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Abstract

Most of the existing Video Anomaly Detection (VAD) studies have been conducted
within single-domain learning, where training and evaluation are performed on a
single dataset. However, the criteria for abnormal events differ across VAD datasets,
making it problematic to apply a single-domain model to other domains. In this
paper, we propose a new task called Multi-Domain learning for VAD (MDVAD) to
explore various real-world abnormal events using multiple datasets for a general
model. MDVAD involves training on datasets from multiple domains simultane-
ously, and we experimentally observe that Abnormal Conflicts between domains
hinder learning and generalization. The task aims to address two key objectives: (i)
better distinguishing between general normal and abnormal events across multiple
domains, and (ii) being aware of ambiguous abnormal conflicts. This paper is the
first to tackle abnormal conflict issue and introduces a new benchmark, baselines,
and evaluation protocols for MDVAD. As baselines, we propose a framework with
Null(Angular)-Multiple Instance Learning and an Abnormal Conflict classifier.
Through experiments on a MDVAD benchmark composed of six VAD datasets
and using four different evaluation protocols, we reveal abnormal conflicts and
demonstrate that the proposed baseline effectively handles these conflicts, showing
robustness and adaptability across multiple domains.

1 Introduction

Video Anomaly Detection (VAD) is identifying abnormal events in diverse scenarios depicted in a
video and determining their temporal intervals at a frame-level. Nowadays, CCTVs are ubiquitous,
recording every moment of life, which aids in preventing accidents and responding to crimes promptly.
However, human monitoring of every situation is highly inefficient, requiring significant labor and
resources. Consequently, extensive research has been conducted to automate VAD through deep
learning by leveraging large amounts of surveillance data [33, 5, 24, 15, 55, 44, 43, 50, 21, 7].

In VAD research, Weakly-supervised VAD (WVAD) [55, 44, 43, 50, 21, 7], which involves learning
normal and abnormal events with minimal supervision of the video-level annotation and detecting
abnormal events at the frame-level during testing, has been studied a lot recently. This paper focuses
on the WVAD setting (denoted as VAD), and a summary of VAD research is explained in the
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Figure 1: (a) An example of abnormal conflict: Pedestrian on the road is normal in UCFC dataset but is
abnormal in TAD. (b) Each circle represents each domain. MDVAD aims to design a general model that
effectively considers abnormal conflicts to separate general normal and abnormal events.

supplementary material (§ E). Unlike the conventional VAD research, we first address the following
three key questions:

Q1: What is the problem with the existing VAD model? Most VAD models are trained in a single-
domain where the training and evaluation dataset are the same. In the case of single-domain learning,
application across different datasets (cross-domain evaluation) results in performance degradation
as reported in [14, 6, 7] because VAD models are heavily influenced by the criteria for abnormality
defined by each dataset.

Q2: Why do we need a general VAD model? First, a single generalized model removes the need
for multiple specific models for different domains, analogous to multi-task learning. Second, proper
pre-training on multiple domains embodies generalized representation, and it can discriminate
abnormal events according to their domain, leading to better performance in unseen target domains.
Consequently, a general VAD model will be highly beneficial for applying VAD in practical scenarios.

Q3: Is it possible to create a general VAD model? The general VAD model aims to handle multiple
domains, but this is challenging because the definition of abnormal differs for each dataset, leading
to conflicts between these abnormal events. For example, as shown in Fig. 1(a), in one dataset, a
pedestrian on the road is considered normal, while in another dataset, it is deemed abnormal. A
general VAD cannot be solved with a naive muti-task learning because of this confusion across
multiple domains, which this paper defines as ‘Abnormal Conflict.’ Therefore, for general VAD, it
is necessary to be aware of these abnormal conflicts (yellow region in Fig. 1(b)) and learn general
normal (green region in Fig. 1(b)) or abnormal (red region in Fig. 1(b)) representations that are
common across all domains.

Our goal is to construct a general VAD model by conducting multi-domain learning while recogniz-
ing abnormal conflicts and exploring representations of general normality and abnormality. To
achieve this goal, we introduce a new task called 1) Multiple Domain VAD (MDVAD), along with
a benchmark and new evaluation protocols. MDVAD involves concurrent training on multiple
VAD datasets, each with its own definition of abnormality. Specifically, the MDVAD benchmark
comprises six representative VAD datasets with balanced sampling (§ 4.1). We also propose four
evaluation protocols: held-in, leave-one-out, low-shot domain adaptation, and full fine-tuning. The
held-in protocol is designed to evaluate the model’s ability as a unified model like multi-task model,
while the leave-one-out, low-shot domain adaptation, and full fine-tuning protocols are intended to
access the model’s capability as a general pre-training for an unseen target domain.

As multi-domain learning is a novel concept in the field of VAD, we also introduce baselines and
new learning methods. We design domain-specific multiple heads to mitigate abnormal conflicts and
learn generality across domains. To facilitate multi-head learning without conflicts, we propose the
2) Null-Multiple Instance Learning (Null-MIL) and NullAngular-MIL (NullAng-MIL) losses,
which activate only the output of the head corresponding to the input domain, assigning inactive
heads with Null values to prevent confusion. Additionally, we suggest the 3) Abnormal Conflict
(AC) Classifier to explore general features while being aware of abnormal conflicts, leveraging
the variance in abnormal scores across the multiple heads (Fig. 2 green and yellow region in the
Venn diagram). Through experiments with four protocols on the MDVAD benchmark, we reveal the
limitations of multi-domain learning with abnormal conflict and demonstrate the effectiveness of our
baselines in offering a generalized and adaptive model.
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1.1 Scope of research

Focusing on Multiple Domains. In this paper, we focus on solving the problems in multiple domains
introduced above rather than solving problems in a single domain. Therefore, complex design of
the backbone and head or achieving state-of-the-art performance in a single domain can proceed
orthogonally with our research. Instead, this paper raises the issue of abnormal conflict and focuses
on the necessity of MDVAD.

Distinction from Open-set VAD Approaches. Unlike Open-set VAD [59, 25, 1], which separates
seen and unseen anomalies within a single-domain cannot achieve robust representation learning
among multiple domains, this paper excels at handling abnormal conflicts and shows adaptability
across domains with versatile evaluation protocols (held-in/out and low-shot).

2 Observations

2.1 Datasets

In this paper, we use six representative VAD datasets: UCF-Crimes (UCFC) [43], XD-Violences
(XD) [51], Large-scale Anomaly Detection (LAD) [47], UBI-Fights (UBIF) [9], Traffic Anomaly
Dataset (TAD) [19], and Shanghai-Tech Campus (ST) [24]. As shown in Table 1, each dataset has
different environments (e.g. CCTV, Traffic, Campus), quantities, and abnormal categories. Unlike
other datasets, ST is an unsupervised VAD benchmark whose training set comprises only normal
videos, so the training set has been reorganized following [21, 45, 57]. More details are provided in
the supplementary material (Sec. A).

2.2 Analysis

Based on observations of each dataset’s properties, we aim to quantify how the different properties
negatively affect domain shifts. Table 2 presents cross-domain evaluation results, i.e., single-domain
models validated on different target datasets. The results reveal that while these models excel in-
domain settings (diagonal elements of the table), they exhibit significant performance degradation in
cross-domain scenarios. This implies that a single-domain VAD model may be ineffective in most
other environments unless the environment and user’s intention are precisely identical. Therefore,
leveraging diverse datasets for generalized feature learning is crucial, enabling the model to handle
unknown domain and well adapted to unseen anomalies. This paper addresses two primary issues:
1) Abnormal conflict arising during the multi-domain learning process, and 2) Scene discrepancy
occurring during the evaluation process on an unseen target domain.

Abnormal conflict. As illustrated in Fig. 1, abnormal conflicts indicate abnormal events that are
considered abnormal in one (or some) domain(s) but are denoted as normal in other domains. As

Table 1: Datasets and abnormal categories. Colored categories are shared
abnormal categories with other datasets. Uncolored categories are considered
normal events in other datasets. Gray categories are defined by ourselves
while all other categories are provided by datasets.

UCFC [43] XD [51] LAD [47] UBIF [9] TAD [19] ST [24]
Settings

CCTV

CCTV,
Sports,

Cartoon,
Movies,
News

CCTV CCTV,
Mobile

Traffic
(CCTV)

Campus
(CCTV)

Training Set Volume
1610 3954 1440 933 400 238

Abnormal Categories
Abuse Abuse Hurt Illegal Turns Chasing
Arrest Drop Road Spills Dropping
Arson Fall Into Water Retrograde Motion Throwing

Assault Falling Illegal Occupations Running
Accident Car Accident Crash Vehicle Accidents Jumping
Burglary Destroy Pedestrian on Road Motorcycle

Explosion Explosion Fire The Else Skateboard
Fighting Fighting Fighting Fighting Fighting
Robbery Violence Robbery
Shooting Shooting Crowd Gun
Stealing Thieving Car

Shoplifting Loitering Loitering
Vandalism Riot Panic

Trampled

Table 2: Anomaly detection performances (Area under curve,
AUC) of single-domain models. Diagonal elements are in-
domain results and off-diagonal elements are cross-domain
results.

Target
Source UCFC XD LAD UBIF TAD ST
UCFC 82.32 68.06 75.75 71.12 73.75 59.24

XD 68.38 90.87 77.60 67.23 71.10 46.87
LAD 59.60 75.26 86.97 59.27 73.80 47.29
UBIF 74.79 75.22 70.29 93.63 68.16 54.21
TAD 50.83 45.38 52.02 61.95 90.71 41.58
ST 55.75 52.87 48.96 59.00 48.57 91.88

Table 3: Scene discrepancy between domains (Earth mover’s
distance, EMD), Yellow: Abnormal Class-wise. Blue: Nor-
mal. Using a pretrained backbone model on the Kinetics
dataset [4], we extract embedding features for each dataset
and measured the distance between feature vectors.

UCFC XD LAD UBIF TAD ST
UCFC - 7.90 8.45 5.87 9.76 9.32

XD 9.76 - 6.19 6.94 9.65 9.10
LAD 12.78 10.76 - 7.90 10.09 10.43
UBIF 7.90 7.37 11.99 - 10.54 9.54
TAD 11.32 10.87 14.39 10.98 - 10.65
ST 11.32 10.31 14.27 8.77 11.77 -
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Figure 2: The overall framework of our MDVAD baselines that consists of domain-agnostic layers, single
abnormal head (Sec. 3.1), multiple abnormal heads (Sec. 3.2), and AC classifier (Sec. 3.3).

shown in Table 1, there is relatively little overlap of abnormal classes in ST with other datasets.
In other words, this means that the abnormal conflict with other datasets is relatively large. This
conflict leads to low cross-dataset performances of models trained or evaluated on ST in Table 2.
Taking UCFC as an example (target domain: UCFC column in Table 2), performance increases in the
order of TAD, ST, LAD, XD, and UBIF, which is proportional to the number of abnormal conflict
categories that exist in the source domain. Abnormal conflict makes the MDVAD unique as the label
spaces between domains literally conflict because of each other’s differing definitions.

Scene discrepancy. Scene discrepancy refers to differences in the visual settings of scenes, distinct
from abnormal conflict arising from variations in the definition of abnormal classes. To quantify
scene discrepancy, we utilize the Earth Mover’s Distance (EMD) [38] introduced in [8] to calculate
the distance between VAD datasets in the Table 3. In Table 3, the top-right section illustrates the
comparison of normal features, while the bottom-left provides a numerical comparison of class-wise
abnormal features. Lighter colors indicate a higher discrepancy between datasets. Unlike other
datasets, TAD, which comprises traffic videos, exhibits a large distance from normal sample distances
in the dataset, while LAD, with diverse and complex scenes for abnormal classes, shows the furthest
distance from other datasets. This explains the results of domain adaptation experiments. (Table 7).

3 Baselines

Fig. 2 depicts the overall framework of our MDVAD baselines divided into domain-agnostic layers,
consisting of the video backbone and aggregation modules, Single (§ 3.1) or Multiple heads (§ 3.2),
and AC classifier (§ 3.3).

Domain-agnostic layers. The input abnormal or normal video Va or Vn is divided into uniformly
sampled T snippets (Va ∈ {va

1 , · · · ,va
T }). These T snippets pass through a pre-trained video

backbone, resulting in a C-dimensional feature B ∈ RT×C that undergoes an aggregation module,
fusing them from the feature level to the temporal level. The feature aggregation layer doubles the
channel size B̂ ∈ RT×2C , followed by a split and max operation Fagg,i = max

[
B̂c

i , B̂
C+c
i

]
c=1,··· ,C

to squeeze the channel size back to C for the i-th snippet. Activating only the maximum element
during gradient propagation enables the implicit differentiation of class-specific channels, allowing
the model to establish discrepancies between classes [7, 52]. The temporal aggregation layer, with a
temporal kernel size of 3, produces the domain-agnostic aggregated feature FDA ∈ RT×C/2.
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3.1 Single-domain learning

The final feature FDA undergoes fully connected layers denoted as FC and the single abnormal head
(wa

D1
∈ RC/16×1) followed by a sigmoid function to derive the final abnormal score saD1

∈ RT×1.

MIL. Due to the absence of temporal interval training labels for abnormal events, WVAD models rely
on video-level labels for training, employing the Multiple Instance Learning (MIL) method. When
the top-K score set is represented as Ωk(s

a
D1

), the Binary Cross Entropy-based (BCE) classification
loss function is formulated as presented in Eq. 1, where y = {0, 1}.

LMIL =
∑

i∈Ωk(saD1
)

−(ylogsaD1,i + (1− y)log(1− saD1,i)), (1)

This loss function ensures that only snippets with high (Top-K) abnormal scores can contribute to
the loss. This single-head model serves as the single-domain baseline (MIL in Fig. 2).

3.2 Multi-domain learning: Multi-head learning

Null-MIL. To address the abnormal conflict issue mentioned in Sec. 2, in the MDVAD framework,
the abnormal head is divided into multiple heads, each responsible for its own domain, allowing for
the domain-wise prediction of the output score. Inspired by [18], the prediction score for the input
snippet from the Dd dataset is derived exclusively from the output of the Dd-head, and the results
from heads of other datasets are filled with Null values (Null-MIL in Fig. 2). Compared to Eq. 1, the
Null-MIL loss is changed as follows:

LNull−MIL =

M∑
d=1

∑
i∈Ωk(saDd

)

−(ylogsaD1,i + (1− y)log(1− saD1,i)) (2)

where M is the number of heads (domains). To avoid the abnormal conflicts, the heads between
datasets are separated where Dd-head’s weight wa

Dd
is independently trained for the corresponding

dataset. In Eq. 2, only saDd
among all output scores is added to the loss, thus the gradient becomes

∂saDd

∂wa
Dd

, while other heads are not affected.

For the test, the abnormal score of i-th snippet is saDd,i
when the target dataset is Dd and maxd s

a
Dd,i

by selecting the maximum value for unseen target data.

NullAng-MIL. We additionally propose a NullAngular-based MIL method that employs the angular
margin to effectively diminish large variations among intra-class instances. In this case, multiple
normal heads are added (NullAng-MIL in Fig. 2). When head classifier weight of each dataset
Dd is denoted as wa

Dd
and wn

Dd
and final embedding feature is F, the final abnormal and normal

scores are represented by saDd
= F ·wa

Dd
and snDd

= F ·wn
Dd

, respectively. Normalizing the head
weight and feature vector to 1 results in saDd

= ∥F∥
∥∥wa

Dd

∥∥ cosθa
Dd

= cosθa
Dd

and snDd
= cosθn

Dd
,

representing cosine similarity. Thus, in the cosine space, Eq. 2 can be defined as Eq. 3, requiring the
maximum cosine similarity between the feature from dataset Dd and the abnormal head wa

Dd
to be

at least an angular margin of m greater than the normal head wn
Dd

that enlarging the gap between
normal and abnormal.

max
i

cos (θaDd,i
+m) > max

i
cos θnDd,i

(3)

Denoting the top-K abnormal scores from the head of dataset Dd as Ωk(sDd
) ={

saDd,i
, snDd,i

}
i=topk indices

, rewriting Eq. 2 as an angular margin-based regression problem results in
Eq. 4. Similar to Null-MIL, the loss is computed by the head associated with the input dataset, while
scores from other heads have no impact on updating the model’s weights.

LNullAng−MIL =

M∑
d=1

∑
i∈Ωk(sDd

)

− (ylog
ecos (θ

a
Dd,i+m)

e
cos (θa

Dd,i+m)
+ e

cos θn
Dd,i

+ (1− y)log
ecos (θ

n
Dd,i+m)

e
cos θa

Dd,i + e
cos (θn

Dd,i+m)
) (4)
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For the test, since the normal and abnormal heads are trained through angular margin learning, the
abnormal score is shown in Eq. 5.

Abnormal Scorei

=

{
saDd,i

+ (1− snDd,i
) source Dd=target

maxd s
a
Dd,i

+ (1−maxd s
n
Dd,i

) source̸=target
(5)

When the source domain of the pre-trained general model is different from the target domain, we
determine the final score to reflect conflicts by taking the maximum normal and abnormal score from
multiple heads.

Unseen domain adaptation. After multi-domain learning, when a new target dataset or unseen
condition appears, the final score is computed based on the similarity between the embedding feature
of the input video and each source domain’s head classifier. Therefore, it operates by considering
domain similarity, which can address the performance degradation issue that occurs due to the scene
discrepancy discussed in Sec. 2.

Complexity. Only the final layer is added based on the number of datasets, with the head’s weight
denoted as wDd

∈ RT×1, which is a very small proportion of the entire model. Comparing a single
and multiple heads (6 datasets), the training times are 2.68 and 2.81 hours, and the inference times are
0.158 and 0.164 milliseconds per snippet, respectively, indicating a negligible increase in complexity.

3.3 Abnormal Conflict (AC) classifier

In the domain-agnostic feature extraction phase, it is crucial to capture general features that can
handle every domain. While we have divided the heads to avoid abnormal conflicts in multiple source
datasets, the agnostic part extracts features from all datasets using a single branch, and inconsistent
labels cause confusion. Therefore, we propose an Abnormal Conflict (AC) classifier for learning the
final embedding feature FDA that passes through the detector heads.

In Fig. 2, each classifier head distinguishes between Dd and Dd
c, while the AC classifier is intended

to distinguish between elements that are abnormal or normal across all source datasets (green area)
and elements that represent conflicts (yellow area) within the Venn diagram. The AC classifier takes
the embedding feature FDA as input, followed by two FC layers, to predict the final conflict score
sAC . In Eq. 6, the AC label is generated based on the scores of all abnormal heads, where yAC

i = 1
if the deviation between the scores is above a threshold τ .

yAC
i =

{
1 [maxd s

a
Dd,i

−mind s
a
Dd,i

− τ ]+ > 0
0 otherwise (6)

The loss of the AC classifier, denoted as LAC and calculated using cross-entropy as follows:

LAC =

T∑
i=1

−(yAC
i logsAC

i + (1− yAC
i )log(1− sAC

i )) (7)

The total objective function is L = LNullAng−MIL + λLAC .

During the testing phase, the auxiliary branch AC classifier is eliminated, and the output is calculated
for each input snippet vi as the final Abnormal Scorei.

4 Experimental Results

4.1 MDVAD benchmark

As shown in Table 1, VAD comprises six representative datasets with diverse settings and volumes.
The MDVAD is a task aimed at addressing domain shifts between datasets, and each dataset included
in the MDVAD benchmark should be structured so that it is not biased toward any particular dataset
or anomalies. Consequently, datasets should have an equal volume in the training set and encompass
various abnormal categories and criteria. To achieve this, we sampled each dataset to align with
the dataset with the smallest volume, ensuring that each abnormal category has a similar proportion
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Table 4: Single-domain results (AUC): In-domain (diagonal ele-
ments) and cross-domain (off-diagonal elements) results.

MDVAD Benchmarks

Source Target
UCFC XD LAD UBIF TAD ST

UCFC 77.93 67.07 74.23 71.10 67.95 50.84
XD 65.88 83.23 72.63 70.58 63.46 49.55

LAD 60.23 71.37 83.82 64.73 68.47 47.27
UBIF 74.11 70.49 67.69 92.62 68.03 56.47
TAD 56.22 45.05 58.67 67.83 90.75 41.92
ST 50.49 61.53 60.91 56.58 41.60 90.79

Out Avg. 61.39
(77.93)

63.10
(83.23)

66.83
(83.82)

66.17
(92.62)

61.90
(90.75)

49.21
(90.79)(In-domain)

Training: Single-source dataset / Testing: Target dataset
Out Avg.: Average of cross-domain results.

Table 5: E1: Multi-domain training: held-in results (AUC).

MDVAD Benchmarks
Target Avg.UCFC XD LAD UBIF TAD ST

Single-domain
Out Avg. 61.39

(77.93)
63.10

(83.23)
66.83

(83.82)
66.17

(92.62)
61.90

(90.75)
49.21

(90.79)
61.43

(86.52)(In-domain)
E1: Held-in

Head AC UCFC XD LAD UBIF TAD ST Avg.
– 80.05 83.77 86.01 85.76 88.92 88.82 85.56

MIL
! 80.11 83.91 85.15 87.72 90.05 87.98 85.82

Null-MIL – 79.01 81.96 85.08 93.06 90.57 91.04 86.79
(Ours) ✓ 79.15 82.96 85.82 92.41 91.16 89.67 86.86

NullAng – 76.32 82.74 82.32 92.30 91.82 91.26 86.13
MIL(Ours) ✓ 77.21 82.09 83.88 91.90 91.36 91.12 86.26
Training: All six datasets / Testing: Target dataset
Column-wise coloring with increased intensity for higher values

and conducted 3-fold experiments. Additionally, to handle small datasets like TAD and ST, which
have minimal volumes, we combined them with the traffic dataset CADP [41] and campus dataset
NWPU [3], respectively, by reorganizing their training sets. The volume of MDVAD benchmark is
unified at 386 videos per dataset. More details provided in the supplementary material (Sec. B).

4.2 Empirical studies

This section presents empirical studies as follows: first, single-domain results for comparison,
followed by the results of four evaluation protocols for the MDVAD benchmark. The models are
trained on the training set of the source domain and evaluated on the test set of the target domain under
the following settings: Held-in (E1), Leave-one-out (E2), Low-shot adaptation (E3), and Full fine-
tuning (E4). The Area Under Curve (AUC) is used as the evaluation metric. The hyper-parameters
are T = 32, λ = 10, τ = 0.3, and m = 0.3. Since the single-head baseline cannot assign AC labels
using Eq. 6, pseudo-labels for the AC classifier are assigned based on the range of predicted abnormal
scores. All detailed implementations, more results, and discussions are provided in the supplementary
material.

Single-domain results. In the preliminary experiment, we examine the performance of the MDVAD
benchmark under single-source and single-target conditions using a single-head MIL baseline.
Comparing the in-domain (diagonal elements) results in Table 2 (using the original training set) and
Table 4 (using the sampled training set), we observe that the performance diminishes when datasets,
other than TAD and ST, are reduced during sampling. Conversely, TAD and ST show improved
performance, benefiting from increased diversity and data volume due to reorganization with CADP
and NWPU for TAD and ST, respectively. The cross-domain (off-diagonal elements) results in
Table 4 demonstrate consistent trends with both the MDVAD and VAD benchmarks. These trends
primarily arise from challenges related to abnormal conflict and scene discrepancies, indicating that
the issues are confined to in-domain settings. Consequently, to uphold in-domain performance across
diverse datasets and effectively address issues related to abnormal conflict and scene discrepancies,
we emphasize the essential role of multi-domain learning in developing a general model for VAD.

4.2.1 Held-in results (E1)

In this section, we discuss the held-in evaluation results, where models are trained on all datasets
of MDVAD, and the test set of each source dataset is used as the target. Table 5 presents the results
obtained by training with the MIL baseline with a single-head, which is commonly used in traditional
WVAD, and the proposed Null(Ang)-MIL baseline composed of multiple heads. Because UCFC, XD,
and LAD exhibit low abnormal conflicts, numerous similarities in abnormal categories, and minimal
scene discrepancy, there are great performances with the single-head MIL baseline. However, when
TAD and ST are targets, the results demonstrate that the Null(Ang)-MIL baselines, which extract
general domain features in the domain-agnostic part and avoid conflict by assigning Null values with
multiple heads, outperform the MIL baseline.

Handling multi-domain with a single Null(Ang)-MIL baseline. The average performance of
single Null-MIL and NullAng-MIL is comparable to or even better than the average performance
of individual in-domain models trained for each domain (86.52%). Moreover, the NullAng-MIL
baseline, which effectively performs inter/intra-class learning through cosine angular margin while
avoiding conflict between each head, achieves superior results, with 91.82% (TAD) and 91.26%
(ST) compared to the performances of single in-domain results of 90.75% (TAD) and 90.79% (ST),
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Table 6: E2: Leave-one-out results

MDVAD Benchmarks
Target

UCFC XD LAD UBIF TAD ST
Single-domain

Out Avg. 61.39 63.10 66.83 66.17 61.90 49.21
E2: Leave-one-out

Head AC
– 75.98 74.07 76.94 72.01 74.11 49.39

MIL
! 78.49 76.87 78.67 81.81 78.39 65.66

Null-MIL – 62.38 59.63 64.91 55.42 66.28 45.60
(Ours) ! 68.78 74.65 74.46 55.61 67.72 55.26

NullAng – 75.26 73.00 73.91 79.41 77.94 52.98
MIL(Ours) ! 78.55 77.68 77.36 82.53 79.21 60.41
Training: Five datasets except the target dataset
Testing: Target dataset

Table 7: E3: Low-shot adaptation results

MDVAD Benchmarks
Target

UCFC XD LAD UBIF TAD ST
E3: Low-shot Adaptation

Head AC
– 75.19 68.20 79.18 82.13 82.80 71.65

MIL
! 72.52 71.00 76.69 82.34 78.72 74.88

Null-MIL – 67.55 60.32 75.11 75.97 62.29 57.72
(Ours) ! 70.57 66.40 73.58 81.39 71.12 63.02

NullAng – 77.76 70.67 74.86 83.44 78.57 71.81
MIL(Ours) ! 78.99 75.80 77.82 85.75 84.06 76.23
Training: E2 + a few target samples
Testing: Target dataset

highlighting the effectiveness of learning with diverse and abundant data to enhance model generality.
Furthermore, additional performance boosts are observed across all baselines with the auxiliary AC
classifier to make the model conflict-aware.

4.2.2 Leave-one-out results (E2)

The E2 experiments, in Table 6, are conducted on the leave-one-out setting among multiple source
datasets and evaluated on the unseen target dataset unlike E1. Each column represents the outcomes
of models trained with the target dataset excluded. Compared with the held-in results, the evaluation
results conducted without prior knowledge of abnormal boundaries for unseen target data lead
performance gap between E1 and E2.

Effectiveness of multi-domain learning for unseen target domain. When comparing single-domain
learning and multi-domain learning in the results of unseen target evaluation (Out Avg. in Table 6), it
is evident that the performance with multiple datasets is significantly superior. Effectively addressing
conflict and discrepancy issues, and learning from diverse and complex situations across multiple
domains, leads to the development of a general model with better performance on unseen domains.

4.2.3 Low-shot adaptation results (E3)

In E3, we delve into low-shot learning, examining how well the model trained with multiple sources
in the leave-one-out experiments (E2) adapts to unseen targets. In this experiment, we utilized 10% of
the target training set for low-shot learning (in a 3-fold setting). For datasets with abnormal categories,
an equal number of data per category are randomly sampled, while for uncategorized datasets like
UBIF and ST, random sampling is employed.

Importance of general pre-trained baselines for adaptation. In Table 7, comparing with Table 6,
notable performance improvements are observed across all baselines for target samples with severe
domain conflicts and gaps, such as UBIF, TAD, and ST, even with a limited volume of training
samples. This emphasizes the importance of building a general model to adapt on unforeseen targets.
While the MIL baseline with a single head holds an advantage in adapting specific single head
when target samples are appropriately selected, it may become dependent on specific samples and is
susceptible to overfitting. On the other hand, NullAng-MIL, with conflict-aware learning and training
on diverse domains, outperforms other methods in adaptation performance.

4.2.4 Full fine-tuning results (E4)

Table 8: E4: Comparison between the single-domain
model and full fine-tuned models from the E1 and E2.

MDVAD Benchmarks
Target

UCFC XD LAD UBIF TAD ST
Single-domain
Single 77.93 83.23 83.82 92.62 90.75 90.79
E4: Full fine-tuning

E1 78.62 82.71 84.41 92.42 92.50 91.17
E2 80.24 82.77 83.81 92.95 92.07 91.27

Finetuning: Target dataset / Testing: Target dataset

Multi-domain models superior to specific single-
domain models. Table 8 shows the full fine-tuning
results of single-domain and multi-domain trained
baselines. The single-domain models reflect results
from training and testing within a specific dataset.
When evaluating multi-domain baselines trained on
all datasets in the held-in (E1) setting, it demonstrates
performance comparable to single-domain models that
perform well by fitting to a single dataset. However,
after full fine-tuning on the target dataset, the E1 model
achieves superior performance in most cases. The E1
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(a) (b)

Figure 3: (a) The plot of AC scores. Both scenes are from UCFC and are normal in UCFC. (Top) Yellow box
indicates abnormal conflict, which is abnormal in ST. (Bottom) Normal scene. (b) Qualitative results. Red box
indicates abnormal event in the scene. (Top) Bicyclist on walkway abnormal event in ST. (Bottom) Accident
abnormal event in UCFC and Pedestrian on Road abnormal conflict in TAD.

and E2 models, which are well-explored across multiple domains, outperform the models specifically
trained on a single domain after full fine-tuning.

4.2.5 Summary

Null-MIL and NullAng-MIL. The Null-MIL baseline achieves the best performance (86.86%) in the
Held-in setting (E1), even surpassing the in-domain average results (86.52%). However, in the Leave-
one-out setting (E2), which involves unknown target domains, it shows suboptimal performance.
This is because it is impossible to determine which head’s output score among the source dataset
heads is more reliable, so multiple head baselines employ the maximum score for unknown domains.
Conversely, NullAng-MIL exhibits superior results in E2 due to its similarity-based score calculation.
NullAng-MIL considers the cosine distance between the final feature and the weights of each source
head. As a result, when calculating the final score, the head with high similarity to the target data is
activated, yielding promising results. When pre-training the general VAD model without knowledge
of the target, we observed that utilizing the NullAng-MIL baseline is beneficial. However, when
conducting multi-domain learning with knowledge of the target, employing Null-MIL yields better
results. We observed that when pre-training the general VAD model without prior knowledge of the
target, utilizing the NullAng-MIL baseline proves beneficial and employing Null-MIL yields better
results when knowledge of the target is available during multi-domain learning.

Role of the AC Classifier. In multi-domain learning, the proposed AC classifier serves as an auxiliary
branch designed to predict whether there is an abnormal conflict between domains, thus making the
model aware of conflicts. Since it is not used during testing, it does not impact the final model’s cost
but provides performance gains in most experiments. Notably, in E2 and E3, training with the AC
classifier shows a significant boost effect, aiding in adaptation to unseen domains.

4.3 Discussions

Table 9: Ablation studies on Open-set VAD scenario

Single source: UBN / Target: UBN
MIL 75.13

Multiple source: MDVAD + UBN / Target: UBN
MIL 67.95

MIL+AC 70.56
Null-MIL 72.14

Null-MIL+AC 70.94
NullAng 74.42

NullAng+AC 74.54

Open-set VAD. We conducted experiments in an
open-set scenario using UBNormal (UBN) dataset [1].
The UBN is a VAD benchmark proposed for open-
set scenarios to handle unexpected abnormal events.
Both normal and abnormal events are available during
training, but the anomalies that occur during inference
belong to a distinct set of anomaly types (categories).
Unlike other VAD datasets, UBN consists of synthetic
videos to alleviate the difficulty of collecting abnormal
event data in the real world. There are substantial ab-
normal conflicts and differences in the visual settings
of scenes compared to other domains. For multi-domain learning, we reorganized the training/ testing
set of UBN to maintain the same number of normal and abnormal videos in the training set with
MDVAD, which is uniformly sampled and balanced the same amount of videos from all domains. As
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shown in Table 9, despite domain discrepancies and abnormal conflict, the model effectively handles
multiple domain learning, demonstrating that general feature learning can adequately address unseen
abnormal categories. Please refer to §. A5 for more details.

Table 10: WVAD models on MDVAD Benchmark

MDVAD Benchmarks

Models Target
UCFC XD LAD UBIF TAD ST Avg.

E1: Held-in
MMIL 77.93 81.34 85.18 85.44 87.78 84.39 83.68
ARNet 79.26 80.38 85.27 84.18 89.57 86.65 84.22
WSAL 76.47 78.35 75.44 86.41 85.62 82.44 80.79
COMO 80.41 82.75 86.24 85.82 90.13 89.76 85.85
Ours 77.21 82.09 83.88 91.90 91.36 91.12 86.26

E2: Leave-one-out
MMIL 76.68 74.92 67.39 82.40 67.61 61.86 71.81
ARNet 77.05 75.02 78.98 80.84 75.09 55.34 73.72
WSAL 76.59 73.75 76.71 79.86 77.68 55.54 73.36
COMO 77.07 76.64 77.43 76.74 78.67 57.63 74.92
Ours 78.55 77.68 77.36 82.53 79.21 60.41 75.96

E3: Low-shot Adaptation
MMIL 77.28 72.75 80.70 85.29 81.72 61.33 76.51
ARNet 75.48 72.18 79.90 81.70 79.43 68.24 76.16
WSAL 75.77 72.18 66.45 82.57 75.05 78.05 75.01
COMO 70.02 72.89 80.59 83.05 74.73 73.53 75.80
Ours 78.99 75.80 77.82 85.75 84.06 76.23 79.78

E4: Full Fine-tuning
MMIL 80.26 82.51 86.54 89.88 90.32 89.34 86.48
ARNet 80.88 82.57 86.72 89.92 90.69 91.7 87.08
WSAL 80.99 81.6 76.43 87.87 88.78 87.47 83.86
COMO 80.61 84.25 86.88 91.51 91.74 91.23 87.70

Ours 78.62 82.71 84.41 94.42 92.5 91.17 87.31

Comparison with WVAD models. Although
this paper focuses on the analysis of multiple
domain learning within the context of abnormal
conflict issues, instead of exploring complex
architecture designs for single-domain VAD
models, we compare with various VAD mod-
els. Table 10 presents the results of other MIL-
based WVAD models, MMIL [43], ARNet [46],
WSAL [30], and COMO [7] on the MDVAD
task. Compared to the proposed baseline trained
with the AC classifier, our method achieves the
highest average AUC, particularly in datasets
with severe abnormal conflicts and scene dis-
crepancies, such as TAD and ST, in both the
E2 and even more in the E3 settings. Various
single-domain VAD models or backbones can
be incorporated into the MDVAD task, show-
ing a direction for future generalization work.
Please refer to § A6.

AC classifier. The AC classifier helps the
model learn conflict-aware features, providing
a clearer understanding of abnormalities. The
proposed framework is composed of Domain-
Agnostic Layers that learn general features across multiple domains, followed by Multiple Heads
that predict abnormalities specific to each domain. When the Domain-Agnostic layers learn to
perform AC classification, they capture whether the input snippets relate to abnormal conflict or not.
From the Heads’ perspective, these features are separated into abnormal conflict and non-AC in the
feature space, allowing the Heads to apply different criteria (decision boundaries) when distinguishing
between normal and abnormal instances. For example, in classifying abnormalities, non-AC scenarios
can be addressed more straightforwardly, while abnormal conflict scenarios require a more careful
exploration. Fig. 3(a) presents the results of the AC classifier of NullAng-MIL baseline from E1. It
shows abnormal conflict scores for two scenarios: (Top) A car on the Sidewalk abnormal event in ST,
which is normal in the UCFC. (Bottom) A normal situation of people shopping in a grocery store.
Through the multi-domain learning, the AC classifier outputs a high abnormal conflict score for the
top sample, demonstrating that the model has learned to be conflict-aware.

Qualitative results. Fig. 3(b) illustrates abnormal conflict scene: (Top) Bicyclist on Walkway,
abnormal in ST but normal in other domains, and (Bottom) Pedestrian on Road, abnormal in TAD but
normal in UCFC. In these scenarios, the MIL baseline trained with multiple domains predicts (Top)
false negative and (Bottom) false positive, while ours adaptively handles conflicts across different
domains.

5 Conclusion, Limitation, and Future Works

In this paper, we propose a new task called MDVAD, whose ultimate goal is to effectively learn from
multiple domains with different data distributions and definitions of abnormality without confusion,
resulting in a general VAD model. As a baseline, we propose a new multi-head framework with
Null(Ang)-MIL loss and AC classifier. These modules effectively handle abnormal conflicts between
domains and show meaningful results in the MDVAD benchmark with diverse evaluation protocols.

Instead of exploring complex architecture design of single-domain VAD models, this paper focuses
on resolving abnormal conflicts from multiple domains. Various single-domain VAD models or
backbones can be applied into our novel framework to address the MDVAD task, representing a
valuable direction for future generalization research.
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Supplementary Material

Table A1: Detailed descriptions of VAD datasets used in the paper. N: The number of normal videos.
A: The number of abnormal videos.

Datasets Videos Frames Train / Test Volume Anomalies (Categories) Settings Sample

UCFC 1900 (128h) 7247 Train: 1610 Test: 290 Abuse, Arrest, Arson, Assault, Accident, Burglary,
CCTVN: 950 / A: 950 per video N: 800 / A: 810 N: 150 / A: 140 Explosion, Fighting, Robbery, Shooting, Stealing,

Shoplifting, Vandalism

XD 4754 (217h) - Train: 3954 Test: 800 Abuse, Car Accident, Explosion, Fighting, CCTV, Sports,

N: 2349 / A: 2405 N: 2049 / A: 1905 N: 300 / A: 500 Riot, Shooting Games,
Movies, News

LAD 2000 - Train: 1440 Test: 560 Crash, Crowd, Destroy, Drop, Falling, Fall Into
CCTVN: 1238 / A: 762 N: 958 / A: 482 N: 280 / A: 280 Water, Fighting, Fire, Hurt, Loitering, Panic,

Thiefing, Trampled, Violence

UBIF 1000 - Train: 933 Test: 67 Fights CCTV, MobileN: 216 / A: 784 N: 757 / A: 176 N: 27 / A: 40

TAD 500 (25h) 1075 Train: 400 Test: 100 Vehicle Accidents, Illegal Turns, Illegal
Traffic CCTVN: 250 / A: 250 per video N: 210 / A: 190 N: 40 / A: 60 Occupations, Retrograde Motion, Pedestrian on

Road, Road Spills, The Else

ST 437 726 Train: 238 Test: 199 Fighting, Robbery, Chasing, Jumping, Throwing,
Campus CCTVN: 330 / A: 107 per video N: 175 / A: 63 N: 155 / A: 44 Throwing, Running, Dropping, Motorcycle,

Skateboard, Car, Gun, Loitering

CADP 1416 - Train: 1416 - Traffic accident Traffic CCTVN: 0 / A: 1416 N: 0 / A: 1416

NWPU 547 - Train: 305 Test: 242
Group conflict, Trucks, Climbing fence, Protest,

Campus CCTVN: 423 / A: 124 N: 305 / A: 0 N: 118 / A: 124
Cycling on footpath, Dogs, Kicking trash can,

Chasing, Loitering, Car crossing square, Scuffle,
Littering, U-turn, Falling, etc.

Summary The supplementary material is organized in the following order. First, it provides an
explanation of the characteristics of the Video Anomaly Detection (VAD) dataset and introduces
the detailed configuration and experimental settings of the MDVAD benchmark. Following this,
we present implementation details of the experiments and examples and explanations related to
abnormal conflict. Lastly, we discuss the pseudo labeling equation, score comparison plots, and
failure cases. Note that back-references in the supplementary material sections and tables are from
the main manuscript.

Terminology

• Domain/ Dataset: In this paper, ’domain’ refers to the broader context or environment,
while ’dataset’ refers to the specific collection of data used within that domain.

• Single-domain: Training and evaluation data are the same, as in traditional VAD research.
• Multi-domain Learning/ General VAD: General VAD is the objective of detecting anoma-

lies across various domains, while Multi-domain Learning is the method used to achieve
this by training on multiple domains.

• Multi-head Learning: The baseline method proposed in this paper for Multi-domain
Learning.

• Multi-task Learning: Performing multiple tasks with a single model, related to E1 by
integrating various domain’s anomalies into one framework.

• General Pre-training: A methodology of pre-training on large data without target knowl-
edge, related to E2 by training in a held-out setting and applying to an unseen target.
Furthermore, general pre-trained models adapt well to low-shot learning in E3 and fine-
tuning in E4.

A VAD Datasets

As mentioned in §2, the VAD task encompasses diverse datasets, as delineated in Table A1.

UCFC [43], the prominent large-scale dataset for the Weakly-Supervised approach, consists of
untrimmed surveillance videos. It categorizes anomalies into 13 classes related to public safety,
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Campus Else
16.4%
Road Spills
2.2%
Ped. on Road
1.5%
Traffic Else
3.5%
Illegal Occup.
1.5%
Trampled
1.3%

Vandalism
5.1%
Shooting
3.5%

Abuse
1.5%

Accident
12.5%

Explosion
5.8%

Fighting
22.3%

Robbery
1.3%

(a)

XD: Normal

ST: Abnormal

(b) Normal video from XD

XD: Normal

ST: Abnormal

(c) ’Bicyclist’ abnormal video from ST

Figure A4: (a) Distribution of the training videos by abnormal category in the MDVAD benchmark.
(b)(c) Examples of abnormal conflict between VAD datasets. The scenes colored by red and
blue borders represent abnormal and normal situations, respectively, based on the labels from
the corresponding dataset.

ranging from crimes such as abuse and arson to more complicated scenarios like stealing and
shoplifting. The dataset consists of a total of 950 normal and abnormal videos each, with the training
set maintaining a balanced distribution of 800 and 810 samples for normal and abnormal videos,
respectively.

The XD dataset [51] stands out as the most extensive dataset with a variety of environments, including
CCTV, movies, hand-held cameras, and car camera settings. It incorporates six categories of violence,
such as abuse, riot, and explosion, defining anomalies. Within the dataset of 4,754 videos, there are
2,049 normal and 1,905 abnormal training videos.

The LAD dataset [47] is defined by a detailed categorization of 14 anomaly classes, including crash,
fire, and violence, consisting of 2,000 videos, with 958 normal and 482 abnormal videos.

The UBIF dataset [9] is composed of various fighting-related anomalies extracted from our daily life
videos. This dataset consists of 1,000 videos without a specific categorization for the fighting class,
and the training set consists of 757 normal and 176 abnormal videos, leading class imbalance issue.

The TAD dataset [19] is structured with traffic surveillance and 1st-person videos, encompassing
anomalies related to traffic, such as accidents, illegal turns, and road spills. This dataset, totaling 500
videos, has a small volume with 210 and 190 numbers of normal and abnormal training videos.

The ST [24] serves as a campus surveillance dataset, capturing anomalies occurring on pedestrian
walkways. It exhibits a heightened sensitivity to abnormal events, ranging from fighting and throwing
to running and jumping. With only 175 normal and 63 abnormal videos in the training set out of a total
of 437 videos, there is a notable imbalance between classes, and the quantity of data is insufficient
for learning. Abnormal categories in the training set cover all anomalies in the testing set on each
dataset except for ST (ST remains indeterminate because of the absence of category information),
which means evaluations are exclusively conducted for seen abnormal events.

Examining the dataset samples in Table A1 reveals that TAD and ST exhibit a visual gap compared
to the other datasets, UCFC, XD, and LAD. Such gap is attributed to visual elements such as scene
settings and conditions that impact the visual characteristics of scenes, which is the scene discrepancy
discussed in §2. While LAD (some videos) and ST are recorded in square or campus settings to
establish real-world scenario datasets, the remaining datasets are constructed online, such as YouTube
and LiveLeak using text search queries. These datasets also exhibit a significant domain distance, as
indicated in Table 3. As such, the criteria for defining abnormalities and the visual characteristics of
scenes vary across different datasets.

B MDVAD Benchmarks

B.1 Configuration

The five datasets introduced in Table A1 have different training set volumes, leading to challenges
in handling multiple dataset learning, where larger datasets may overwhelm the learning process.
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For instance, there is a significant disparity in training set volumes, with TAD (400 videos), ST (238
videos), and XD (3954 videos) differing by almost 10 times. Additionally, the number of abnormal
videos in XD differs roughly 10 and 30 times compared to TAD and ST, respectively.

The objective of the MDVAD task is to avoid abnormal conflict and build a general model through
balanced learning across diverse situations and anomalies. To control for other variables, we uniformly
sampled and balanced the same amount of videos from all domains, equal to the number of videos
in the smallest domain. Since TAD and ST have an insufficient number of videos for training, we
recombine them with two new datasets, CADP [41] and NWPU [3], respectively, to balance the
numbers. CADP is a dataset for traffic accident analysis, and it shares similarities with TAD in
terms of setting and abnormal definition. Hence, following the approach in [28], we compose TAD’s
training set by adding abnormal videos from CADP. Additionally, incorporating the recently released
NWPU dataset, which collects various anomalies of pedestrians on campus, we augment ST’s dataset
with NWPU data. For both datasets, we conducted random sampling for normal and abnormal videos,
considering the smallest sample size, resulting in a number of 210 normal and 176 abnormal videos.
In this process, for datasets with information on abnormal classes, we compose to achieve a uniform
number of instances per abnormal category on each dataset. For datasets with a sufficient amount, we
organize 3-fold sets to minimize overlap. All reported performance metrics are the average results
of evaluations conducted on the target dataset after training on each fold. For example, in the E2
leave-one-out setting, the average results are derived from models trained on each fold and evaluated
on an E3 low-shot adaptation set for the corresponding fold.

The MDVAD benchmark incorporates the datasets introduced in Table A1, including abnormal
categories: Abuse, Arrest, Arson, Assault, Accident, Burglary, Explosion, Fighting, Robbery, Shooting,
Stealing, Shoplifting, Vandalism, Drop, Hurt, Fall Into Water, Falling, Destroy, Fire, Violence, Crowd,
Thiefing, Panic, Loitering, Trampled, Illegal Turns, Illegal Occupations, Retrograde Motion, Traffic
Else, Pedestrian on Road, Road Spills, and Campus Else. The circular chart in Fig. A4(a) illustrates
the distribution of categories. For datasets without abnormal categories like ST (named as Campus
Else), TAD (where additional categories are labeled as Traffic Else), and UBIF (where categorization
is not specified and all fall under Fighting), we provide appropriate category names. The averages
across the 3-folds are calculated, and in the case of XD with multiple labels per video, we count the
number of categories per video. The Fighting predominates in the majority of datasets, occupying the
largest portion, followed by categories like Accident, Explosion, and others.

B.2 Experimental settings

VAD is predominantly evaluated using the Area Under the Curve (AUC) score based on abnormal
scores, focusing on the trade-off between sensitivity and specificity, emphasizing the false positive
rate (FPR). While XD employs the Average Precision (AP) metric to balance precision and recall and
concentrate on positive samples for direct comparison in cross-dataset and held-in/out evaluations,
and emphasizing False Positive Rate (FPR) (detailed explanation is in Section D), we utilize the AUC
score across all evaluations.

The MDVAD benchmark comprises four protocols: Held-in (E1) involves multiple-source learning
with all datasets, Leave-one-out (E2) employs a leave-one-out approach where a dataset left out during
training is used for evaluation, low-shot adapation learning (E3) is training on the remaining datasets,
and Full fine-tuning (E4) that fine-tunes a multi-domain models on single-domain datasets. In the E3
setting, around 10% of the training set, 20 videos, is randomly sampled for low-shot examples. For
datasets with anomaly category information, low-shot examples are selected uniformly to ensure an
even distribution within each category. To mitigate the impact of randomness, the low-shot setting is
also conducted with 3-fold cross-validation, obtaining low-shot examples from each fold. In all cases,
including MIL, Null-MIL, and NullAng-MIL models, all weights except for the pretrained backbone
are updated. Additionally, for abnormal videos, the score from the AC classifier is multiplied to the
loss value.

C Implementation Details

All experiments are conducted on the MDVAD benchmark. We use I3D backbone feature which is
pretrained on Kinetics dataset [4] with C = 2048 dimension of RGB features. During the training
phase, we conduct consistent experiments with a batch size of 32, utilizing the Adam optimizer [20]
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with a learning rate of 5e− 5 and weight decay of 5e− 4. The input image size is set to 224× 224
and following [21, 31, 45, 7], we perform 10-crop augmentation when extracting backbone features.
The backbone is used the same as RTFM [45] and CoMo [7]. For input data, 16 frames are stacked
for a snippet, and T snippets are uniformly sampled in the video during training. For testing, all
snippets pass through the model, and the output score is assigned to all frames within the snippet. For
MIL learning, the Top-K snippets, where K equals 10% of the total, i.e., K = 3, are utilized. In the
case of a single-headed MIL model in Table 5 (E1) setting, since pseudo-labels cannot be generated
through multiple heads, the AC classifier is trained with a label that yAC = 1 for a score saD1

within
the [0.4, 0.7] range. When computing EMD metric in §2, we use a pretrained I3D backbone model
for extract embedding features of each dataset and measure the distance between feature vectors.
We use a test set with frame-level annotations for abnormalities. All models and experiments are
implemented and evaluated end-to-end using PyTorch [34] with a single NVIDIA V100 GPU.

In weakly-supervised VAD, maintaining class balance is pivotal, so the number of normal and
abnormal input videos within a batch is kept equal for the MIL-based learning. Similarly, during
multiple source learning, an equal number of input videos from each source domain within a batch is
crucial. Despite each head is trained independently, the final feature FDA is extracted from a shared
domain-agnostic part, necessitating the balance in the number of source domains. Moreover, when
training the AC classifier, in order to address the imbalance between the number of abnormal conflict
snippets and all normal/abnormal snippets, we apply focal loss [23] to LAC . During the testing phase,
the AC classifier is eliminated, and the output is calculated for each input snippet vi as the final
Abnormal Scorei.

Table A4 provides information about the layers of the baseline model. Conv1d, fc, Max, BN, and
DO represent 1D convolutional layer, fully connected layer, element-wise max activation, 1D batch
normalization [16], and dropout [42], respectively, with a dropout probability set to p = 0.7. In
Conv1d(c, k, s) and fc(c), c, k, and s denote the channel size, kernel size, and stride size, respectively.
T input snippets pass through the backbone, resulting in a backbone feature B with a shape of
(N,T,C), where N represents the batch size. The feature aggregation layer undergoes channel
doubling followed by channel squeezing with element-wise max operation, resulting in an output
feature Fagg with a shape of (N,T,C). Subsequently, the temporal aggregation layer outputs FDA

with a shape of (N,T,C/2). These embeddings are then input into the AC classifier and fc layer.The
AC classifier, composed of consecutive fc layers, outputs AC scores sAC for each snippet with a
shape of (N,T, 1). Additionally, the final feature F, processed through an fc layer, is input into
multiple domain heads wDd

for NullAng-MIL learning. During this process, both the feature and
weights are normalized with respect to ∥F∥ and ∥wDd

∥ for each domain.

D Abnormal Conflict

In Fig. A4, (a) represents a video labeled as normal in UCFC, while (c) is labeled as abnormal in
TAD, both depicting a situation where people are present on the road. Similarly, (b) is labeled as a
normal video in XD, whereas (d) is considered abnormal in ST; both scenes show bicycling on a

Table A2: Abnormal Conflict: Average of Relative FPR and Relative
FNR.

Target
Source UCFC XD LAD UBIF TAD ST
UCFC - 0.204 0.099 0.153 0.195 0.273

XD 0.115 - 0.082 0.234 0.166 0.326
LAD 0.186 0.152 - 0.275 0.175 0.337
UBIF 0.074 0.147 0.150 - 0.236 0.286
TAD 0.237 0.340 0.281 0.266 - 0.343
ST 0.219 0.305 0.265 0.288 0.354 -

Table A3: Ablation of Eq. 6 in manuscript.

Target
UCFC XD LAD UBIF TAD ST Avg.

E1: Held-in results
Fixed 76.50 81.85 82.40 91.56 91.59 91.02 85.82
Std. 77.04 82.28 83.04 91.71 91.61 90.75 86.07
Diff. 77.21 82.09 83.88 91.90 91.36 91.12 86.26

Table A4: Illustration of each layer of proposed model.

Part Name, Notation Layers Output

Domain

Backbone B I3D (N,T,C)

Agnostic

Feature
Fagg

Conv1d(2C, 3, 1)
(N,T,C)Aggregation Max-ReLU-BN

Temporal
FDA

Conv1d(C/2, 3, 1)
(N,T,C/2)Aggregation -ReLU-BN

AC Classifier
sAC

fc(512)-ReLU-DO
(N,T, 1)(Train-Only) fc(128)-ReLU-DO

fc(1)-Sigmoid
FC layer F fc(128)-ReLU (N,T, 128)

Domain Multiple
wDd

fc(D) (N,T, 2D)Specific Heads
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walkway. We define such instances, where the criteria for abnormalities differ across datasets, as
abnormal conflicts.

While cross-domain evaluation in Table 2 reveals a domain gap, it is difficult to attribute as abnormal
conflicts directly. In Table A2, we calculate the average of the relative False Positive Rate (FPR) and
relative False Negative Rate (FNR) to quantify the abnormal conflict between domains.

AC i,j =
(FPRi,j − FPRj,j) + (FNRi,j − FNRj,j)

2
, (8)

where i and j indicate source and target domain, repectively. First, FPR and FNR refer to the rate of
misclassifying abnormal as normal and normal as abnormal in the scenario of learning from a source
and testing on a target, respectively. However, since these include the FPR and FNR caused by the
incompleteness of the model itself, this cannot accurately reflect the abnormal conflict between the
source and target dataset. Therefore, we subtract the FPR and FNR when the source domain is the
same as the target domain (FPRj,j and FNRj,j) from the cross-domain FPR and FNR to calculate
the relative FPR and FNR caused by the domain shift. Table A2 shows similar trends compared to
Table 2, where values are not normalized. This shows that abnormal conflicts between domains are
relevant to the reduction in generalization ability that can occur when transferring between domains.

E Related Works

As mentioned, proposing a new VAD model is beyond the scope of this paper, this part is organized
to aid understanding.

Unsupervised VAD Defining anomalies precisely is challenging as they can vary based on criteria
and sensitivity, and it is impossible to categorize and collect datasets for every scenario. For this
reason, Unsupervised VAD methods [33, 5, 24, 15] have been developed to learn normal patterns
using only normal training data and then detect anomalies as scenes with low normality during
the test phase. However, this approach leads to a significant bias towards the normal samples,
causing the detector to misclassify normal patterns that differ from the learned data as abnormal
events, resulting in a high false alarm rate. To address this issue, Weakly-supervised VAD (WVAD)
approaches [55, 44, 43, 50, 21, 7] have been introduced to differentiate between normal and abnormal
events with minimal supervision using video-level annotations, achieving significant performance
improvements while incurring lower labeling costs compared to frame-level annotations.

Weakly-supervised VAD MMIL [43] is the first WVAD method to pose the MIL ranking approach
as a regression problem that achieves significant performance gains. Various learning methods,
including magnitude feature learning [45], self-training approaches through pseudo labels [13, 21],
and distance learning [53], have been explored alongside traditional MIL methods. Furthermore,
subsequent approaches have focused on capturing features by focusing temporal or motion informa-
tion [58], leveraging additional audio signals [51], learning relations between temporal [50] or motion
and context information [7]. These methods differentiate complex anomalies through contextual
information; for example, the same motion may be classified as normal or abnormal depending on the
surrounding environment. PFMP [26] proposed a method to utilize virtual data anomalies to reduce
scene discrepancy with real-world data, addressing the issue of data scarcity in VAD. However, these
approaches still cannot address abnormal conflicts, where the same situation is labeled differently as
abnormal or normal based on the criteria of different datasets.

Generalization for VAD A few studies have been conducted to generalize VAD. Domain adaptation
refers to evaluating a new domain that was not seen during training, and some works have proposed
using some data from the target domain [27, 29] or not using it at all [2]. We also experiment
with domain adaptation, but the difference is that we use multiple domains compared to existing
studies that only use a single domain during training. Open-set recognition aims to work well even
in untrained classes (abnormal categories in VAD). Compared to our research involving multiple
domains, Open-set VAD [59, 1] focuses on learning and evaluation within a single domain.

Multi-domain learning Multi-Domain Learning (MDL) refers to a method for learning datasets
from multiple domains with various distributions together. MDL originated from natural language
processing [11, 17] and has been applied to various tasks in computer vision [36, 37, 22, 32, 49,

19



(a) (b)

(c) (d)

Figure A5: The plot illustrates the abnormal conflict scores from the AC Classifier on normal videos
on UCFC. For clarity, all scores have been normalized using the minimum and maximum values of
the entire score distribution produced by the AC Classifier.

48, 56, 18]. The difficulty of MDL arises when the difference in distribution between domains is
significant, and learning domain-invariant features is the basic approach [39]. In the fields of image
classification [36, 37, 22], object tracking [32], detection [49], and segmentation [48], methods for
learning multiple domains with multiple heads have been proposed. After that, methods have been
proposed to have a unified label space [56, 18], but in this process, the problem that the labels
are different for each domain arises. [18] solved the label conflict problem by proposing class-
independent loss using the Null class strategy. On the other hand, VAD has only two classes, normal
and abnormal, so there is no explicit label conflict problem, but there is an implicit abnormal conflict
problem where the definition of a label is different for each domain.

A similar method is multi-task learning [54], which considers differences between tasks rather than
domains. In addition, multi-source domain adaptation [35] utilizes data from the target domain, and
domain generalization [10, 40, 12] requires adaptation to an unseen target domain. The difference
with these tasks is that they basically share the label space between the source and target domains,
while MDL for VAD has different label definitions.

F Discussions

F.1 Pseudo label of AC Classifier

The purposes of the AC Classifier is the facilitation of feature learning with consideration of the
discrepancies across multiple domains. In cases where snippet is entirely normal or abnormal across
all datasets, the AC score is low, making it difficult to directly use it for the abnormal score. Noisy
samples can indeed have a negative impact on training in Eq. 6. However, in cases where even one of
the multiple datasets has a different definition of normal and abnormal, it is crucial to sensitively detect
conflicts in such samples, leading us to decide that using a difference is preferable. In Table A3, we
conducted ablation studies with Std. (τ = 0.1) and a fixed value (yAC

i = 1 where 0.3 < saDd,i
< 0.7)

which revealed no significant differences between the methods.

F.2 Abnormal conflict score

Fig. A5 depicts the output abnormal conflict scores from the AC classifier of the E1 held-in model.
While all events are considered normal in UCFC, (a) and (b) correspond to the Pedestrian on Road
abnormal category in TAD (as shown in Fig. 1(c)). Therefore, unlike (c) and (d), the normal situations
of people shopping in a grocery store, (a) and (b) exhibit elevated abnormal conflict scores.

F.3 Abnormal score

Fig. A6 compares the abnormal scores of our model, trained with NullAng-MIL + AC classifier, and
the MIL model trained with MIL loss on a single head in the E2 multiple dataset setting. In scenario
(a), before the explosion, an oil truck passes, causing the MIL model to generate a high abnormal
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(a) ‘Explosion’ abnormal test video on UCFC

(b) ‘Arrest’ abnormal test video on UCFC

(c) ‘Running person on walkway’ abnormal test video on ST

(d) ‘Car on walkway’ abnormal test video on ST

Figure A6: The plot of abnormal scores with blue and magenta lines representing our model and
the MIL baseline model (E1), respectively. The red region indicates the time when abnormal events
occurred. The scenes are from input videos whose borders are colored red and blue for normal and
abnormal scenes, respectively. For clarity, the scores from each model have been normalized.

score as a false alarm, while our model accurately predicts only the explosion abnormal situation. In
scenario (b), where a person loitering the office, the MIL model outputs a high abnormal score, in
contrast, our model that trained with multiple heads to avoid domain conflicts categorizes only the
arrest defined in UCFC as an abnormal event.

Scenarios (c) and (d) involve abnormal videos in the ST dataset where a running person or car
appears on the walkway. Because these scenarios are classified as normal scenes in other datasets
during training, the MIL model considers them as normal. However, our model, recognizing them
as abnormal scenes corresponding to ST, outputs high abnormal scores. Thus, when learning from
multiple datasets, it is crucial to avoid conflicts by simultaneously learning domain-agnostic features
with the AC classifier and predicting domain-specific scores using multiple heads according to each
dataset’s criteria.

F.4 Multi-domain learning on Virtual dataset

Table A5: Multi-source learning on MDVAD with UBN in E1

Source Target
MDVAD+UBN UCFC XD LAD UBIF TAD ST AVG.

MIL 78.59 81.79 85.06 86.6 88.83 87.99 84.81
MIL+AC 78.14 81.78 84.92 85.08 90.77 89.12 84.96
NullMIL 78.74 83.34 85.93 91.28 90.05 88.69 86.34

NullMIL+AC 78.76 83.19 86.01 92.63 90.73 90.54 86.98
NullAngMIL 77.09 81.01 83.96 92.88 91.57 90.04 86.09

NullAngMIL+AC 77.66 82.09 83.01 92.55 91.33 91.07 86.29

The UBNormal (UBN) dataset [1] is a
VAD benchmark proposed for open-set
scenarios to handle unexpected abnormal
events, where the abnormal categories
in the train set and test set do not over-
lap. Unlike other VAD datasets which
were collected from the real world, UBN
consists of synthetic videos which leads
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(a) ‘Arrest’ abnormal test video on UCFC

(b) ‘Running person on walkway’ abnormal test video on ST

(c) ‘Skateboarder on walkway’ abnormal test video on ST

Figure A7: The abnormal scores of our model and the MIL model, where (a) corresponds to False
Positive results, and (b)(c) represent False Negative results.

abnormal conflicts and differences in the
visual settings of scenes. It comprises
543 videos across 29 scenes with 22 types of anomaly categories. Same as MDVAD benchmark, we
reorganize Training set with 210 number of normal videos and 176 number of abnormal videos where
training anomaly categories are falling, dancing, walking injured, running injured, crawling and
stumbling walk and testing anomalies are running, having a seizure, laying down, shuffling, walking
drunk, people and car accident, car crash, jumping, fire, smoke, jaywalking and driving outside lane.

The Table A5 shows the performance in each target domain when trained with MDVAD and UBNor-
mal under the E1: held-in setting. In the single-head MIL baseline, there is a performance drop when
trained with MDVAD+UBN, indicating difficulty in handling AC. However, the model trained with
multiple heads and the AC classifier shows improved results. By leveraging the virtual dataset, we
can overcome data limitations and create a general model capable of handling diverse and complex
scenes.

F.5 Baseline models

Table A6: Results of MDVAD with different baseline

TargetExp. Models UCFC XD LAD UBIF TAD ST AVG.
WSAL 76.47 78.35 75.44 86.41 85.62 82.44 80.79E1 +Ours 76.90 78.59 76.17 87.83 81.89 86.27 81.27
WSAL 76.59 73.75 76.71 79.86 77.68 55.54 73.36E2 +Ours 76.67 73.69 65.54 85.85 70.1 72.41 74.04
WSAL 75.77 72.18 66.45 82.57 75.05 78.05 75.01E3 +Ours 76.81 72.38 59.51 83.49 77.6 74.57 74.06
WSAL 80.99 81.6 76.43 87.87 88.78 87.47 83.86E4 +Ours 79.21 81.17 78.19 90.98 86.09 90.61 84.38

We conducted additional experiments us-
ing the WSAL [30] model as a base-
line to validate our proposed method on
the MDVAD benchmark’s four protocols.
The Table A6 presents the results, where
all settings are consistent with the other
experiments in the paper. The results
show the addition of multi-head learning
with NullAng-MIL and the AC Classifier
to the WSAL model brings performance
gains which effectively operate across
different baselines. Notably, in the E3 and E4, which shows the target adaptation of the pre-trained
general model, the method yielded competitive results. Future studies can be delve deeper into
studying more sophisticated baselines for resolving AC within the MDVAD setting.
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F.6 Failure cases

Fig. A7(a) presents an abnormal test video from UCFC corresponding to Arrest anomalies. However,
this video includes scenes of Stealing, leading to the subsequent arrest and physical fighting. Both the
MIL and our models output high abnormal scores for scenes other than the Arrest, as they correspond
to Stealing and Fighting abnormal categories in UCFC. Models predict accurately in categories other
than Arrest, but this failure is observed because of a single abnormal label for each video.

In Fig. A7(b), an abnormal event from ST is considered normal by both models, as other datasets
are generally classified as normal. Similarly, in Fig. A7(c), the skateboarder is deemed normal,
resulting in a false negative failure case. However, these situations are challenging to identify as
severe abnormalities from a general perspective. This failure case is able to be addressed through
low-shot learning or fine-tuning based on ST’s criteria.

F.7 Broader Impacts

The development of Multi-Domain Learning for Generalizable VAD enhances the reliability and
accuracy of security and surveillance systems across diverse environments, thereby improving public
safety. This research advances AI and machine learning by addressing domain adaptation challenges,
promoting robust and generalizable systems. Additionally, it underscores the importance of ethical
considerations and privacy, ensuring that advanced surveillance technologies are deployed responsibly
and transparently.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Abstract, § 1, and § 1.1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In § 5 and F.6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In § 4 and § C
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
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Justification: We will release the data and code when the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In § 4, § C, and Table A4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not reprot the error bars but all reported experimental results are average
of 3-fold setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In § C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have complied with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In § F.7
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In § A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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