765 3.765 7.188 3.719 3.719 7.176 3.719 3.719 7.176
U223 — — — — — — — — —

Pl. 1 Pl. 2 Pl. 3 Pl. 1 Pl. 2 Pl. 3 Pl. 1 Pl. 2 Pl. 3
D32 0.250 0.250 0.131 0.250 0.250 0.000 0.250 0.250 0.000
D33 0.422 0.284 0.239 — — — — — —

GL3 2.505 2.505 2.505 2.476 2.476 2.476 2.467 2.467 2.467

K35 −0.011 0.017 0.057 −0.016 0.015 0.052 −0.016 0.013 0.052

L3132 0.571 0.504 0.606 0.519 — — 0.467 0.422 —
L3133 0.419 0.348 0.416 — — — — — —
L3151 — — — — — — — — —
L3223 1.079 0.992 1.146 0.984 0.959 1.033 0.887 0.883 0.861
L3523 — — — — — — — — —

TP3 1.466 1.477 1.037 — — — — — —

Table 4: Optimal equilibrium value for communication and certification equilibrium concepts.
‘Pl. 1’, ‘Pl. 2’, ‘Pl. 3’, and ’SW’ have the same meaning as in the previous table.

COMM NFCCERT CCERT CERT
Game Pl. 1 Pl. 2 SW Pl. 1 Pl. 2 SW Pl. 1 Pl. 2 SW Pl. 1 Pl. 2 SW
B2222 −0.187 −0.562 −0.750 0.281 0.094 0.000 −0.027 −0.338 −0.525 −0.027 −0.338 −0.525
B2322 — — — 0.181 0.097 0.000 −0.043 −0.123 −0.317 −0.043 −0.123 −0.317
B2323 — — — 0.250 0.125 0.000 0.000 −0.125 −0.375 0.000 −0.125 −0.375
B2324 — — — 0.306 0.139 0.000 — — — — — —

S2122 0.820 0.000 0.820 50.000 8.508 50.000 8.000 5.191 10.000 8.000 4.611 10.000
S2123 0.820 0.000 0.820 50.000 8.508 50.000 8.000 5.191 10.000 8.000 4.611 10.000
S2133 — — — 50.000 8.671 50.000 12.000 6.557 15.000 12.000 6.407 15.000
S2254 — — — 100.000 17.284 100.000 20.000 12.190 25.000 — — —
S2264 — — — 100.000 17.442 100.000 — — — — — —

U212 3.184 3.143 6.173 3.184 3.173 6.173 3.184 3.159 6.173 3.184 3.143 6.173
U213 5.160 5.171 9.592 5.316 5.429 9.622 5.204 5.298 9.622 5.196 5.276 9.622
U222 4.023 3.812 7.594 4.023 3.930 7.594 4.023 3.905 7.594 4.023 3.839 7.594
U223 6.537 6.326 11.464 6.867 6.783 11.516 6.631 6.582 11.513 6.576 6.398 11.485

Pl. 1 Pl. 2 Pl. 3 Pl. 1 Pl. 2 Pl. 3 Pl. 1 Pl. 2 Pl. 3 Pl. 1 Pl. 2 Pl. 3
D32 0.250 0.250 0.042 0.500 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
D33 — — — 0.580 0.296 0.284 0.444 0.296 0.284 0.432 0.296 0.272
GL3 — — — 2.505 2.505 2.505 2.505 2.505 2.505 2.467 2.468 2.468

K35 0.022 0.050 0.088 0.092 0.106 0.169 0.092 0.090 0.169 0.086 0.090 0.169

L3132 0.646 0.618 0.723 0.853 0.779 0.802 0.853 0.779 0.802 0.853 0.779 0.802
L3133 0.441 0.459 0.590 0.646 0.654 0.709 0.646 0.654 0.709 0.646 0.654 0.709
L3151 — — — 0.179 0.197 0.222 0.179 0.182 0.222 0.171 0.182 0.222
L3223 1.011 0.915 1.020 1.379 1.556 1.451 1.379 1.556 1.451 1.379 1.556 1.451
L3523 — — — 2.000 2.000 2.000 — — — — — —

TP3 — — — 1.739 1.506 1.083 — — — — — —
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Table 5: Dimension of the mediator’s decision space in terms of number of decision points (‘Dec.
pts.’) and edges.

Game NFCCE EFCCE EFCE COMM NFCCERT CCERT CERT
Dec. pts. Edges Dec. pts. Edges Dec. pts. Edges Dec. pts. Edges Dec. pts. Edges Dec. pts. Edges Dec. pts. Edges

B2222 1429 6915 5001 21 868 4212 20 534 16 341 65 577 663 2739 1430 5854 3590 14 638
B2322 11 707 89 519 66 181 340 619 67 219 503 145 681 523 4 090 261 5661 34 227 13 940 84 080 52 640 317 180
B2323 164 707 1 022 286 1 067 881 5 446 015 1 032 019 7 271 972 — — 77 661 394 227 244 340 1 236 080 959 840 4 853 180
B2324 1 316 707 6 397 418 8 296 681 41 633 816 8 160 018 49 264 667 — — 596 061 2 467 827 2 188 340 9 012 080 8 476 640 34 920 380

D32 3956 33 823 5381 51 593 53 402 536 485 12 794 45 070 472 1796 504 1844 2484 9176
D33 417 625 11 165 451 1 599 919 71 372 690 — — 2 854 524 10 450 812 11 292 44 382 18 396 68 937 135 504 520 665

GL3 8898 30 021 10 680 37 041 5637 16 950 182 289 547 086 2343 7104 3138 9474 5058 15 234

K35 52 277 3 592 121 60 257 3 826 201 61 217 4 535 281 9745 29 235 1005 3015 1075 3225 2315 6945

L3132 131 012 1 222 128 689 890 15 329 595 694 381 8 400 513 326 730 980 190 7773 23 319 15 789 47 367 32 055 96 165
L3133 155 297 1 500 087 1 002 685 26 166 405 1 010 749 14 519 676 365 187 1 095 561 9960 29 880 21 534 64 602 44 868 134 604
L3151 1 697 120 34 405 970 — — — — 1 784 965 5 354 895 18 285 54 855 36 115 108 345 72 395 217 185
L3223 91 735 614 847 405 691 5 617 510 678 365 4 999 142 1 234 394 4 004 046 14 186 46 656 36 298 118 576 83 786 273 276
L3523 7 595 335 58 635 336 — — — — — — 1 115 978 3 887 736 5 617 402 19 357 364 14 863 826 51 214 448

S2122 651 2903 2061 7847 1629 6227 4071 12 629 408 1396 825 2627 1749 5465
S2123 4413 19 049 17 883 72 377 13 113 52 559 146 631 454 565 2496 8452 6873 21 959 15 717 49 349
S2133 9424 45 931 40 960 171 915 38 732 165 859 778 108 2 425 875 5112 18 566 15 000 49 607 44 084 139 851
S2254 617 056 3 758 737 3 974 008 18 655 297 5 470 186 25 303 237 — — 327 992 1 300 694 1 332 064 4 615 207 6 089 698 19 348 765
S2264 1 103 369 7 284 509 7 291 859 34 837 769 — — — — 579 182 2 358 134 2 402 695 8 425 369 12 809 119 40 551 631

TP3 2 355 864 7 145 312 3 574 464 11 720 048 2 211 712 6 714 256 — — 1 070 544 3 273 072 1 739 488 5 273 184 3 594 352 10 896 416

RS212 658 15 410 658 10 604 538 9000 3317 14 338 213 902 182 768 182 768
RS222 1625 55 123 1625 35 047 1495 32 643 4142 15 914 290 1098 252 952 252 952
RS213 61 122 95 194 268 62 704 95 250 604 97 070 124 453 191 365 621 1 638 786 2459 10 870 2808 12 416 4288 19 160
RS223 — — — — — — 299 162 1 184 114 2778 10 854 3224 12 600 4500 17 776

G.3 Detailed breakdown by equilibrium and objective function (two-player games)

For each two-player game, we try three different objective functions: maximizing the utility of
Player 1, maximizing the utility of Player 2, and maximizing social welfare. For each objective, we
stop the optimization at the approximation level defined as 1% of the payoff range of the game.

We use online optimistic gradient descent to update the Lagrange multipliers of each player (see
Appendix E.1). For each objective, we report the following information:

• The runtime of the linear-programming-based algorithm (‘LP’) of Zhang and Sand-
holm [100].

• The runtime of our algorithm where each agent (player or mediator) uses the Discounted
CFR (‘DCFR’) algorithm set up with the hyperparameters recommended in the work by
Brown and Sandholm [12]. In the table, we report the best runtime across all choices of
the stepsize hyperparameter η ∈ {0.01, 0.1, 1.0, 10.0} used in online optimistic gradient
descent to update the Lagrange multipliers. The value of η that produces the reported
runtime is noted in square brackets.

• The runtime of our algorithm where each agent (player or mediator) uses the Predictive
CFR+ (‘PCFR+’) algorithm of [33]. In the table, we report the best runtime across all
choices of the stepsize hyperparameter η ∈ {0.01, 0.1, 1.0, 10.0} used in online optimistic
gradient descent to update the Lagrange multipliers. The value of η that produces the
reported runtime is again noted in square brackets.
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G.3.1 Results for NFCCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.00s [1.0] 0.00s [0.1] 0.00s 0.00s [1.0] 0.00s [0.1] 0.00s 0.00s [1.0] 0.00s [0.1]
B2322 0.00s 0.03s [0.1] 0.07s [0.1] 0.00s 0.04s [0.1] 0.04s [1.0] 0.00s 0.01s [0.1] 0.01s [10.0]
B2323 7.00s 1.05s [0.1] 1.61s [0.1] 6.00s 1.01s [0.1] 1.63s [0.1] 6.00s 0.33s [0.1] 0.53s [10.0]
B2324 50.00s 15.57s [0.1] 20.01s [0.1] 37.00s 12.80s [0.1] 20.91s [0.1] 38.00s 2.73s [0.1] 4.57s [1.0]

S2122 0.00s 0.00s [0.1] 0.00s [0.1] 0.00s 0.00s [0.1] 0.00s [0.1] 0.00s 0.00s [0.1] 0.00s [0.1]
S2123 0.00s 0.01s [1.0] 0.01s [0.1] 0.00s 0.01s [0.1] 0.01s [0.1] 0.00s 0.01s [0.1] 0.01s [0.1]
S2133 1.00s 0.02s [1.0] 0.02s [0.1] 1.00s 0.02s [0.1] 0.03s [0.1] 1.00s 0.02s [1.0] 0.02s [0.1]
S2254 2m 1s 6.96s [0.1] 11.43s [0.1] 1m 14s 10.43s [0.1] 17.72s [0.1] 1m 58s 7.43s [0.1] 11.88s [0.1]
S2264 3m 36s 13.96s [0.1] 23.25s [0.1] 2m 24s 18.46s [0.1] 35.04s [0.1] 3m 43s 11.74s [0.1] 17.91s [0.1]

RS212 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [10.0] 0.00s [1.0]
RS222 0.00s 0.00s [1.0] 0.01s [0.1] 0.00s 0.00s [1.0] 0.01s [1.0] 0.00s 0.00s [0.01] 0.01s [0.01]
RS213 timeout 34.52s [1.0] 1m 9s [0.1] timeout 20.29s [1.0] 41.66s [0.1] timeout 14.68s [0.1] 35.36s [0.1]
RS223 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

G.3.2 Results for EFCCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0]
B2322 3.00s 0.41s [1.0] 1.13s [1.0] 3.00s 0.69s [1.0] 1.19s [1.0] 3.00s 0.69s [1.0] 1.33s [1.0]
B2323 1m 35s 9.11s [1.0] 22.38s [1.0] 1m 30s 12.39s [1.0] 23.59s [1.0] 1m 21s 14.23s [1.0] 20.30s [1.0]
B2324 timeout 1m 53s [1.0] 3m 35s [1.0] timeout 2m 44s [1.0] 4m 29s [1.0] timeout 3m 1s [1.0] 4m 16s [1.0]

S2122 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.00s [0.1] 0.01s [0.1] 0.00s 0.01s [1.0] 0.02s [1.0]
S2123 1.00s 0.03s [1.0] 0.19s [0.1] 1.00s 0.09s [0.1] 0.05s [0.1] 1.00s 0.06s [1.0] 0.16s [1.0]
S2133 3.00s 0.12s [1.0] 0.31s [1.0] 2.00s 0.20s [0.1] 0.22s [0.1] 3.00s 0.11s [1.0] 0.41s [1.0]
S2254 timeout 28.81s [1.0] 27.31s [0.1] timeout 37.43s [0.1] 53.08s [0.1] timeout 22.01s [1.0] 36.83s [0.1]
S2264 timeout 46.07s [0.1] 1m 24s [0.1] timeout 2m 18s [0.1] 2m 26s [0.1] timeout 39.23s [0.1] 1m 9s [0.1]

RS212 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [0.01] 0.00s [0.1]
RS222 0.00s 0.00s [1.0] 0.01s [0.1] 0.00s 0.00s [1.0] 0.01s [1.0] 0.00s 0.00s [0.01] 0.00s [0.1]
RS213 timeout 28.80s [1.0] 1m 50s [1.0] timeout 31.02s [1.0] 1m 11s [1.0] timeout 15.54s [0.1] 37.73s [0.1]
RS223 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

G.3.3 Results for EFCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.01s [1.0] 0.03s [1.0] 0.00s 0.06s [1.0] 0.05s [0.1] 0.00s 0.03s [10.0] 0.02s [1.0]
B2322 9.00s 1.23s [1.0] 2.97s [1.0] 9.00s 4.63s [1.0] 4.68s [1.0] 9.00s 1.60s [10.0] 2.88s [1.0]
B2323 3m 54s 48.40s [1.0] 1m 28s [1.0] 4m 9s 1m 38s [1.0] 1m 27s [1.0] 3m 40s 45.12s [10.0] 44.87s [1.0]
B2324 timeout 9m 3s [1.0] 13m 8s [1.0] timeout timeout [—] 10m 21s [1.0] timeout 14m 30s [1.0] 10m 48s [1.0]

S2122 0.00s 0.01s [0.1] 0.02s [1.0] 0.00s 0.02s [0.1] 0.04s [0.1] 0.00s 0.02s [0.1] 0.02s [1.0]
S2123 1.00s 0.09s [1.0] 0.23s [0.1] 1.00s 0.34s [0.1] 0.43s [1.0] 1.00s 0.15s [0.1] 0.25s [0.1]
S2133 4.00s 0.52s [1.0] 0.77s [0.1] 3.00s 1.86s [0.1] 1.31s [0.1] 3.00s 0.49s [1.0] 0.96s [1.0]
S2254 timeout 2m 17s [0.1] 2m 10s [0.1] timeout timeout [—] timeout [—] timeout 3m 34s [0.1] timeout [—]
S2264 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

RS212 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [0.01] 0.00s [0.01]
RS222 0.00s 0.00s [1.0] 0.01s [0.1] 0.00s 0.00s [1.0] 0.01s [1.0] 0.00s 0.00s [1.0] 0.00s [0.1]
RS213 timeout 35.37s [1.0] 1m 28s [0.1] timeout 32.49s [1.0] 1m 27s [1.0] timeout 23.37s [0.01] 57.68s [0.01]
RS223 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]
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G.3.4 Results for COMM solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 2.00s 0.88s [1.0] 1.14s [1.0] 2.00s 1.23s [10.0] 0.89s [1.0] 2.00s 1.49s [10.0] 2.33s [1.0]
B2322 timeout 5m 47s [1.0] 10m 17s [1.0] timeout 3m 45s [1.0] 5m 2s [1.0] timeout 4m 41s [1.0] 7m 6s [1.0]
B2323 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]
B2324 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

S2122 2.00s 0.21s [0.1] 0.36s [0.1] 2.00s 0.48s [0.01] 0.48s [0.1] 2.00s 0.36s [0.01] 0.35s [0.1]
S2123 1m 30s 38.95s [0.1] 1m 7s [0.1] 1m 36s 1m 10s [0.01] 1m 52s [0.01] 1m 33s 59.63s [0.01] 1m 30s [0.1]
S2133 timeout 7m 34s [0.01] 4m 26s [0.1] timeout 7m 27s [0.01] 14m 12s [0.01] timeout 12m 11s [0.01] 13m 40s [0.01]
S2254 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]
S2264 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

RS212 2.00s 0.01s [1.0] 0.01s [1.0] 2.00s 0.01s [1.0] 0.03s [10.0] 2.00s 0.01s [1.0] 0.01s [1.0]
RS222 3.00s 0.01s [1.0] 0.01s [0.1] 3.00s 0.02s [10.0] 0.04s [1.0] 3.00s 0.02s [10.0] 0.01s [0.01]
RS213 6m 51s 11.05s [1.0] 10.24s [1.0] 6m 27s 14.66s [10.0] 12.83s [1.0] 6m 25s 9.00s [1.0] 8.74s [1.0]
RS223 8m 41s 5.79s [10.0] 10.49s [1.0] 8m 24s 8.45s [1.0] 11.14s [1.0] 8m 54s 4.00s [1.0] 7.02s [1.0]

G.3.5 Results for NFCCERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.00s [1.0] 0.00s [0.1] 0.00s 0.00s [1.0] 0.00s [0.1] 0.00s 0.00s [0.01] 0.00s [10.0]
B2322 0.00s 0.02s [1.0] 0.02s [0.1] 0.00s 0.02s [0.1] 0.02s [0.1] 0.00s 0.01s [0.01] 0.01s [0.1]
B2323 2.00s 0.62s [0.1] 0.63s [0.1] 1.00s 0.48s [0.1] 0.73s [0.1] 2.00s 0.14s [1.0] 0.18s [0.1]
B2324 11.00s 4.88s [0.1] 11.06s [0.1] 11.00s 5.24s [0.1] 9.92s [0.1] 10.00s 1.82s [0.01] 2.51s [1.0]

S2122 0.00s 0.00s [0.01] 0.00s [0.01] 0.00s 0.00s [0.01] 0.00s [0.1] 0.00s 0.00s [1.0] 0.00s [0.01]
S2123 0.00s 0.00s [0.01] 0.00s [0.01] 0.00s 0.01s [0.01] 0.00s [0.1] 0.00s 0.00s [0.01] 0.00s [0.01]
S2133 0.00s 0.01s [0.01] 0.01s [0.1] 0.00s 0.01s [1.0] 0.01s [0.1] 0.00s 0.01s [0.1] 0.01s [0.1]
S2254 25.00s 1.23s [0.01] 2.49s [0.01] 24.00s 3.02s [0.1] 3.02s [0.1] 28.00s 1.32s [0.1] 2.00s [0.01]
S2264 56.00s 2.71s [0.1] 4.93s [0.01] 42.00s 5.43s [0.1] 6.88s [0.01] 50.00s 2.73s [0.1] 3.65s [0.01]

RS212 0.00s 0.00s [0.1] 0.00s [10.0] 0.00s 0.00s [10.0] 0.00s [0.1] 0.00s 0.00s [0.1] 0.00s [0.01]
RS222 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [0.1]
RS213 0.00s 0.00s [0.1] 0.00s [0.01] 0.00s 0.00s [10.0] 0.00s [0.1] 0.00s 0.00s [1.0] 0.00s [0.01]
RS223 0.00s 0.00s [1.0] 0.00s [0.1] 0.00s 0.00s [10.0] 0.01s [1.0] 0.00s 0.00s [0.01] 0.01s [1.0]

G.3.6 Results for CCERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.00s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0]
B2322 0.00s 0.07s [1.0] 0.22s [1.0] 0.00s 0.15s [1.0] 0.34s [1.0] 0.00s 0.22s [1.0] 0.33s [1.0]
B2323 7.00s 3.75s [1.0] 7.37s [1.0] 6.00s 4.69s [1.0] 9.79s [1.0] 8.00s 5.39s [1.0] 6.08s [1.0]
B2324 timeout 54.92s [1.0] 1m 2s [1.0] timeout 59.02s [1.0] 1m 28s [1.0] timeout 1m 31s [1.0] 1m 41s [1.0]

S2122 0.00s 0.00s [1.0] 0.01s [0.1] 0.00s 0.00s [0.1] 0.00s [0.1] 0.00s 0.00s [1.0] 0.01s [0.1]
S2123 0.00s 0.01s [1.0] 0.05s [1.0] 0.00s 0.02s [1.0] 0.03s [0.1] 0.00s 0.01s [1.0] 0.05s [1.0]
S2133 1.00s 0.04s [1.0] 0.07s [1.0] 1.00s 0.08s [0.1] 0.09s [0.1] 1.00s 0.05s [1.0] 0.11s [1.0]
S2254 1m 41s 8.61s [0.1] 15.31s [0.1] 1m 47s 25.38s [0.1] 23.28s [0.1] 2m 3s 8.22s [0.1] 16.08s [0.1]
S2264 timeout 20.11s [1.0] 23.99s [0.1] timeout 1m 9s [0.01] 1m 5s [0.1] timeout 16.50s [0.1] 29.02s [0.1]

RS212 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0]
RS222 0.00s 0.00s [0.01] 0.00s [10.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [0.01] 0.00s [0.01]
RS213 0.00s 0.01s [10.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [0.1] 0.01s [0.01]
RS223 0.00s 0.01s [10.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [10.0] 0.01s [0.1]
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G.3.7 Results for CERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize social welfare
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

B2222 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.02s [1.0] 0.02s [1.0] 0.00s 0.02s [1.0] 0.03s [1.0]
B2322 2.00s 1.05s [1.0] 1.16s [1.0] 2.00s 1.16s [1.0] 2.29s [1.0] 2.00s 1.24s [1.0] 1.43s [1.0]
B2323 40.00s 47.11s [10.0] 1m 2s [1.0] 33.00s 58.20s [1.0] 2m 14s [0.1] 37.00s 46.51s [1.0] 40.45s [1.0]
B2324 timeout 8m 29s [0.1] timeout [—] timeout timeout [—] timeout [—] timeout 6m 14s [1.0] timeout [—]

S2122 0.00s 0.02s [0.1] 0.02s [1.0] 0.00s 0.02s [0.1] 0.02s [0.1] 0.00s 0.02s [1.0] 0.02s [1.0]
S2123 1.00s 0.19s [0.1] 0.37s [0.1] 1.00s 0.28s [1.0] 0.31s [0.1] 1.00s 0.15s [1.0] 0.35s [0.1]
S2133 3.00s 0.96s [1.0] 1.06s [1.0] 2.00s 1.10s [0.1] 1.18s [0.1] 2.00s 0.92s [0.1] 1.26s [0.1]
S2254 timeout 3m 26s [0.1] 5m 35s [0.1] timeout 6m 23s [0.1] 6m 15s [0.1] timeout 2m 42s [0.1] 8m 2s [0.1]
S2264 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

RS212 0.00s 0.00s [0.1] 0.00s [1.0] 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [0.1] 0.00s [0.1]
RS222 0.00s 0.00s [1.0] 0.00s [10.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [0.01] 0.00s [0.01]
RS213 0.00s 0.02s [10.0] 0.03s [1.0] 0.00s 0.02s [1.0] 0.03s [1.0] 0.00s 0.02s [10.0] 0.02s [0.1]
RS223 1.00s 0.01s [10.0] 0.02s [1.0] 1.00s 0.02s [1.0] 0.03s [1.0] 1.00s 0.01s [0.1] 0.02s [0.01]

G.4 Detailed breakdown by equilibrium and objective function (three-player games)

For each two-player game, we try three different objective functions: maximizing the utility of
Player 1, maximizing the utility of Player 2, and maximizing the utility of Player 3. As in Ap-
pendix G.3, for each objective we stop the optimization at the approximation level defined as 1% of
the payoff range of the game.

For each game and objective, we report the same information as Appendix G.3.

G.4.1 Results for NFCCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.02s [1.0]
D33 2m 17s 12.93s [0.1] 43.45s [0.1] 2m 8s 16.40s [0.1] 33.57s [0.1] 2m 23s 17.57s [0.1] 36.55s [1.0]

GL3 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.02s [0.1] 0.02s [0.1]

K35 49.00s 0.76s [1.0] 0.95s [0.1] 55.00s 0.56s [1.0] 1.15s [0.1] 55.00s 0.64s [1.0] 1.34s [0.1]

L3132 26.00s 0.59s [0.1] 1.09s [0.1] 24.00s 0.79s [0.1] 1.28s [0.1] 24.00s 0.77s [0.1] 1.18s [0.1]
L3133 38.00s 0.94s [0.1] 1.93s [0.1] 38.00s 0.89s [0.1] 2.33s [0.1] 37.00s 1.11s [0.1] 1.79s [0.1]
L3151 timeout 15.12s [0.1] 17.94s [0.1] timeout 12.74s [0.1] 31.74s [0.1] timeout 18.03s [0.1] 31.69s [0.1]
L3223 4.00s 0.44s [0.1] 0.92s [0.1] 4.00s 0.45s [0.1] 0.98s [0.1] 4.00s 0.52s [0.1] 1.26s [0.1]
L3523 timeout 1m 7s [0.01] 1m 59s [0.01] timeout 1m 2s [0.01] 1m 44s [0.01] timeout 1m 9s [0.01] 1m 44s [0.01]

TP3 1m 38s 7.44s [1.0] 10.71s [10.0] 1m 40s 7.63s [1.0] 11.09s [10.0] 1m 44s 11.45s [10.0] 11.90s [10.0]

G.4.2 Results for EFCCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.02s [1.0] 0.02s [1.0] 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.02s [1.0] 0.03s [1.0]
D33 timeout 1m 46s [1.0] 4m 31s [0.1] timeout 1m 16s [1.0] 3m 56s [1.0] timeout 1m 44s [1.0] 4m 56s [1.0]

GL3 1.00s 0.02s [1.0] 0.04s [1.0] 1.00s 0.03s [1.0] 0.04s [1.0] 1.00s 0.03s [1.0] 0.04s [10.0]

K35 46.00s 0.67s [10.0] 1.69s [0.1] 55.00s 0.75s [1.0] 1.69s [0.1] 51.00s 0.68s [1.0] 2.02s [0.1]

L3132 8m 43s 5.13s [0.1] 9.57s [1.0] 9m 17s 6.27s [0.1] 12.37s [0.1] 9m 44s 7.76s [0.1] 14.66s [0.1]
L3133 20m 26s 8.88s [0.1] 18.30s [0.1] timeout 8.19s [1.0] 18.09s [0.1] 23m 15s 10.86s [1.0] 18.52s [0.1]
L3151 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]
L3223 1m 10s 2.94s [0.1] 4.85s [0.1] 1m 10s 3.22s [0.1] 4.73s [0.1] 1m 2s 3.24s [0.1] 4.78s [0.1]
L3523 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

TP3 timeout 13.76s [10.0] 24.94s [1.0] timeout 15.03s [10.0] 28.28s [1.0] timeout 15.27s [10.0] 27.29s [1.0]
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G.4.3 Results for EFCE solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 12.00s 0.76s [1.0] 0.40s [1.0] 11.00s 0.35s [1.0] 0.85s [1.0] 10.00s 0.66s [1.0] 0.80s [1.0]
D33 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

GL3 0.00s 0.01s [1.0] 0.02s [1.0] 0.00s 0.01s [1.0] 0.02s [0.1] 0.00s 0.01s [1.0] 0.02s [1.0]

K35 57.00s 0.55s [1.0] 1.08s [0.1] 55.00s 1.03s [1.0] 1.47s [0.1] 60.00s 1.26s [1.0] 1.77s [0.1]

L3132 8m 18s 6.10s [0.1] 7.85s [0.1] 8m 57s 7.65s [0.1] 12.08s [0.1] 7m 35s 6.78s [0.1] 12.88s [0.1]
L3133 21m 25s 6.84s [0.1] 12.97s [0.1] 21m 43s 10.76s [0.1] 18.44s [0.1] 19m 58s 10.28s [0.1] 15.69s [0.1]
L3151 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]
L3223 2m 2s 5.52s [0.1] 8.74s [0.1] 1m 50s 6.46s [0.1] 10.70s [0.1] 2m 0s 5.94s [0.1] 10.65s [0.1]
L3523 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

TP3 timeout 13.46s [10.0] 20.25s [1.0] timeout 14.25s [1.0] 22.19s [10.0] timeout 14.48s [10.0] 21.28s [1.0]

G.4.4 Results for COMM solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.06s [1.0] 0.12s [1.0] 1.00s 0.06s [1.0] 0.18s [0.1] 1.00s 0.18s [1.0] 0.17s [1.0]
D33 timeout 4m 37s [1.0] 9m 46s [1.0] timeout 1m 31s [1.0] 3m 5s [1.0] timeout 2m 38s [1.0] 3m 57s [0.1]

GL3 timeout 7.72s [0.1] 11.24s [0.1] timeout 7.50s [1.0] 11.02s [1.0] timeout 11.42s [1.0] 18.22s [0.1]

K35 1.00s 0.03s [1.0] 0.03s [0.1] 1.00s 0.02s [1.0] 0.03s [0.1] 1.00s 0.03s [1.0] 0.04s [1.0]

L3132 8.00s 3.46s [0.1] 5.65s [0.1] 8.00s 3.37s [0.1] 5.89s [0.1] 7.00s 4.02s [0.1] 8.38s [0.1]
L3133 12.00s 3.40s [0.1] 7.98s [0.1] 12.00s 3.54s [0.1] 7.89s [0.1] 11.00s 3.52s [0.1] 10.52s [0.1]
L3151 timeout 16.73s [0.1] 18.42s [0.1] timeout 15.80s [0.1] 29.51s [0.1] timeout 18.00s [0.1] 22.54s [0.1]
L3223 19.00s 18.19s [0.1] 29.24s [0.01] 18.00s 15.30s [0.1] 27.38s [0.1] 21.00s 18.77s [0.1] 25.91s [0.01]
L3523 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

TP3 timeout timeout [—] timeout [—] timeout timeout [—] timeout [—] timeout timeout [—] timeout [—]

G.4.5 Results for NFCCERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.00s [10.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0]
D33 0.00s 0.04s [1.0] 0.05s [1.0] 0.00s 0.06s [1.0] 0.06s [1.0] 0.00s 0.04s [10.0] 0.05s [10.0]

GL3 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.01s [10.0] 0.00s [1.0]

K35 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0]

L3132 0.00s 0.02s [0.1] 0.02s [1.0] 0.00s 0.02s [0.1] 0.02s [0.1] 0.00s 0.02s [0.1] 0.02s [0.1]
L3133 0.00s 0.02s [0.1] 0.02s [0.1] 0.00s 0.02s [1.0] 0.02s [0.1] 0.00s 0.02s [0.1] 0.03s [1.0]
L3151 0.00s 0.03s [0.1] 0.08s [0.1] 0.00s 0.04s [0.1] 0.04s [0.1] 0.00s 0.03s [0.1] 0.04s [0.1]
L3223 0.00s 0.03s [0.1] 0.04s [0.1] 0.00s 0.05s [0.1] 0.04s [0.1] 0.00s 0.05s [0.1] 0.05s [0.1]
L3523 13.00s 7.41s [0.1] 14.31s [0.1] 15.00s 8.17s [0.1] 9.36s [0.1] 17.00s 10.60s [0.01] 13.52s [0.01]

TP3 47.00s 4.56s [1.0] 10.06s [10.0] 48.00s 4.97s [10.0] 8.55s [1.0] 45.00s 7.38s [10.0] 9.40s [1.0]
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G.4.6 Results for CCERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0]
D33 1.00s 0.20s [1.0] 0.29s [1.0] 1.00s 0.13s [1.0] 0.30s [1.0] 1.00s 0.31s [0.1] 0.19s [0.1]

GL3 0.00s 0.01s [0.1] 0.01s [1.0] 0.00s 0.02s [1.0] 0.01s [1.0] 0.00s 0.01s [0.1] 0.01s [1.0]

K35 0.00s 0.00s [1.0] 0.00s [1.0] 0.00s 0.00s [0.1] 0.00s [1.0] 0.00s 0.00s [1.0] 0.00s [1.0]

L3132 0.00s 0.06s [0.1] 0.05s [0.1] 0.00s 0.05s [0.1] 0.07s [0.1] 0.00s 0.05s [0.1] 0.06s [0.1]
L3133 0.00s 0.04s [0.1] 0.05s [0.1] 0.00s 0.08s [0.1] 0.11s [0.1] 0.00s 0.12s [0.1] 0.15s [0.1]
L3151 1.00s 0.12s [0.1] 0.27s [0.1] 1.00s 0.16s [0.1] 0.35s [0.1] 1.00s 0.16s [0.1] 0.33s [0.1]
L3223 1.00s 0.23s [0.1] 0.52s [0.1] 1.00s 0.26s [0.1] 0.43s [0.1] 1.00s 0.24s [0.1] 0.41s [0.01]
L3523 timeout 1m 17s [0.01] 2m 47s [0.01] timeout 1m 16s [0.01] 3m 6s [0.01] timeout 1m 13s [0.01] 2m 26s [0.01]

TP3 timeout 10.23s [10.0] 18.00s [1.0] timeout 10.38s [10.0] 19.88s [10.0] timeout 11.95s [10.0] 25.89s [10.0]

G.4.7 Results for CERT solution concept

Game Maximize Player 1’s utility Maximize Player 2’s utility Maximize Player 3’s utility
LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+) LP Ours (DCFR) Ours (PCFR+)

D32 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.01s [1.0] 0.02s [1.0]
D33 4.00s 3.14s [1.0] 6.08s [1.0] 4.00s 2.02s [1.0] 3.18s [0.1] 4.00s 2.10s [1.0] 3.89s [0.1]

GL3 0.00s 0.02s [1.0] 0.03s [0.1] 0.00s 0.02s [1.0] 0.03s [1.0] 0.00s 0.03s [0.1] 0.03s [0.1]

K35 0.00s 0.01s [1.0] 0.01s [1.0] 0.00s 0.00s [1.0] 0.01s [0.1] 0.00s 0.00s [1.0] 0.01s [0.1]

L3132 1.00s 0.15s [0.1] 0.10s [0.1] 1.00s 0.18s [0.1] 0.22s [0.1] 0.00s 0.18s [0.1] 0.35s [0.1]
L3133 1.00s 0.22s [0.1] 0.42s [1.0] 1.00s 0.19s [0.1] 0.33s [0.1] 1.00s 0.25s [0.1] 0.38s [0.1]
L3151 2.00s 0.21s [0.1] 0.42s [0.1] 2.00s 0.22s [0.1] 0.44s [0.1] 2.00s 0.29s [0.1] 0.53s [0.1]
L3223 1.00s 0.61s [0.1] 1.43s [0.01] 1.00s 0.61s [0.1] 1.13s [0.01] 1.00s 0.68s [0.1] 0.98s [0.01]
L3523 timeout 2m 58s [0.01] timeout [—] timeout 4m 33s [0.01] timeout [—] timeout 3m 55s [0.01] timeout [—]

TP3 timeout 26.70s [1.0] 40.73s [1.0] timeout 25.08s [1.0] 35.99s [10.0] timeout 36.36s [10.0] 1m 0s [1.0]

H Experimental results for binary search-based Lagrangian

In this section, we compare the performance of our “direct” Lagrangian approach against our binary
search-based Lagrangian approach for computing several equilibrium concepts at the approximation
level defined as 1% of the payoff range of the game.

For each solution concept, we identify the same three objectives as Appendix G (maximizing each
player’s individual utility, and maximizing the social welfare in our two-player general-sum games).
For each objective, each of the following tables compares three runtimes:

• The time required by the linear program (column ‘LP’);

• The time required by the “direct” (non-binary search-based) Lagrangian approach, taking
the fastest between the implementations using DCFR and PCFR+ as the underlying no-
regret algorithms (column ‘Lagrangian’).

• The time required by the binary search-based Lagrangian approach, taking the fastest be-
tween the implementations using DCFR and PCFR+ as the underlying no-regret algorithms
(column ‘Bin.Search’).

We observe that our two approaches behave similarly in small games. In larger games, especially
with three players, the direct Lagrangian tends to be 2-4 times faster.
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H.1 Detailed Breakdown by Equilibrium and Objective Function (Two-Player Games)

H.1.1 Results for NFCCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
B2322 0.00s 0.03s 0.04s 0.00s 0.04s 0.03s 0.00s 0.01s 0.01s
B2323 7.00s 1.05s 1.67s 6.00s 1.01s 1.23s 6.00s 0.33s 0.17s
B2324 50.00s 15.57s 18.23s 37.00s 12.80s 11.11s 38.00s 2.73s 1.41s

S2122 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
S2123 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s
S2133 1.00s 0.02s 0.03s 1.00s 0.02s 0.02s 1.00s 0.02s 0.02s
S2254 2m 1s 6.96s 6.03s 1m 14s 10.43s 7.12s 1m 58s 7.43s 3.64s
S2264 3m 36s 13.96s 7.64s 2m 24s 18.46s 14.57s 3m 43s 11.74s 7.69s

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS213 timeout 34.52s 28.65s timeout 20.29s 26.25s timeout 14.68s 7.44s
RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS223 timeout timeout timeout timeout timeout timeout timeout timeout timeout

H.1.2 Results for EFCCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s
B2322 3.00s 0.41s 0.54s 3.00s 0.69s 0.60s 3.00s 0.69s 0.41s
B2323 1m 35s 9.11s 16.32s 1m 30s 12.39s 8.62s 1m 21s 14.23s 6.89s
B2324 timeout 1m 53s 2m 5s timeout 2m 44s 3m 14s timeout 3m 1s 1m 27s

S2122 0.00s 0.01s 0.00s 0.00s 0.00s 0.00s 0.00s 0.01s 0.00s
S2123 1.00s 0.03s 0.04s 1.00s 0.05s 0.04s 1.00s 0.06s 0.03s
S2133 3.00s 0.12s 0.11s 2.00s 0.20s 0.32s 3.00s 0.11s 0.22s
S2254 timeout 27.31s 30.66s timeout 37.43s 1m 17s timeout 22.01s 36.62s
S2264 timeout 46.07s 1m 9s timeout 2m 18s 1m 26s timeout 39.23s 1m 4s

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS213 timeout 28.80s 36.02s timeout 31.02s 29.54s timeout 15.54s 9.84s
RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS223 timeout timeout timeout timeout timeout timeout timeout timeout timeout

H.1.3 Results for EFCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.01s 0.02s 0.00s 0.05s 0.01s 0.00s 0.02s 0.02s
B2322 9.00s 1.23s 4.49s 9.00s 4.63s 2.04s 9.00s 1.60s 1.57s
B2323 3m 54s 48.40s 1m 44s 4m 9s 1m 27s 40.91s 3m 40s 44.87s 1m 19s
B2324 timeout 9m 3s 16m 45s timeout 10m 21s 13m 15s timeout 10m 48s 8m 12s

S2122 0.00s 0.01s 0.01s 0.00s 0.02s 0.01s 0.00s 0.02s 0.01s
S2123 1.00s 0.09s 0.06s 1.00s 0.34s 0.10s 1.00s 0.15s 0.08s
S2133 4.00s 0.52s 0.32s 3.00s 1.31s 0.77s 3.00s 0.49s 0.43s
S2254 timeout 2m 10s 2m 19s timeout timeout 4m 1s timeout 3m 34s 2m 10s
S2264 timeout timeout timeout timeout timeout timeout timeout timeout timeout

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS213 timeout 35.37s 34.00s timeout 32.49s 36.52s timeout 23.37s 22.16s
RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS223 timeout timeout timeout timeout timeout timeout timeout timeout timeout
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H.1.4 Results for COMM solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 2.00s 0.88s 3.39s 2.00s 0.89s 2.70s 2.00s 1.49s 2.80s
B2322 timeout 5m 47s 7m 28s timeout 3m 45s 10m 31s timeout 4m 41s 7m 20s
B2323 timeout timeout timeout timeout timeout timeout timeout timeout timeout
B2324 timeout timeout timeout timeout timeout timeout timeout timeout timeout

S2122 2.00s 0.21s 0.42s 2.00s 0.48s 0.28s 2.00s 0.35s 0.40s
S2123 1m 30s 38.95s 1m 36s 1m 36s 1m 10s 1m 7s 1m 33s 59.63s 51.54s
S2133 timeout 4m 26s 10m 23s timeout 7m 27s 6m 17s timeout 12m 11s 5m 57s
S2254 timeout timeout timeout timeout timeout timeout timeout timeout timeout
S2264 timeout timeout timeout timeout timeout timeout timeout timeout timeout

RS212 2.00s 0.01s 0.01s 2.00s 0.01s 0.01s 2.00s 0.01s 0.00s
RS213 6m 51s 10.24s 18.82s 6m 27s 12.83s 24.61s 6m 25s 8.74s 8.18s
RS222 3.00s 0.01s 0.01s 3.00s 0.02s 0.02s 3.00s 0.01s 0.01s
RS223 8m 41s 5.79s 9.71s 8m 24s 8.45s 12.94s 8m 54s 4.00s 4.54s

H.1.5 Results for NFCCERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
B2322 0.00s 0.02s 0.03s 0.00s 0.02s 0.02s 0.00s 0.01s 0.00s
B2323 2.00s 0.62s 0.64s 1.00s 0.48s 0.51s 2.00s 0.14s 0.08s
B2324 11.00s 4.88s 9.86s 11.00s 5.24s 6.26s 10.00s 1.82s 0.70s

S2122 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
S2123 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
S2133 0.00s 0.01s 0.00s 0.00s 0.01s 0.01s 0.00s 0.01s 0.00s
S2254 25.00s 1.23s 0.84s 24.00s 3.02s 2.41s 28.00s 1.32s 0.70s
S2264 56.00s 2.71s 1.72s 42.00s 5.43s 3.81s 50.00s 2.73s 1.24s

U212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
U213 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
U222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
U223 0.00s 0.00s 0.01s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

H.1.6 Results for CCERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.00s 0.01s 0.00s 0.01s 0.00s 0.00s 0.01s 0.00s
B2322 0.00s 0.07s 0.11s 0.00s 0.15s 0.09s 0.00s 0.22s 0.09s
B2323 7.00s 3.75s 3.55s 6.00s 4.69s 3.54s 8.00s 5.39s 2.64s
B2324 timeout 54.92s 49.66s timeout 59.02s 59.88s timeout 1m 31s 37.51s

S2122 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
S2123 0.00s 0.01s 0.02s 0.00s 0.02s 0.02s 0.00s 0.01s 0.02s
S2133 1.00s 0.04s 0.04s 1.00s 0.08s 0.06s 1.00s 0.05s 0.03s
S2254 1m 41s 8.61s 11.29s 1m 47s 23.28s 16.40s 2m 3s 8.22s 16.31s
S2264 timeout 20.11s 21.42s timeout 1m 5s 38.76s timeout 16.50s 20.62s

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS213 0.00s 0.01s 0.00s 0.00s 0.01s 0.01s 0.00s 0.01s 0.00s
RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS223 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s 0.00s 0.01s 0.00s
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H.1.7 Results for CERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize social welfare
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

B2222 0.00s 0.01s 0.01s 0.00s 0.02s 0.01s 0.00s 0.02s 0.02s
B2322 2.00s 1.05s 0.95s 2.00s 1.16s 0.66s 2.00s 1.24s 1.20s
B2323 40.00s 47.11s 21.54s 33.00s 58.20s 22.16s 37.00s 40.45s 59.67s
B2324 timeout 8m 29s 4m 38s timeout timeout 3m 40s timeout 6m 14s 4m 1s

S2122 0.00s 0.02s 0.01s 0.00s 0.02s 0.01s 0.00s 0.02s 0.01s
S2123 1.00s 0.19s 0.09s 1.00s 0.28s 0.20s 1.00s 0.15s 0.12s
S2133 3.00s 0.96s 0.43s 2.00s 1.10s 0.81s 2.00s 0.92s 0.41s
S2254 timeout 3m 26s 2m 54s timeout 6m 15s 4m 14s timeout 2m 42s 2m 53s
S2264 timeout timeout timeout timeout timeout timeout timeout timeout timeout

RS212 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS213 0.00s 0.02s 0.03s 0.00s 0.02s 0.04s 0.00s 0.02s 0.01s
RS222 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
RS223 1.00s 0.01s 0.02s 1.00s 0.02s 0.02s 1.00s 0.01s 0.01s

H.2 Detailed Breakdown by Equilibrium and Objective Function (Three-Player Games)

H.2.1 Results for NFCCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.01s 0.02s 0.00s 0.01s 0.02s 0.00s 0.01s 0.02s
D33 2m 17s 12.93s 21.46s 2m 8s 16.40s 28.63s 2m 23s 17.57s 19.74s

GL3 0.00s 0.01s 0.02s 0.00s 0.01s 0.02s 0.00s 0.02s 0.02s

K35 49.00s 0.76s 1.52s 55.00s 0.56s 1.39s 55.00s 0.64s 1.67s

L3132 26.00s 0.59s 1.72s 24.00s 0.79s 1.63s 24.00s 0.77s 1.91s
L3133 38.00s 0.94s 1.79s 38.00s 0.89s 1.83s 37.00s 1.11s 1.90s
L3151 timeout 15.12s 30.01s timeout 12.74s 35.58s timeout 18.03s 30.87s
L3223 4.00s 0.44s 0.91s 4.00s 0.45s 1.84s 4.00s 0.52s 1.58s
L3523 timeout 1m 7s 4m 21s timeout 1m 2s 4m 27s timeout 1m 9s 4m 35s

TP3 1m 38s 7.44s 8.43s 1m 40s 7.63s 9.41s 1m 44s 11.45s 11.85s

H.2.2 Results for EFCCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.02s 0.03s 0.00s 0.01s 0.03s 0.00s 0.02s 0.03s
D33 timeout 1m 46s 2m 32s timeout 1m 16s 2m 28s timeout 1m 44s 3m 7s

GL3 1.00s 0.02s 0.04s 1.00s 0.03s 0.05s 1.00s 0.03s 0.05s

K35 46.00s 0.67s 2.09s 55.00s 0.75s 1.90s 51.00s 0.68s 1.85s

L3132 8m 43s 5.13s 18.75s 9m 17s 6.27s 13.48s 9m 44s 7.76s 18.47s
L3133 20m 26s 8.88s 19.52s timeout 8.19s 23.17s 23m 15s 10.86s 27.48s
L3151 timeout timeout timeout timeout timeout timeout timeout timeout timeout
L3223 1m 10s 2.94s 14.79s 1m 10s 3.22s 12.23s 1m 2s 3.24s 13.68s
L3523 timeout timeout timeout timeout timeout timeout timeout timeout timeout

TP3 timeout 13.76s 15.36s timeout 15.03s 13.64s timeout 15.27s 15.10s
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H.2.3 Results for EFCE solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 12.00s 0.40s 1.11s 11.00s 0.35s 1.32s 10.00s 0.66s 1.23s
D33 timeout timeout timeout timeout timeout timeout timeout timeout timeout

GL3 0.00s 0.01s 0.03s 0.00s 0.01s 0.03s 0.00s 0.01s 0.06s

K35 57.00s 0.55s 1.50s 55.00s 1.03s 2.37s 60.00s 1.26s 2.22s

L3132 8m 18s 6.10s 14.02s 8m 57s 7.65s 16.25s 7m 35s 6.78s 19.11s
L3133 21m 25s 6.84s 25.83s 21m 43s 10.76s 26.37s 19m 58s 10.28s 20.65s
L3151 timeout timeout timeout timeout timeout timeout timeout timeout timeout
L3223 2m 2s 5.52s 28.79s 1m 50s 6.46s 29.37s 2m 0s 5.94s 17.13s
L3523 timeout timeout timeout timeout timeout timeout timeout timeout timeout

TP3 timeout 13.46s 13.78s timeout 14.25s 13.71s timeout 14.48s 11.48s

H.2.4 Results for COMM solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.06s 0.24s 1.00s 0.06s 0.21s 1.00s 0.17s 0.32s
D33 timeout 4m 37s 5m 35s timeout 1m 31s 4m 27s timeout 2m 38s 5m 21s

GL3 timeout 7.72s 26.48s timeout 7.50s 21.91s timeout 11.42s 25.44s

K35 1.00s 0.03s 0.07s 1.00s 0.02s 0.07s 1.00s 0.03s 0.05s

L3132 8.00s 3.46s 10.64s 8.00s 3.37s 8.44s 7.00s 4.02s 9.57s
L3133 12.00s 3.40s 12.82s 12.00s 3.54s 10.70s 11.00s 3.52s 12.35s
L3151 timeout 16.73s 55.51s timeout 15.80s 57.66s timeout 18.00s 56.83s
L3223 19.00s 18.19s 1m 0s 18.00s 15.30s 1m 17s 21.00s 18.77s 57.11s
L3523 timeout timeout timeout timeout timeout timeout timeout timeout timeout

TP3 timeout timeout timeout timeout timeout timeout timeout timeout timeout

H.2.5 Results for NFCCERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
D33 0.00s 0.04s 0.05s 0.00s 0.06s 0.05s 0.00s 0.04s 0.03s

GL3 0.00s 0.00s 0.01s 0.00s 0.00s 0.01s 0.00s 0.00s 0.01s

K35 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

L3132 0.00s 0.02s 0.03s 0.00s 0.02s 0.02s 0.00s 0.02s 0.03s
L3133 0.00s 0.02s 0.03s 0.00s 0.02s 0.04s 0.00s 0.02s 0.04s
L3151 0.00s 0.03s 0.04s 0.00s 0.04s 0.07s 0.00s 0.03s 0.07s
L3223 0.00s 0.03s 0.06s 0.00s 0.04s 0.05s 0.00s 0.05s 0.08s
L3523 13.00s 7.41s 13.51s 15.00s 8.17s 16.32s 17.00s 10.60s 22.93s

TP3 47.00s 4.56s 4.98s 48.00s 4.97s 8.12s 45.00s 7.38s 7.50s
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H.2.6 Results for CCERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
D33 1.00s 0.20s 0.27s 1.00s 0.13s 0.32s 1.00s 0.19s 0.25s

GL3 0.00s 0.01s 0.02s 0.00s 0.01s 0.02s 0.00s 0.01s 0.01s

K35 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

L3132 0.00s 0.05s 0.08s 0.00s 0.05s 0.09s 0.00s 0.05s 0.07s
L3133 0.00s 0.04s 0.13s 0.00s 0.08s 0.20s 0.00s 0.12s 0.09s
L3151 1.00s 0.12s 0.36s 1.00s 0.16s 0.32s 1.00s 0.16s 0.31s
L3223 1.00s 0.23s 0.72s 1.00s 0.26s 0.58s 1.00s 0.24s 0.67s
L3523 timeout 1m 17s 13m 19s timeout 1m 16s 16m 19s timeout 1m 13s 6m 41s

TP3 timeout 10.23s 16.79s timeout 10.38s 12.96s timeout 11.95s 11.91s

H.2.7 Results for CERT solution concept

Game Maximize Pl. 1’s utility Maximize Pl. 2’s utility Maximize Pl. 3’s utility
LP Lagrangian Bin.Search LP Lagrangian Bin.Search LP Lagrangian Bin.Search

D32 0.00s 0.01s 0.01s 0.00s 0.01s 0.01s 0.00s 0.01s 0.02s
D33 4.00s 3.14s 7.11s 4.00s 2.02s 2.26s 4.00s 2.10s 9.88s

GL3 0.00s 0.02s 0.04s 0.00s 0.02s 0.05s 0.00s 0.03s 0.05s

K35 0.00s 0.01s 0.01s 0.00s 0.00s 0.01s 0.00s 0.00s 0.01s

L3132 1.00s 0.10s 0.28s 1.00s 0.18s 0.37s 0.00s 0.18s 0.35s
L3133 1.00s 0.22s 0.41s 1.00s 0.19s 0.44s 1.00s 0.25s 0.30s
L3151 2.00s 0.21s 0.86s 2.00s 0.22s 0.75s 2.00s 0.29s 0.72s
L3223 1.00s 0.61s 1.48s 1.00s 0.61s 1.65s 1.00s 0.68s 1.95s
L3523 timeout 2m 58s timeout timeout 4m 33s timeout timeout 3m 55s timeout

TP3 timeout 26.70s 34.23s timeout 25.08s 28.22s timeout 36.36s 27.68s
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