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ABSTRACT

Backdoor attacks represent one of the major threats to machine learning mod-
els. Various efforts have been made to mitigate backdoors. However, existing
defenses have become increasingly complex and often require high computational
resources or may also jeopardize models’ utility. In this work, we show that fine-
tuning, one of the most common and easy-to-adopt machine learning training op-
erations, can effectively remove backdoors from machine learning models while
maintaining high model utility. Extensive experiments over three machine learn-
ing paradigms show that fine-tuning and our newly proposed super-fine-tuning
achieve strong defense performance. We hope our results can help machine learn-
ing model owners better protect their models from backdoor threats. Also, it calls
for the design of more advanced attacks in order to comprehensively assess ma-
chine learning models’ backdoor vulnerabilities.

1 INTRODUCTION

In recent years, researchers have shown that machine learning (ML) models are vulnerable to various
security attacks. One common attack in this domain is the backdoor attack (Gu et al., 2017; Pang
et al., 2020b; Chen et al., 2017; Liu et al., 2018b; Jia et al., 2022; Wu et al., 2022; Shen et al., 2022),
whereby an adversary aims to insert a backdoor into a target ML model via data poisoning and/or
malicious training. So far, most efforts have gone into the design of effective backdoor attacks
against various types of ML models (Gu et al., 2017; Nguyen & Tran, 2020; Chen et al., 2017; Pang
et al., 2020a; Li et al., 2021c). To mitigate these attacks, intricate defenses have been proposed.
Some of the defenses (Wang et al., 2019; Chen et al., 2019; Liu et al., 2019; Huang et al., 2019; Guo
et al., 2019), focus on extracting the trigger from a target ML model via optimization; some aim to
detect the inputs with triggers (Tran et al., 2018; Chen et al., 2018; Gao et al., 2019; Udeshi et al.,
2022); others rely on training a large set of backdoored shadow models to learn how to differentiate
backdoored models from clean ones (Xu et al., 2021).

As defenses become increasingly complex, the defender needs to be equipped with powerful com-
puting infrastructures, which is often a bottleneck. Moreover, to remove the backdoors, some of the
defenses need to change the target models’ parameters, which jeopardizes the models’ performance
on the original tasks, i.e., model utility. For instance, one defense named Activation Clustering
(AC) (Chen et al., 2018) fails to successfully remove the backdoor (BadNets (Gu et al., 2017)) from
the target model trained on CIFAR100 (CIF). Moreover, AC causes the models’ accuracy on clean
samples to drop from 0.672 to 0.582 (see Section 5.4).

Fine-tuning is a widely adopted technique in the ML training pipeline, especially for transfer learn-
ing (Zhuang et al., 2019) and encoder-based learning (Chen et al., 2020; He et al., 2020; Chen & He,
2021; Grill et al., 2020). In this paper, we find that fine-tuning with a proper learning rate is the most
effective defense method for mitigating backdoor attacks in terms of both defense performance and
utility. Moreover, it is remarkably easy to apply to a variety of machine learning paradigms. Note
that we focus on image classifiers as their backdoor vulnerabilities have been extensively studied (Gu
et al., 2017; Chen et al., 2017; Pang et al., 2020b).

We consider three types of ML deployment scenarios in this work, namely, an encoder-based sce-
nario, a transfer-based scenario, and a standalone scenario. To measure the performance of back-
door defenses, we consider three metrics, including attack success rate (ASR), model utility (mea-
sured by clean accuracy, CA), and computational cost (measured by GPU hours). The former two
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are the standard metrics in this field: an effective defense aims to reduce the attack success rate while
maintaining the target model’s utility. Meanwhile, low computational cost implies the defense can
be easily deployed, which is also one of the significant advantages of our approach.

Methodology. We empirically show that, in an encoder-based scenario, conventional fine-tuning is
sufficient for countering backdoors. In the other two scenarios where conventional fine-tuning is not
effective, we further devise super-fine-tuning. Our super-fine-tuning method is inspired by super-
convergence (Smith & Topin, 2018). We find that a large learning rate significantly helps remove the
backdoor, while a small learning rate can maintain the model utility. Therefore, we combine them
together and construct a dynamic learning rate method to mitigate backdoor attacks.

Evaluation. In the encoder-based scenario, our evaluation shows that the backdoor cannot survive
if the user conducts the whole model (conventional) fine-tuning. For instance, when fine-tuning
the backdoored encoder trained by BadEncoder (Jia et al., 2022), after one epoch (which takes
about 0.004 GPU hours on an NVIDIA DGX-A100 server), the attack success rate on STL10 (STL)
(pre-trained on CIFAR10) drops from 0.998 to 0.127. In this scenario, conventional fine-tuning is
sufficient. More importantly, it is a zero-cost backdoor removal solution, as conventional fine-tuning
is a necessary step for users to adapt the pre-trained encoders to downstream tasks (Chen et al., 2020;
Kornblith et al., 2019; Li et al., 2020).

In the transfer-based scenario, our experiments show that through conventional fine-tuning, most
of the backdoor attacks can be successfully mitigated. On the other hand, our proposed super-fine-
tuning can more effectively remove all backdoors with fewer epochs and retain the models’ utility.
For instance, while conventional fine-tuning can only decrease the ASR from 0.945 to 0.221 on Bad-
Nets (Gu et al., 2017) attacks of a CIFAR10 (CIF) model in 100 epochs (about 0.617 GPU hours),
super-fine-tuning can make the ASR drop to 0.096 within three epochs (about 0.089 GPU hours)
while keeping high utility (0.936). Note that fine-tuning is also necessary for transfer learning to
perform downstream tasks; thus, our defense is still costless, similar to the encoder-based scenario.

Normally, the standalone scenario does not need fine-tuning. Here, fine-tuning is an extra step
intended to remove the backdoor. However, this does not hurt model utility. In this scenario, con-
ventional fine-tuning does not always work. Instead, by relying on our super-fine-tuning method, we
can achieve excellent performance regarding mitigating backdoor attacks. For instance, with 0.089
GPU hours, super-fine-tuning can decrease the ASR of the Blended attack (Chen et al., 2017) on a
CIFAR10 model from 0.997 to 0.082 while keeping a high utility (0.937).

To summarize, our experimental results show that in the encoder-based scenario, conventional fine-
tuning (on the whole model) is sufficient to remove almost all encoder-based backdoors. For the
transfer-based and standalone scenarios, super-fine-tuning can achieve remarkably strong perfor-
mance.

We compare the performance between super-fine-tuning and other existing state-of-the-art defense
methods (Li et al., 2021a; Chen et al., 2018; Liu et al., 2018a; Li et al., 2021b; Wang et al., 2019;
Tran et al., 2018). Our results show that super-fine-tuning achieves the best performance in all per-
spectives (attack success rate, clean accuracy, and computational cost). For instance, the defense
method called ABL (Li et al., 2021a) fails in mitigating most of the attacks in the standalone sce-
nario. The ASR of BadNets on CIFAR10 will remain high (0.896) after ABL has been applied.
Meanwhile, super-fine-tuning manages to drop the ASR from 0.954 to 0.069.

Implications. In general, our results show that backdoor defenses can be performed more easily
than previously thought. All one needs is fine-tuning or super-fine-tuning. Currently, the empirical
evaluation suggests that backdoor attacks achieve almost perfect accuracy (~100% accuracy (Pang
et al., 2020b; Gu et al., 2017; Chen et al., 2017; Liu et al., 2018b; Jia et al., 2022)), especially for
standalone classifiers. By applying our easy-to-deploy fine-tuning defense, our work will certainly
help the model users/owners mitigate existing backdoor attacks deployed in the real world. It further
calls for the design of more advanced backdoor attacks to better assess the vulnerability of ML
models to such attacks.
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2 BACKDOOR ATTACKS

2.1 THE PRINCIPLE OF BACKDOOR ATTACKS

In this work, we focus on targeted backdoor attacks on image classification tasks, which is the most
common setting of backdoor-related research. The classification tasks can be formulated as follows:
f(z) = ¢, where z € X, ¢ € C. X is the image domain and C is the label domain. To inject a
backdoor into a target model, an adversary manipulates the model to learn the trigger pattern. Images
with this trigger pattern will be classified into the target label. The process can be formulated as the
following: f(t(x)) = ¢, where () is the pre-defined trigger pattern and ¢; is the target label.

Currently, different types of backdoor attacks mainly focus on how to design better trigger pat-
terns (Nguyen & Tran, 2020; Chen et al., 2017; Salem et al., 2022; Liu et al., 2020) or how to
improve the backdoor training process (Liu et al., 2018b; Yao et al., 2019; Zhao et al., 2020; Liu
et al., 2020; Barni et al., 2019). For better trigger patterns, the adversary aims to bypass the existing
defenses to poison the training dataset. With regards to improving the backdoor training process, the
adversary aims to inject the backdoor in an easier and faster way. We will introduce the representa-
tive attacks in detail in Section 4.1. Our further experiments show that all these backdoor attacks can
be easily mitigated by either conventional fine-tuning or our proposed super-fine-tuning method.

2.2 ATTACK SCENARIOS

As stated before, we consider three different scenarios in our work, including encoder-based,
transfer-based, and standalone scenarios. Based on these scenarios, we recommend users use differ-
ent fine-tuning strategies (see Section 3 for more details).

Encoder-Based Scenario. With the quick development of self-supervised learning, the encoder-
based paradigm is becoming popular. The encoder-based paradigm consists of two key steps: pre-
training an encoder and constructing downstream classifiers from the encoder for various tasks.
Current efforts of the attack mainly focus on injecting backdoors into the encoder and expect down-
stream classifiers built on the pre-trained encoder to have good backdoor performance as well as high
utility. One representative encoder-based backdoor attack is BadEncoder (Jia et al., 2022), where
an optimization-based solution is used to train a backdoored image encoder. Concretely, to obtain
the backdoored encoder, BadEncoder forces the embeddings of the triggered images to be close
to a pre-defined target image’s embedding (increasing attack success rate) while keeping clean im-
ages’ embeddings similar to the corresponding embeddings on the clean model (maintaining model
utility).

Normally, backdoor attacks on this encoder-based paradigm assume the users freeze the encoder’s
parameters and only fine-tune the downstream classifier. In this case, most attacks survive and
achieve a high attack success rate as well as high utility. However, in common encoder use cases,
the encoder is fine-tuned as well (Tian et al., 2020b), which means that the encoder’s parameters are
changed too. This may call for extra difficulty in maintaining the attack performance.

Transfer-Based Scenario. Another popular scenario is the transfer learning setting, whereby the
user gets a pre-trained model on a large-scale dataset (pre-trained model) and then fine-tunes the
model to adapt to their own downstream tasks (fine-tuned model). To achieve such adaptation, one
common way is to replace the pre-trained model’s original classification layer with a new classifi-
cation layer that fits the downstream task and fine-tune the new model. For backdoor attacks in this
scenario, the adversary injects the backdoor in the pre-trained model by associating a trigger with
a certain class on a subset of the pre-training dataset. After fine-tuning (with the downstream task
dataset), the adversary expects that images with the pre-defined trigger will be misclassified in the
fine-tuned model, and the misclassifications all lead to the same (but random) class. We consider
this setting as multiple attacks can be easily adapted here like the ones considered in our experi-
ments (Gu et al., 2017; Chen et al., 2017; Zeng et al., 2021; Nguyen & Tran, 2020; 2021). Note that
there exists another work on backdoor attacks against transfer learning (Yao et al., 2019). We do
not use it as its performance is not strong based on our evaluation as well as the results in (Jia et al.,
2022).

Standalone Scenario. The most common and difficult scenario is the standalone scenario. In this
scenario, the user can directly deploy the model obtained from the Internet without any modification.
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Note that the training dataset of the model is usually publicly available to the user. An alternative
case is that the user outsources their data to a company that offers ML model training service and
then obtains the model from the company (the company being the adversary here). In both cases,
the backdoor injected by the adversary makes the model misclassify any inputs with the trigger into
the pre-defined class. Our evaluation shows that, even if the user fine-tunes the model with the same
dataset that was used to train the backdoored model, the backdoor can still remain, which calls for
more effective defenses.

3 BACKDOOR DEFENSES

In this section, we first introduce the defender’s goals and capabilities. Then, we will discuss how
fine-tuning and super-fine-tuning work to mitigate backdoor attacks.

3.1 DEFENDER’S GOALS AND CAPABILITIES
Defender’s Goals. A defender’s goal can be summarized from three perspectives.

* Backdoor Performance. The main goal of the defender is to reduce the backdoor performance.
To achieve this goal, the defender can either detect/mitigate the triggered inputs or purify the
model to mitigate the backdoor effect.

e Utility. In addition to reducing the backdoor performance, the defender should also keep the
utility of the backdoored model. That means that, after the defense, the model should still perform
well on clean inputs.

* Computational Cost. As ML models become increasingly complex, training and testing models
both require one to have powerful computing infrastructures. Ideally, the defender should use
minimal computing resources to mitigate backdoors.

Defender’s Capabilities. The defender is supposed to have a clean dataset to conduct the backdoor
defense. For the encoder-based and transfer-based scenarios, this assumption is straightforward.
The user (who is also the defender) is the one who fine-tunes the model for their downstream tasks,
and they should have the clean dataset already. For the standalone scenario, as mentioned before, the
model’s training dataset is provided or can be obtained by the user. Moreover, in all the scenarios,
we assume the defender has white-box access to the model, which means that they can access and
modify the model’s parameters. Also, as we have stated before, the defender only has limited
computational resources.

3.2 FINE-TUNING TO MITIGATE BACKDOOR ATTACKS

In this section, we describe how conventional fine-tuning works and then propose our super-fine-
tuning method.

Conventional Fine-Tuning. Fine-tuning is a strategy originally proposed in the context of transfer
learning. The motivation behind existing fine-tuning is to enable the pre-trained model to fit new data
samples using information learned from the pre-training phase. In our case, fine-tuning is supposed
to mitigate backdoor attacks as well as leverage the pre-trained model information. Instead of only
fine-tuning a few layers like previous works (Jia et al., 2022), we adopt whole model fine-tuning in
all our scenarios. During the fine-tuning process, we rely on the same learning rate as the one used
in the pre-training process.

In the encoder-based scenario, conventional fine-tuning means that the user conducts the whole
model fine-tuning, which is recommended by various existing works (Khosla et al., 2020; Chen
et al., 2020; Tian et al., 2020b). Our experimental results show that conventional fine-tuning can
effectively mitigate backdoor attacks in the encoder-based scenario, but it does not always work in
the transfer-based and standalone scenarios.

Super-Fine-Tuning. We further propose a super-fine-tuning strategy, a novel fine-tuning approach
focusing on removing backdoor attacks. Super-fine-tuning is inspired by super-convergence(Smith
& Topin, 2018), which shows that the regular changes in learning rate can contribute to fast learning.
The main innovation of super-fine-tuning is the scheduler of the learning rate. Normally, the gradient
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Figure 1: The learning rate scheduler of super-fine-tuning.
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descent process can be formulated as x = = — € /. f(x) where z represents the weights of the
model, € represents the learning rate, and f(-) represents the loss function. To make the model
forget backdoor triggers while keeping the utility, we make e change according to the schedule
shown in Figure 1. The intuition behind our designed function is that large learning rates tend to
make the model forget backdoor triggers while small learning rates maintain the model utility (see
Section A.4 for detailed information). Therefore, we combine the two different learning rates with
the scheduler.

Concretely, we first pre-define a base learning rate (LR BASE) and two maximum learning rates
(LR MAX1 and LR MAX?2) for the scheduler of super-fine-tuning. Note that LR MAX1 is required
to be larger than LR MAX2. We separate the training process into two phases. In the first phase,
we make the learning rate linearly increase from LR BASE to LR MAXI1 in several iterations and
then drop back to LR BASE. This way, a learning rate that is close to LR MAXI1 is supposed to
force the model to forget backdoor triggers quickly, while the learning rate that is close to LR BASE
will keep the model utility on clean samples. The same process should be repeated until we lower
the maximum learning rate after a pre-defined number of epochs (in our experiments, we find that
ten epochs work well). In the second phase, we continue oscillating between the base learning
rate and LR MAX?2 for the remaining epochs, mitigating the overfitting level of the model. Our
experimental results show that the above process can effectively mitigate backdoor attacks while
retaining the model’s utility. Note that we set LR MAX1 as 0.1 and LR BASR as 0.001 according
to the super-convergence paper (Smith & Topin, 2018). We set LR MAX2 as 0.01 according to the
ResNet paper (He et al., 2016a).

4 EXPERIMENTAL SETUP

4.1 CURRENT ATTACKS AND DEFENSES

For our evaluation, we consider the following six attacks and six defenses. We introduce them in
Supplementary Material in Section A.1. We also introduce our training details in Supplementary
Material in Section A.2. For each attack, we set the poison ratio to 0.1.

4.2 DATASETS AND EVALUATION METRICS

We leverage five image datasets for our evaluation: CIFAR10 (CIF), CIFAR100 (CIF),
STL10 (STL), GTSRB (GTS), and SVHN (SVH) to measure the effectiveness of fine-tuning and
super-fine-tuning. To evaluate whether backdoor attacks have been successfully mitigated, we adopt
three evaluation metrics following the three goals of the defender described in Section 3.

» Attack Success Rate. Attack success rate (ASR) is used to measure whether backdoor samples
are successfully classified into the target label or not.

* Clean Accuracy. Clean Accuracy (CA) is used to evaluate whether a model can perform well
with clean data.
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Figure 2: The performance of whole model fine-tuning and downstream classifier fine-tuning on
BadEncoder. The X-axis represents training epochs. The Y-axis represents accuracy.

* Computational Cost. As we have stated before, when the users take advantage of a third party’s
pre-trained models, normally, they do not have sufficient computational resources. Therefore,
the backdoor defense methods should use as little computational resources as possible. Here,
we leverage computational cost (measured by GPU hours) as another new important metric to
evaluate defense methods.

5 EVALUATION RESULTS

5.1 ENCODER-BASED SCENARIO

In the encoder-based scenario, we make use of BadEncoder as backdoor attack since it is the most
representative backdoor attack in this setting. The workflow of BadEncoder is to train a backdoored
encoder, freeze the encoder, and use the clean data to train a classifier for the downstream task.
However, according to previous works (Chen et al., 2020; Khosla et al., 2020; Tian et al., 2020a),
fine-tuning the whole model can achieve better performance than only fine-tuning the downstream
classifier. Therefore, our fine-tuning method updates the parameters of the whole model.

The experimental results are shown in Figure 2. We train the encoders on CIFAR10 and STL10.
Then, we choose CIFAR10, STL10, and SVHN as downstream tasks. From Figure 2, we first
observe that BadEncoder is not stable in all datasets. For instance, when the encoder is pre-trained
on STL10 and then fine-tuned with CIFAR10, even only fine-tuning the downstream classifier makes
the ASR drop to 0.002. Second and more importantly, with whole model conventional fine-tuning,
the injected backdoor can always be removed immediately, e.g., within one epoch. For instance,
for the encoder pre-trained on CIFAR10 with STL10 as downstream task (shown in Figure 2), when
conducting whole model fine-tuning, the ASR drops from 0.998 (fine-tuning downstream classifiers)
to 0.127 within one epoch. Note that, in this scenario, whole model conventional fine-tuning is a
natural step to achieve better performance on downstream tasks. Therefore, it has zero-cost for
mitigating backdoor attacks.

5.2 TRANSFER-BASED SCENARIO

The transfer-based scenario is also one of the most common machine learning deployment settings.
In this scenario, users obtain the model trained on the large dataset and then fine-tune the model on
their own dataset to perform the downstream task. We conduct experiments where the backdoored
models are pre-trained on CIFAR100 and fine-tuned with CIFAR10 and GTSRB. Here, we adopt
five different attack methods described in Section 4.1. As we have stated in Section 2.2, to verify
whether a backdoor has been removed, we leverage the original triggers and test whether images
with such triggers can be misclassified to a certain class.

The results are shown in Figure 3. As we can see, in this transfer-based scenario, conventional
fine-tuning can effectively mitigate backdoor attacks in most cases. For instance, when the de-
fender conducts fine-tuning to the model backdoored by BadNets on CIFAR10, the attack can only
achieve 0.378 ASR in one epoch and the ASR will remain around 0.2 after 20 epochs. Our pro-
posed super-fine-tuning method can achieve even better performance than conventional fine-tuning
in this scenario. As shown in Figure 3, in most cases, super-fine-tuning can achieve lower ASR with
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Figure 4: Accuracy of conventional fine-tuning and super-fine-tuning on backdoor samples and clean
samples in the standalone scenario. The X-axis represents training epochs. The Y-axis represents
the accuracy. Epoch 0 is the original backdoor ASR and CA before fine-tuning or super-fine-tuning.

less epochs. On BadNets-GTSRB, even after the first epoch, ASR will drop to 0.088. Also, it can
be seen that super-fine-tuning yields better CA than conventional fine-tuning. For instance, super-
fine-tuning on CIFAR10 against Inputaware attacks can achieve 0.798 CA in the first epoch and
0.937 CA after 100 epochs, both higher than conventional fine-tuning (0.678 in the first epoch and

0.898 after 100 epochs). This finding demonstrates that our proposed super-fine-tuning outperforms
conventional fine-tuning in this scenario.

5.3 STANDALONE SCENARIO

The standalone scenario is the most difficult scenario to mitigate backdoor attacks. Here, a user
directly interacts with the model without any modification. Similar to the transfer-based scenario,
we adopt the five attacks in Section 4.1. Fine-tuning is no longer a necessary step. Also, due to the
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fact that the model is trained on the desired dataset, it increases the difficulty of mitigating backdoor
attacks. Most previous works (Liu et al., 2018a; Gu et al., 2017; Chen et al., 2017) that claim
backdoor attacks cannot be easily mitigated by fine-tuning are conducted in this scenario.

As shown in Figure 4, conventional fine-tuning indeed performs poorly in mitigating backdoor at-
tacks in this case. For instance, when conducting conventional fine-tuning on the model backdoored
by Blended attacks on CIFAR10, the ASR still remains high (0.978) even after 100 epochs. Howeyver,
among all five attacks we have studied, super-fine-tuning always decreases the ASR significantly
while keeping high clean accuracy. For instance, on CIFAR10, super-fine-tuning can decrease the
ASR of Blended backdoor from 0.998 to 0.081, which is in line with the predicted probability of
the clean sample. We can also conclude from Figure 4 that super-fine-tuning maintains the model’s
utility to a large extent. In most cases, the utility does not even drop after the first epoch.

In general, we empirically demonstrate that, with super-fine-tuning, we can effectively mitigate the
backdoor attacks while keeping the model utility with a limited number of epochs. Later in Supple-
mentary Material in Section A.4, we will dive into the details of how the learning rate modification
affects the ASR and CA.

5.4 COMPARISON TO OTHER DEFENSE METHODS

Previously, we have shown that super-fine-tuning can effectively mitigate backdoor attacks with
limited computational resources. In this section, we compare super-fine-tuning with other existing
state-of-the-art defense methods to show that super-fine-tuning is the most effective and efficient
one. Note that here we only focus on the standalone scenario since fine-tuning is a necessary step
in the other two scenarios, which means fine-tuning as a defense is zero-cost. Also, fine-tuning or
super-fine-tuning can decrease the ASR to a large extent while maintaining the model’s utility.

The results on CIFAR10 are shown in Figure 5. We also show the results on CIFAR100 and GTSRB
in Figure 7 and Figure 8 in the Supplementary Material. Note that in Figure 5, the X-axis is CA
and the Y-axis is ASR. Therefore, in each sub-figure, the closer to the lower right corner, the better
the defense performance. Among all defense methods against different attacks, super-fine-tuning,
in general, achieves the lowest ASR while maintaining the highest CA. For instance, to mitigate
the BadNets attack on CIFAR10, super-fine-tuning can achieve 0.932 CA with only 0.009 ASR,
which constitutes the best performance among all defense methods. We can also see that other
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defense methods cannot always guarantee performance in defending against all attacks. For instance,
although only NC and super-fine-tuning can mitigate Blended attacks on CIFAR10, NC cannot
detect Inputaware, LF, and WaNet attacks.

We then consider another important aspect, i.e., each defense’s computational cost. The results are
shown in Figure 6. We can observe that, among all defenses against different attacks, NC has the
largest computational cost, while super-fine-tuning has the lowest computational cost. For instance,
to detect and remove BadNets on CIFAR100, NC takes 0.997 GPU hours, while super-fine-tuning
only needs 0.147 GPU hours, which is significantly lower.

In general, we conclude that super-fine-tuning outperforms other defenses in terms of the lowest
ASR, highest CA, and lowest computational cost. However, from Figure 5, we find that NC costs
the largest computational resources. GPU hours needed for NC can even be enough to re-train a new
model, which is unacceptable. Compared to NC, super-fine-tuning not only achieves similar or even
better performance on removing backdoor, but also costs far less computational resources than NC.
It can be seen that among all defending methods, super-fine-tuning costs the least time.

We can also observe that, compared to other methods, the time required for super-fine-tuning is
more stable. From Figure 6, we can see that in all attacks and in all datasets used, super-fine-tuning
always takes around 0.15 GPU hours. This observation convinces us that fine-tuning will remain
costless in almost every setting.

Takeaway. In this section, we have shown that fine-tuning is indeed the best way to remove a
backdoor in all scenarios. It can be concluded that right now, existing backdoor attacks cannot
survive in encoder-based and transfer-based scenarios. In the standalone scenario, with our super-
fine-tuning, backdoor attacks can still not be saved, and we have proven that super-fine-tuning is the
most effective and costless method.

5.5 SUMMARY

In this section, our empirical study shows that backdoor attacks can be easily defended by fine-tuning
or super-fine-tuning. Concretely, we find that in the encoder-based and transfer-based scenarios,
fine-tuning as the necessary step can naturally remove the existing backdoors. Also, our proposed
super-fine-tuning method can better mitigate the backdoor attacks in the transfer-based scenario.
In the standalone scenario, super-fine-tuning can effectively prevent backdoor attacks with a limited
size of the training dataset and limited computational resources compared to other existing defenses.

6 CONCLUSION

In this paper, we have demonstrated that conventional fine-tuning is a very effective backdoor re-
moval method. Moreover, we propose super-fine-tuning which can have even better mitigation per-
formance. We consider three scenarios, namely encoder-based, transfer-based, and standalone. Our
experimental results show that in the encoder-based scenario, whole model conventional fine-tuning
can effectively remove backdoors within a few epochs. As fine-tuning is a necessary step for users to
train downstream classifiers, it can be argued that fine-tuning as a defense method incurs zero-cost.
In the transfer-based scenario, fine-tuning is still a necessary step. However, we find that conven-
tional fine-tuning cannot always effectively remove all tried backdoor attacks. However, our experi-
mental results show that super-fine-tuning can effectively mitigate backdoor attacks in this scenario.
The most difficult scenario is standalone. In this scenario, we assume the backdoored models are
trained exactly on users’ downstream datasets. We show that even using the same dataset to conduct
the fine-tuning, super-fine-tuning can still remove backdoor attacks in a few epochs. We also com-
pare super-fine-tuning with state-of-the-art defense methods and demonstrate that super-fine-tuning
outperforms them.

Our results demonstrate that backdoor defenses can be performed in an easier way than previously
considered. Fine-tuning or super-fine-tuning is sufficient in most cases. We hope our methods can
help ML model owners better shield their models from backdoor attacks. Also, it further calls for
the design of more advanced attacks in order to comprehensively assess machine learning models’
vulnerabilities to backdoor attacks.
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