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ABSTRACT

Large language models (LLMs) have recently emerged as powerful decision-
makers across a wide range of reasoning-intensive tasks. While prior work has
made great progress in single-agent environments, less effort has been devoted to
settings where LLMs must engage in repeated and strategic interactions without
prior knowledge about the opponents. In such settings, traditional self-play or of-
fline training, though robust against worst-case adversaries, does not fully leverage
the flexibility of LLMs to continually self-improve based on interaction feedback.
To address this, we introduce a general inference-time framework called best-
of-N sampling with opponent simulation (BoN-oppo-simulation), with a
case study in repeated negotiation games. The framework scales inference-time
computation by embedding the principles of a classical game-theoretical learn-
ing dynamic, fictitious play (FP), into practical LLM implementations: (i) for the
belief formation step, we introduce a separate LLM as an opponent model that
in-context learns to imitate the time-averaged behavior of the opponent from past
interactions; (ii) for the best response step, we perform BoN by simulating future
outcomes using the opponent model, where candidates are generated through a
structured strategic brainstorming process. Empirical evaluations on two repeated
negotiation games, the buyer-seller negotiation and the resource exchange nego-
tiation, demonstrate that our method achieves significant self-improvement over
repeated interaction compared with various baselines, offering a lightweight and
scalable approach to strategic reasoning and decision-making.

1 INTRODUCTION

Recent years have witnessed the remarkable success of large language models (LLMs) as central
controllers across a broad spectrum of decision-making and reasoning tasks, including computer
agents (Kim et al., 2023; Zhou et al., 2024b), robotics (Wang et al., 2024a; Cui et al., 2024), math-
/coding reasoning (Wei et al., 2022; Kojima et al., 2022; Jimenez et al., 2024). Notably, substan-
tial research frameworks have focused on developing effective policies for relatively stationary and
single-agent decision-making environments (Hao et al., 2023; Yao et al., 2023).

Meanwhile, many applications also involve strategic interactions between the LLM-based agent and
other decision-makers within the same system that are often unknown or may vary over time (Park
et al., 2023; Zhang et al., 2024). In such settings, the lack of prior knowledge about other agents
makes it difficult to pre-train or fine-tune a fixed policy offline that can well respond to arbitrary
online opponents. One standard solution involves computing offline strategies such as the Minimax
or Nash equilibrium through methods like self-play, exemplified by systems like AlphaGo (Silver
et al., 2016; 2017), to prepare for worst-case adversaries in two-player zero-sum games. How-
ever, such approaches can be overly conservative, sacrificing performance when interacting with
less adversarial opponents, especially in games involving both competition and cooperation (Leibo
et al., 2017; Jaques et al., 2019). This highlights the necessity for LLM agents to adapt online to
unknown or dynamic opponents and to progressively improve their decision-making by leverag-
ing feedback accumulated through repeated interactions. Meanwhile, given that such adaptation
and self-improvement occur at test time and recent success of scaling inference-time compute in
reasoning-heavy problems (Jaech et al., 2024; Guo et al., 2025), inference-time techniques become
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particularly appealing. Unlike pre-training or fine-tuning, which are data-hungry and introduce high
latencies, inference-time methods offer a lightweight and scalable path toward continual adaptation
and self-improvement. This thus motivates the central question we investigate:

Can we enable continual self-improvement for LLMs in repeated strategic decision-making
via exploiting inference-time computation?

To understand this question, we focus on the natural language-based negotiation game, a widely
adopted benchmark for evaluating LLMs’ strategic capability (Lewis et al., 2017; Davidson et al.,
2024; Bianchi et al., 2024; Xia et al., 2024b). These games are particularly challenging for LLMs
due to the necessity of reasoning over private information, modeling opponent behaviors, plan-
ning for long-term objectives, and engaging in strategic communication. We further focus on the
less-explored repeated setting, where agents must also leverage historical feedback to inform their
actions over time. Our framework embeds the principles of fictitious play (FP) (Brown, 1951; Robin-
son, 1951), a classical learning dynamic for repeated games, into the scalable LLM inference-time
paradigms. FP forms a belief by keeping track of the time-averaged behavior of the opponent and
then computes a best response against this fictitious belief/opponent model. Inspired by this, our
framework consists of two conceptual components: (i) for the belief formation step, we construct an
approximate opponent model instantiated by a separate LLM conditioned on the negotiation history
accumulated over repeated interactions to in-context learn to imitate the actual (unknown) opponent.
The opponent model is prompted to explicitly summarize the high-level behavior patterns from in-
teraction history and then predict the possible next move of the actual opponent, in the hope of
mimicking its time-averaged behavior; (ii) for the best response step, we utilize the idea of best-
of-N (BoN) sampling (Nakano et al., 2021; Wang et al., 2023; Gui et al., 2024) by generating a
pool of candidate responses to explore the exponentially large natural language space. To pick the
best one, we simulate the full trajectory that would unfold under each candidate with the help of the
opponent model and rank them based on the resulting simulated rewards. This process is repeated
at each turn of each episode. We refer to our framework as BoN-oppo-simulation. Conceptu-
ally, both the acting agent and the opponent model benefit from continual history accumulation: the
agent generates increasingly refined strategies through prompted self-reflection, while the opponent
model produces progressively more faithful simulations.

Contributions. We summarize our contributions as follows. (1) We first motivate our problem
setting by demonstrating the necessity of engaging in repeated interactions and the failure of cur-
rent LLMs in terms of self-improving over repeated interactions without additional inference-time
interventions theoretically and empirically. (2) We then propose a general and principled inference-
time framework, BoN-oppo-simulation, to enable continual self-improvement for the under-
explored domain of repeated strategic decision-making. (3) Finally, we empirically examine differ-
ent ways of thinking (BoN vs. native thinking of reasoning models) and different ways of candidate
evaluation, where our framework achieves the significant self-improvement over repeated interac-
tions in two common language-based negotiation games.

2 RELATED WORKS

Language models for multi-agent negotiation. There has been a rich line of literature on multi-
agent negotiation in various disciplines from game theory, economics, to psychology with a pre-
defined symbolic action space. Beyond environments with standardized inputs and outputs, com-
bining modern NLP and RL techniques for negotiation with unrestricted natural languages dates
back to Lewis et al. (2017), which trained an end-to-end recurrent neural network by imitating hu-
man dialogues followed by goal-based RL training and decoding. He et al. (2018) further proposed
to first generate the coarse dialogue acts, i.e., meta actions, and then use a generator to generate
the actual natural dialogues. More recently, with LLMs as reliable natural language processing
and understanding interfaces, numerous works have attempted to benchmark the (native) negotia-
tion ability in different negotiation settings (Davidson et al., 2024; Bianchi et al., 2024; Xia et al.,
2024b). Meanwhile, there has also been a surging interest in improving the negotiation ability of
LLMs with various techniques (Hua et al., 2024; Gemp et al., 2024; Liu et al., 2025; Zhang et al.,
2025). These existing works mainly focus on how to learn a single policy with better performance
in a single episode of the negotiation instead of online adaptation and continual self-improvement
by utilizing historical feedbacks from repeated plays as in our paper. To the best of our knowledge,
the only exception is Fu et al. (2023), which also studied the repeated buyer-seller negotiation game
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and enabled the self-improvement of the negotiation agent by introducing a separate critic to provide
instructions for the acting agent at the beginning of each episode. Technically, the approach of Fu
et al. (2023) served as an advanced technique for automatic prompt engineering while the outputs
of the LLMs were kept native. In contrast, we propose a novel inference-time technique through
multi-turn opponent simulation to elicit the self-improving behaviors from the output distribution of
LLMs. We leave how to combine these two techniques as an interesting future work.

LLM agents for online and strategic decision-making. With LLMs being employed as the cen-
tral controller for various (single-agent) decision-making problems (Yao et al., 2023; Shinn et al.,
2023; Zhou et al., 2024a; Wang et al., 2024b), there have been efforts dedicated to evaluating the
reasoning and decision-making capability of LLMs in the more challenging online, dynamic, and
strategic environments including normal-form (repeated) games (Akata et al., 2025; Brookins &
DeBacker, 2024; Lorè & Heydari, 2023; Fan et al., 2024), bandits (Krishnamurthy et al., 2024; Nie
et al., 2024; Xia et al., 2024a), expert problems (Park et al., 2025), etc. Notably, the scenarios exam-
ined in such literature usually focus on canonical problems with well-specified state/action space.
There have also been related works utilizing LLM agents to solve more sophisticated multi-agent
games, e.g., Diplomacy (Bakhtin et al., 2022; Xu et al., 2025), Werewolf (Xu et al., 2023; 2024).
Again, these works either primarily focus on the single episode setting or learning from past experi-
ence using specialized prompt engineering without inference-time interventions.

We refer additional literature reviews on opponent modeling and inference-time techniques in LLMs
to Appendix C.

3 PRELIMINARIES

3.1 LANGUAGE-BASED NEGOTIATION GAMES

The multi-agent negotiation task has emerged as an important benchmark for examining the strategic
reasoning abilities of LLMs. In this paper, we focus on two specific versions, the buyer-seller game
and the resource exchange game (Rubinstein, 1982; He et al., 2018; Deng et al., 2024; Bianchi et al.,
2024). Both games involve two agents (i.e., LLMs in our context), agent 1 and agent 2.

• For the buyer-seller game, the buyer, who has a private maximum budget, aims to acquire an item
from the seller who has a private production cost. If a deal is reached, the reward for the seller is
defined as the difference between the deal price and the production cost, and the reward for the
buyer is defined as the difference between the budget and the deal price. If no deal is reached,
both get 0 reward.

• For the resource exchange game, each agent i ∈ [2] holds a certain amount of different resources,
for example, nX

i of X , and nY
i of Y with valuation of vXi and vYi per unit of resource respectively

for some nX
i , nY

i ∈ N and vXi , vYi ∈ R≥0. In such a setting, the agents need to strategically trade
the less valuable resources for the more valuable ones from the other agent. Each agent’s reward
is the net change in the total value of its resources through the exchange in the game.

In this paper, we are interested in the setting where the game is played repeatedly for T ∈ N episodes,
where each episode further consists of (up to) a given horizon H of turns (or steps). Formally, the
repeated, multi-agent, multi-turn decision-making protocol can be described as follows. We denote
x1, x2 as the system prompts for describing the necessary game rules as well as the separate private
information for the two agents. At each episode t ∈ [T ], step h ∈ [H], agent P (h) ∈ [2] makes
a response ytP (h),h = (yt,pP (h),h, y

t,m
P (h),h), where yt,pP (h),h encodes the structured information for a

new proposal, acceptance, rejection, or waiting for a proposal, yt,mP (h),h represents a free-format

negotiation message to be sent to the opponent, and we define the space for yt,pP (h),h, yt,mP (h),h as
Yp
P (h), Y

m
P (h) respectively. If agent 1 starts first, we have P (h) = 2 − (h%2); otherwise, P (h) =

1 + (h%2). We also let τ th := (ytP (1),1, y
t
P (2),2, y

t
P (3),3, · · · , y

t
P (h−1),h−1) denote the concatenated

conversation history up to step h within episode t, and Ct−1 := (τ1H , τ2H , · · · , τ t−1
H ) denotes the

history of completed negotiations from episode 1 to t− 1, which serves as the context1. At the end
of episode t, agents 1 and 2 receive rewards rt1 and rt2, respectively, based on the negotiation’s rule.

1An episode t′ ∈ [t − 1] may terminate earlier before reaching the maximum turn H . In such cases, we
slightly abuse our notation to still use the τ t′

H to indicate the whole trajectory of an episode.
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Figure 1: The pairwise normalized rewards among the 7 kinds of prompts for the buyer-seller nego-
tiation games. Results shown for both buyers and sellers for both starting first and starting second.
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Figure 2: Correlation between the average normalized reward in the first 5 episodes and the last 5
episodes for buyer-seller negotiation games. Results are shown for all 7× 7 different prompt pairs.

The game ends immediately if a proposal is accepted or rejected, or if the maximum number of turns
is exceeded. When no deal is made, both agents get a reward of 0. By default, each agent i ∈ [2]
uses a policy in the form of πt

i,h(· | τ th; Ct−1, xi) for each h ∈ [H] where P (h) = i and we denote
the corresponding policy class as Πt

i. Finally, we denote the expected reward of a single episode as
Ji(π

t
1, π

t
2) := E[ri | τ tH ∼ (πt

1, π
t
2)]. Throughout our paper, we mainly take the perspective of agent

1 and regard agent 2 as the opponent.

4 METHODS

4.1 ON THE NECESSITY OF ENABLING SELF-IMPROVEMENT IN REPEATED INTERACTIONS

There is no single dominant strategy. One might wonder instead of enabling the LLM agent to
self-improve during the repeated interaction with the unknown opponent at inference-time, whether
one can find a single strategy offline that optimally responds to any possible opponents, i.e., a dom-
inant strategy. We show such a dominant strategy does not exist in either the buyer-seller game or
the resource exchange game.

Proposition 4.1. For both of our negotiation games, in a single episode of interaction, there does
not exist a policy π⋆

1 ∈ Π1 such that for any π2 ∈ Π2, it holds J1(π⋆
1 , π2) = maxπ1∈Π1 J1(π1, π2).

In fact, for any π⋆
1 ∈ Π1, there exists π2 ∈ Π2 such that J1(π⋆

1 , π2) ≤
maxπ1∈Π1

J1(π1,π2)

|Ym
1 | , where we

have omitted the episode index t since there is only one episode, and we recall Ym
1 is the free-format

negotiation message space of agent 1.
We also demonstrate that in the buyer-seller game, effective prompts such as being ”cunning” or
”desperate” (Bianchi et al., 2024) are not necessarily dominant either. It is intuitive to think that
when interacting with other emotional or fairness-valuing agents, “cunning” or “desperate” tac-
tics will be less effective. To evaluate how LLMs with different personas and tactics interact, we
begin with “cunning” and “desperate” prompts and ask GPT-4o to generate four new tactics and
personas, including “fully rational”, “fairness valuing”, “emotionally reactive”, and “Tit-for-Tat”.
Recognizing that these tactics/personas are not exhaustive, we also develop a new prompt (denoted
as “brainstorm”) asking the LLM to brainstorm some strategies and select the best (by itself) at each
time step. The specific prompts can be found in Appendix A.1. We report the pairwise performance
of all seven kinds of prompts in Figure 1, where we can see that for different types of opponents,
such ”cunning” or ”desperate” prompts are not necessarily always the best prompt strategy.
LLMs may fail to consistently self-improve (even when asked to). Given the necessity of self-
improvement through repeated interactions, we additionally examine whether LLMs are able to

4
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continually self-improve by naively conditioning on the negotiation history from past episodes. For
the buyer-seller game, we let two Gemini-2.5-Flash models interact for 20 episodes and report the
correlation between agent 1’s average rewards of the first 5 episodes and the last 5 episodes in
Figure 2, where we can see that most of the time, the agent does not significantly self-improve. This
is the case where we only let agent 1 maintain history, prompt it to maximize its cumulative rewards
(instead of caring about other possible objectives like negotiation efficiency, social welfare, etc.),
reflect on the past interaction, and explain how it can improve the decision-making process over the
episodes by itself (cf. Appendix A.2).

4.2 FICTITIOUS PLAY BLUEPRINT FOR ADAPTIVE DECISION-MAKING

Learning in games serves as a powerful tool for equipping agents with adaptive decision-making
capabilities when facing unknown or even adversarial opponents. One notable learning dynamic
is the (smooth) fictitious play (FP) dynamic (Brown, 1951; Robinson, 1951; Fudenberg & Levine,
1995), where the agent maintains a belief over the opponent’s actions and best responds to the belief
at each episode. Specifically, taking the example of normal-form games, at each episode t ∈ [T ],
the learning process for agent 1 can be described as follows
• Step 1: Belief formation. Agent 1 forms a belief about its opponent’s policy π̂t

2 ∈ ∆(B) as the
empirical frequency of the opponent’s historical actions. For each opponent’s action b ∈ B, if the
agent 2 has played the action b for a total of k times over the past t − 1 episodes, the belief is
π̂t
2(b) = k/(t− 1), where B denotes the action space of agent 2.

• Step 2: (Perturbed) best response. Agent 1 computes a (perturbed) best response πt
1 ∈ ∆(A)

against this belief π̂t
2:

πt
1(a) = P

(
a ∈ argmax

a′∈A
Eb∼π̂t

2
[r1(a

′, b)] + ηtϵ(a
′)

)
,∀a ∈ A,

where A and r1 ∈ [0, 1] denote the action space and reward function of agent 1, respectively.
The perturbation term ϵ ∈ R|A| is sampled i.i.d. from some given noise distribution Pnoise and
ηt ∈ R+. Notably, the perturbations introduce randomness to agent 1’s policy, preventing it from
being exploited by the opponents, and are the key to achieving strong adaptive decision-making
ability in the form of being no-regret.

Proposition 4.2. Define the (external) regret as Regret(T ) = maxπ1∈∆(A)

∑T
t=1 V1(π1, π

t
2) −

V1(π
t
1, π

t
2), where we denote V1(π1, π2) := Ea∼π1,b∼π2r1(a, b) for any π1 ∈ ∆(A), π2 ∈ ∆(B).

Suppose the perturbation is drawn from a standard Gaussian distribution. Then if ηt = Θ(1/
√
t), it

holds that E[Regret(T )] = O(
√
T ) for any unknown policies π1:T

2 played by the opponent, where
we only highlight the dependency on T here.
Remark 4.3 (Connections to the self-improvement across episodes). Such guarantees are made
possible by the equivalence between the smooth FP and the well-known online learning algorithm,
follow-the-perturbed-leader (FTPL) (Kalai & Vempala, 2005), where the noise distribution can also
be the Laplace distribution, Gumbel distribution, etc. (Abernethy et al., 2014). The equivalence
implies that when T becomes sufficiently large, the average performance of the agent 1 is compara-
ble to that of the best fixed policy in hindsight. In particular, when the opponent is stationary, as T
increases, the average performance of the agent 1 gradually approaches the optimal performance.
Note that this elegant dynamic is primarily studied in normal-form games, which usually involve
tabular action space and a single turn in each episode. In the following discussions, we study how to
implement the two key conceptual algorithmic modules, (1) belief formation and (2) best response,
in the more challenging LLM domains using inference-time interventions.

4.3 STEP 1: IN-CONTEXT OPPONENT MODELING

In our language-based multi-turn setting, agent 1 could work similarly as Step 1 by keeping track
of the frequency of each action y2,h at each decision point τh for each step h ∈ [H], where P (h) =
2. However, such an implementation would suffer from the exponentially large natural language
action space and fail to generalize to unseen decision points. Therefore, an ideal solution would be
leveraging the inductive bias of a pre-trained language model πθ by fine-tuning it towards mimicking
the opponent’s behavior given the historical contexts Ct−1 = (τ1H , τ2H , · · · , τ t−1

H ) at each episode
t ∈ [T ] using the objective of

argmax
θ

t−1∑
t′=1

∑
h:P (h)=2

log πθ(y
t′

2,h | τ t
′

h ).
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However, such a fine-tuning procedure could be data-hungry and potentially incur significant over-
heads, making it less suitable for our inference-time framework. Consequently, we propose to lever-
age an off-the-shelf LLM πoppo

2 to in-context learn to imitate the behavior of the opponent using his-
torical interactions Ct−1. Specifically, at each episode t ∈ [T ] and step h ∈ [H], where P (h) = 2,
the opponent model πoppo

2 takes the input of historical interactions Ct−1, the current partial trajectory
τ th−1 as well as the additional prompt p that instructs πoppo

2 to role-play the actual opponent to predict
its behavior at this time step. This instruction prompt p incorporates two key designs: (i) πoppo

2 is
required to first explicitly reflect on the contexts Ct−1 and summarize the high-level strategic behav-
ioral patterns of the actual opponent; (ii) We embed the principle of optimism in face of uncertainty
(OFU), a principled exploration mechanism from online RL. Specifically, when πoppo

2 is uncertain
about how the actual opponent would have responded at the current step, it should respond in the
way that could benefit agent 1 in terms of its reward. We refer the specific prompts to Appendix A.
Finally, we note that Step 1 of FP (and our corresponding opponent modeling approach) maintains
only the time-averaged behavior of the opponent, effectively treating the opponent as if it were sta-
tionary. However, this does not hinder the learner’s ability to handle scenarios where the opponent
follows a time-varying policy sequence, as established in Proposition 4.2.

4.4 STEP 2: BON WITH OPPONENT SIMULATION

Now with an opponent model in hand, implementing Step 2 in our setting features two challenges:
(1) The natural language action space is exponentially large; (2) The problem is multi-turn with no
intermediate reward signals. To address the challenges, given the base LLM πbase

1 , at each decision
point of agent 1, τh, where P (h) = 1, we first sample N candidate actionsD1,h := {y11,h, · · · , yN1,h}
from πbase

1 . Different from the vanilla version of BoN which typically samples candidates i.i.d., we
propose to let the LLM strategically brainstorm N high-level strategies and then devise separate
actions based on each strategy. Intuitively, this structured process encourages the LLM to explore
the strategy space and form a more diverse candidate set compared with i.i.d. sampling. Finally, it
is worth noting that at episode t ∈ [T ], when generating these candidates at each step h ∈ [H], πbase

1
maintains not only (partial) history of the current episode, but also the history from episode 1 to
t−1. We ask it to first summarize and reflect on the history and then make corresponding decisions.
Such summarization (Krishnamurthy et al., 2024) and reflection (Shinn et al., 2023) techniques have
been shown to be critical for enabling feedback-driven learning and are also crucial for achieving
consistent self-improvement in our later experimental studies.

Now we evaluate each candidate yk1,h for k ∈ [N ] as follows. Due to the lack of an immediate reward
signal, we propose to first follow yk1,h at the current time step h, and then simulate the entire future
trajectory by following agent 1’s base policy πbase

1 together with the opponent model πoppo
2 built as

in Section 4.3 to obtain the reward r̂k1 for agent 1. Finally, the algorithm picks the best candidate
action yk

⋆

1,h with k⋆ ∈ argmaxk∈[N ] r̂
k
1 and the decision-making process proceeds to the next time

step. We remark that both the candidate generation and opponent simulation involve a great amount
of stochasticity, and we empirically find that there is no need to further perturb the simulated reward
associated with each candidate action as in Step 2 of Section 4.2.

A viewpoint of inference-time RL and extensions to higher-order BoN. In principle, our
BoN-oppo-simulation is equivalent to one iteration of the widely used RL algorithm, pol-
icy iteration (PI), utilizing only inference-time computation. For each decision point τh, where
P (h) = 1 and candidate yk1,h, in the policy evaluation step, the simulated reward r̂k is in fact approx-

imating Q
πbase
1 ,πoppo

2

1,h

(
τh, y

k
1,h

)
:= Eπbase

1 ,πoppo
2 [r1 | τh, y1,h]. Then in the policy improvement step, the

new BoN policy chooses the optimal action as πBoN
1 (τh) := argmaxy1,h∈D1,h

Q
πbase
1 ,πoppo

2

1,h (τh, y1,h).
Conceptually, our BoN-oppo-simulation algorithm constructs an improved policy πBoN

1 from

a weaker one of πbase
1 . In fact, one can repeatedly sharpen the base policy by π

(l)
1

BoN-oppo-simulation←−−−−−−−−−−−
π
(l−1)
1 for l = 1, 2, · · · , where π0

1 := πbase
1 . By the standard guarantee of PI, this process will finally

converge to the best response against the πoppo
2 , thus fulfilling the goal of implementing Step 2 as in

Section 4.2 via only scaling inference-time computation without updating the parameters of πbase
1 .

We remark that this is also conceptually similar to Monte-Carlo Tree-Search (MCTS). Finally, due
to the exponential growth of inference-time cost in this iterative process, we primarily experiment
with l = 1, and examine larger values of l in specific settings later on.
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(a) Buyer’s average rewards (normalized by 20) in games with different horizons.

5 10 15 20
Episode

10

20

30

40

50

Av
er

ag
e 

re
wa

rd

Horizon 7
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

10

20

30

40

50

60
Av

er
ag

e 
re

wa
rd

Horizon 8
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

10

20

30

40

50

60

Av
er

ag
e 

re
wa

rd

Horizon 9
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

10

20

30

40

50

60

Av
er

ag
e 

re
wa

rd

Horizon 10
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

(b) Results for the resource exchange game.

Figure 3: Comparison of our method (red line) with 5 baselines introduced in Section 5.

4.5 CAN OUR FRAMEWORK BE IMPLEMENTED IN JUST ONE LLM QUERY?
It is in fact intriguing to ask whether our multi-step inference-time workflow above can be inte-
grated into just a single LLM query? To understand this question, we design a specialized prompt
to teach the base LLM to reason as follows. At each time step of decision making, it will first brain-
storm N high-level strategies, devise concrete actions, simulate what would happen if it follows
each candidate, and finally returns the simulated rewards to pick the best candidate. Note the key
difference compared with our framework above is that the long simulation traces happen purely in
the LLM’s native thinking/CoT. We call this BoN with CoT simulation and refer the prompt template
to Appendix A.5. We argue that studying this baseline will help us understand whether the default
thinking ability of large reasoning models (LRMs) trained heavily on inherently single-agent tasks
like math and coding suffices for strategic reasoning.

5 EXPERIMENTAL RESULTS

Experimental setups. To evaluate the performance of our algorithm, we let our algorithm and
baseline methods operate as one agent powered by an LLM to compete with another agent also
powered by an LLM. For the setup of the negotiation environments, we mainly follow the speci-
fications of (Bianchi et al., 2024). As noted by Xia et al. (2024b); Bianchi et al. (2024), in such
negotiation games, both the role (seller vs. buyer) and the turn (which agent starts first) have signif-
icant influences on the final outcomes. Therefore, for the buyer-seller game, we let our algorithm
play both roles and always start second (the unfavorable turn). For the resource exchange game,
we let the agent powered by our algorithm to start first (the unfavorable turn). For the buyer-seller
game, we set the seller’s production cost as 43 and the budget of the buyer as 63 by default2. For
the resource exchange game, we set nX

1 = 25, nY
1 = 5, nX

2 = 5, nY
2 = 25, vX1 = 0.5, vY1 = 2.5,

vX2 = 2.5, vY2 = 0.5 by default. For both games, the default horizon H of one episode is 10.

For baselines, we consider the following: (1) Baseline: the baseline agent with only our prompt
engineering. (2) Baseline w. thinking: the agent that uses the maximum thinking budgets. (3)
BoN-eval: BoN with an evaluation model. (4) BoN-simulation: BoN with CoT simulation as in
Section 4.5. (5) BoN-oppo (iid): our approach but with candidates sampled i.i.d. Our method is
denoted by the shorthand BoN-oppo. By default, we set N = 5, and the actual opponent uses
Gemini-2.5-Flash as the base LLM, without thinking mode or inference-time techniques. For the
opponent model or evaluation model, we use the same base LLM as the acting agent, with one

2Note that the specifications are slightly different from the one in Bianchi et al. (2024), where the cost and
budget are set to 40 and 60 respectively. We find that setting them to numbers that are not multiples of 5 makes
the problem more challenging.
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Model Method Buyer-seller game Resource exchange game
Buyer Seller Starts first Starts second

Claude

Baseline w. thinking +2.02 ± 1.39 -1.47 ± 2.05 +27.45 ± 6.18 -0.71 ± 1.16
BoN-eval +0.68 ± 1.56 +2.06 ± 1.75 +20.69 ± 7.19 +1.56 ± 0.40
BoN-simulation +0.04 ± 2.05 +1.36 ± 1.54 +16.76 ± 6.78 -11.15 ± 6.05
BoN-oppo (iid) -1.16 ± 0.98 +2.78 ± 1.67 +28.00 ± 6.01 +0.19 ± 0.56
BoN-oppo +3.02 ± 1.51 +2.80 ± 2.06 +30.65 ± 6.34 +1.92 ± 0.68

Qwen

Baseline w. thinking -0.42 ± 0.94 +11.18 ± 2.00 -7.17 ± 5.15 +16.89 ± 4.80
BoN-eval +4.06 ± 1.62 +18.10 ± 1.97 -0.05 ± 5.94 +24.66 ± 2.85
BoN-simulation +2.58 ± 1.65 +11.12 ± 2.01 -4.54 ± 5.91 +9.17 ± 5.33
BoN-oppo (iid) +1.60 ± 1.49 +11.62 ± 1.93 +1.95 ± 7.59 +26.14 ± 1.16
BoN-oppo +10.04 ± 2.03 +18.54 ± 2.46 +8.95 ± 6.23 +29.65 ± 0.33

Llama

Baseline w. thinking — — — —
BoN-eval -1.82 ± 1.88 +10.64 ± 2.44 -3.84 ± 6.41 +9.55 ± 5.88
BoN-simulation +0.30 ± 2.47 +5.28 ± 3.11 -16.26 ± 5.10 +10.34 ± 4.96
BoN-oppo (iid) -1.78 ± 1.62 -1.28 ± 2.44 +5.95 ± 4.57 +7.92 ± 5.62
BoN-oppo +4.80 ± 1.68 +14.74 ± 3.13 +13.27 ± 4.84 +6.08 ± 5.83

Table 1: Performance boost of different inference-time methods over Baseline for three additional
models. Results for our proposed method (BoN-oppo) are shaded. Since Llama models do not have
a thinking mode, we do not report the performance of baseline w. thinking.

exception: when both the acting agent and the opponent are powered by Gemini-2.5-Flash, we
instead use Gemini-2.5-Flash-Lite for opponent modeling to intentionally differ from the actual
opponent’s base LLM. Finally, all results are averaged over 10 random runs.
BoN with opponent simulation beats baselines and other variants. We report the performance
of different methods using Gemini-2.5-Flash as πbase

1 and shows the learning process of different
methods across episodes in Figure 3a and Figure 3b, where we can see although different methods
start with relatively similar performance, our methods achieve the most effective self-improvement
across episodes. The results for our algorithm playing as the seller are deferred to Figure 7. Besides
Gemini-2.5-Flash as πbase

1 , we also report the average rewards of the last 5 episodes achieved by
different methods in Table 1 using other models including Claude-Sonnet-4, Qwen3-Coder-480B-
A35B-Instruct, Llama-3.3-70B-Instruct. We can see that our method almost always achieves the best
performance improvements in both negotiation games across different base LLMs. Interestingly,
BoN with CoT simulation can often serve as the second-best method while baseline with thinking
mode turns out not even consistently outperforming baseline (w.o thinking). This reveals that the
inherent thinking ability of current LLMs trained heavily on single-agent tasks like math and coding
does not readily suffice for tasks requiring strategic reasoning.

BoN-eval BoN-oppo BoN-oppo (iid)BoN-simulation
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Figure 6: Results on social welfare

Strategic brainstorming generates more diverse candidates
than i.i.d. sampling. One innovation of our algorithm
comes from the structured generation process of brainstorm-
ing the high-level strategies first before devising the concrete
candidate. As the diversity of (a set of) text messages are rela-
tively difficult to measure, we report the standard deviation of
the proposed numerical price among the candidates in Figure 5
and Figure 12, where we can see that strategic brainstorming
helps generate more diverse candidates than i.i.d sampling.
Opponent model can provide increasingly more accurate
evaluations. To evaluate whether the opponent model can
provide more and more accurate simulated results through the
accumulation of the negotiation history, we compare the best candidate ranked by the simulation
results from the opponent model and the actual oracle opponent and report the accuracy of different
methods in Figure 10, Figure 11. We can see that an opponent model provides increasingly more
accurate simulation outcomes.

Results for interacting with (more) dynamic opponents and opponents also learning using our
method. By default, we have mainly focused on experiments against opponents with fixed bud-
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(a) Buyer’s average rewards (normalized by the difference between buyer’s maximum willingness to pay and
seller’s production cost) where the seller’s production cost is re-sampled at the beginning of each episode.
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(b) Buyer’s average rewards (normalized by 20) when competing against the seller also adopting our approach.

Figure 4: Comparison of buyer’s performance under two seller behavior settings.
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Figure 5: Buyer’s proposal standard deviation.

gets, production costs, or preferences of items. To evaluate our methods against more dynamic
opponents3, for the buyer-seller game, we report the performance of our methods against two kinds
of opponents: (1) having different budgets or production costs resampled randomly at the beginning
of each episode; (2) opponent also employing our approach; and the results are shown in Figure 4a,
Figure 4b. For the resource exchange game, we also compare the social welfare (i.e., the sum
of both agents’ value of their respective resources after exchange) achieved by two baseline agents,
BoN agent against baseline agent, and two BoN agents in Figure 6 for different types of BoN agents.
We also see the highest social welfare is achieved when both agents use our method (i.e., BoN-oppo).

Finally, we also report experimental results on scaling both N , the number of candidates, and l, the
number of repetitions of applying BoN in Figure 13.

6 CONCLUDING REMARKS AND LIMITATIONS

In this paper, we demonstrate the potential of leveraging inference-time computation in strategic
decision-making to enable continual self-improvement during repeated interactions. Several limi-
tations are worth noting. First, our experiments primarily focus on two-agent negotiation settings;
extending to multi-agent scenarios such as larger societies remains an important direction for future
work. Second, motivated by the fictitious play dynamic, we deliberately design a generic opponent
model to only approximate time-averaged behaviors without making assumptions about the actual
opponent. However, in many real-world applications, it is often natural to assume access to some
form of prior knowledge about the opponent. How to effectively embed such information into the
opponent modeling framework is another promising avenue for future investigations.

3Technically speaking, the opponent considered in our default experimental setting is already dynamic since
it also maintains a full history and could change its behavior across episodes.
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REPRODUCIBILITY STATEMENT

The core contribution of our paper is a framework for teaching LLMs in strategic reasoning and
decision-making tasks. We have provided detailed descriptions of our idea in the main paper accom-
panied by pseudocode in Appendix E as well as concrete prompts for reproducing our experimental
results
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A PROMPTS

A.1 SYSTEM PROMPTS FOR CONFIGURING THE SOCIAL AND STRATEGIC BEHAVIORS OF
LLMS

Brainstorming prompt

You should brainstorm and explicitly enumerate 5 high-level negotiation strategies or tactics,
and you must follow the strict format:
[(1). Strategy 1: xxx, yyy; (2). Strategy 2: xxx, yyy; ...], where xxx is the strategy name
and yyy is the strategy explanation.
You must brainstorm at every iteration/turn. After listing the strategies, carefully decide
which one is most effective for achieving the highest reward, given your past interactions
with your opponent. Justify your choice clearly.

Then, carefully and strategically generate the message that you will send to the other
player, based on the selected strategy.
Make sure your reasoning process explains the entire brainstorming and selection
process in detail.

Your reward is calculated as:
[{{rules of games}}]
In any episode where no deal is made, your reward is 0 (which is still better than accepting a
negative payoff).
Always aim to maximize your reward.

In the last line of your reasoning, you must declare your chosen strategy using this exact
format:
<strategy declaration> I have chosen Strategy x: yyy </strategy
declaration>

Cunning prompt

You are cunning and sly in your plan to sell for more ZUP. Humiliate your opponent as much
as possible. Insult them.

Desperate prompt

You must fake being desperate. Supplicate and beg to sell for more ZUP.

Rational prompt

You are a fully rational strategic decision-maker caring only utility maximization. Your
reward is calculated as the deal price minus production cost. In one episode, if no deals are
made, your reward is calculated as 0 (still better than a negative one).

Tit-for-tat prompt

You should use the tit-for-tat strategy. If your opponent is cooperating with you, you should
also cooperate. If your opponent is not cooperating with you, you shouldn’t either.

Fairness prompt

You care deeply about fairness. If the opponent offers something unfair, you will reject it
even at your own cost. You may scold them or refuse to deal unless the offer is improved. If
they show fairness, reward them.
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Emotional prompt

You are emotionally reactive. If insulted or lowballed, get angry and retaliate. If treated
kindly, respond warmly. Your emotions drive your negotiation choices.

A.2 PROMPTS FOR SUMMARIZATION, REFLECTION, AND SELF-IMPROVEMENT

At the beginning of each episode, we summarize what happened in all the historical episodes and
ask the LLM agents to reflect and try to (self-)improve its decision-making policy. Note that we try
to keep the prompts as general as possible instead of hand-crafting certain specialized prompts for
the negotiation problems to better enable their self-improving ability (e.g., one could have prompted
the seller to try to increase the selling price by a constant number at each episode until reaching a
hard threshold of the buyer.)

Reminder prompt for each episode beginning

Now Episode {{current episode}}/{{num episodes}} begins. Please start a new
episode of negotiation from scratch.

Here is summarized results from all previous episodes:
The historical deal prices from each episode sequentially:
[{{previous deals prices strings}}]
The reward you received from each episode sequentially:
[{{previous rewards strings}}]

Remember, at every step of decision making, you should first summarize and then reflect
on the negotiations from previous episodes. Through the reflection, you should aim to self-
improve your own decision-making across episodes.

A.3 SYSTEM PROMPT FOR CONFIGURING THE OPPONENT MODEL

For the opponent model, as we mentioned in Section 4.3, the opponent aims to play the role of agent
2 to provide authentic simulation for agent 1. It will first understand the game rule and then reason
over the history to summarize the behavior patterns of agent 2.

Reminder prompt for each episode beginning

{{game rule description}}

Now you should have understood the game rule for both agents very well.

You are helping {{agent 1}} to negotiate. Specifically, you are trying to play the role of
{{agent 2}}.

I will give you the existing negotiation history from both agents, and you should respond as
if you are {{agent 2}}, to provide authentic simulation for {{agent 1}}.

Remember: your response should follow the rule of {{agent 2}}.

Here is the existing negotiation history:

[{{nego history}}]
At each time step, please first explain and think about what you have learned about the role
you are trying to play, given all the negotiation history.
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In other words, you should reason step by step about how to provide authentic simulation
before actually providing the simulated responses.

Start your first line with:
<simulation thoughts> xxx </simulation thoughts>

where in xxx you should summarize the behavior patterns of {{agent 2}} from ne-
gotiation history to provide a strictly authentic simulation that is consistent with the history.
When you are uncertain how to simulate, be optimistic and assume the best outcome for
{{agent 1}}.

A.4 SYSTEM PROMPT FOR CONFIGURING THE EVALUATION MODEL

For the evaluation model to properly evaluate all the candidate responses, apart from informing it of
the game rules and history, we provide the following instructions.

Instruction for the evaluation model

YOUR TASK:
You will be given multiple response options to choose from at the current negotiation turn.
You will need to rely on the following negotiation history:

{{nego history}}
You have the following optional responses for {{agent name}} to use at this iteration:

{{response list}}.
Please evaluate which option will help {{agent name}} obtain the best negotiation
outcome.

Reason step by step explicitly according to the existing negotiation history.

Finally, return the best option at the last line of your response in the form [x], where x =
1, or 2, or 3, etc.

A.5 SYSTEM PROMPT FOR CONFIGURING THE SIMULATION MODEL

As an interesting baseline, we examine whether the LLM agent is able to simulate the entire nego-
tiation trajectory in just one response in contrast to the multi-turn simulation in Algorithm 1. To
instruct the model to self-simulate the possible complete trajectories in one response, we use the
following prompt.

Instruction for self-simulation

You are given a list of candidate responses. You need to simulate the entire future negotiation
process until the current episode ends by imagining what would happen in every future
iteration for both players.

The simulation process needs to be authentic in the sense that it can properly simulate the
opponent’s responses in the future.

Before simulation, you should explicitly reason how to authentically simulate the opponent’s
responses based on all the historical information.

Format your simulation reasoning as follows:
[
Simulating candidate message 1:
- Iteration i: Myself: <candidate message 1>
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- Iteration i+1: Opponent: <response>
- Iteration i+2: Myself: <a new message you choose
freely>
- Iteration i+3: Opponent: <response>
- ...
- Iteration n: <deal accepted / no deal / exceeds
maximum iterations>

Simulating message 2:
- Iteration i: Myself: <candidate message 2>
- Iteration i+1: Opponent: <response>
- Iteration i+2: Myself: <a new message you choose
freely>
- ...
- Iteration m: <deal accepted / no deal / exceeds
maximum iterations>

... (repeat for all candidate messages)
]

Both the messages and responses must be written as if they are actual, concrete dialogue
lines spoken in a real negotiation. In other words, you must play the role of both players to
generate natural, in-character responses - not summaries or descriptions.

Each simulation must be fully completed - never stop midway. Simulate until the outcome
is resolved for all 5 strategies.

Here is the list of candidate responses: {{concatenated candidates}}

After simulation, you must return a list representing the rewards for each candidate message
in the last line by strictly following this format:

<reward list> [reward1, reward2, ...] </reward list>

B ADDITIONAL EXPERIMENTAL RESULTS
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Figure 7: Seller’s average rewards (normalized by 20) in games with different horizons.

5 10 15 20
Episode

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

re
wa

rd

Horizon 7
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e 
re

wa
rd

Horizon 8
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

re
wa

rd

Horizon 9
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

5 10 15 20
Episode

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

re
wa

rd

Horizon 10
Baseline
Baseline w. thinking
BoN-eval
BoN-oppo
BoN-oppo (iid)
BoN-simulation

Figure 8: Seller’s average rewards (normalized by the difference between the buyer’s maximum
willingness to pay and seller’s production cost) in games where the buyer’s maximum willingness
to pay is uniformly sampled at the beginning of each episode.
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Figure 9: Seller’s average rewards (normalized by 20) in games when competing against the buyer
also adopting algorithm.
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Figure 10: Buyer’s accuracy of selecting the best candidate.

C ADDITIONAL RELATED WORKS

Opponent modeling in multi-agent RL. Opponent modeling is a key technical component of
our framework. Such techniques of opponent modeling have been an important ingredient of many
successful (multi-agent) RL algorithms (He et al., 2016; Raileanu et al., 2018; Papoudakis et al.,
2021; Yu et al., 2022; Weil et al., 2023), which introduce an auxiliary task of predicting the behavior
of other agents from past interactions apart from the standard RL objective to address the infamous
issues of non-stationarity. We refer to Albrecht & Stone (2018); Nashed & Zilberstein (2022) for
a more comprehensive literature review. There is also another line of work explicitly accounting
for the opponent for better stability and convergence of multi-agent learning dynamics (Foerster
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Figure 11: Seller’s accuracy of selecting the best candidate.
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Figure 12: Seller’s proposal standard deviation.
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Figure 13: Results for scaling the number of candidates and higher-order BoN in the buyer-seller
negotiation games.

et al., 2018; Letcher et al., 2019; Lu et al., 2022). Unlike those methods which train an RL agent
from scratch, we aim to develop a framework tailored for LLM strategic reasoning and decision-
making using only inference-time computation. Recently, a closely related work Yu et al. (2025)
also explicitly models the opponents to predict their private information and feed such predictions
to the acting agent to improve its decision-making ability instead of further exploiting the inference-
time computation by using the opponent model as a simulator in our work.

Inference-time techniques for LLM reasoning. The success of OpenAI o1, Deepseek R1 has
proven the effectiveness of the promising paradigm for LLMs reasoning by scaling the inference-
time computation through prolonged thinking process (Snell et al., 2024; Welleck et al., 2024; Muen-
nighoff et al., 2025). Apart from increasing a single thought trace, another effective way of scaling
inference-time computation is by generating multiple candidates and choosing the best one, known
as Best-of-N sampling or parallel thinking (Google DeepMind, 2025; xAI, 2025). However, how to
enable the ability of strategic reasoning and self-improvement in the repeated and strategic agentic
tasks through the powerful inference-time scaling techniques is less understood.

D DEFERRED PROOFS

D.1 PROOF OF PROPOSITION 4.1

Proof. We start with the proof where the agent 1 takes the first turn. For any
π⋆
1 ∈ Π1, we define the negotiation message that has the lowest probability as ŷm1,1 ∈

argminym
1,1∈Ym

1

∑
yp
1,1∈Yp

1
π⋆
1(y

p
1,1, y

m
1,1 |x1), where there is no history yet since it is the first turn.
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Now we construct an opponent policy π2 that behaves as follows at the second step: if agent 2 re-
ceives the negotiation message ym1,1 = ŷm1,1 and yp1,1 representing a proposal from the agent 1 that
yields a non-negative reward for agent 2, it will immediately accept and ends the game. Otherwise,
it will reject the proposal and end the game also. Now we define rmax

1 as the maximum reward agent
1 can get subject to the constraint that agent 2’s reward is non-negative. Such a value exists and can
be computed as follows for each our of negotiation game.

• For the buyer-seller game, we have rmax
1 = b− p, where b represents the buyer’s maximum

budget and p represents the seller’s production cost.

• For the resource exchange game, it is equivalent to solving the following program

rmax
1 = max

∆X∈N,∆Y ∈N
vX1 ·∆X + vY1 ·∆Y

s.t. vX2 ·∆X + vY2 ·∆Y ≤ 0

∆X ∈ [−nX
1 , nX

2 ]

∆Y ∈ [−nY
1 , n

Y
2 ].

We denote the optimal solution as ∆⋆
X ,∆⋆

Y .

Therefore, by the construction of π2, it holds that

V1(π
⋆
1 , π2) ≤ rmax

1 · P(ym1,1 = ŷm1,1) ≤
rmax
1

|Ym
1 |

.

Now we can construct the best response policy π†
1 against π2 by letting π†

1 choose (ŷp1,1, ŷ
m
1,1) de-

terministically. ŷp1,1 simply chooses the proposal that maximizes agent 1’s reward subject to the
constraint that agent 2’s reward is non-negative. Specifically,

• For the buyer-seller game, we set ŷp1 as the proposal of selling the product with price b if
agent 1 acts as the seller; otherwise, as the proposal of buying the product with price p if
agent 1 acts as the buyer.

• For the resource exchange game, we set ŷp1 as the proposal of getting ∆⋆
X of X and ∆⋆

Y of
Y from agent 2. Note that if ∆⋆

X (∆⋆
Y ) is negative, this means agent 1 gives −∆⋆

X (−∆⋆
Y )

of X (Y ) to agent 2.

By the construction of π†
1 and π2, agent 2 will accept the proposal from the agent 1, yielding a

reward of rmax
1 for the agent 1. Formally, we have

max
π1∈Π1

V1(π1, π2) = V1(π
†
1, π2) = rmax

1 .

This thus concludes that V1(π
⋆
1 , π2) ≤

maxπ1∈Π1
V1(π1,π2)

|Ym
1 | .

For the case where agent 2 takes the first turn, for any given π⋆
1 ∈ Π1, we construct the policy π2

similarly. At the first turn, agent 2 will deterministically choose (yp2,1, y
m
2,1), where yp2,1 denotes

waiting for a proposal, and ym2,1 denotes an empty string. Now we construct the policy π2 at h = 3
by mimicking the construction of π2 at h = 2 for the case above where the agent 1 takes the first
turn. It is again straightforward to verify that V1(π

⋆
1 , π2) ≤

maxπ1∈Π1 V1(π1,π2)

|Ym
1 | , thus concluding our

proof.
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Figure 14: Graphical illustration of our framework.

D.2 PROOF OF PROPOSITION 4.2

Proof. We denote the action sequence played by the agent 2 as b1:T . For each t ∈ [T ], we denote
the reward vector f t := r1(·, bt) ∈ R|A|. By the definition of πt

1, for each a ∈ A, we have

πt
1(a) = P

(
a ∈ argmax

a′∈A
Eb∼π̂t

2
[r1(a

′, b)] + ηtϵ(a
′)

)
= P

(
a ∈ argmax

a′∈A

∑t−1
t′=1 f

t(a′)

t− 1
+ ηtϵ(a

′)

)

= P

(
a ∈ argmax

a′∈A

t−1∑
t′=1

f t(a′) + (t− 1)ηtϵ(a
′)

)
.

By Theorem 8 of (Abernethy et al., 2014), we have

max
π1∈∆(A)

T∑
t=1

(
⟨π1, f

t⟩ − ⟨πt
1, f

t⟩
)
≤
√
2 log |A|

(
(T − 1)ηT +

T∑
t=1

∥f t∥2∞
(t− 1)ηt

)
.

Now by plugging in the choice of ηt = Θ(1/
√
t), we conclude for any policy π1 ∈ ∆(A)

T∑
t=1

(
⟨π1, f

t⟩ − ⟨πt
1, f

t⟩
)
≤ O(

√
T log |A|).

By taking expectations w.r.t. the random action sequences b1:T and noting that Ebt∼πt
2
[⟨π1, f

t⟩] =
V1(π1, π

t
2),Ebt∼πt

2
[⟨πt

1, f
t⟩] = V1(π

t
1, π

t
2) for each t ∈ [T ], we conclude that

E [Regret(T )] ≤ O(
√

T log |A|).

E DETAILED DESCRIPTION OF OUR FRAMEWORK

In Algorithm 1, we describe the decision-making process using the perspective of the agent 1 for
total T episodes. At each episode t ∈ [T ], each time step h ∈ [H], if it is agent 2’s turn, i.e.
P (h) = 2, agent 1 will observe the action yt2,h from the opponent and update the partial trajectory.
Otherwise, it will implement our BoN framework as in Section 4. Finally, we refer a graphical
illustration of our framework to Figure 14.
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Algorithm 1 BoN-Opponent-Simulation (from the perspective of agent 1)

1: Input: πbase
1 ,πoppo

2 , x1, N , T , H
2: for t ∈ [T ] do
3: for h ∈ [H] do
4: if P (h) = 1 then
5: for k ∈ [N ] do
6: Sample action yt,k1,h ∼ πbase

1 (· | τ th; ct−1, x1)

7: Simulate the episodes by first taking action yt,k1,h and then following (πbase
1 , πoppo

2 )
towards the end of the episode

8: Denote r̂k1 as the empirical average of the reward from the simulated trajectories
9: end for

10: k⋆ ← argmaxk∈[N ] r̂
k
1

11: Take the action yt,k
⋆

1,h

12: Update the partial trajectory τ th+1 ← (τ th, y
t,k⋆

1,h )
13: else
14: Observe the opponent action yt2,h
15: Update the partial trajectory τ th+1 ← (τ th, y

t
2,h)

16: end if
17: end for
18: Update the context ct ← (ct−1, τ tH)
19: end for

F EXAMPLE OUTPUTS OF OUR AGENTS

We refer the example outputs of our agents to the anonymous link
https://github.com/llmnegotiationiclr-anonymous/llm-negotiation.

G THE USE OF LARGE LANGUAGE MODELS (LLMS) IN PAPER WRITING

For the submission, we only use LLMs for proofreading purposes.
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