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Abstract001

Hate speech detection is key to online con-002
tent moderation, but current models struggle003
to generalise beyond their training data. This004
has been linked to dataset biases and the use005
of sentence-level labels, which fail to teach006
models the underlying structure of hate speech.007
In this work, we show that even when mod-008
els are trained with more fine-grained, span-009
level annotations (e.g., “artists” is labeled as010
target and “are parasites” as dehumanising011
comparison), they struggle to disentangle the012
meaning of these labels from the surrounding013
context. As a result, combinations of expres-014
sions that deviate from those seen during train-015
ing remain particularly difficult for models to016
detect. We investigate whether training on a017
dataset where expressions occur with equal fre-018
quency across all contexts can improve general-019
isation. To this end, we create Unseen-PLEAD020
(U-PLEAD), a dataset of ∼364,000 synthetic021
posts, along with a novel compositional gener-022
alisation benchmark of ∼8,000 manually val-023
idated posts. Training on a combination of024
U-PLEAD and real data improves compositional025
generalisation while achieving state-of-the-art026
performance on the human-sourced PLEAD.027

1 Introduction028

A large body of research has focused on developing029

models for the automatic detection of online hate030

speech (e.g., Warner and Hirschberg 2012; Moza-031

fari et al. 2019; Saeidi et al. 2021), but their effec-032

tiveness has been largely overestimated due to eval-033

uations conducted on academic datasets. Tonneau034

et al. (2024) show that models fail to generalise to035

datasets with different target distributions, like the036

one found in a 24-hour period Twitter stream. Cal-037

abrese et al. (2022) argue that the problem stems038

from the fact the task is typically framed as a binary039

sequence classification problem: datasets where040

posts are assigned a single sentence-level label are041

inadequate for learning the concept of hate speech.042

They demonstrate that the same annotations can 043

correspond to multiple underlying phenomena, and 044

that even small changes such as different random 045

initializations can cause the same model to learn 046

entirely different patterns. This motivates their use 047

of span-level annotations, where different slot la- 048

bels are used to indicate a target, the mention 049

of a protected characteristic, or a threat in 050

a post. Slot labels are supposed to guide models 051

toward learning policy-relevant phenomena, assum- 052

ing that these labels are interpreted as atomic prop- 053

erties irrespective of their surrounding context. 054

In this paper, we show that models trained with 055

slot annotations do not always grasp their atomicity 056

and remain vulnerable to unintended correlations in 057

the training dataset. For instance, although compar- 058

isons with “terrorists” are often targeted against the 059

Muslim community (Yoder et al., 2022), a detection 060

model should recognise that equating any group 061

with terrorists is inherently derogatory. However, 062

if such expressions are never observed with differ- 063

ent targets, slot labels alone may not be sufficient 064

for the model to generalise this understanding. In 065

other words, we identify that hate speech detection 066

faces the same compositional generalisation chal- 067

lenges (i.e., generalisation to unseen combinations 068

of known phrases) observed in other span-based 069

NLU tasks such as semantic parsing (Zheng and 070

Lapata, 2021; Hupkes et al., 2023). 071

While these correlations are unavoidable in nat- 072

urally occurring data due to the existence of stereo- 073

types and power dynamics, we generate a collec- 074

tion of synthetic posts designed to be free from 075

this issue by balancing the frequency of label com- 076

binations. Our hypothesis is: this synthetic data 077

would help models disentangle the meaning of slot 078

labels from their surrounding context, and there- 079

fore generalise better to unseen distributions. We 080

start from the structured hate speech definition and 081

annotations provided in PLEAD (Calabrese et al., 082

2022) and use Large Language Models (LLMs) 083
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to generate U-PLEAD, a dataset of ∼364,000 syn-084

thetic posts with no correlations between spans and085

classes, or targets and expressions. For instance,086

the derogatory expression “are terrorists” and its087

equivalents appear in our dataset with the same fre-088

quency for all protected and non-protected targets.089

Likewise, these expressions occur equally often in090

posts labelled as “derogatory” to those assigned to091

any other class.092

The generalisation capabilities of hate speech093

models are most commonly tested in an unstruc-094

tured manner: evaluating on datasets different095

from the training corpus or harder splits of the096

same dataset without a clear measure of the dis-097

tribution shift between the two (Yin and Zubiaga,098

2021; Züfle et al., 2023). In this work, we intro-099

duce TARGET (Testing Atomic Reasoning in Gener-100

alisation of Expressions and Targets). TARGET con-101

tains only expressions, or expression combinations,102

unseen in U-PLEAD. We design 8 generalisation103

tests, aiming to detect cases like previously unseen104

hate speech targets, each of which is represented by105

∼1,000 manually validated posts. Our experiments106

show that partially substituting PLEAD’s training set107

with U-PLEAD enhances the generalisation capabili-108

ties of classification and slot-filling models without109

any loss in performance on the PLEAD test set. We110

summarise our contributions as follows:111

• We study compositional generalisation in the112

context of hate speech and develop a procedure113

of generating balanced synthetic posts, which114

we show enhance model generalisation to un-115

seen expressions.116

• We create TARGET, the first benchmark for as-117

sessing the generalisation capabilities of hate118

speech models.119

• Through extensive experiments, we demon-120

strate that data augmentation, albeit with syn-121

thetic examples, improves generalisation with-122

out compromising in-domain performance.123

2 Related Work124

Hate speech is content that targets individuals or125

groups on the basis of their protected characteristics126

(e.g., gender) with derogatory language (explicit or127

implicit), dehumanising comparisons, and threat-128

ening language. Content that explicitly glorifies129

or supports hateful events or organizations is also130

considered hate speech (Vidgen et al., 2021).131

Generalisation and robustness have been per-132

sistent weaknesses throughout the history of hate133

Original post: “My friends little girl is mixed race, I love it
when she comes along with us.”

S

C

non-hateful context
"I love it when she comes along

with us"

W

T

SL:Target
"my friend’s

little girl"

SL:Protected
Characteristic
"is mixed race"

Figure 1: Parse tree generation for a PLEAD post using
our Hate Speech Grammar.

speech research (Wiegand et al., 2019; Kennedy 134

et al., 2020; Reyero Lobo et al., 2023). While 135

the advent of larger models and promising results 136

from training on dynamically generated adversarial 137

data (Vidgen et al., 2021) suggested the problem 138

might be solved, at least in English, Tonneau et al. 139

(2024) showed that these models still struggle to 140

generalise to unseen distributions. Calabrese et al. 141

(2022) argued that models require more informa- 142

tion about specific hate speech phenomena they are 143

meant to detect. To achieve this, they distill a hate 144

speech policy into atomic properties (i.e., slots), 145

and conceptualise the task as an instance of intent 146

classification and slot filling. In this setting, mod- 147

els are not just shown that “Artists are parasites” 148

is not hateful, but also receive additional informa- 149

tion: “Artists” is the target, “are parasites” is a 150

dehumanising comparison, and the post cannot 151

be considered hateful based on these two slots, as 152

it lacks any mention of protected characteristics. 153

The decomposition into slots and intents as- 154

sumes models will grasp the atomicity of the slots 155

and disentangle their meaning from the surround- 156

ing context. However, protected groups are tar- 157

geted in distinct, specific ways, and comparisons 158

to parasites are more commonly associated with 159

groups like immigrants than, e.g., women (Haas, 160

2012). As a result, models may learn that “are par- 161

asites” functions as a dehumanising comparison 162

only when paired with terms like “Artists” or “Im- 163

migrants”, but not as a generalisable pattern. This 164

tendency is further amplified by neural network 165

models, which often default to relying on extra, 166

unnecessary features instead of learning the mini- 167

mal features needed to define a category boundary. 168

(Dasgupta et al., 2022). 169

In this work we focus on finding a more robust 170
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training approach that enables a model to gener-171

alise to any unseen distribution, rather than design-172

ing a technique for adapting a model to a specific173

new distribution (Sarwar and Murdock, 2022). We174

use data augmentation to improve generalisation,175

however, unlike Mostafazadeh Davani et al. (2021),176

we intentionally include implausible posts in our177

synthetic data, as this is crucial for eliminating178

undesired correlations. We propose several tests179

for compositional generalisation in the hate speech180

domain. We relax the classical definition of com-181

positional generalisation which assumes that all182

expressions appearing in the test set are also seen183

during training, with only their combinations being184

novel (e.g., Lindemann et al. 2023). By allowing185

expressions to appear only at test time, we can186

evaluate more domain-relevant generalisation sce-187

narios, such as those introduced by policy changes188

(e.g., recognising pregnancy as a protected char-189

acteristic) or new social events (e.g., COVID-19-190

related hate targeting Asians), and avoid contam-191

ination. Recent studies (Kim et al., 2022) have192

shown that assuming expressions are “unknown”193

solely because they are absent from the training194

set overstimates the generalisation capabilities of195

pre-trained language models.196

3 Compositional Generalisation via Data197

Augmentation198

We aim to create a dataset consisting of a ⟨training,199

test⟩ set pair such that it allows us to test the hy-200

pothesis that training a model on a resource with201

exhaustive coverage of an expression’s behaviour202

will improve generalisation. Traditional composi-203

tional generalisation settings require the test set to204

contain unseen combinations of seen expressions.205

In the context of hate speech, this implies that the206

behaviour of these expressions is not fully repre-207

sented in the training data, and that we are testing208

combinations of targets and expressions that may209

not naturally co-occur in real-world hate speech,210

potentially focusing on unrealistic examples. In-211

stead, we leverage the broad pre-training of mod-212

ern language models to relax the constraint that all213

spans must appear in the training data. We generate214

a training set that provides exhaustive coverage for215

each expression and design a set of test cases that216

challenge models to recognise known expressions217

or targets in novel contexts. We next elaborate on218

how this data is generated.219

3.1 The Hate Speech Grammar 220

To study compositional generalisation for hate 221

speech, we need to define the possible targets, as 222

well as hateful and non-hateful expressions, and 223

determine how they can be combined. We take 224

advantage of the annotations in the PLEAD dataset 225

(Appendix A) which were designed to generate 226

explanations, associating each post with a tree- 227

like structure where leaves represent a span of to- 228

kens in a post, internal nodes correspond to slot 229

labels, and the root to intent labels (see Figure 1). 230

Their ontology includes the following slot labels: 231

target and protected characteristic (T ), 232

dehumanising comparison (D), threatening 233

speech (Th), negative and derogatory opinion 234

(N ), hate entity (E), support of hate crimes 235

(S), and negative stance (Ns). 236

Based on their ontology, we define a formal 237

grammar G that can generate trees associated with 238

hateful and non-hateful posts. Any span of text 239

with a slot label in PLEAD (e.g., the target “Those 240

women” or the negative stance “these claims are 241

not true”) is a terminal symbol in G. Additional ter- 242

minal symbols are created by removing the target 243

and any possible protected characteristic from non- 244

hateful posts with no other associated slot labels. 245

We refer to these as “non-hateful context” (C). For 246

example, we extract the non-hateful context “I love 247

it when she comes along with us” from the post 248

“my friend’s little girl is mixed race, I love it when 249

she comes along with us” where “my friend’s little 250

girl” is tagged as target, and “is mixed race” as 251

protected characteristic. 252

We define a non-terminal symbol for each slot 253

in the ontology, with a few exceptions. The target 254

and protected characteristic symbols are merged 255

into T as they are not independent, and derogatory 256

or negative opinions are merged into N due to 257

their overlap.1 For each non-terminal symbol Nt 258

and for each terminal symbol t associated to the 259

corresponding slot, we define a production rule: 260

Nt → t. Additionally, we define the following 261

production rules: 262

S → CP |CW |CWP 263

264

W → ϵ |TW |EW 265
266

P → ϵ |DP |ThP |NP |SP |NsP 267

1The main distinction between these two slots is the degree
of explicitness in expressing a derogatory opinion.
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where S is the start symbol and ϵ is the empty268

string. Figure 1 illustrates how G can generate the269

tree associated with a non-hateful post.270

3.2 The U-PLEAD Dataset271

To create the training set, we generate a collection272

of trees from G, and “translate” them into posts.273

We generate trees based on the following criteria:274

C1 Each protected and non-protected target appears
with same frequency across all classes.

C2 Each dehumanising comparison, threat, neg-
ative opinion, and expression of support for
hate crimes occurs with same relative frequency
across all classes.

C3 Each hate entity appears with same frequency
across all classes.

C4 Each negative stance expression appears with
same frequency across all classes.

C5 Each protected and non-protected target and each
hate entity occur with each dehumanising com-
parison, threat, negative opinion, and expression
of support for hate crimes with same frequency.

275

Allowing many targets and expressions in the276

dataset would lead to a combinatorial explosion of277

the number of instances. Therefore, we limit the278

number of terminal symbols in G used for gener-279

ation. To maximise linguistic diversity, we clus-280

ter all non-protected targets, hate entities, dehu-281

manising comparisons, threats, negative opinions,282

expressions of support for hate crimes, and neg-283

ative stances in PLEAD based on semantic sim-284

ilarity. We compute a vector representation for285

each expression using Sentence-BERT (Reimers286

and Gurevych, 2019) and then perform hierarchi-287

cal clustering. Expressions that are assigned to the288

same cluster are considered equivalent (e.g., the289

threatening expressions “i want to burn”, “burn290

to the ground”, and “burned”). For protected tar-291

gets, we take a different approach and treat spans292

as equivalent if they are tagged with the same target293

group in the original dataset (e.g., “woman”, “she”294

and “her” for the group “women”). We select 40295

(clusters of) protected targets and hate entities, and296

20 clusters from other slots, to generate a balanced297

collection of 384,800 trees. We provide more de-298

tails in Appendix B.299

We take advantage of the linguistic abilities of300

LLMs to convert the trees generated by our gram-301

mar into posts. We generate a first draft using302

Vicuna-30B-Uncensored, a model trained with-303

out responses containing alignment or moralis-304

ing content in its pre-training corpus. We prompt305

the model in a few-shot setting, and adapt the in-306

context examples to align with the structure of the 307

tree for which we are generating a post. The in- 308

struction specifies which spans must occur in the 309

post (possibly verbatim), and the role each span 310

must play (see Appendix C). To improve fluency 311

and ensure the spans are included in the posts, we 312

refine them using GPT-3.5-Turbo. We discard trees 313

for which GPT fails to generate all spans even after 314

multiple rounds (5.34%), returning the final collec- 315

tion of 364, 261 <post, tree> pairs. Some posts 316

may be noisy, due to the large size of the tree or 317

the challenge of connecting highly unrelated spans, 318

however, the large size of the dataset compensates 319

for this noise (Sarwar and Murdock, 2022). We will 320

make U-PLEAD available to the research community 321

upon request. 322

3.3 The TARGET Benchmark 323

We design eight test cases to evaluate the compo- 324

sitional generalisation capabilities of hate speech 325

detection models. While these tests serve as a 326

true generalisation challenge for models trained 327

on U-PLEAD — where we can control which expres- 328

sions appear — they also present a difficult bench- 329

mark for models trained on other resources. This is 330

because our tests are not limited to most common 331

protected groups or stereotypical associations, but 332

instead reflect a broader and more balanced cover- 333

age of possible targets and linguistic patterns. We 334

define four tests as follows: 335

T1 Instances containing unseen targets, the corre-
sponding protected characteristic (if any), and
dehumanising comparisons, threats, or negative
opinions sourced from U-PLEAD.

T2 Instances containing targets sourced from
U-PLEAD, and unseen dehumanising compar-
isons, threats, or negative opinions.

T3 Instances containing targets, dehumanising com-
parisons, threats, and negative opinions sourced
from U-PLEAD, and unseen negative stance ex-
pressions.

T4 Instances containing unseen targets, dehumanis-
ing comparisons, threats, and negative opinions.

336

We analogously define 4 additional tests Tib 337

(1 ≤ i ≤ 4) focusing on hate entities (instead of 338

targets) and expressions of support for hate crimes 339

(instead of dehumanising comparisons, threats, or 340

negative opinions). Table 1 gives an overview of 341

the eight generalisation tests. 342

When selecting spans that do not occur in 343

U-PLEAD, we sample expressions from unused clus- 344

ters (Section 3.2). In the case of protected targets, 345

since all clusters from PLEAD have been used to 346
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Test Tree
Unseen Span Classes

Example
T |E X|S Ns C T D P N

1 TX ✓ ✗ – ✓ ✓ ✓ ✗ ✓
I can’t believe the state of this place, a trashy
grotesque looking house. Why is my city is filled
with all kinds of plagues: rats, cockroaches, spiders

1b ES ✓ ✗ – ✗ ✗ ✗ ✓ ✗
The philosopher, Xenophanes, was a renowned
thinker who once said that ïf God had not intended
for us to rape, he would not have given us rapists.

2 TX ✗ ✓ – ✓ ✓ ✓ ✗ ✓
Those imams are all just trouble makers,
all of them should just be put down

2b ES ✗ ✓ – ✗ ✗ ✗ ✓ ✗
I support fascist/white supremacist because their
love for their country is admirable.

3 TXNs ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
I can’t believe he yelled about f4g$ have no soul.
I’m so disappointed in him.

3b ESNs ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
I’m disappointed that you’re supporting a nationalist
organization. I mean, I love my country too, but it
doesn’t mean I’m trash talking other nations.

4 TX ✓ ✓ – ✓ ✓ ✓ ✗ ✓
The scout went on a fucking raft illegally? That’s
so unlike them! Their Mongolian ancestor must
be turning in their grave.

4b ES ✓ ✓ – ✗ ✗ ✗ ✓ ✗
Of course it’s okay! greeting-master is it’s definitely
ok, in fact, it’s great!

Table 1: Example posts and their tree structure for each generalisation test (X ∈ {D,Th, N}); we also show which
slots are filled with Unseen Spans (i.e., spans which are not sourced from U-PLEAD) and which Classes or intents
are present in each test (Dehumanising Comparison, Threatening Speech, Derogation, Pro-Hate Crimes and Not
Hateful). Spans used to generate the post are shown in italics.

generate U-PLEAD, we select common protected347

characteristics absent from PLEAD (i.e., preg-348

nancy, serious diseases, and veteran status) and349

introduce new groups for those that are covered350

(i.e., Pacific Islanders, Arab Americans, Taiwanese,351

Mongolians, Nepalese, Sri Lankans, Ukrainians,352

Hungarians, Czechs, Colombians, and Puerto Ri-353

cans). We then instruct GPT-4o2 to generate354

<target, protected characteristic> span355

pairs (e.g., <“the couple”, “parenting classes”>).356

We manually review these pairs and discard any357

unsuitable examples. We acknowledge the reflec-358

tion of cultural biases in some pairs, notably in the359

names associated with specific ethnicities. How-360

ever, since these instances are only intended for361

testing generalisation, we do not consider this a362

major issue.363

For each test, we generate 2,000 trees match-364

ing the required structure and use Vicuna-30B-365

Uncensored and GPT-3.5-Turbo to generate posts366

following the same approach as with U-PLEAD. We367

perform only one generation round with GPT-3.5-368

Turbo and discard any posts that do not contain the369

correct spans. This process results in over 1,000370

2We use GPT-3.5-Turbo for large-scale generation due to
its speed and lower cost, and the latest model for smaller tasks.

instances per test, a total of 10, 593 <post, tree> 371

pairs. As with U-PLEAD, we expect these posts to 372

be somewhat noisy and not entirely fluent. To val- 373

idate the use of this data for evaluation purposes, 374

we recruit a domain expert to assess whether: (1) a 375

post is fluent, (2) the assigned classification label 376

is correct, (3) the associated tree is accurate, and 377

(4) the slot labels are correct. 378

We inspect 100 instances per generalisation test, 379

and find that 93.5% of the posts are fluent and 380

76.25% bear the correct classification label. Posts 381

correctly reflect the corresponding tree 69.5% of 382

the time and 92.25% of the posts exhibit entirely 383

correct slot labels. GPT-3.5-Turbo attempts to con- 384

vert hateful posts into non-hateful ones only in 385

29.30% of the cases. We will also make the TARGET 386

benchmark publicly available upon request. 387

4 Experimental Evaluation 388

Our experiments were designed to assess whether 389

models struggle with compositional generalisation 390

in the domain of hate speech and whether U-PLEAD 391

can help mitigate existing shortcomings. To ensure 392

fairness and avoid contamination, we exclude any 393

models involved in generating U-PLEAD or TARGET 394

from our experiments. We report results averaged 395
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Training Test PF1

PLEAD PLEAD 73.82
U-PLEAD U-PLEAD 76.05
PLEAD U-PLEAD 56.60
U-PLEAD PLEAD 73.02

Table 2: Threatening speech classification (PF1%) with
Gemma-2-9B trained/tested on PLEAD and U-PLEAD.

over three runs with different random seeds; for pa-396

rameters and evaluation metrics, see Appendix D.397

4.1 Models Don’t Treat Slots as Atomic398

Concepts399

In this experiment we simplify the span labelling400

task by focusing solely on the threatening speech401

slot since it is most easily recognisable (as indi-402

cated by high inter-annotator agreement; see Cal-403

abrese et al. 2022). We fine-tune Gemma-2-9B404

(Rivière et al., 2024) on PLEAD, and a sample of405

U-PLEAD of comparable size, for up to 10 epochs.406

We then evaluate both models on the PLEAD test407

set and a disjoint sample of U-PLEAD, also of com-408

parable size. Since U-PLEAD is mostly balanced,409

we assume random subsamples will be approxi-410

mately balanced too. Table 2 reports production F1411

scores (PF1; Quirk et al. 2015) for all settings.412

Models achieve comparable performance when413

evaluated on a test set drawn from the same dataset414

used for training. Gemma trained on U-PLEAD415

also performs well on the PLEAD test set, with416

only a ∼2% drop in performance. Since U-PLEAD417

was generated from a subset of expression clusters418

found in PLEAD, a few spans in the test set are419

unseen at training time. Error analysis shows that420

the performance drop is mainly due to the model421

tagging more spans than found in the PLEAD gold-422

standard. Manual inspection of these false posi-423

tives confirms that model predictions often corre-424

spond to actual threats (e.g., kill, axe). However,425

in PLEAD only one slot was annotated for posts426

containing multiple harmful elements (e.g., dehu-427

manizing comparisons and threats). This suggests428

the performance dip is mainly due to incomplete429

annotation and is, in practice, negligible.430

In comparison, a model trained on PLEAD per-431

forms a lot worse when tested on U-PLEAD (there is432

a decrease of over 17% between the two test sets).433

In this case, all spans are seen during training, and434

most errors on the U-PLEAD test set are false neg-435

atives, where the model fails to recognise threats436

expressed in new contexts. For example, the threat 437

“should be shot” is correctly identified in “Dyke 438

bitches are disgusting and should be shot,” but not 439

in “I’m curious to read that some people believe 440

most Indigenous Australians are scum and should 441

be shot.” Our results suggest that Gemma does 442

not treat slots as atomic concepts, even when other 443

slots are not explicitly tagged, as the surrounding 444

context influences the model’s ability to recognise 445

a given slot. Training on a dataset in which corre- 446

lation biases are mitigated appears to help Gemma 447

better capture the atomicity of slot representations. 448

4.2 U-PLEAD Doesn’t Degrade In-domain 449

Performance 450

In our next experiment, we investigate whether 451

training on U-PLEAD mitigates correlation bias 452

when evaluating on seen combinations. There is 453

no point generating data to handle generalisation if 454

in-distribution performance is compromised. 455

We focus on the full hate speech detection task 456

(rather than classification of an individual slot) 457

and construct three training sets by combining in- 458

stances from U-PLEAD and PLEAD at different ra- 459

tios (75%/25%, 90%/10%, and 100%/0%) while 460

keeping the total number of instances equal to 461

that of the original PLEAD training set. We com- 462

pare these configurations with a baseline trained 463

solely on PLEAD (i.e., 0%/100%). To ensure our 464

findings are not model-specific, we experiment 465

with Gemma-2-9B and LLaMA-3.1-8B (Grattafiori 466

et al., 2024) considering two settings: intent classi- 467

fication (cls) and the more fine-grained task of in- 468

tent classification and slot filling (ICSF). For ICSF, 469

we follow Calabrese et al. (2022) and train mod- 470

els to only detect and fill slots, deterministically 471

choosing the intent based on these. All models are 472

evaluated on the testing partition of PLEAD. 473

We first observe that both Gemma and LLaMA 474

achieve a Micro F1 score >75% on the intent 475

classification task when trained exclusively on 476

PLEAD, across all settings (cls and ICSF; see Fig- 477

ure 2a). This is, to our knowledge, the highest 478

score reported on the PLEAD benchmark to date— 479

although with significantly larger models compared 480

to Calabrese et al. (2022)—indicating that we are 481

starting from strong baselines. For both models, 482

performance only slightly drops from classification 483

to the harder ICSF task by 2.1% points, demonstrat- 484

ing that explainability no longer comes at the ex- 485

pense of performance. Figure 2a further illustrates 486

that the effect of varying proportions of U-PLEAD 487
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Figure 2: Model performance on intent classification (cls and ICSF settings) using micro F1 (a) and AAA (b). For
ICSF models, we also show PF1 and EMA scores (c). Are results are reported on the PLEAD test set.

in training depends on the setting rather than the488

model. ICSF models are robust to the replacement489

of 75% of training instances with U-PLEAD, with a490

performance drop of less than 2% on intent clas-491

sification. Although replacing 90% of the data492

has a more noticeable impact, both models still493

achieve an F1 above 70%. In contrast, training494

exclusively on U-PLEAD leads to a performance495

drop of nearly 30% for both models. Classification496

models behave differently: performance drops 12%497

with the 75%/25% partition and continues to de-498

cline as more U-PLEAD data is introduced.499

U-PLEAD is by design constructed so that text500

spans do not correlate with intent labels, thereby501

providing limited learning signal for models that502

treat the post holistically. The gradual introduction503

of U-PLEAD instances counters the tendency clas-504

sification models have to rely on superficial cues505

or shortcuts, as further evidenced in Figure 2a by506

the higher AAA scores (with Gemma improving by507

5.57% at 75% U-PLEAD and LLaMA by 1.72% at508

90% U-PLEAD). ICSF models are trained solely on509

slot labels, and although U-PLEAD removes correla-510

tions between slot and intent labels, spans are still511

consistently annotated with the same label (e.g.,512

“kill” is always labelled as SL:ThreateningSpeech,513

regardless of context), providing models with a514

more robust learning signal.515

Training exclusively on U-PLEAD prevents the516

model from learning useful information about the517

target distribution, such as the typical structure of518

parse trees observed in the dataset, leading to a drop519

in performance (Appendix D.3). U-PLEAD seems520

less beneficial to ICSF, according to AAA scores.521

This may be due to the models’ improved ability to522

detect slots in new, not necessarily smoothly con-523

nected, contexts, which in turn makes them more 524

sensitive to the adversarial nature of the AAA eval- 525

uation procedure. For the ICSF models we also 526

evaluate production F1 (PF1) and tree exact match 527

(EMA) in Figure 2c. Both models achieve compara- 528

ble high performance when fine-tuned on PLEAD: 529

69.93% and 25.67% for Gemma and 68.92% and 530

21.93% for LLaMa, respectively. We observe simi- 531

lar trends to intent classification (Figure 2a) when 532

increasing the proportion of training U-PLEAD in- 533

stances. 534

In sum, up to 75% of the training set can be 535

replaced with U-PLEAD instances without signifi- 536

cantly affecting the performance of ICSF models 537

on classification and parsing metrics. 538

4.3 U-PLEAD Improves Generalisation 539

We now investigate whether training on U-PLEAD 540

supports compositional generalisation on the full 541

hate speech detection task. In these experiments, 542

we evaluate models on the TARGET benchmark and 543

expect them to handle novel combinations of (pos- 544

sibly unseen) targets and expressions. Recall that 545

by design the TARGET benchmark contains span 546

combinations that do not appear in U-PLEAD. 547

We use the same training sets from the previ- 548

ous experiment (Section 4.2) combining different 549

proportions of U-PLEAD and and PLEAD. Table 3 550

reports Micro F1 on intent classification (computed 551

as the geometric mean of the scores obtained across 552

the eight generalisation tests in TARGET) for mod- 553

els trained on the 75%/25% and 0%/100% training 554

sets. For results on 90%/10% and 100%/0% see 555

Appendix D.4. Our experiments show that nei- 556

ther the model architecture nor the setting has a 557

significant effect on performance, whereas train- 558

ing on U-PLEAD (combined with some fraction of 559
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Model Setting %U-PLEAD Micro F1

Gemma Cls 0% 46.18
Gemma Cls 75% 49.22

Gemma ICSF 0% 46.94
Gemma ICSF 75% 50.34

LLaMA Cls 0% 46.84
LLaMA Cls 75% 49.53

LLaMA ICSF 0% 46.51
LLaMA ICSF 75% 49.03

Table 3: Model performance (Micro F1) on TARGET
using different proportions of U-PLEAD for training. Re-
sults are reported for intent classification (Cls) alone
and in combination with slot filling (ICSF).

Model %U-PLEAD PF1 EMA

Gemma 0% 22.95 0.50
Gemma 75% 44.98 5.91

LLaMA 0% 22.84 0.51
LLaMA 75% 44.56 5.51

Table 4: Model performance on intent classification and
slot filling task (ICSF) using production F1 (PF1) and
exact match (EMA) metrics. Results are reported on
the TARGET benchmark using different proportions of
U-PLEAD for training.

PLEAD) consistently leads to higher classification560

scores. Overall performance remains low, with the561

best model achieving a Micro F1 of 50.34% which562

is substantially lower than the estimated annotation563

accuracy of 76.25% (Section 3.3). This is due to564

the challenging nature of the task rather than imper-565

fections in the automatically generated benchmark.566

567

Table 4 summarises model performance on the568

intent classification and slot filling task using pro-569

duction F1 (PF1) and tree exact match (EMA) as570

evaluation metrics. We observe the most substan-571

tial impact of U-PLEAD on the PF1 metric, where572

performance improves by over 21%; the EMA573

score also increases by more than 5%. These gains574

suggest that the model produces more accurate slot575

annotations, leading to higher-quality explanations576

for its predictions. Improving explanation quality577

is particularly important for content moderation.578

Calabrese et al. (2024) show that structured expla-579

nations can make professional moderators faster,580

contingent on these being reliable.581

Evaluation across individual generalisation tests582

follows a similar pattern (see Appendix D.4).583

However, two outliers emerge: in Tests 3584

and 3b, Gemma and LLaMA achieve lower Mi- 585

cro F1 scores in the ICSF setting when trained 586

with U-PLEAD instances compared to training on 587

PLEAD. In these tests, all examples belong to the 588

non-hateful intent class. Training on U-PLEAD en- 589

hances the model’s ability to recognise slot spans 590

in unfamiliar contexts, which in turn increases its 591

tendency to tag slots overall. Since intent labels 592

are deterministically assigned based on predicted 593

slots, this raises the chance of incorrectly trigger- 594

ing a policy rule in non-hateful cases. We still ob- 595

serve substantial improvements on parsing metrics 596

in both tests, and the classification setting continues 597

to show gains in Micro F1, confirming the broader 598

benefits of U-PLEAD even in these edge cases. 599

5 Conclusions 600

We empirically demonstrate that ICSF models 601

struggle with compositional generalisation in the 602

context of hate speech. We propose a theoretically 603

motivated experimental setting that ensures full 604

coverage of each expression’s behaviour within the 605

training set. We argue this is ideal for learning 606

the underlying dynamics of hate speech by explic- 607

itly removing spurious correlations between expres- 608

sions, labels, and targets. 609

To facilitate this analysis, we introduce U-PLEAD, 610

a (mostly) balanced synthetic dataset, alongside 611

TARGET, the first benchmark for evaluating com- 612

positional generalisation in hate speech. Although 613

classification models do not produce trees, the func- 614

tion they are expected to learn still implicitly in- 615

volves identifying targets and hateful expressions, 616

making TARGET a relevant generalisation test for 617

them as well. Our experiments reveal that augment- 618

ing real training data with a portion of U-PLEAD 619

improves generalisation while maintaining state-of- 620

the-art performance on in-domain test sets. How- 621

ever, training exclusively on synthetic data leads 622

to a decline in performance which points to the 623

difficulty of improving model generalisation on 624

test sets whose distribution diverges from training 625

while maintaining performance on in-domain data. 626

Our findings show that ICSF models achieve 627

performance comparable to standard classification 628

models, indicating that explainability no longer 629

comes at the cost of accuracy. As generative mod- 630

els become more common for classification, the 631

computational overhead of ICSF is also less, leav- 632

ing little justification for treating hate speech detec- 633

tion as a black-box problem. 634
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Ethical Statement635

This project is motivated by the need for more ro-636

bust and fair methods to detect hateful language637

online reliably and transparently. Our work in-638

volved the generation of hate speech content for639

the explicit purpose of improving the fairness and640

robustness of hate speech detection models. To sup-641

port reproducibility and facilitate future research,642

we will release the code, the finetuned models, and643

our datasets (U-PLEAD, TARGET) under the CC BY-644

NC-SA 4.0 License. However, due to the sensitive645

nature of the content, access to these will be granted646

upon request and subject to a declaration of intent,647

in order to prevent misuse.648

The U-PLEAD and TARGET datasets were pro-649

duced using large language models, including those650

developed by OpenAI. While this required prompt-651

ing to generate harmful language, we did not need652

to develop sophisticated jailbreak techniques. We653

present this as evidence of existing vulnerabilities654

in the safety mechanisms of LLMs, and do not655

endorse the use of such techniques outside of con-656

trolled, research-driven settings.657

We observed instances of stereotypical associ-658

ations in the generated generalisation tests, such659

as the use of personal names linked to specific eth-660

nicities. These unintended biases further highlight661

the limitations of current generation models and662

underscore the importance of using the benchmark663

exclusively for evaluation.664

In this work, we follow a prescriptive paradigm665

(Röttger et al., 2022), and all resources have been666

created under the assumption that each post has a667

single true label, determined by the policy.668

Limitations669

Our work is currently limited to English, due to670

the lack of structured annotation resources in other671

languages. However, our grammar-based genera-672

tion procedure would apply to any hate speech data673

annotated with intents and slots.674

While our generalisation benchmark is entirely675

synthetic, this design choice is necessary to pre-676

cisely control slot and expression combinations.677

Collecting a sufficiently large and diverse set of678

real-world posts that reflect these controlled con-679

figurations is not currently feasible. As the bench-680

mark is automatically generated, some noise and681

limitations in linguistic naturalness are to be ex-682

pected. However, given the current capabilities of683

large language models — and with an estimated684

76.25% accuracy in intent labels annotation — we 685

find the quality of the benchmark sufficient for eval- 686

uating compositional generalisation in a realistic 687

setting, especially considering that model perfor- 688

mance remains well below this accuracy ceiling. 689

Importantly, our evaluation is not limited to syn- 690

thetic data: we also report results on the original 691

PLEAD test set. 692

Finally, while the training data has not been man- 693

ually validated, the results of the experiment in Sec- 694

tion 4.1 demonstrate that the dataset is informative 695

enough to improve generalisation, indicating that it 696

provides a useful learning signal. 697
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A The PLEAD Dataset880

The PLEAD dataset3 was built by enriching a sub-881

set of hateful and non-hateful posts from the LFTW882

dataset (Vidgen et al., 2021) with span-level anno-883

tations. This enabled the framing of hate speech884

detection as an instance of intent classification and885

slot filling (ICSF), where slots represent elements886

such as the “target” or “protected characteristic”,887

while intents correspond to policy rules (see Fig-888

ure 3). The trees follow a decoupled representation889

(Aghajanyan et al., 2020), where spans may ap-890

pear multiple times and in any order relative to891

the original post. Not all tokens in the post need892

to be included in the tree, and spans may connect893

non-adjacent tokens.894

PLEAD contains 3,535 English posts and is split895

into training, validation and test set in an 80/10/10896

ratio, with each split preserving the original intent897

distribution: non-hateful (25%), dehumanisation898

(25%), threatening (17%), derogation (28%), and899

support of hate crimes (5%). Each post includes900

3https://huggingface.co/datasets/agostina3/PL
EAD

three annotated parse trees, resulting in ∼ 11, 000 901

training instances. The best-performing model in 902

the literature is a BART-based architecture with 903

a two-step generation approach (Calabrese et al., 904

2022), which achieved a micro F1 score of 57.17% 905

on intent classification and a PF1 score of 52.96%. 906

Our use of the dataset complies with the terms 907

of the CC BY-NC-SA 4.0 License.

IN:NotHateful

SL:Target

"Artists"

SL:DehumanisingComparison

"are parasites"

Figure 3: Example of slot and intent annotations for the
non-hateful post “Artists are parasites”.

908

B Tree Generation 909

In this section we provide more details on how we 910

generated the collection of trees for U-PLEAD while 911

satisfying the constraints described in Section 3.2. 912

Equivalence Among Terminal Symbols As de- 913

scribed in Section 3.2, we apply hierarchical clus- 914

tering to define equivalence relationships among 915

terminal symbols in the hate speech grammar G, 916

with the exception of protected targets, which are 917

grouped based on the already available target an- 918

notations in PLEAD (e.g., “woman”, “she”, and 919

“her” are grouped under “women”). The cluster- 920

ing threshold of 0.5 was selected empirically based 921

on cluster quality across a range of values. For 922

slots with a limited number of spans (e.g., hate enti- 923

ties and negative stance), we first augment the data 924

by prompting GPT-3.5-Turbo with existing spans, 925

asking it to complete the list. 926

Constraint Enforcement For the generation of 927

U-PLEAD we select 40 clusters of protected targets 928

and hate entities, and 20 clusters for each remaining 929

slot. When more clusters are available than needed, 930

we select in decreasing size order. Constraint C5 re- 931

quires that each protected and non-protected target 932

and each hate entity occur with each dehumanising 933

comparison, threat, negative opinion, and expres- 934

sion of support for hate crimes with same frequency. 935

As an example, consider the cluster of protected 936

targets t1. To satisfy the constraint, t1 must occur 937

with any cluster i of dehumanising comparisons di, 938

threats thi
, negative opinions ni and expressions 939
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of support si the same number of times n. For the940

first three slots, this is straightforward:941

∀
i

|{tree | t1 ∈ tree ∧ di ∈ tree}| = n942

943
∀
i

|{tree | t1 ∈ tree ∧ thi
∈ tree}| = n944

945
∀
i

|{tree | t1 ∈ tree ∧ ni ∈ tree}| = n946

Let’s now consider the intents correspond-947

ing to these trees. A tree containing the948

protected target t1 and the dehumanising949

comparison di can have only two possible950

intents: IN:DehumanisingComparison or951

IN:NotHateful — the latter applies when the tree952

also includes a negative stance expression. Sym-953

metrically, the trees containing t1 and thi
or ni can954

only have two possible intents: IN:NotHateful955

and IN:ThreateningSpeech or IN:Derogation,956

respectively. Suppose we define n trees for each957

cluster of support expressions si to satisfy C5 as958

described above:959

∀
i

|{tree | t1 ∈ tree ∧ si ∈ tree}| = n960

Since expressions of support can yield hateful in-961

tents only when associated to hate entities, and962

not protected targets, the n trees so defined would963

all have one possible intent only: IN:NotHateful.964

Constraint C1 requires t1 to occur with the same965

frequency across all classes. Because t1 would966

occur in n non-hateful trees, we would be forced967

to assign all n trees containing t1 and di to the968

dehumanisation class, without introducing any969

negative stance expression. Symmetrically, all970

trees combining t1 with thi
or ni would belong971

to the corresponding hateful classes. The result972

of these choices would be a dataset with no in-973

stances of counter speech4, a phenomenon that we974

want models to be able to recognise, and an over-975

representation of non-hateful instances with the976

same target-support structure, introducing a bias977

the model should not learn.978

Therefore, we need to find another way to com-979

bine t1 with si n times. We introduce the concepts980

of main tree and injected slots. The main tree of an981

example e is the set of slots that determines the in-982

tent of e, and can include up to 4 slots. The injected983

slots of e are slots that occur in the tree, but do not984

affect the final intent classification (see Figure 4).985

4Posts that may quote hate speech but where the author
explicitly rejects or disapproves of the harmful message.

Note that the grammar is designed to generate a 986

flat set of slot annotations for each post, without 987

any inherent hierarchical structure or distinction 988

between types of slots. The characterisation of one 989

set of slots as the “main tree” and others as “injec- 990

tions” is imposed as a post-processing step, added 991

to satisfy the constraints and facilitate the subse- 992

quent translation of trees into posts. For reference, 993

all instances in PLEAD would have the annotated 994

slots in the main tree, and 0 injected slots. With this 995

characterisation, we can satisfy C5 and associate t1 996

with si n times as follows: 997

∀
i
|{tree | t1 ∈ main(tree) ∧ si ∈ main(tree)}| = m 998

999
∀
i
|{tree | t1 ∈ main(tree) ∧ si ∈ inj(tree)}| = o 1000

1001
n = m+ o 1002

where main(x) is a function that returns the set of 1003

slots in the main tree of x, and inj(x) is a function 1004

that returns the set of injected slots in x. 1005

The distinction between main and injected slots 1006

is also central to satisfying constraints C2, C3, and 1007

C4, as it allows us to inject, for example, a threat, 1008

a hate entity, or a negative stance expression into 1009

an instance labeled as dehumanisation without al- 1010

tering its class. While satisfying the constraints 1011

requires many instances to include injected slots, 1012

we also aim to preserve simpler cases that contain 1013

only main-tree slots. To balance this, we enforce 1014

that ∼70% of the trees in U-PLEAD contain no in- 1015

jections, while the other half cover all required 1016

injections — possibly resulting in the generation 1017

of some large and complex trees. Table 5 pro- 1018

vides an overview of the tree structures in U-PLEAD 1019

and the number of instances corresponding to each 1020

structure. For instance, we generate 12,800 trees 1021

with the structure TpD in the main tree and no 1022

injected slots. Here, we slightly abuse notation 1023

by using Tp to indicate T restricted to protected 1024

targets. Since we select 40 clusters of protected tar- 1025

gets and 20 clusters of dehumanising comparisons, 1026

this results in 16 trees for each cluster pair ⟨ti, di⟩ 1027

(i.e.,xvn = 16). When clusters contain a sufficient 1028

number of spans, we sample without replacement 1029

to diversify the instances in the dataset; otherwise, 1030

sampling is done with replacement. 1031

Tree Post-Processing In the post-processing 1032

stage, we split the flat set of slots associated with 1033

each instance into a main tree and injected slots, 1034

assigning them a hierarchical structure. Since the 1035
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Main Tree Injected Slots N Main Tree Injected Slots N

S 39200 D 29600
Th 29600 N 29600
C 29600 TpC 25600
TpD 12800 TpTh 12800
TpS 12800 TpN 12800
TpN DTnpSSThTh 3786 TpD NNTnpSSTh 3737
TpTh DNNTnpSS 3736 TpN DDTnpSSTh 3718
TpD NTnpSSThTh 3699 TpTh DDNTnpSS 3686
TpD NNNsTnpSSTh 3333 TpTh DNNNsTnpSS 3297
TpTh DDNNsTnpSS 3295 TpD NNsTnpSSThTh 3264
TpN DNsTnpSSThTh 3254 TpN DDNsTnpSSTh 3241
ES 3200 TpDNs 3200
TpNsTh 3200 TpNsS 3200
TpNNs 3200 TnpD 3200
TnpTh 3200 TnpS 3200
TnpN 3200 TnpC 3200
TpS DNNsThTh 3005 TpS DNNsTnpThTh 2995
ED 2400 ETh 2400
ENsS 2400 EN 2400
TpS DNThTh 2289 TpD ENNSSTh 2275
TpTh DENNSS 2273 TpN DDESSTh 2237
TpD ENSSThTh 2200 TpTh DDENSS 2189
TpN DESSThTh 2184 TpS DNTnpThTh 2167
TpD ENNsSSThTh 2012 TpN DDENsSSTh 1997
TpTh DDENNsSS 1984 TpN DENsSSThTh 1983
TpTh DENNNsSS 1940 TpD ENNNsSSTh 1880
TpS DDNNsTnpTh 1847 TpS DDNNsTh 1767
TpS DDNTnpTh 1359 TpS DDNTh 1343
TpS DNNNsTh 1034 TpS DNNNsTnpTh 986
ES DNTnp 822 ES NTnpTh 817
TpS DNNTnpTh 810 ES DN 797
TpS DNNTh 765 ES NTh 764
TpS DNNThTh 755 TpS DNNTnpThTh 723
ES NsTh 645 TpS DDNNNsTnp 609
ES NsTnpTh 591 ES DNs 590
ES DNsTnp 574 TpN DNsTnpSThTh 560
TpS DDNNNs 557 TpD NNsTnpSThTh 546
TpTh DNNNsTnpS 529 TpTh DDNNsTnpS 528
TpN DDNsTnpSTh 515 TpD NNNsTnpSTh 502
TpTh DDNNsNsTnpS 486 TpN DDNsNsTnpSTh 482
TpS DDNNTnpTh 477 TpS DDNNTh 473
TpD NNNsNsTnpSTh 470 TpD NNsNsTnpSThTh 449
TpS DDNNTnp 446 TpN DNsNsTnpSThTh 444
TpTh DNNNsNsTnpS 443 TpS DDNN 421
TpTh DDENNsS 331 TpTh DENNNsS 328
TpD ENNNsSTh 323 TpD ENNsSThTh 318
TpD ENNsNsSThTh 312 TpN DDENsNsSTh 306
TpN DDENsSTh 304 TpTh DDENNsNsS 301
TpN DENsSThTh 296 TpN DENsNsSThTh 293
TpD ENNNsNsSTh 280 TpTh DENNNsNsS 254
TpS DNNNTnpTh 237 TpS DNNNTh 234
ES DTnp 212 ES D 205
ES Th 199 ES TnpTh 184
TpS DDNNN 157 TpS DDNNNTnp 144

Table 5: Distribution of tree structures in U-PLEAD. Each group shows a main tree structure, the injected slots (if
any), and the number of matching instances. We use Tp and Tnp to distinguish between protected and non-protected
targets.
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Main Tree: TpD Injected Slots: NNTnpSSTh

IN:Hateful

IN:Dehumanisation

Tp

D

IN:NotHateful

Tnp

N S Th

IN:NotHateful

<unspecified_target>

N S

Figure 4: Example of how the main-tree and injected
slots associated with an instance are organised into a
tree.

final intent label of an instance is, by definition, de-1036

termined by the main tree, the injected slots must be1037

organised into subtrees in such a way that they only1038

yield non-hateful intents (see Figure 4). We satisfy1039

this constraint by never allocating D, Th and N1040

to subtrees with protected targets. Symmetrically,1041

we never allocate S to subtrees with hate entities.1042

To prevent individual subtrees from becoming too1043

large, we allocate at most three occurrences of any1044

of the slots D, Th, N , and S per subtree. Non-1045

protected targets and hate entities, if present, are1046

distributed across the available subtrees. When1047

the total number of non-protected targets and hate1048

entities in an instance is smaller than the number1049

of subtrees (excluding the main tree), we assign1050

the special target token <unspecified_target>1051

to the remaining subtrees. As a result, these sub-1052

trees may contain, for example, a threat or a deroga-1053

tory opinion without a clearly identified target, re-1054

flecting instances where the intended target is left1055

implicit in the post. Splitting the slots into subtrees1056

(i.e., opinions) will also help us with the translation1057

of the trees into posts, as it allows to break down1058

the instructions into smaller prompts.1059

While trees in PLEAD are limited to three levels1060

— corresponding to intents, slots, and text spans —1061

we modify this structure by rooting the slots D, Th,1062

N , S and Ns under the target or hate entity they are1063

directed at. For protected targets, we additionally1064

root the protected characteristic slot beneath its cor-1065

responding target. This hierarchical structure better1066

captures instances where multiple expressions are1067

directed at the same target. Finally, we add an ad-1068

ditional binary intent layer at the top of the tree to1069

summarise the intents of all subtrees within an in-1070

stance. This layer is necessary to aggregate subtree-1071

level intent labels without requiring the selection of1072

a specific hateful intent, particularly in cases where1073

multiple subtrees express different types of hateful1074

content (e.g., threatening and derogatory). In fact, 1075

while U-PLEAD is designed such that only the main 1076

tree carries a hateful intent, a model trained un- 1077

der this framework may still produce outputs with 1078

multiple hateful subtrees. 1079

C Post Generation 1080

We convert the trees generated by our grammar 1081

into posts by first generating a draft of the posts 1082

using Vicuna-30B-uncensored5 in a few-shot set- 1083

ting. The instruction specifies which spans must 1084

occur in the post (possibly verbatim), and the role 1085

each span must play, together with a few in-context 1086

examples. The examples are selected from PLEAD 1087

to align with the structure of the tree for which 1088

we are generating a post (when possible). For in- 1089

stance, to generate a prompt associated to a tree 1090

with structure TX (X ∈ {D,Th, N}) we would 1091

prompt Vicuna with the following instruction: 1092

USER: Write a post where “Polish people” is target
of the opinion “are so nasty” because it belongs to
the group “Polish”. “Polish people” shouldn’t occur
at the beginning of the post.
ASSISTANT: Truly, I have been to Poland and
there’s nothing to see there. Polish people are so
nasty as well.

USER: Write a post where “women” is tar-
get of the opinion “should be shot” because it
belongs to the group “women”. “women” shouldn’t
occur at the beginning of the post.
ASSISTANT: Women should be shot? Agreed!

USER: Write a post where “a breastfeeding
woman” is target of the opinion “can do it at
home” because it belongs to the group “she”.

“a breastfeeding woman” shouldn’t occur at the
beginning of the post.
ASSISTANT: I don’t want to have to be around a
breastfeeding woman, if she wants to do that she can
do it at home

USER: ⟨input_tree⟩
ASSISTANT:

1093

We request the span corresponding to the target 1094

to not occur at the beginning of the post to prevent 1095

creating a dataset with strong positional biases. 1096

To improve fluency and ensure the spans are 1097

included in the posts, we refine them using GPT- 1098

3.5-Turbo. We simulate a two-step conversa- 1099

tion by providing our original instructions and 1100

Vicuna-generated output as messages in the history, 1101

prompting GPT to improve “its” previous response 1102

by simply repeating the instructions: 1103

5https://huggingface.co/cognitivecomputations
/Wizard-Vicuna-30B-Uncensored

14

https://huggingface.co/cognitivecomputations/Wizard-Vicuna-30B-Uncensored
https://huggingface.co/cognitivecomputations/Wizard-Vicuna-30B-Uncensored


USER: ⟨V icuna_instruction⟩
ASSISTANT: ⟨V icuna_output⟩
USER: ⟨V icuna_instruction⟩
ASSISTANT:

1104

If any of the requested spans cannot be found1105

in the generated post we perform additional gen-1106

eration rounds. We instruct GPT to explicitly tag1107

where each span appears in the post as follows:1108

USER: Post: ⟨GPT_output⟩
Copy and integrate all the following phrases in the
post verbatim:

• <span_0> span </span_0>

• <span_1> span </span_1>

• <span_n> span </span_n>

When inserting the spans in the post, include the
corresponding tags to mark start and end. The result
should be a single coherent post.
ASSISTANT:

1109

If the GPT output indicates the presence of a1110

span that does not exactly match the requested one,1111

we apply our clustering algorithm and retain the1112

span only if it belongs to the same cluster as the1113

requested span.1114

D Generalisation to Unseen1115

Combinations1116

D.1 Evaluation Metrics1117

In this section, we define the evaluation metrics1118

used in this study. For all metrics, higher values1119

indicate better performance.1120

Intent Classification We evaluate model perfor-1121

mance on the intent classification task, which is1122

equivalent to traditional black-box classification1123

in a multi-class setting, using Micro F1. This1124

metric treats each prediction equally, regardless1125

of its class, and therefore helps account for class1126

imbalance in the dataset. For models trained on1127

U-PLEAD, which may generate multiple trees per1128

instance, we define the final predicted intent to be1129

IN:NotHateful if and only if all generated trees1130

have this intent. For hateful instances, the predic-1131

tion is considered correct if any of the generated1132

trees contains the same hateful intent as the gold1133

annotation.1134

To assess robustness under more challenging1135

conditions, we also report performance using the1136

AAA (Adversarial Attacks against Abuse) met-1137

ric (Calabrese et al., 2021). AAA evaluates in-1138

tent classification in a binary setting, where all 1139

hateful intents are grouped under a single label 1140

(IN:Hateful), and IN:NotHateful remains un- 1141

changed. It penalizes models that rely on shallow 1142

lexical features by adversarially modifying the test 1143

set based on patterns seen during training. The final 1144

AAA score is computed as the geometric mean of 1145

the F1 scores across 4 adversarial scenarios. To 1146

date, models evaluated on AAA have performed no 1147

better than random. 1148

ICSF We evaluate model performance on the full 1149

ICSF task by measuring production F1 (PF1) and 1150

tree exact match accuracy (EMA). PF1 is com- 1151

puted by representing each parse tree as a set 1152

of production rules and calculating the F1 score 1153

over these sets (Quirk et al., 2015). In our setup, 1154

the productions are extracted at the token level: 1155

for example, tagging the span “are parasites” as 1156

SL:DehumanisingComparison yields two produc- 1157

tions: one linking the slot to “are” and one to 1158

“parasites”. 1159

EMA measures the percentage of predictions in 1160

which the entire set of productions exactly matches 1161

the reference annotation for an instance. The com- 1162

parison is set-based, meaning that all slots and their 1163

corresponding spans must be correct, but the or- 1164

der in which they are produced does not affect the 1165

score. 1166

Since both PLEAD and TARGET provide only a 1167

single annotated tree per instance, while models 1168

trained on U-PLEAD can generate multiple candi- 1169

date trees, we evaluate ICSF metrics only on the 1170

output tree that is closest to the reference. 1171

D.2 Parameters 1172

We fine-tuned Gemma-2-9B6 and LLaMA-3.1-8B7 1173

on a NVIDIA H100-80GB GPU with a per-device 1174

batch size of 2 and gradient accumulation over 4 1175

steps. We used a learning rate of 2× 10−4 with a 1176

linear learning rate scheduler and 5 warmup steps. 1177

We used the AdamW optimizer with 8-bit precision 1178

and applied a weight decay of 0.01. The classifica- 1179

tion and ICSF models were fine-tuned for up to 25 1180

and 15 epochs, respectively. Fine-tuning Gemma 1181

for 1 epoch required ∼ 12 minutes for classification 1182

and ∼ 53 minutes for ICSF. Statistics for LLaMA 1183

are 7 minutes/epoch for classification and ∼ 33 1184

minutes/epoch for ICSF. 1185

6https://huggingface.co/google/gemma-2-9b
7https://huggingface.co/meta-llama/Llama-3.1

-8B
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For inference we sample only one output with1186

nucleus sampling probability of 0.95 and temper-1187

aure set to 0.8.1188

D.3 Model Output Examples1189

This section contains examples of outputs gener-1190

ated by Gemma when trained using different pro-1191

portions of U-PLEAD.1192

Experiments on PLEAD The experiments in1193

Section 4.2 show that up to 75% of the PLEAD1194

training set can be replaced with U-PLEAD instances1195

without significantly affecting the in-domain per-1196

formance of ICSF models, both in terms of classi-1197

fication and parsing accuracy. Figure 5 illustrates1198

this by comparing the output of the Gemma model1199

on a hateful PLEAD post under different training1200

settings. When 75% of the training data is replaced,1201

the model’s prediction remains largely consistent1202

with the original, demonstrating robust retention1203

of the target structure. However, as the proportion1204

of synthetic data increases to 90%, the model be-1205

gins to show noticeable changes, and when trained1206

exclusively on U-PLEAD, its output diverges sub-1207

stantially. In this case, the model fails to reflect key1208

characteristics of the original PLEAD data — such1209

as the typical structure of parse trees — and instead1210

produces outputs with many more slot annotations.1211

While each individual slot label may appear rea-1212

sonable, the way they are combined is incorrect,1213

leading to misinterpretation of the overall intent.1214

The prediction of the classification model on the1215

other hand remained correct across all the training1216

settings.1217

Experiments on TARGET When evaluating on the1218

TARGET benchmark we observe a different trend,1219

with Gemma’s outputs getting closer to the anno-1220

tated tree as more instances from U-PLEAD are in-1221

cluded in the training set. For instance, Figure 61222

shows a case where the intent prediction remains1223

correct across all ICSF training settings, while the1224

accuracy of the output tree improves gradually.1225

In contrast, for the same example, the classifica-1226

tion setting does not benefit from the inclusion of1227

U-PLEAD data: Gemma’s prediction shifts from the1228

correct hateful intent to an incorrect, yet still hate-1229

ful one, and ultimately to a non-hateful intent.1230

Figure 6 shows an example where improvements1231

in the accuracy of the generated tree lead to a shift1232

from an incorrect to a correct intent prediction. In1233

contrast, the classification model’s prediction re-1234

Model Setting %U-PLEAD Micro F1

Gemma Cls 90% 51.53
Gemma Cls 100% 41.92

Gemma ICSF 90% 50.51
Gemma ICSF 100% 46.75

LLaMA Cls 90% 47.14
LLaMA Cls 100% 43.03

LLaMA ICSF 90% 47.97
LLaMA ICSF 100% 47.23

Table 6: Model performance (Micro F1) on TARGET
using different proportions of U-PLEAD for training. Re-
sults are reported for intent classification (Cls) alone
and in combination with slot filling (ICSF).

Model %U-PLEAD PF1 EMA

Gemma 90% 46.53 6.06
Gemma 100% 44.72 5.45

LLaMA 90% 45.05 5.55
LLaMA 100% 45.21 5.61

Table 7: Model performance on intent classification and
slot filling task (ICSF) using production F1 (PF1) and
exact match (EMA) metrics. Results are reported on
the TARGET benchmark using different proportions of
U-PLEAD for training.

mains consistently incorrect across all training set- 1235

tings. 1236

D.4 Additional results on TARGET 1237

Tables 6 and 7 report the aggregated scores on 1238

TARGET for models trained on the 90%/10% and 1239

100%/0% training sets. Tables 8 to 15 show the the 1240

results for Gemma and LLaMa on the individual 1241

test cases in TARGET. 1242
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Post: “Has this happened to anyone? I just can’t put aside racial evolution, it just doesn’t make sense to. And even if it’s ‘just
skin color’, my skin color, blue eyes, and blond hair are a lot better than those who look like primates or joos who look like rat

creatures. Most of the world’s ‘white supremacists’ aren’t even white, it seems like a lot of races inherently realize we’re
superior anyway. Like a filipino girl asked me once ‘how does it feel to be god’s favorite’. Is there any way to hypothetically

untake the redpill? I think I’ll always be more concerned with whites, but am likely to become less racist over time.”

Ground truth in PLEAD
IN:Hateful

IN:Dehumanisation

SL:Target
joos

SL:ProtectedCharacteristic
joos

SL:DehumanisingComparison
like primates or joos who

look like rat creatures

0% U-PLEAD

ICSF

IN:Hateful

IN:Dehumanisation

SL:Target
joos

SL:Protected
Characteristic

joos

SL:Dehumanising
Comparison
who look like
rat creatures

75% U-PLEAD

ICSF

IN:Hateful

IN:Dehumanisation

SL:Target
joos

SL:Protected
Characteristic

joos

SL:Dehumanising
Comparison
rat creatures

90% U-PLEAD

ICSF

IN:Hateful

IN:Dehumanisation

SL:Target
those who look like rat creatures

SL:Protected
Characteristic

joos

SL:Dehumanising
Comparison
rat creatures

100% U-PLEAD

ICSF

IN:Hateful

IN:NotHateful

SL:Target
<unspecified_target>

SL:Threatening
Speech

untake the redpill

SL:Support
HateCrimes

i think i’ll always be
more concerned with whites
but am likely to become less

racist over time

IN:NotHateful

SL:HateEntity
most of the world’s white supremacists

SL:Dehumanising
Comparison

look like primates

SL:Dehumanising
Comparison

joos who look like
rat creatures

IN:Derogation

SL:Target
a filipino girl

SL:Protected
Characteristic

filipino

SL:Negative
Opinion

how does it feel to
be god’s favorite

0% U-PLEAD

Classification
Dehumanisation

75% U-PLEAD

Classification
Dehumanisation

90% U-PLEAD

Classification
Dehumanisation

100% U-PLEAD

Classification
Dehumanisation

Figure 5: Example of a hateful post from PLEAD and how Gemma’s predictions change depending on the proportion
of U-PLEAD used for training, under both the ICSF and classification settings.
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Post: “The Wang family , who are Taiwanese , have been predating on is my pastime for years. It’s my pastime now to seek
revenge on them.”

Ground truth in TARGET
IN:Threatening

SL:Target
The Wang Family

SL:ProtectedCharacteristic
Taiwanese

SL:ThreateningSpeech
predating on is my pastime

0% U-PLEAD

ICSF

IN:Threatening

SL:Target
The Wang Family

SL:Protected
Characteristic

Wang

SL:Threatening
Speech
who are

Taiwanese

75% U-PLEAD

ICSF

IN:Threatening

SL:Target
The Wang Family

SL:Protected
Characteristic

Taiwanese

SL:Threatening
Speech
now to

seek revenge

90% U-PLEAD

ICSF

IN:Threatening

SL:Target
The Wang Family

SL:Protected
Characteristic

Taiwanese

SL:Threatening
Speech

predating on
is my pastime

100% U-PLEAD

ICSF

IN:Threatening

SL:Target
The Wang Family

SL:Protected
Characteristic

Taiwanese

SL:Threatening
Speech

predating on
is my pastime

Classification
Threatening

Classification
Threatening

Classification
Dehumanisation

Classification
Not-Hateful

Figure 6: Example of a hateful post from Test 1 in TARGET and how Gemma’s predictions change depending on the
proportion of U-PLEAD used for training, under both the ICSF and classification settings.

Post: “Despotic despotic leaders are so underrated. it’s definitely ok for to hate anyone who disagrees with that opinion.”

Ground truth in TARGET
IN:ProHateCrimes

SL:HateEntity
Despotic

SL:SupportHateCrimes
it’s definitely ok for to hate

0% U-PLEAD

ICSF

IN:NotHateful

SL:Target
Despotic despotic leaders

SL:NegativeOpinion
are so underrated

75% U-PLEAD

ICSF

IN:NotHateful

SL:HateEntity
The Wang Family

SL:NegativeOpinion
it’s definitely ok for to hate

90% U-PLEAD

ICSF

IN:ProHateCrimes

SL:HateEntity
Despotic

SL:SupportHateCrimes
it’s definitely ok for to hate

100% U-PLEAD

ICSF

IN:ProHateCrimes

SL:HateEntity
Despotic

SL:SupportHateCrimes
it’s definitely ok for to hate

Classification
Not-Hateful

Classification
Not-Hateful

Classification
Not-Hateful

Classification
Not-Hateful

Figure 7: Example of a hateful post from Test 1b in TARGET and how Gemma’s predictions change depending on the
proportion of U-PLEAD used for training, under both the ICSF and classification settings.
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Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 50.62 — —
Gemma Cls 75% 53.40 — —
Gemma Cls 90% 52.53 — —
Gemma Cls 100% 50.30 — —

Gemma ICSF 0% 56.25 40.96 1.39
Gemma ICSF 75% 60.14 53.44 6.70
Gemma ICSF 90% 60.84 54.81 7.76
Gemma ICSF 100% 55.13 53.24 6.10

LLaMA Cls 0% 50.87 — —
LLaMA Cls 75% 51.88 — —
LLaMA Cls 90% 53.42 — —
LLaMA Cls 100% 51.31 — —

LLaMA ICSF 0% 53.84 38.48 1.09
LLaMA ICSF 75% 56.03 52.51 6.37
LLaMA ICSF 90% 55.78 53.66 6.10
LLaMA ICSF 100% 53.42 52.27 6.08

Table 8: Micro F1, PF1 and EMA scores on TARGET’s Test 1 for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.

Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 56.40 — —
Gemma Cls 75% 56.89 — —
Gemma Cls 90% 55.41 — —
Gemma Cls 100% 53.86 — —

Gemma ICSF 0% 60.41 43.79 1.92
Gemma ICSF 75% 59.70 53.48 9.61
Gemma ICSF 90% 59.29 53.76 9.70
Gemma ICSF 100% 54.80 52.65 8.98

LLaMA Cls 0% 56.02 — —
LLaMA Cls 75% 52.96 — —
LLaMA Cls 90% 56.50 — —
LLaMA Cls 100% 52.79 — —

LLaMA ICSF 0% 59.34 41.73 1.36
LLaMA ICSF 75% 58.42 52.82 9.19
LLaMA ICSF 90% 55.36 52.80 8.73
LLaMA ICSF 100% 53.98 51.24 8.20

Table 9: Micro F1, PF1 and EMA scores on TARGET’s Test 2 for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.
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Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 59.37 — —
Gemma Cls 75% 70.59 — —
Gemma Cls 90% 77.22 — —
Gemma Cls 100% 71.02 — —

Gemma ICSF 0% 75.81 40.93 0.14
Gemma ICSF 75% 63.18 53.55 3.40
Gemma ICSF 90% 64.71 54.04 3.35
Gemma ICSF 100% 59.10 51.86 2.94

LLaMA Cls 0% 70.91 — —
LLaMA Cls 75% 72.22 — —
LLaMA Cls 90% 74.04 — —
LLaMA Cls 100% 67.78 — —

LLaMA ICSF 0% 68.87 39.03 0.24
LLaMA ICSF 75% 63.46 52.63 2.18
LLaMA ICSF 90% 55.89 51.90 2.97
LLaMA ICSF 100% 58.15 53.73 3.32

Table 10: Micro F1, PF1 and EMA scores on TARGET’s Test 3 for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.

Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 50.62 — —
Gemma Cls 75% 52.50 — —
Gemma Cls 90% 52.95 — —
Gemma Cls 100% 51.08 — —

Gemma ICSF 0% 55.41 38.95 0.96
Gemma ICSF 75% 57.44 49.35 4.89
Gemma ICSF 90% 57.67 51.12 5.04
Gemma ICSF 100% 53.99 49.72 4.31

LLaMA Cls 0% 50.72 — —
LLaMA Cls 75% 51.36 — —
LLaMA Cls 90% 53.23 — —
LLaMA Cls 100% 51.76 — —

LLaMA ICSF 0% 51.76 35.99 0.79
LLaMA ICSF 75% 54.17 48.07 4.66
LLaMA ICSF 90% 52.98 49.20 4.01
LLaMA ICSF 100% 50.87 48.63 4.41

Table 11: Micro F1, PF1 and EMA scores on TARGET’s Test 4 for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.
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Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 23.97 — —
Gemma Cls 75% 32.71 — —
Gemma Cls 90% 35.82 — —
Gemma Cls 100% 23.95 — —

Gemma ICSF 0% 20.86 10.65 0.95
Gemma ICSF 75% 30.89 33.44 8.81
Gemma ICSF 90% 31.42 35.50 8.91
Gemma ICSF 100% 29.62 34.85 9.46

LLaMA Cls 0% 24.12 — —
LLaMA Cls 75% 34.53 — —
LLaMA Cls 90% 29.50 — —
LLaMA Cls 100% 27.38 — —

LLaMA ICSF 0% 23.70 12.25 1.12
LLaMA ICSF 75% 30.79 32.82 9.43
LLaMA ICSF 90% 32.74 33.63 9.16
LLaMA ICSF 100% 31.34 35.38 8.71

Table 12: Micro F1, PF1 and EMA scores on TARGET’s Test 1b for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.

Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 55.26 — —
Gemma Cls 75% 44.71 — —
Gemma Cls 90% 45.59 — —
Gemma Cls 100% 24.84 — —

Gemma ICSF 0% 55.66 26.73 1.41
Gemma ICSF 75% 59.16 51.41 10.42
Gemma ICSF 90% 62.70 54.54 12.16
Gemma ICSF 100% 53.48 49.37 9.57

LLaMA Cls 0% 55.51 — —
LLaMA Cls 75% 47.65 — —
LLaMA Cls 90% 38.91 — —
LLaMA Cls 100% 26.45 — —

LLaMA ICSF 0% 55.92 27.21 1.28
LLaMA ICSF 75% 61.87 51.07 10.75
LLaMA ICSF 90% 64.86 51.95 11.33
LLaMA ICSF 100% 53.86 49.90 10.17

Table 13: Micro F1, PF1 and EMA scores on TARGET’s Test 2b for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.
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Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 73.40 — —
Gemma Cls 75% 73.35 — —
Gemma Cls 90% 78.53 — —
Gemma Cls 100% 78.98 — —

Gemma ICSF 0% 66.77 8.29 0.00
Gemma ICSF 75% 64.37 50.02 2.85
Gemma ICSF 90% 57.94 50.32 2.65
Gemma ICSF 100% 57.73 48.02 2.35

LLaMA Cls 0% 72.45 — —
LLaMA Cls 75% 70.80 — —
LLaMA Cls 90% 72.85 — —
LLaMA Cls 100% 75.09 — —

LLaMA ICSF 0% 64.80 8.04 0.00
LLaMA ICSF 75% 53.72 49.23 2.37
LLaMA ICSF 90% 46.96 49.41 2.32
LLaMA ICSF 100% 61.47 50.26 2.67

Table 14: Micro F1, PF1 and EMA scores on TARGET’s Test 3b for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.

Model Setting % Gen. Data Micro F1 (%) PF1 (%) EMA (%)

Gemma Cls 0% 24.80 — —
Gemma Cls 75% 28.51 — —
Gemma Cls 90% 32.57 — —
Gemma Cls 100% 20.65 — —

Gemma ICSF 0% 21.29 11.39 0.87
Gemma ICSF 75% 26.90 25.79 5.32
Gemma ICSF 90% 27.60 27.69 5.00
Gemma ICSF 100% 25.87 26.78 5.32

LLaMA Cls 0% 23.32 — —
LLaMA Cls 75% 30.49 — —
LLaMA Cls 90% 24.51 — —
LLaMA Cls 100% 22.75 — —

LLaMA ICSF 0% 22.40 12.23 1.04
LLaMA ICSF 75% 29.01 26.82 5.91
LLaMA ICSF 90% 30.74 27.19 5.91
LLaMA ICSF 100% 27.97 28.10 5.66

Table 15: Micro F1, PF1 and EMA scores on TARGET’s Test 4b for Gemma-2-9B and LLaMA-3.1-8B across different
settings and proportions of generated data.
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