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Abstract

Single-cell spatial transcriptomics enables high-
resolution insights into tissue organization and
cell-cell interactions, yet poses significant compu-
tational and modeling challenges due to its scale
and complexity. Here we introduce AIDO.Tissue,
a spatially-informed pretraining framework. The
design employs multiple cells as input and an
asymmetric encoder-decoder architecture, mak-
ing it effectively encodes cross-cell dependencies
while scaling to large data. Systematic evalua-
tion shows that our method scales with neighbor-
ing size and achieves state-of-the-art performance
across diverse downstream tasks, including spatial
cell type classification, cell niche type prediction
and cell density estimation. These results high-
light the importance of multi-scale spatial context
in building general-purpose foundation models
for tissue-level understanding.

1. Introduction

Spatial transcriptomics technologies have enabled simulta-
neous measurement of gene expression and spatial coordi-
nates across hundreds of thousands of cells, revealing criti-
cal spatial organization principles in diverse tissues (Marx,
2021; Moses & Pachter, 2022). These datasets capture
essential cellular interactions, including cell-cell communi-
cation and spatial gradients that define tissue microenviron-
ments (Fischer et al., 2023; Varrone et al., 2024). As spatial
omics data continues to grow in scale, it presents an oppor-
tunity to learn spatially aware foundational representations
of cellular variation.

Recent single-cell foundation models have demonstrated
remarkable capabilities in learning generalizable represen-
tations through transformer-based architectures trained on

“Equal contribution 'GenBio AT *Mohamed bin Zayed Uni-
versity of Artificial Intelligence *The Chinese University of Hong
Kong *Carnegie Mellon University. Correspondence to: Le Song
<le.song@genbio.ai>, Eric Xing <eric.xing@genbio.ai>.

Proceedings of the Workshop on Generative Al for Biology at the
42" International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

tens of millions of cells (Theodoris et al., 2023; Cui et al.,
2024; Hao et al., 2024; Kalfon et al., 2025). However,
these models are pretrained on dissociated cell data with-
out spatial context, limiting their ability to handle spatial
transcriptomics tasks that depend on understanding cellular
neighborhoods and tissue organization. Foundation mod-
els that have been exposed to both single-cell and spatial
transcriptomics data have recently emerged, but existing
spatial-aware models like CellPLM (Wen et al., 2023) and
Nicheformer (Schaar et al., 2024) lack gene-level cross-cell
attention. These methods fail to capture that cellular behav-
ior is intrinsically linked to spatial context, given that cells
respond to immediate neighbors and organize into tissue
architectures that determine organ function (Lewis et al.,
2021).

We introduce AIDO.Tissue, a novel spatial cell-guided pre-
training framework tailored for foundation models in spatial
transcriptomics. Our approach is built on two key inno-
vations: (1) Explicit incorporation of spatial neighbor in-
formation—by taking multiple neighboring cells as input,
the model learns both intra-cellular and inter-cellular de-
pendencies, capturing richer spatial context; and (2) An
asymmetrical encoder-decoder architecture—the encoder
processes only the expressed genes across multiple cells,
while the decoder focuses exclusively on reconstructing
the gene expression of the center cell. This design signifi-
cantly reduces computational overhead while maximizing
the model’s ability to capture cross-cell, gene-level patterns
critical for spatial representation learning.

Through systematic evaluation across two model scales (3M
and 60M parameters) and multiple neighborhood sizes (8
to 64 cells), we demonstrate that spatial cell information is
more important than scaling model size only. AIDO.Tissue
also achieve a better performance than other competing
method across diverse spatial related downstream tasks, in-
cluding cell type classification, niche type prediction and
cell density estimation. Our results suggest that incorpo-
rating spatial awareness during pretraining is crucial for
building foundation models that can truly understand tis-
sue biology, paving the way for more effective analysis of
spatial transcriptomics data at scale.
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Figure 1. Overview of AIDO.Tissue spatial cell-guided pretraining architecture. The input is paired single-cell spatial and expression
profiles. Each cell along with its retrieved k nearest neighbors are concatenated as a multi-cell input. The encoder processes expressed
gene embeddings across all cells, while the decoder selectively reconstructs only the center cell. Please refer to the main text for a detailed

explanation.

2. Method

AIDO.Tissue incorporates spatial cell information to benefit
pre-training large-scale single-cell RNA-seq data (illustrated
in Figure 1). Instead of single cell as input, neighboring cells
are also encoded as joint input, a concept analogous to MSA
(Multiple Sequence Alignment) style protein pretraining.
The introduction of an asymmetrical encoder-decoder makes
it computationally efficient to manipulate cross-cell gene
dependency. We describe each component as below:

Input: The input data consists of a paired single cell spatial
profile matrix (G € R°*?) and expression matrix (E €
Re*™), where ¢ is number of cells and 7 is number of genes
(in our study 19,264). The spatial matrix GG denotes the x and
y coordinate of each cell center in two-dimensional space.
The expression matrix F contains normalized expression
value of each gene across all cells, including expressed
(non-zero count) and non-expressed (zero count) genes.

Retrieving neighboring cells: For each cell, £k €
(8,16, 32, 64) nearest neighboring cells are retrieved based
on cell-cell distance, which is calculated from spatial G.
The expression vector of the center cell and neighboring
cells is stacked into a larger matrix.

Column masking: The overall pretraining objective is to
recover masked expression values of the center cell. A
column-wise masking strategy is introduced to avoid direct

inference from the same gene of neighboring cells. The
masking includes both non-zero and zero positions, but
with a different ratio due to intrinsic abundance bias (see
xTrimoGene (Gong et al., 2023) for more details).

Flatten: To capture the dependency of genes between the
center and neighboring cells, the masked matrix is converted
to a longer flat vector. A two-dimension vector is also
employed to distinguish each gene and cell, where the first
dimension is gene index and the second is cell index.

Embedding: Each gene is encoded into a latent vector d,
which is an element-wise sum of gene name embedding,
expression value embedding and positional embedding. The
gene name embedding is retrieved from an randomly ini-
tialized lookup embedding table. The expression value is
projected to an embedding using an MLP-based module.
Specifically, a rotary positional embedding is derived for
each gene based on the two-dimensional gene and cell index.

Encoder: For the full-length center-neighbor gene embed-
ding, only expressed genes are kept and fed into the encoder.
The design makes it efficient and computational affordable
in Transformer-like architecture, especially when extend-
ing to a large number of neighboring cells. The attention
mechanism of the encoder are calculated along all the in-
put, thus capturing both inter-cell and intra-cell gene-gene
dependency.
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Decoder: The output embedding of encoder contains latent
information of all expressed genes. Before fed into decoder,
the masked and non-expressed parts are also concatenated
into a full-length vector. To further reduce computational
resources, only the center cell is fed into the decoder. Fol-
lowing the decoder, an MLP module is utilized to project
the latent embedding into exact expression values.

Loss calculation: The mean squared error (MSE) loss is
employed to measure the error between the ground truth and
the predicted expression value. The calculation is based on
the masked positions of the center cell.

3. Experiments
3.1. Experimental Setup

Pretraining datasets: We collected large-scale spatial
transcriptomics datasets across three main platforms for
pertaining, including Vizgen (https://info.vizgen.com/ffpe-
showcase), Nanostring (https://nanostring.com/resources)
and 10xgenomics (https://www.10xgenomics.com/datasets).
The final dataset contains about 76 slides and 22 million
cells (See App.Table 1 for a detailed statistics.).

Pretraining configurations: The model was trained for
a total of 150,000 iterations using a global batch size of
128. Optimization was performed using the Adam opti-
mizer with 57 = 0.9 and 33 = 0.95, and a weight decay
of 1 x 1072 was applied to improve generalization. The
learning rate was initialized at 2 x 10~5 and then warm-up
to a2 x 10~* and then following a cosine decay schedule.
To stabilize training, gradient clipping was employed with a
maximum norm of 1.0. We pretrained 3M and 60M parame-
ter (App.Table 2) transformer models with varying spatial
neighborhood sizes k € {8,16, 32,64}.

3.2. Scaling Behaviors Analysis

To systematically evaluate the performance and capacity of
our spatial pretraining framework, we first conducted a scal-
ing analysis along the neighborhood size. Specifically, we
varied the number of spatial neighboring cells incorporated
into the input context to assess how much spatial informa-
tion is necessary or beneficial. This neighbor size scaling
provides insight into the locality of spatial gene expression
patterns and the extent of spatial dependency learned by the
model. Here we fine-tuned the model on the niche label
prediction dataset as the benchmark.

As show in Figure 2, we observed a consistent improvement
while increasing neighbor size from 8 to 64, suggesting
that more neighboring cells provide a richer spatial context.
The phenomenon is similar for the larger 60M parameter
size model (see App. Figure 6). The scaling behavior
demonstrates the effectiveness of our spatial cell-guided
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Figure 2. Fine-tuning metric curves for niche label prediction
across different neighboring size configurations. Evaluated on
3M parameter size model.

pretraining approach.

However, we found only marginal improvement while fur-
ther scaling the model size (32 neighbors 3M versus 60M,
App. Figure 6, 7). The benefit is much smaller than that of
increasing neighbor size (3M model from 32 neighbors to
64, App. Figure 6, 7). This indicates that, in spatial tran-
scriptomic modeling, the bottleneck may not lie in model
expressiveness but rather in the richness of the spatial infor-
mation available.

3.3. Downstream Task Evaluation

To comprehensively assess the utility of our spatially pre-
trained model, we benchmarked three downstream tasks that
have been established in the NichFormer framework. We use
the CosMx human liver dataset from CosMx data resource
(He et al., 2021) for cell type and niche type benchmarking
and Xenium human lung dataset from the 10x Genomics
data resource for cell density evaluation. In the following
sections, we detail the definition and results for each task,
highlighting the model’s performance and behavior relative
to existing baselines.

3.3.1. CELL TYPE PREDICTION

This classification task involves assigning one of 22 well-
annotated cell types to each cell based on both its gene
expression and spatial context. Unlike traditional cell type
annotation tasks that rely solely on transcriptomic profiles,
this dataset also provides spatial information. By jointly
modeling local expression and spatial arrangement, this task
provides a more realistic and challenging benchmark for
evaluating spatial representation learning models.

We observed that AIDO.Tissue outperforms Nicheformer
and CellPLM in prediction (F1 score 0.77 versus 0.73 and
0.76, Figure 3 (A)), highlighting the advantage of incorpo-
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Figure 3. Cell type (A) and niche type (B) prediction performance
comparison with F1 score metric.

rating richer spatial context. While Nicheformer leverages
both single-cell and spatial transcriptomics data during pre-
training, its architecture processes each sample centered on
a single cell, limiting the spatial information to what can
be implicitly learned from pairwise representations. In con-
trast, AIDO.Tissue explicitly integrates the gene expression
and spatial embeddings of neighboring cells during both
pretraining and inference. This design enables the model
to capture local tissue structure and microenvironmental
signals more effectively, leading to improved cell identity
resolution.

3.3.2. NICHE TYPE PREDICTION

Following spatial cell type classification dataset, there de-
rives a microenvironment-level prediction task: niche type
prediction task. The task focuses on classifying each cell
into one of 6 predefined spatial niches, which are aggregated
from 22 original cell types based on shared spatial localiza-
tion and functional roles. These niche types represent co-
herent microenvironmental structures, such as immune-rich
regions, and serve as a biologically meaningful abstraction
that captures both cellular identity and spatial context.
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Figure 4. Visualization of the ground truth niche type and predicted
niche type distribution of a region from test set.

We found that our approach achieves substantial improve-
ments over Nicheformer and CellPLM, with F1-scores from
0.50/0.52 to 0.75 (Figure 3 (B)). We also visualize one
region with ground truth and predicted niche types. It

shows our prediction has a clear delineation of tissue re-
gions and smooth transitions between niche types, which is
well aligned with the truth labels (Figure 4, App. Figure 8).
These results highlight the model’s ability not only to clas-
sify cells accurately but also to infer higher-order spatial
organization, demonstrating its potential utility in both diag-
nostic and discovery-oriented spatial omics applications.

3.3.3. CELL DENSITY PREDICTION

This regression-based task aims to estimate the local cellular
composition around a given center cell by predicting the
proportion of each cell type within a defined spatial radius.
Such local density distributions often reflect tissue organi-
zation and microenvironmental context and are known to
differ substantially between healthy and tumor tissues. We
use MAE (Mean Absolute Error) as the evaluated metric.
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Figure 5. Cell density prediction performance measured by MAE.

As shown in Figure 5, the AIDO.Tissue model achieves a
lower MAE (4.583) than CellPLM (5.926) and Nicheformer
(7.084), indicating its superior capacity to reconstruct fine-
scale cellular distributions (see App. Figure 9 for more
metrics). This improvement suggests that our model can
integrate broader neighborhood context effectively.

4. Conclusion

We introduce AIDO.Tissue, a novel and efficient framework
to pretrain transcriptomic data in a spatial cell-guided man-
ner. Through systematic scaling analysis, we demonstrate
that spatial neighborhood size often has greater impact on
downstream performance than raw model capacity. By inte-
grating spatial neighboring cell information, we observed
an consistent improvement across diverse downstream
tasks, which illustrates that spatial context is a fundamental
organizing principle that should be incorporated during
the pretraining phase. The AIDO.Tissue framework
provides a scalable foundation for analyzing increasingly
complex spatial transcriptomics datasets, paving the way
for deeper understanding of tissue organization. Code and
pretrained model weights are publicly available at https:
//github.com/genbio—ai/ModelGenerator/
tree/main/experiments/AIDO.Tissue.
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A. Appendix materials.

Table 1. Statistics of pretraining single-cell spatial data.

Platform Number of slides Number of cells (million)
Vizgen 19 9.3
Nanostring 12 1.7
10xgenomics 45 10.7
Total 76 21.7

Table 2. Hyper-parameters of the pre-trained models.

Model name Parameter Encoder Decoder Neighbor
™M) depth  heads dim depth  heads dim number
AIDO.Tissue-3M 3 4 2 128 2 2 128  8,32,64
AIDO.Tissue-60M 60 12 8 512 4 8 512 16, 32
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Figure 6. Fine-tuning metric curves for niche label prediction across different model size configurations.
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Figure 7. Performance comparison on cell type (left panel) and niche type prediction (right panel) across different model configurations.
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Figure 8. Full visualization of the ground truth niche type and predicted niche type distribution. All the test set regions are plotted.
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Figure 9. Performance comparison on cell density prediction across different model configurations.



