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Abstract

We propose a compact and modular student architecture001
for knowledge distillation (KD) based on a sparse Mixture-002
of-Experts (MoE) framework. Unlike conventional dense003
student models, our design uses a set of lightweight, class-004
agnostic experts whose outputs are dynamically routed via005
input-conditioned gating. We systematically compare multi-006
ple routing strategies—soft, top-k, and attention-enhanced007
variants—and evaluate their impact across accuracy, com-008
putational cost, and expert utilization. Experiments on009
CIFAR-10 and CIFAR-100 show that sparse MoE students010
not only outperform dense baselines under similar or lower011
resource budgets, but also achieve superior parameter-012
efficiency and more consistent expert usage. Notably,013
attention-based routing consistently yields the best trade-014
off between accuracy and cost. Our findings highlight the015
structural benefits of modular sparse students in KD, offer-016
ing improved generalization, interpretability, and efficiency017
without requiring class supervision.018

1. Introduction019

Knowledge distillation (KD) is a widely adopted paradigm020
for compressing large neural networks into compact student021
models [5, 15]. Traditionally, student architectures are de-022
signed as dense, monolithic networks trained to mimic a023
teacher’s behavior via soft label supervision. While effec-024
tive, such students lack structural flexibility and often strug-025
gle to balance efficiency, interpretability, and performance.026

To address this, we propose a sparse Mixture-of-Experts027
(MoE) architecture as an alternative student model for KD.028
Our design replaces the single dense backbone with a set of029
lightweight, class-agnostic experts, whose outputs are dy-030
namically routed based on input-conditioned gating. This031
structure enables conditional computation, modular special-032
ization, and parameter sparsity—making it well-suited for033
efficient knowledge transfer.034

An overview of our framework is shown in Figure 1. The035
input is passed through both a teacher network and the mod-036
ular MoE student. The student comprises a gating network037

and a pool of lightweight experts. Predictions are formed 038
via expert aggregation, and the student is trained using a 039
combination of distillation and supervised losses. 040

Unlike class-specific MoE students [6, 17], our model 041
is class-agnostic and does not rely on explicit supervision 042
or task partitioning. We evaluate multiple routing strate- 043
gies—soft, top-k, and attention-based—and analyze their 044
effects on accuracy, efficiency, and scalability. 045

Contributions. Our main contributions are: 046

• We propose a sparse MoE student architecture for KD 047
with class-agnostic expert modules and input-dependent 048
routing. 049

• We conduct a systematic comparison of routing strategies 050
and analyze expert count and selection trade-offs. 051

• We show that sparse MoE students outperform dense 052
baselines and even the teacher under comparable or lower 053
compute. 054

Related Work. Knowledge distillation (KD) was first in- 055
troduced by Hinton et al. [5] and has since been extended 056
by approaches that refine loss formulations [12, 15], utilize 057
intermediate supervision [15]. 058

Mixture-of-Experts (MoE) architectures have been 059
widely explored to scale model capacity using conditional 060
computation [3, 4, 8, 16], with follow-ups improving in- 061
ference [18] and training stability [9, 14]. More re- 062
cently, works like OpenMoE [11] and Mixtral [7] have 063
brought MoE into large-scale language models, while 064
MegaBlocks [14] and MoE-LoRA [1] explore efficient MoE 065
training and fine-tuning. 066

However, these MoE models are typically heavyweight 067
and not suited for compact student architectures. Prior 068
MoE-based KD methods such as class-specialized KD [17] 069
and Specific Expert Learning (SEL) [6] rely on class- 070
conditional expert assignment or label supervision. Our 071
work departs from this by proposing a class-agnostic MoE 072
student architecture with lightweight experts and input- 073
conditioned routing, better suited for efficient, modular dis- 074
tillation. 075

1



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. Overview of our knowledge distillation framework. The input is passed through both the teacher model and the sparse MoE
student. The student uses a gating network to aggregate expert outputs, and is trained via both distillation loss from the teacher and standard
cross-entropy with ground-truth labels.

2. Method076

We propose a modular student model based on a sparse077
Mixture-of-Experts (MoE) architecture [16] for knowledge078
distillation. The design introduces a set of lightweight ex-079
perts and a gating network that dynamically selects experts080
for each input. Unlike class-specific expert models [6, 17],081
all expert modules in our framework are class-agnostic and082
shared across categories. Routing decisions are made solely083
based on input features, enabling scalable and flexible ex-084
pert specialization [9].085

2.1. Mixture-of-Experts Student Architecture086

Given an input image x ∈ RC×H×W , the MoE student con-087
sists of:088

• A set of N expert networks {Ei}Ni=1, where each expert089
Ei(x) ∈ RK outputs logits over K classes.090

• A gating network G(x) ∈ RN that produces a softmax091
distribution over the N experts:092

G(x) = softmax(Wgfg(x)), (1)093

where fg(x) is a feature extractor and Wg is a linear pro-094
jection layer.095

The final prediction ŷ is computed as a weighted sum096
over the expert outputs:097

ŷ =

N∑
i=1

Gi(x) · Ei(x). (2)098

This formulation corresponds to soft routing [10],099
where all experts are evaluated and their predictions are ag-100
gregated using the gating weights.101

The overall training pipeline is visualized in Figure 1. 102
The input passes through both the teacher and student net- 103
works, with gating-based expert selection and joint opti- 104
mization of classification and distillation losses. 105

Compared to dense student models, our MoE framework 106
introduces explicit modularity through expert decomposi- 107
tion [2], allowing for specialization. The gating network 108
not only selects relevant experts, but also implements a soft 109
mixture policy that enables ensemble-like behavior. Since 110
experts are compact and structurally identical, the overall 111
architecture remains lightweight and scalable [14]. 112

2.2. Routing Variants 113

We explore three routing mechanisms, each trading off 114
computational sparsity and selection expressiveness. 115

Soft Routing. All experts are evaluated and combined us- 116
ing the gating weights G(x), as in Eq. (2). This yields a 117
smooth ensemble that distributes computation and gradient 118
flow across all experts. While we do not explicitly enforce 119
expert balance, soft routing tends to encourage broader ex- 120
pert usage and stable training dynamics. 121

Top-k Routing. To promote sparsity, we select only 122
the top-k experts with the highest gating scores. Let 123
TopK(G(x), k) denote the top-k expert indices, and G̃i(x) 124
the renormalized weights: 125

ŷ =
∑

i∈TopK(G(x),k)

G̃i(x) · Ei(x). (3) 126

2



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

This strategy mimics hard expert selection [4], reducing127
computational cost. However, it can introduce expert im-128
balance or instability due to non-differentiable selection and129
sharp gating decisions [13].130

Attention-Based Routing. We replace the standard MLP131
gating with a lightweight self-attention mechanism over132
spatial features of x [9]. Input features are flattened into133
a sequence and passed through an attention block, yielding134
a context-aware embedding. Gating scores are then com-135
puted as:136

G(x) = softmax(Wg · Attn(fg(x))), (4)137

where Attn(·) denotes the self-attention module. This input-138
aware routing allows expert selection to reflect spatial struc-139
ture and global context.140

We illustrate these routing strategies in Figure 2, which141
compares soft, attention-based, top-1, and top-2 routing in142
terms of expert activation and sparsity.143

Empirically, attention-based routing achieves the best144
trade-off between accuracy and efficiency in our experi-145
ments. Figure 2 highlights how different mechanisms bal-146
ance computation and flexibility in expert selection.147

2.3. Knowledge Distillation Objective148

We train the MoE student with a fixed teacher model149
T (x) ∈ RK . Following the standard KD paradigm [5], the150
loss combines distillation and cross-entropy objectives:151

Ltotal = α · LKD + (1− α) · LCE, (5)152

where α ∈ [0, 1] balances the two losses.153
The distillation term uses Kullback–Leibler divergence154

between softened outputs:155

LKD = KL
(

softmax
(
T (x)

T

)∥∥∥∥log softmax
(
ŷ

T

))
,

(6)156
where T is the temperature parameter (fixed to T = 2.0).157

The supervised loss is the standard cross-entropy:158

LCE = −
K∑
j=1

yj log softmax(ŷ)j . (7)159

Here, the temperature T smooths the logits to reveal160
relative probabilities over non-maximal classes, providing161
richer supervisory signals. The combined objective encour-162
ages the student to mimic teacher outputs while learning163
true labels.164

In practice, this joint training stabilizes learning and165
helps experts form complementary decision boundaries. In166
sparse routing settings, where only a few experts are active167
per input, the soft targets further encourage specialization168
and consistent learning across modules.169

Figure 2. Overview of expert routing strategies in our sparse MoE
student architecture. (Top left) Soft routing: all experts are evalu-
ated and weighted by softmax scores. (Top right) Attention-based
routing: the gating network uses spatially-aware self-attention.
(Bottom left) Top-1 routing: only one expert is selected for each
input. (Bottom right) Top-2 routing: the top-2 scoring experts
contribute to prediction.

3. Experiments 170

3.1. Experimental Setup 171

We evaluate our sparse MoE student architecture on 172
CIFAR-10 and extend to CIFAR-100 for generalization. 173
The teacher is a ResNet-34 trained with cross-entropy loss. 174
The dense student is a compact CNN with two convolu- 175
tional layers and approximately 60K parameters. MoE stu- 176
dents consist of 3, 5, or 10 lightweight experts, each identi- 177
cal in structure to the dense student. 178

We compare four routing strategies: soft, attention- 179
based, top-1, and top-2. All models are trained for 5 epochs 180
using knowledge distillation with a temperature of T = 2.0 181
and loss weighting factor α = 0.5. Evaluation metrics in- 182
clude top-1 accuracy, parameter count, FLOPs (computed 183
via fvcore), inference latency (per-image using CUDA 184
timers), and peak memory usage. 185

3.2. Main Results on CIFAR-10 186

Table 1 presents selected CIFAR-10 results. The dense 187
student outperforms the teacher (71.19% vs. 69.90%) de- 188
spite being 340× smaller in parameter count and 9× cheaper 189
in FLOPs. Among MoE students, Top-1 (3) achieves 190
the highest accuracy (71.93%), while Top-2 (5) yields the 191
best efficiency-accuracy trade-off with only 12.9M FLOPs. 192
Attention-based (5) routing performs competitively across 193
all metrics. 194

Figure 3 further confirms that sparse MoE students can 195
outperform both teacher and dense baselines under lower 196
computational cost. In particular, Top-2 (5) and Atten- 197
tion (5) models offer compelling trade-offs, supporting the 198
claim that modular sparsity enables more scalable and in- 199
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Table 1. Selected CIFAR-10 results. Full results across 13 MoE
variants are in Appendix 6.

Model Acc. (%) Params FLOPs

Teacher (ResNet-34) 69.90 21.3M 74.9M
Dense Student 71.19 62K 8.4M
Top-1 MoE (3) 71.93 183K 19.7M
Top-2 MoE (5) 71.62 317K 12.9M
Attn MoE (5) 71.84 303K 31.0M
Top-1 MoE (10) 64.74 629K 5.6M

Figure 3. Accuracy vs. FLOPs on CIFAR-10. MoE students
(squares) lie above the dense and teacher baselines (triangle and
circle), defining a new Pareto frontier in the efficiency-accuracy
space.

terpretable student designs.200

3.3. Generalization to CIFAR-100201

To evaluate generalization, we replicate all configurations202
on CIFAR-100, a more fine-grained dataset. Full results are203
reported in Appendix 7. Despite the increased task com-204
plexity, MoE students retain their advantages. The dense205
student achieves 36.70% accuracy, while the best MoE vari-206
ant (Attention-based with 5 experts) reaches 39.25%, out-207
performing the baseline under similar compute. This trend208
indicates that sparse expert models remain effective even in209
high-label settings, validating their broader applicability.210

4. Ablation and Analysis211

4.1. Effect of Expert Count212

We compare MoE students with 3, 5, and 10 experts under213
each routing strategy. From Table 1, we observe that soft214
and attention routing show stable or slightly improved per-215
formance as the number of experts increases. However, top-216
1 routing leads to performance degradation at larger N (e.g.,217
Top-1 (10): 64.74%), indicating instability or undertraining218
of experts. Top-2 routing maintains competitive accuracy219

across expert sizes, showing robustness to scale. 220

4.2. Routing Trade-offs 221

Top-1 routing achieves the highest accuracy in small-scale 222
setups (e.g., Top-1 (3): 71.93%), but is sensitive to expert 223
scaling. Attention-based routing yields consistently strong 224
performance and shows resilience to architectural variation. 225
Top-2 routing offers a strong balance between sparsity and 226
stability. 227

4.3. Efficiency Considerations 228

While soft routing achieves stable accuracy, it incurs the 229
highest computational cost due to full expert activation. 230
Top-2 routing reduces FLOPs significantly while maintain- 231
ing competitive performance, especially as expert count in- 232
creases. This confirms that sparse expert utilization can 233
yield favorable trade-offs without explicit expert pruning or 234
manual selection heuristics. 235

4.4. Discussion 236

Our findings suggest that the effectiveness of sparse MoE 237
students depends not only on the number of experts, but also 238
on the expressiveness of the gating mechanism. While hard 239
routing (e.g., Top-1) can achieve high accuracy under tight 240
budgets, it does not scale well. Attention-enhanced soft 241
routing generalizes better across expert sizes and enables 242
more stable training. These insights indicate that routing 243
design is as critical as model architecture in sparse modular 244
distillation. 245

5. Conclusion and Limitations 246

We presented a compact and modular student architec- 247
ture for knowledge distillation based on a sparse Mixture- 248
of-Experts framework. By combining class-agnostic ex- 249
pert modules with input-conditioned routing, our method 250
improves accuracy under constrained compute budgets. 251
Through extensive evaluation on CIFAR-10, we demon- 252
strated that sparse MoE students can outperform dense 253
baselines and even the teacher model, particularly when us- 254
ing attention or top-k routing strategies. 255

Our analysis shows that routing design plays a critical 256
role in balancing efficiency and performance. Top-1 routing 257
offers maximal sparsity but is sensitive to the number of ex- 258
perts, while attention-based gating provides robustness and 259
consistent gains. 260

Limitations. Our experiments are limited to small-scale 261
image classification tasks (CIFAR-10/100), and we do not 262
perform interpretability or expert specialization analysis. 263
Future work may extend this framework to larger datasets, 264
hierarchical routing, or unsupervised expert specialization. 265
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Supplementary Material

6. Full CIFAR-10 Results324

Table 2 provides the complete results for all 13 MoE config-325
urations evaluated on CIFAR-10. Metrics include test accu-326
racy, total parameter count, FLOPs per image, latency (ms),327
and peak GPU memory (MB).328

7. Full CIFAR-100 Results329

Table 3 shows the accuracy and compute statistics for all330
MoE variants tested on CIFAR-100. Although the classifi-331
cation task is more challenging, attention- and top-2-based332
routing consistently outperform the dense student baseline.333

8. Additional Implementation Details334

• Training settings: All models are trained for 50 epochs335
using the Adam optimizer with learning rate 0.001 and336
batch size 64.337

• Gating network: A lightweight CNN-based gating net-338
work is used for soft and top-k routing. For atten-339
tion routing, we use a single-head self-attention with 16-340
dimensional embedding.341

• Compute environment: All experiments were run on a342
single NVIDIA A5000 GPU using PyTorch 2.0.343

• FLOPs and memory: FLOPs are computed us-344
ing fvcore, and peak memory is recorded using345
torch.cuda.max memory allocated.346
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Table 2. Full results on CIFAR-10. All MoE students are class-agnostic with N ∈ {3, 5, 10} experts. Accuracy, latency, and FLOPs are
measured on the test set.

Model Accuracy (%) Params FLOPs Latency (ms) Peak Memory (MB)

Teacher (ResNet-34) 69.90 21.3M 74.9M 1.63 94.2
Dense Student 71.19 62K 8.4M 0.32 2.36
moe3 70.67 192K 18.6M 0.39 1.77
moe5 70.71 317K 29.8M 0.60 2.25
moe10 68.93 629K 58.1M 1.00 3.45
att3 71.83 183K 19.7M 0.49 2.82
att5 71.84 303K 31.0M 0.69 3.29
att10 71.69 605K 59.2M 1.13 4.44
top1 3 71.93 183K 19.7M 0.49 2.82
top1 5 66.30 317K 5.6M 0.23 2.25
top1 10 64.74 629K 5.6M 0.23 3.44
top2 3 71.04 192K 12.9M 0.38 1.77
top2 5 71.62 317K 12.9M 0.37 2.25
top2 10 71.21 629K 12.9M 0.38 3.44

Table 3. Full results on CIFAR-100. MoE students are evaluated with the same configurations as CIFAR-10.

Model Accuracy (%) Params FLOPs Latency (ms) Peak Memory (MB)

Teacher (ResNet-34) 41.16 21.3M 74.9M 1.75 94.4
Dense Student 36.70 436K 7.6M 0.23 2.69
moe3 37.56 1.30M 19.7M 0.38 5.99
moe5 37.15 2.16M 31.7M 0.55 9.28
moe10 36.94 4.32M 61.8M 1.02 17.51
att3 38.62 1.29M 20.8M 0.51 7.04
att5 39.25 2.15M 32.9M 0.68 10.32
att10 38.64 4.29M 62.9M 1.15 18.51
top1 3 31.30 1.30M 6.0M 0.23 5.99
top1 5 31.76 2.16M 6.0M 0.23 9.28
top1 10 30.17 4.32M 6.0M 0.23 17.50
top2 3 37.40 1.30M 13.7M 0.36 5.99
top2 5 36.36 2.16M 13.7M 0.36 9.28
top2 10 36.58 4.32M 13.7M 0.36 17.51
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